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Abstract
Gray wolf optimizer (GWO) that is one of the meta-heuristic optimization algorithms is principally based on the hunting

method and social hierarchy of the gray wolves in the nature. This paper presents the Multi-strategy Random weighted

Gray Wolf Optimizer (MsRwGWO) including some effective and novel mechanisms added to the original GWO algorithm

to improve the search performance. These are a transition mechanism for updating the parameter a!, a weighted updating

mechanism, a mutation operator, a boundary checking mechanism, a greedy selection mechanism, and an updating

mechanism of leader three wolves (alpha, beta, and delta wolves). We utilized some benchmark functions known as CEC

2014 test suite to evaluate the performance of MsRwGWO algorithm in this study. Firstly, during the solution of opti-

mization problems, the MsRwGWO algorithm’s behaviors such as convergence, search history, trajectory, and average

distance were analyzed. Secondly, the comparison statistical results of MsRwGWO and GWO algorithms were presented

for CEC 2014 benchmarks with 10, 30, and 50 dimensions. In addition, some of the popular meta-heuristic algorithms

taken from the literature were compared with the proposed MsRwGWO algorithm for 30D CEC 2014 test problems.

Finally, MsRwGWO algorithm was adapted to the training process of a Multi-Layer Perceptron (MLP) used in wind speed

estimation and comparative results with GWO-based MLP were obtained. The statistical results of the benchmark prob-

lems and training performance of MLP model for short-term wind speed forecasting show that the proposed MsRwGWO

algorithm has better performance than GWO algorithm. Source code of MsRwGWO is publicly available at https://github.

com/uguryuzgec/MsRwGWO.
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1 Introduction

Meta-heuristic methods have become powerful and popular

in the last thirty years due to their simple, flexible, and easy

structures. Their high efficiency, easy-to-apply structure,

and their ability to avoid local optimum make them widely

used in today’s engineering sciences. Optimization

techniques aim to obtain the best solution in order to adapt

the models created during scientific studies to real life.

Features such as hunting techniques, feeding methods, and

mating habits of various creatures in nature are frequently

used in the design of meta-heuristic algorithms inspired by

nature. Examples of the best known of these algorithms are

Genetic Algorithm (GA) [1], Particle Swarm Optimizer

(PSO) algorithm [2, 3], Artificial Bee Colony (ABC)

algorithm [4, 5].

Many real-life problems may have more than one

solution. Optimization techniques are also classified

according to the nature of the problem to find the best

solution. Meta-heuristic algorithms are classified as bio-

inspired, physical, evolutionary, herd intelligence, and

other nature-inspired algorithms according to their struc-

ture [6–8]. Evolutionary algorithms were inspired by Dar-

win’s theory of natural selection [9]. Starting with a
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random population, these algorithms update the population

through evolutionary mechanisms such as mutation and

crossover. Differential Evolution (DE) algorithm [10, 11]

and Genetic Algorithm (GA) [1, 12] are the best known

examples of evolutionary algorithms. Physical algorithms

are created and developed inspired by physical phenomena

in nature. These algorithms, which start with a single

solution, are replaced by a number of physical equations

during iterations. Shuffled Frog Leaping algorithm (SFLA)

[13, 14], Harmony Search (HS) algorithm [15, 16], Tabu

Search (TS) algorithm [17], and Simulated Annealing (SA)

algorithm [18] are one of the most popular examples.

Swarm intelligence approaches are algorithms that mimic

collective intelligence such as birds’ flocks, bee colonies,

and fish flocks, which are composed of dispersed individ-

uals but collectively, act together by interacting with each

other [6]. The most well-known examples of these algo-

rithms are; Kennedy and Eberhart’s Particle Swarm Opti-

mizer (PSO) algorithm [2, 3], Artificial Bee Colony (ABC)

algorithm of Karaboga et.al [4, 19], Ant Colony Optimizer

(ACO) [20, 21], and Fish Swarm Algorithm (FSA) of Li

et al. [22]. Bio-inspired algorithms contain natural meta-

heuristics derived from the movements of living organisms.

The most popular examples of such algorithms are the

Artificial Immune (AI) algorithm [23, 24] and the Bacterial

Foraging Optimization (BFO) algorithm [25, 26]. There are

many studies on other meta-heuristic algorithms inspired

by nature, applications for solving real optimization prob-

lems. Some of these studies are as follows: Gravitational

Search Algorithm (GSA) [27, 28], Biogeography-Based

Optimizer (BBO) [29, 30], Invasive Weed Optimization

(IWO) algorithm [31], Sine–Cosine optimization Algo-

rithm (SCA) [32], Cuckoo Search (CS) algorithm [33, 34],

Harris Hawks Optimization (HHO) algorithm [35, 36],

Cultural Algorithm (CA) [37, 38], Antlion Optimization

(ALO) algorithm [39, 40], Fruit Fly Optimization Algo-

rithm (FFOA) [41], Gray Wolf Optimization (GWO)

algorithm [42, 43], Grasshopper Optimization Algorithm

(GOA) [44], Imperialist Competitive Algorithm (ICA)

[45, 46], Firefly Algorithm (FA) [47, 48], Moth-Flame

Optimization (MFO) algorithm [49], Dragonfly Algorithm

(DA) [50, 51], and Whale Optimization Algorithm (WOA)

[52].

One of the recently popular meta-heuristic algorithms is

the Gray Wolf Optimization (GWO) algorithm [42]. It is a

meta-heuristic approach that imitates the hunting patterns

and leadership hierarchy of gray wolves belonging to the

gray wolves (canis lupus) family in nature. Gray wolves are

predatory species at the top of the food chain in natural life.

They move in packs of 5–12 Gy wolves. Wolves are

managed with a very rigid and dominant hierarchical

structure. It has a structure in which gray wolves in the

group are called alpha, beta, omega, delta, and dominated

from top to bottom. The dominant member of the leading

gray wolf pack is the alpha wolf. The alpha wolf is not

always the strongest member of the wolf group; it is the

best in terms of its ability to lead the group. Alpha wolf

usually includes hunting, sleeping place, waking time, etc.,

in the wolf pack. It is responsible for making decisions on

matters. The beta wolf, which ranks second in the ranking,

helps alpha in decision making and other activities. While

the beta wolf is hierarchically linked to the alpha wolf, it

also rules the others. The lowest category omega wolf is

submissive to all of the other dominant wolves. Gray

wolves in the group are called delta if not alpha, beta, and

omega wolves. While delta wolves are hierarchically

linked to alpha and beta wolves, they dominate omega

wolves [42]. This hierarchy is presented in detail in the

next chapters. The GWO algorithm currently applied to

many real-world problems, such as power system load

forecasting [53], robot path planning [54], feature selection

in classification problems [55], optimal control of DC

motor [56], hyperspectral band selection [57], multilevel

image thresholding [58], short-term photovoltaic output

forecasting in solar energy [59], and wind speed forecast-

ing [60] etc.

As can be seen, one of the application areas of the GWO

algorithm is wind speed forecasting studies. The impor-

tance of wind energy systems among renewable energy

sources is increasing rapidly today. The short-term esti-

mation of the electrical energy to be obtained from wind

energy conversion systems is of great importance in terms

of planning, reliability, and management of power systems.

One of the most important parameters of the energy to be

obtained from wind energy systems is wind speed. Due to

the discrete, chaotic, and non-stationary nature of wind

speed data, meta-heuristic algorithms proposed in this field

in the literature in wind speed estimation and their hybrid

approaches are developed. Niu et al. [61] have improved

performance of the wind speed forecasting by using opti-

mal feature selection and an artificial neural network

optimized by a modified bat algorithm. Liu et al. [60]

proposed a hybrid model for multi-step wind speed esti-

mation by optimizing Regular Extreme Learning Machine

(RELM) parameters with the Gray Wolf Optimization

(GWO) algorithm. Xiao et al. [62] proposed a unified

model based on the Chaotic Particle Swarm Optimizer

(CPSO) algorithm to optimize the weight coefficients in

wind speed estimation. Zhang et al. [63] verified wind

series from four separate wind fences using a modified

Flower Pollination Algorithm (FPA). Wang et al. [64]

proposed a new hybrid system for wind speed estimation

using the Multi-Objective Whale Optimization Algorithm

(MOWOA). Osorio et al. [65] Evolutionary Particle Swarm

Optimizer (EPSO) algorithm-based Fuzzy Inference Sys-

tem (ANFIS) has achieved less uncertainty as well as low
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computation load in short-term wind speed estimation with

its hybrid approach. Fei and He [66] proposed a hybrid

model of wavelet decomposition and a new hybrid model

based on Artificial Bee Colony (ABC) algorithm. Rahmani

et al. [67] proposed a new hybrid model for short-term

wind energy prediction from the hybridization of the Ant

Colony Optimizer (ACO) and the Particle Swarm Opti-

mizer (PSO) algorithm. Altan et al. [68] developed a reli-

able and accurate new method of wind speed estimation

based on Long Short Term Memory (LSTM) network and

Gray Wolf Optimizer (GWO) algorithm and decomposition

methods. Fu et al. [69] proposed a mutation and hierarchy-

based hybridization strategy of hybrid Harris Hawk Opti-

mizer (HHO) and Gray Wolf Optimizer (GWO) for multi-

step forward short-term wind speed estimation. Wang et al.

[70] developed a hybrid Elman Neural Network (ENN)

method optimized with Multi-objective Gray Wolf Opti-

mization (MOGWO) algorithm for short-term wind speed

prediction. Wu et al. [71] proposed a hybrid system with

multipurpose optimization using the Extreme Learning

Machine (ELM) optimized by the Multi-objective Gray

Wolf Optimization (MOGWO) algorithm in wind speed

prediction. Barman and Choudhury proposed a Support

Vector Machine (SVM) hybrid power system load fore-

casting method hybridized with the similarity-based Gray

Wolf Optimization (GWO) algorithm for use in abnormal

power system situations in Assam, India [53]. Singh and

Dhillon [72] developed the hybrid algorithm called the

Ameliorated Gray Wolf Optimization (AGWO) algorithm

to solve the economic load distribution problem and vali-

dated it in benchmarking problems for medium-sized

electric generator systems. Pradhan et al. [73] applied it to

nonlinear economic load distribution problems such as

valve point effect, ramp speed, and restricted zone to jus-

tify the effectiveness of the Gray Wolf Optimization

(GWO) algorithm. Jayabarathi et al. [74] proposed the

Hybrid Gray Wolf Optimization (HGWO) algorithm,

which they developed in the solution of economic distri-

bution problems of power systems. Pradhan et al. [75] used

their proposed hybrid Oppositional Gray Wolf Optimiza-

tion (OGWO) algorithm in the solution of economic load

distribution problems and made comparative studies with

the Gray Wolf Optimization (GWO) algorithm to examine

its effectiveness.

The motivation of our research is to improve the search

performance of one of the popular heuristics, the gray wolf

optimization algorithm, and adapt it to a real-world prob-

lem. The main purpose of this study is to first improve the

performance of the gray wolf optimization algorithm and

then use it to tune the artificial neural network model

parameters for short-term wind speed forecasting, which is

a real-world optimization problem. In this study, an

improved version of GWO which is called Multi-strategy

Random weighted Gray Wolf Optimizer (MsRwGWO) is

presented which has six different mechanisms to improve

search ability of the original GWO algorithm. These are a

transition mechanism for updating a! parameter, a novel

random weighted updating mechanism, a mutation opera-

tor, a new boundary checking mechanism, a greedy

selection mechanism, and renewed update mechanism of

alpha, beta, and delta wolves. In this paper, the proposed

MsRwGWO is analyzed in terms of convergence, search

history, trajectory, and average distance. The performance

of the MsRwGWO is examined in detail with benchmark

functions known as CEC 2014. In addition, the

MsRwGWO-based Multi-Layer Perceptron (MLP)

approach is compared with GWO-MLP hybrid model for

real-world problem like wind speed forecasting.

Section 2 presents traditional GWO architecture. The

features of the proposed meta-heuristic approach,

MsRwGWO, are presented in Sect. 3. The analysis of

MsRwGWO is given in Sect. 4. In addition, proposed

MsRwGWO-based MLP results are presented for wind

speed forecasting comparatively in the same chapter.

Finally, conclusions are given in Sect. 5.

2 Gray wolf optimizer (GWO)

The gray wolf optimization algorithm (GWO) is an opti-

mization algorithm that mimics the hunting strategy and

the social leadership of gray wolves proposed by Mirjalili

[42]. Gray wolves mostly prefer to live as a group. The

average group size is between 5 and 12 wolves. The hier-

archy of gray wolves is in the form of four groups: alpha,

beta, delta, and omega wolves. The leader or dominant

wolf is called the alpha wolf, and the alpha wolf is the best

wolf to manage other wolves in the group and is usually

responsible for deciding on waking time, sleeping place,

hunting, and so on. The second in the social hierarchy of

the wolf group is the beta wolf. The beta wolf is the

assistant of the alpha wolf in many events. The delta wolf

is the third obliged to obey alpha and beta wolves and can

only dominate omega wolves. The omega is the lowest

level gray wolf [42]. The gray wolf hierarchy is shown in

Fig. 1.

Another social behavior of gray wolves is group hunting

strategy. In this strategy, gray wolves firstly recognize the

location of the prey and surround the prey under the

leadership of the alpha wolf. In the mathematical model of

the hunting strategy of gray wolves, it is assumed that

alpha, beta, and delta wolves have better information about

the location of the prey. Therefore, the first three best

solutions (alpha, beta, and delta wolves) are used to update

the positions of the wolves in the GWO algorithm. The rest
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of the wolves are assumed to be omega wolves [42]. The

omega wolves follow the alpha, beta, and delta wolves

during the hunt. The hunting mechanism of gray wolves is

modeled using equations as given below:

D~a ¼ C~a � X~a � X~i

�
�
�

�
�
� ð1Þ

D~b ¼ C~b � X~b � X~i

�
�
�

�
�
� ð2Þ

D~d ¼ C~d � X~d � X~i

�
�
�

�
�
� ð3Þ

U~a ¼ X~a � A~aD~a ð4Þ

U~b ¼ X~b � A~bD~b ð5Þ

U~d ¼ X~d � A~dD~d ð6Þ

X~i ¼ U~a þ U~b þ U~d

� �

=3 ð7Þ

where D~a;D~b;D~d denote the distance vector between gray

wolf (alpha, beta, and delta) and prey, X~a;X~b;X~d represent

the position vector of the prey for alpha, beta, delta wolves,

X~i indicates the gray wolf (omega) position vector at ith

iteration, U~a;U~b;U~d stand for the trial vector for alpha,

beta, delta gray wolves, C~a;C~b;C~d;A~a;A~b;A~d are the

coefficient vectors for alpha, beta, delta wolves. These

vectors are found according to the equations given below:

A~i ¼ 2a~r~i1 � a~; i ¼ a; b; d ð8Þ

C~i ¼ 2r~i2; i ¼ a; b; d ð9Þ

where a~ stands for a vector linearly decreased from 2 to 0,

and r~i1 and r~i2 indicate the random vector in [0,1]. Figure 2

shows the hunting strategy of gray wolves. As can be seen

in this figure, each gray wolf in the group updates its

position according to the distance between the alpha, beta,

and delta gray wolves and gets closer to the prey. Even-

tually, the prey is caught by gray wolves and the wolf

group finishes the hunt by attacking the prey [42]. The

pseudocode of the original GWO algorithm is given in

Algorithm 1.

3 Multi-strategy random weighted gray
wolf optimizer (MsRwGWO)

In this study, we propose some novel approaches to

develop the search performance of the original GWO

algorithm. These proposed new approaches are mentioned

in this section. Six different mechanisms were added to the

original GWO algorithm, and they are as follows,

respectively:

1. A transition mechanism was adapted for updating the

parameter a! used in Eq. (8),

Fig. 1 The social hierarchy of gray wolves [54]
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2. A new weighted updating mechanism was presented

for updating the positions of wolves,

3. A mutation operator was added into the GWO

algorithm,

4. A novel mechanism was used for checking boundaries

of the search space,

5. A selection mechanism has been added to the

algorithm,

6. The update mechanism of alpha, beta, and delta wolves

was renewed.

We named the proposed algorithm the Multi-strategy

Random weighted Gray Wolf Optimizer (MsRwGWO)

because of these six different mechanisms added to the

original GWO algorithm. The original GWO algorithm has

some parameters, and one of them is the parameter a!
linearly decreased from 2 to 0 during the optimization

process. This parameter plays an important role in the

transition from the exploration phase to the exploitation

phase. The higher values of this parameter enable the

global exploration, while the low values of its enable the

local exploitation of the search space. Although this

parameter decreases linearly in the original GWO algo-

rithm, nonlinear changes in the exploration and exploita-

tion behaviors of an algorithm are needed to keep away

from local optimal solutions in many problems. A suit-

able selection of this parameter is very important for the

balance between exploration and exploitation phases. In

this study, this transition is redefined according to a non-

linear function proposed by Gupta and his friends for Sine

Cosine optimizer in 2020 [76] to avoid local optimal

solutions. The proposed nonlinear transition function for

the parameter a~ is given below:

a~¼ 2 � sin 1 � iter

Max iter

� �

� p
2

� �

ð10Þ

Figure 3 shows the changes of the original linear tran-

sition parameter in GWO algorithm and the proposed

nonlinear transition parameter together. The higher values

of the parameter a~ facilitate the exploration phase (a~[ 1),

while the lower values of the parameter a~ facilitate to the

local exploitation phase (a~\1) of the search space. From

Fig. 3, the transition procedure allows that the duration of

the exploration (about 65%) is a little bit longer than the

duration of the exploitation (about 35%). Thus, it is

Fig. 2 The hunting mechanism

of gray wolves [54]

Fig. 3 Original and the proposed transition parameters
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predicted that the transition between both phases is better

during optimization process.

After the use of nonlinear transition function on change

of the parameter a~ in GWO algorithm, we focused on the

mechanism of updating the positions of the gray wolves. In

the original GWO algorithm, the positions of gray wolves

are updated by averaging the trial vectors (U~a;U~b;U~d)

calculated according to the positions of the alpha, beta, and

delta gray wolves. In the proposed updated mechanism, the

new positions of the wolves in the group are determined

according to the fitness scores of the alpha, beta, and delta

wolves. The equations of this mechanism are given as

follows:

S ¼
X

i¼a;b;d

1

f X~i

� � ð11Þ

wa ¼
f X~a
� ��1

S
;wb ¼

f X~b

� ��1

S
;wd ¼

f X~d

� ��1

S
ð12Þ

X~i ¼ waU~a þ wbU~b þ wdU~d ð13Þ

where S denotes the sum scores of the alpha, beta, and delta

wolves, f X~i

� �

represents the fitness value of the X~i solution

(i denotes the indices of the alpha, beta, and delta wolves),

and this means the objective function’s value in a mathe-

matical optimization problem. wa;wb;wd indicate the score

weight values of the alpha, beta, and delta wolves. These

score weights are utilized for updating the position of gray

wolves (X~i). Thus, instead of averaging the trial vectors in

updating each gray wolf’s position, each position is upda-

ted by the weighted sum of the trial vectors according to

the score weights of three leader gray wolves.

In this new update mechanism, firstly, the total score

value (S) is calculated for the three leader wolves (alpha,

beta, and delta) based on their fitness values. Then, the

score weight value of each wolf is found according to the

fitness values of these three leader wolves. Thus, the score

weights of the three leader wolves are used to update the

positions of gray wolves in proportion to their fitness val-

ues. Here, the alpha gray wolf’s score weight is higher than

the other two gray wolfs’ score weights, just as the beta

gray wolf is higher than the delta, so the alpha leader wolf

contributes more to updating the wolf’s positions than the

beta and delta wolves. Figure 4 shows the new update

mechanism of gray wolves. This new updated mechanism

helps to improve exploration and exploitation abilities of

the algorithm. Although these proposed innovations work

well on some problems, the algorithm may still get stuck at

the local optimal point in some cases. Therefore, a muta-

tion operator was added to this algorithm for situations

where better positions for wolves cannot be found by the

proposed update mechanism and nonlinear transition

parameter. The mutation mechanism is given below:

X~i t þ 1ð Þ ¼ X~i tð Þ þ 0:1 � U~b � L~b

� �

� rm ð14Þ

where U~b represents the upper boundary, L~b is the lower

boundary of the position of the search agent, and rm stands

for the normally distributed random number.

In the original GWO algorithm, it is checked whether

the positions of the wolves exceed the search space

boundaries after updating. If the new position of the gray

wolf exceeds the upper or lower boundaries, the gray

wolf’s position is equalized to the boundary value to pre-

vent exceeding the boundary conditions. This situation is

quite common during the exploration phase, and therefore,

a lot of wolves get stuck on the boundaries of the search

space in some problems. To avoid this situation, we pro-

posed a novel boundary checking mechanism. In this

control procedure, if the boundary constraint is violated,

the new position of the gray wolf is set to be the middle of

its previous position and boundary value of the search

space. The proposed boundary checking procedure is given

as follows:

if ðX~i tð Þ[U~bÞ ) X~i tð Þ ¼
X~i t � 1ð Þ þ U~b

2
ð15Þ

if ðX~i tð Þ\L~bÞ ) X~i tð Þ ¼
X~i t � 1ð Þ þ L~b

2
ð16Þ

where L~b and U~b stand for the lower and upper boundary

values, and t represents the current iteration. The original

GWO algorithm has no selection mechanism. A simple

selection mechanism was implemented to the GWO algo-

rithm for the use of gray wolves that are more suitable in

the population in later iterations. This selection mechanism

is given below:

if ðf ðX~i t � 1ð ÞÞ\f X~i tð Þ
� �

Þ ) X~i tð Þ
¼ X~i t � 1ð Þ ^ f X~i tð Þ

� �

¼ f X~i t � 1ð Þ
� �

ð17Þ

where X~i t � 1ð Þ denotes the old position of ith gray wolf,

and X~i tð Þ represents the updated position of ith gray wolf.

The latest development on GWO in this study is on the

update mechanism of alpha, beta, and delta wolves. In the

original GWO algorithm, the fitness value of each gray

wolf whose position is updated is compared with the fitness

values of alpha, beta, and delta wolves one by one, and

updating positions of alpha, beta, and delta wolves is per-

formed. Here we observed that after updating the positions

of alpha, beta, or delta wolves, the old position values of

these wolves were not used. The new updating mechanism

of the positions of alpha, beta, and delta wolves is shown in

Fig. 5.
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In Fig. 5, omega wolf represents the gray wolf whose its

position is updated. Unlike the original GWO algorithm, in

updating the alpha wolf, if the fitness value of the omega

wolf is better than that of the alpha wolf, the new alpha

wolf becomes the omega wolf, also the old alpha wolf is

updated as the new beta wolf, and the old beta wolf is

updated as the new delta wolf. Likewise, in the updating

the beta wolf, the old beta wolf becomes the new delta

wolf. The pseudocode of the proposed MsRwGWO algo-

rithm is given in Algorithm 2.

4 Results and discussion

First, different metrics were examined for the analysis of

the proposed MsRwGWO algorithm. These are as follows:

convergence, search history, trajectory, and average dis-

tance. The main purpose of these analyses is to reveal the

search behavior of the proposed MsRwGWO algorithm

during the optimization process and compare it with that of

the original GWO. The used metrics are the position of

gray wolves from the first to the last iteration (search his-

tory), the position of the best gray wolf (alpha wolf) in each

iteration (trajectory), the mean distance of the first gray

wolf’s position to the others in the group (average

Neural Computing and Applications (2022) 34:14627–14657 14633
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distance), and the fitness of the best gray wolf (alpha wolf)

obtained from the first to the last iteration (convergence).

We used some benchmark functions known as CEC2014

from the literature to make these analyses. After the anal-

ysis of the MsRwGWO algorithm, thirty benchmark

problems based on the IEEE Congress on Evolutionary

Computation (CEC) 2014 test suite were addressed [77].

For the different problem dimensions, these benchmark

problems were solved by the original GWO algorithm and

the MsRwGWO algorithm and the results were compared

statistically. Furthermore, the superiority of the developed

structure was shown by comparing the 30D CEC 2014 test

problem results of the proposed MsRwGWO algorithm

with up-to-date meta-heuristic algorithms. In the last sub-

section of this section, we tested GWO and MsRwGWO

algorithms for short-term forecasting of wind speed by

integrating them into a Multi-Layer Perceptron (MLP)

structure.

4.1 Analyses of the proposed MsRwGWO
algorithm

In this study, the MsRwGWO algorithm was realized to

improve exploration and exploitation capabilities of the

original GWO algorithm. To show convergence behavior

of the MsRwGWO algorithm, we considered analyses for

four different metrics. First is convergence analysis, second

is search history analysis, third is trajectory analysis, and

the last is average distance analysis. Four different

benchmark functions were selected among the CEC 2014

benchmark problems to perform these analyses. CEC 2014

test suite includes four types of problems: simple multi-

modal, unimodal, composition, and hybrid functions.

Table 1 summarizes these benchmark functions and their

names. The detailed information about CEC 2014 bench-

mark problems can be found from the paper of Liang et al.

[77]. The functions used for analysis are as follows: rotated

bent cigar (FN2) function from unimodal functions, shifted

and rotated Weierstrass function (FN6) and shifted and

rotated expanded Scaffer function (FN16) from simple

multimodal functions, and composition function 1 (N = 5)

from composition functions. Figure 6 shows the bench-

mark functions used in analyses of the proposed

MsRwGWO algorithm. Each subfigure includes 3D maps

and contour lines for 2D of these functions. As an impor-

tant note, the initial positions of the gray wolves were taken

equally for all analyses in both algorithms.

4.1.1 Convergence analysis

The performance of a meta-heuristic algorithm depends on

its convergence behavior that occurs in the solution of an

optimization problem. Convergence behavior gives us

information about the speed of the algorithm. In this con-

text, the convergence curves of the proposed MsRwGWO

and original GWO algorithms were obtained for solving

four different benchmark problems. In this analysis, the

problem dimension was taken as 2. Figure 7 shows the

comparison results of the convergence behaviors of both

algorithms. These curves show the error values of the best

Fig. 4 Update mechanism of

MsRwGWO algorithm
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gray wolves found by the MsRwGWO and GWO algo-

rithms throughout the optimization. Here, these error val-

ues are calculated by taking the difference between the

best-found solution and the real solution of the problem.

In Fig. 7, the convergence curves of the original GWO

and MsRwGWO algorithms were given on the logarithmic

scale. Looking at the trends in the convergence curves, it is

seen that MsRwGWO has a faster convergence than the

GWO algorithm in solving four different benchmark

problems. The convergence curves show that the gray

wolves in the population cooperate to improve the search

performance by updating their current positions better,

thanks to the proposed new and effective mechanisms,

while searching for the global solution point in the opti-

mization problem. Looking at the convergence results for

each test function, it can be said that the MsRwGWO

algorithm shows approximately the same trend as the

GWO until the exploitation phase in the FN2 and FN16

benchmarks, which have more flat surfaces, but

MsRwGWO algorithm shows better convergence behavior

in the exploitation phase. The convergence curves obtained

for the FN6 function, which consists of abundant peaks and

troughs, show us that the convergence behavior of the

GWO algorithm in the exploration phase is better, and the

MsRwGWO algorithm is better in the exploitation phase.

The FN23 function convergence curve shows that the

MsRwGWO algorithm has a better convergence capability

than GWO in both phases. The analysis results show the

ability of the proposed MsRwGWO to find a solution closer

to the global optimum.

Rapid descents are observed in the convergence curves

obtained by the proposed MsRwGWO algorithm in the

exploitation and exploration phases. This is due to the new

weighted update mechanism presented for the MsRwGWO

algorithm. The strength of this new mechanism is that the

positions of gray wolves are updated according to the score

weights of the three leader wolves in proportion to their

fitness values.

4.1.2 Search history analysis

In this analysis, we examined the search history, which

gives the movements of search agents (gray wolves) in the

search space during the solution of the optimization prob-

lem. In Fig. 8, the search history results of the gray wolves

obtained by GWO and MsRwGWO algorithms are shown

for some benchmark functions selected from CEC 2014

test suite. Here, these analyses were performed by taking

the initial gray wolf positions (initial population) the same

for all functions. The positions of the updated gray wolves

are shown on the contour surfaces of the benchmark

functions at every 100 steps of the iteration. We used the

number of gray wolves as 20 in this analysis. The results of

this analysis show that the distribution of gray wolves

around the global optima, which are updated by the

MsRwGWO algorithm, is higher than the distribution of

gray wolves updated by the GWO algorithm in the search

space during the exploration and exploitation phases.

So, it is possible to say that the MsRwGWO searches the

most promising areas of the search space in the phases of

exploration and exploitation. It is seen that the positions of

the gray wolves found by the GWO algorithm are stuck on

Fig. 5 The proposed new updating mechanism of alpha, beta, and

delta wolves
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the boundary values of the search space, especially on the

surfaces of the benchmark problems except for the FN6 test

problem. This is because gray wolves that exceed the limit

values during the exploration phase are positioned on the

boundary values. Thanks to the proposed new boundary

control mechanism, this does not appear in the

MsRwGWO’s results.

4.1.3 Trajectory analysis

In this analysis, we examined how the position of the best

gray wolf (alpha wolf) in each iteration changes in the

search space of the problem during the solution of the

optimization problem. The results of the trajectory analysis

for the selected benchmark functions are shown in Figs. 9,

10, 11 and 12. There are two graphs in each figure: First

gives changes in the position of the alpha gray wolf (elite

candidate) on the contour surface of the search area during

optimization process, and second shows the position of the

alpha gray wolf separately for two dimensions.

In the graphic to the right of the figures containing the

analysis results, the red markers indicate the positions of

best gray wolves (alpha) obtained by both algorithms at the

end of the optimization. Looking at the trajectory analysis

results of FN2, FN6, and FN16 benchmark problems, the

positions of the alpha wolves obtained by GWO and

MsRwGWO algorithms at the end of the optimization

process are found to be very close to the global optimum

and approximately the same. In the analysis of the FN2

benchmark problem, although the position changes of the

alpha wolves show different trends for both algorithms, as

a result, the positions of the alpha wolves are obtained to be

very close to each other at the end of the optimization.

The only different result of the trajectory analysis

between GWO and MsRwGWO algorithms is seen in the

FN23 benchmark problem. Here, we come across two

different elite solutions at the end of the optimization

process. The original GWO algorithm cannot find an alpha

wolf (best candidate) close to the global optima, namely, it

gets stuck in the local minima for this benchmark. The

proposed MsRwGWO algorithm presents an alpha wolf as

elite search agent closer to the global optima of the FN23

benchmark. Shortly, from the analysis results of

MsRwGWO algorithm, the alpha wolf’s position is faster

updated in the exploration stage and it gets closer to global

optima in the exploitation stage.

4.1.4 Average distance analysis

Average distance analysis gives the mean distance of the

first gray wolf’s position to the others in the group during

optimization process. This shows the exploratory or

exploitative behaviors of the MsRwGWO algorithm. Fig-

ure 13 shows the average distance analysis results of the

proposed MsRwGWO and the original GWO algorithms

for the selected benchmarks. As can be seen from the

analysis result of the MsRwGWO, the average distance

trends of the gray wolves have less oscillation and fluctu-

ation compared to that in the GWO algorithm thanks to the

selection mechanism added into the GWO algorithm and

the new update mechanism of the alpha, beta, and delta

wolves. Looking at the analysis results of the FN23 and

Table 1 CEC 2014 benchmark functions

Nos. Function name Solution No Function name Solution

FN1 High cond. elliptic with rotated 100 FN16 Shifted and rotated expanded Scaffer’s F6 1600

FN2 Bent cigar with rotated 200 FN17 Hybrid Func. 1 (N ? 3) 1700

FN3 Discus with rotated 300 FN18 Hybrid Func. 2 (N ? 3) 1800

FN4 Rosenbrock with shifted and rotated 400 FN19 Hybrid Func. 3 (N ? 4) 1900

FN5 Ackley with shifted and rotated 500 FN20 Hybrid Func. 4 (N ? 4) 2000

FN6 Weierstrass with shifted and rotated 600 FN21 Hybrid Func. 5 (N ? 5) 2100

FN7 Griewank with shifted and rotated 700 FN22 Hybrid Func. 6 (N ? 5) 2200

FN8 Rastrigin with shifted 800 FN23 Composition Func. 1 (N ? 5) 2300

FN9 Rastrigin with shifted and rotated 900 FN24 Composition Func. 2 (N ? 3) 2400

FN10 Schwefel with shifted 1000 FN25 Composition Func. 3 (N ? 3) 2500

FN11 Schwefel with shifted and rotated 1100 FN26 Composition Func. 4 (N ? 5) 2600

FN12 Katsuura with shifted and rotated 1200 FN27 Composition Func. 5 (N ? 5) 2700

FN13 HappyCat with shifted and rotated 1300 FN28 Composition Func. 6 (N ? 5) 2800

FN14 GHBat with shifted and rotated 1400 FN29 Composition Func. 7 (N ? 3) 2900

FN15 F4 with expanded plus F7 1500 FN30 Composition Func. 8 (N ? 3) 3000
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FN2 benchmark problems, it is understood that the algo-

rithm successfully avoids the local optimum points of the

problem in the parts that show an increase in the average

distance curve of the MsRwGWO algorithm during the

exploration phase. This is due to the mutation operator

added to the GWO algorithm and the new gray wolf update

mechanism.

4.2 Comparison between MsRwGWO and GWO
for CEC2014 benchmark problems

To evaluate the performance of the proposed MsRwGWO

algorithm, some numerical optimization problems as

known CEC 2014 test suite were utilized. CEC 2014 test

suite has thirty benchmark functions that are minimization

problems. These benchmark functions are divided into four

groups: unimodal (FN1-FN3), simple multimodal (FN4-

FN16), hybrid (FN17-FN22), and composition functions

(FN23-FN30). All optimization benchmark test problems

with specific problem dimensions (10D, 30D, and 50D)

were solved for 51 independent runs using the original

GWO and proposed MsRwGWO algorithms. In the

benchmark tests, we used the population size as 10 times

the number of the dimension and the maximum iteration

number as 1000. In solving optimization problems, we

preferred to use the termination criterion as reaching the

maximum number of iterations. The codes of GWO and

MsRwGWO algorithms have been run on PC with

Intel(R) Core(TM) i7-6500U CPU@2.50 GHz with 8 GB

RAM. In solving CEC 2014 test problems, 14 error values

were recorded for each function at each run. Figure 14

presents best convergence curves of some benchmarks with

10D for both algorithms. In only two of the benchmarks

with different properties (F7 and F29), the GWO algorithm

Fig. 6 Benchmark functions used for analyses of the proposed MsRwGWO algorithm
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could find a better result at the end of the optimization. It

can be seen from these curves that the proposed

MsRwGWO algorithm clearly has a better convergence. In

Fig. 15, the best, worst, and mean convergence curves

obtained by MsRwGWO algorithm at the end of the 51

runs are shown. These results show that the best and worst

convergence curves of the MsRwGWO algorithm are close

to the mean, that is, its standard deviation is low. This

reveals that the proposed algorithm can solve the problems

in a stable way. In the comparison results, we evaluated

five metrics such as mean, worst, best, median, and stan-

dard deviation. In Tables 2, 3 and 4, the statistical results of

GWO and MsRwGWO algorithms are given, respectively,

for 10D, 30D, and 50D CEC2014 benchmark problems. In

these tables, the best results among the metrics have been

emphasized in boldface.

In the most of CEC2014 benchmarks, the proposed

MsRwGWO in all problem dimensions has better perfor-

mance than the original GWO in terms of all statistical

metrics. To better show all these statistical results, a

summary for all problem dimensions is provided in

Table 5. As can be seen from this summary result table,

MsRwGWO has 53.33% better results than GWO in 30 and

50 problem dimensions according to the best error metric.

More interestingly, the success rate of the MsRwGWO

algorithm for all dimensions (70% for 10D, 76.67% for

30D, and 70% for 50D) is much higher than GWO in the

worst error metric. Mean error metric summary results

show us that while the problem dimension increases, the

proposed MsRwGWO algorithm has the same performance

with GWO (both algorithms are the same for 50D). For

10D and 30D, the MsRwGWO provides 70% and 60%

better results than the GWO algorithm, respectively.

Finally, looking at the total of all metrics, it is understood

that the MsRwGWO has a success rate of 64.67% for 10D,

70% for 30D, and 58% for 50D. In the last row of this

table (total), the more successful of both algorithms is

indicated in bold.

Fig. 7 Convergence analysis of MsRwGWO algorithm
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GWO MsRwGWO

Fig. 8 Search history analysis of MsRwGWO algorithm
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Fig. 9 Trajectory of alpha gray wolf for FN2 function (e: GWO. h: MsRwGWO)

Fig. 10 Trajectory of alpha gray wolf for FN6 function (e: GWO. h: MsRwGWO)
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Fig. 11 Trajectory of alpha gray wolf for FN16 function (e: GWO. h: MsRwGWO)

Fig. 12 Trajectory of alpha gray wolf for FN23 function (e: GWO. h: MsRwGWO)
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4.3 Comparison of MsRwGWO with other
algorithms

In addition to comparison between GWO and MsRwGWO,

we also compared the proposed MsRwGWO algorithm

with the popular and state-of-the-art meta-heuristic algo-

rithms. In this comparison study, Moth-Flame Optimizer

(MFO) [49], Particle Swarm Optimizer (PSO) [2],

Dragonfly Algorithm (DA) [50], Sine Cosine Algorithm

(SCA) [32], and Whale Optimization Algorithm (WOA)

[52] were used. The parameters of the selected algorithms

were set as in the original papers. In Table 6, the com-

parison results are presented for 30D CEC 2014 benchmark

functions.

In this table, mean and standard deviation metrics are

presented for all algorithms and they are ranked according

to the mean error values of benchmark functions. From the

average and overall ranks given at the end of Table 6, it is

clear that the proposed MsRwGWO algorithm outperforms

other meta-heuristic algorithms. As a result, the compara-

tive results with CEC2014 benchmark functions used in

this study show that different mechanisms such as transi-

tion mechanism, new weighted updating mechanism, novel

checking boundary mechanism, renewed update mecha-

nism of alpha, beta, and delta wolves, added into the

MsRwGWO increase the performance of the algorithm in

the exploration and exploitation.

Here, we have also compared the performance of the

proposed MsRwGWO algorithm with those of some GWO

algorithms taken from the literature. This comparison

includes the variants of GWO such as improved GWO

(IGWO) [78], opposition-based GWO (OBGWO) [75], and

exploration-enhanced GWO (EEGWO) [79]. Table 7

summarizes the comparison results of the MsRwGWO

algorithm and the other variants of GWO for 30-dimen-

sional CEC2014 problems. This comparison was prepared

Fig. 13 Average distance analysis between gray wolves
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Fig. 14 Convergence curves of 10D best benchmark results for GWO and MsRwGWO
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Fig. 15. 10D Convergence curves of MsRwGWO algorithm (best, worst, mean)
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according to the mean of the errors of the objective func-

tion values obtained as a result of repeated running. The

ranking results of all algorithms for each benchmark

function are given in the table, and the average ranking

result of the proposed MsRwGWO algorithm and GWO

variants for all benchmarks is presented in the last row of

the table. This ranking result clearly indicates the superi-

ority of the MsRwGWO algorithm against the other GWO

variants.

4.4 Short-term wind speed forecasting using
MsRwGWO-MLP hybrid model

In this section, the proposed MsRwGWO algorithm was

adapted to a Multi-Layer Perceptron (MLP) model for

wind speed estimation as a real-world application. For the

planning and management of power systems, it is of great

importance to determine the electrical energy to be

obtained from wind energy in the next horizon steps. Due

to the chaotic and uncertain structure of wind speed, dif-

ferent models are proposed by researchers today to increase

the performance of short-term forecasting researches

[80–84]. Nowadays, hybrid models with meta-heuristic

approaches have become popular in this field of research.

The MsRwGWO is utilized to optimize the parameters

of the MLP model in its training phase. In the MsRwGWO-

MLP hybrid model, all gray wolves are encoded as one-

dimensional vectors of randomly generated real values in

range [- 10, 10]. This encoding vector consists of two

parts: connection weights among the layers and bias values

of hidden and output layers. In the optimization of weight

and bias values of the MLP model, the problem dimension

Table 2 10D CEC2014 benchmark results for GWO and MsRwGWO algorithms

No GWO MsRwGWO

Best Worst Median Mean Std Best Worst Median Mean Std

1 8.32E?5 1.70E?7 4.29E?6 4.94E?6 3.39E?6 4.38E?5 6.99E?6 1.27E?6 1.74E?6 1.28E?6

2 2.03E?7 1.29E?8 7.06E?8 7.35E?8 2.19E?8 1.52E?7 1.27E?8 7.74E?7 7.23E?7 2.26E?7

3 5.51E?2 9.27E?3 1.84E?3 3.06E?3 2.43E?3 3.58E?2 1.57E?3 8.18E?2 8.40E?2 2.55E?2

4 1.07E?1 4.02E?1 3.63E?1 3.37E?1 7.86E?0 9.57E?0 3.82E?1 3.70E?1 3.26E?1 9.46E?0

5 1.03E?1 2.05E?1 2.04E?1 1.97E?1 2.19E?0 2.02E?1 2.05E?1 2.04E?1 2.04E?1 7.99E22

6 2.29E?0 6.23E?0 3.40E?0 3.55E?0 8.31E21 2.21E?0 5.52E?0 3.19E?0 3.38E?0 7.39E21

7 1.45E?0 5.54E?0 3.04E?0 3.25E?0 9.26E21 1.90E?0 4.42E?0 2.84E?0 2.86E?0 4.93E21

8 1.29E?1 3.26E?1 1.82E?1 1.92E?1 4.21E?0 1.52E?1 3.41E?1 2.28E?1 2.25E?1 3.79E?0

9 1.42E?1 4.03E?1 2.28E?1 2.30E?1 4.57E?0 1.78E?1 3.54E?1 2.50E?1 2.48E?1 3.98E?0

10 1.66E?2 8.21E?2 3.72E?2 4.04E?2 1.43E?2 1.12E?2 1.01E?3 4.22E?2 4.53E?2 2.00E?2

11 2.39E?2 1.25E?3 7.10E?2 7.18E?2 2.50E?2 4.01E?2 1.50E?3 7.59E?2 7.93E?2 2.42E?2

12 5.59E21 1.53E?0 1.13E?0 1.08E?0 2.34E21 5.97E21 1.63E?0 1.21E?0 1.17E?0 2.13E21

13 1.88E221 4.70E21 3.27E21 3.16E21 6.78E22 1.95E21 4.23E21 2.88E21 2.89E21 5.03E22

14 1.44E21 8.51E21 2.64E21 3.27E21 1.92E21 1.16E21 3.26E21 2.23E21 2.22E21 4.92E22

15 2.10E?0 5.65E?0 3.36E?0 3.43E?0 6.82E21 1.98E?0 4.39E?0 3.44E?0 3.35E?0 5.76E21

16 1.93E?0 3.41E?0 2.55E?0 2.62E?0 3.05E21 1.93E?0 3.23E?0 2.60E?0 2.60E?0 2.73E21

17 1.45E?3 2.69E?4 5.48E?3 7.20E?3 4.78E?3 1.33E?3 1.09E?4 4.28E?3 5.18E?3 2.48E?3

18 1.56E?2 2.55E?4 6.46E?3 8.59E?3 6.94E?3 6.76E?2 2.52E?4 5.90E?3 7.16E?3 5.63E?3

19 2.12E?0 5.59E?0 3.11E?0 3.34E?0 7.68E21 1.99E?0 5.12E?0 2.96E?0 3.07E?0 5.90E21

20 3.90E?1 1.12E?4 2.06E?3 3.11E?3 3.55E?3 7.31E?1 4.04E?2 1.61E?2 1.71E?2 7.41E?1

21 1.03E?3 1.22E?4 5.29E?3 5.93E?3 3.80E?3 7.60E?2 1.29E?4 2.61E?3 4.01E?3 3.16E?3

22 2.51E?1 1.71E?2 4.52E?1 6.20E?1 4.56E?1 2.80E?1 1.74E?2 4.53E?1 6.30E?1 4.68E?1

23 3.30E?2 3.37E?2 3.31E?2 3.32E?2 1.94E?0 3.30E?2 3.32E?2 3.31E?2 3.31E?2 4.67E21

24 1.22E?2 2.04E?2 1.31E?2 1.36E?2 1.77E?1 1.20E?2 2.03E?2 1.32E?2 1.33E?2 1.15E?1

25 1.50E?2 2.03E?2 2.01E?2 2.00E?2 7.32E?0 1.31E?2 2.02E?2 2.00E?2 1.82E?2 2.63E?1

26 1.00E?2 1.00E?2 1.00E?2 1.00E?2 5.03E22 1.00E?2 1.00E?2 1.00E?2 1.00E?2 5.53E22

27 2.82E?0 4.31E?2 3.92E?2 3.35E?2 1.44E?2 4.11E?0 4.11E?2 3.91E?2 3.11E?2 1.62E?2

28 3.87E?2 6.02E?2 4.64E?2 4.56E?2 5.66E?1 3.84E?2 5.22E?2 4.54E?2 4.52E?2 5.07E?1

29 3.41E?2 2.13E?6 8.40E?2 2.30E?5 6.36E?5 3.85E?2 2.41E?6 9.30E?2 1.25E?5 5.05E?5

30 5.07E?2 2.80E?3 1.01E?3 1.19E?3 5.38E?2 6.30E?2 2.80E?3 1.23E?3 1.31E?3 5.50E?2

Neural Computing and Applications (2022) 34:14627–14657 14645

123



is the length of this vector and it can be calculated as given

below:

D ¼ NI � NH þ NH � NO þ NH þ NO ð18Þ

where NI denotes the number of inputs, NH stands for the

number of the neurons in the hidden layer, and NO repre-

sents the number of outputs. Figure 16 shows how MLP

model parameters are optimized by the MsRwGWO

algorithm.

The wind speed datasets used in this paper are collected

from a wind farm in Balıkesir, Turkey. Each series contains

6849 samples and is divided into training series and testing

series. The first 4794 samples of each site series are used

for training, and the rest are used for testing. The height of

the measured wind speed is 50 m, and the sampling

interval is 15 min. In order to increase the model perfor-

mance, the input dataset is normalized in range of [0 1]. For

the one-step short-term wind speed forecasting, we used

three sequential inputs (VðkÞ;Vðk � 1Þ;Vðk � 2Þ) of the

wind speed dataset in the MLP model based on

MsRwGWO.

In optimizing the parameters of the MLP model, the

objective function was used as the RMSE function for the

examples in the training dataset. The MsRwGWO used in

the optimization of MLP model parameters is run 50 times

independently, and the performance results are calculated

statistically for training and test phases of MsRwGWO-

MLP model. Training and test results of the MLP model

with the best parameters optimized by MsRwGWO

Table 3 30D CEC2014 benchmark results for GWO and MsRwGWO algorithms

No GWO MsRwGWO

Best Worst Median Mean Std Best Worst Median Mean Std

1 2.61E?7 1.16E?8 5.68E?7 5.65E?7 2.12E?7 2.95E?7 9.09E?7 5.26E?7 5.53E?7 1.27E?7

2 2.09E?9 4.55E?9 3.02E?9 3.13E?9 5.55E?8 2.27E?9 4.13E?9 2.94E?9 2.97E?9 3.63E?8

3 9.26E?3 3.99E?4 2.20E?4 2.14E?4 5.94E?3 6.29E?3 1.29E?4 9.21E?3 9.30E?3 1.67E?3

4 1.83E?2 4.88E?2 2.59E?2 2.65E?2 4.95E?1 2.05E?2 3.13E?2 2.54E?2 2.56E?2 2.27E?1

5 2.08E?1 2.10E?1 2.10E?1 2.09E?1 5.43E22 2.08E?1 2.11E?1 2.10E?1 2.10E?1 5.39E22

6 1.80E?1 2.73E?1 2.17E?1 2.21E?1 1.81E?0 1.78E?1 2.44E?1 2.03E?1 2.03E?1 1.29E?0

7 2.11E?1 6.64E?1 2.96E?1 3.01E?1 6.58E?0 1.84E?1 3.34E?1 2.59E?1 2.57E?1 3.19E?0

8 1.08E?2 2.00E?2 1.34E?2 1.36E?2 1.52E?1 1.36E?2 2.17E?2 1.68E?2 1.68E?2 1.50E?1

9 1.41E?2 2.19E?2 1.95E?2 1.92E?2 1.57E?1 1.63E?2 2.24E?2 1.98E?2 1.97E?2 1.17E?1

10 2.51E?3 4.64E?3 3.51E?3 3.51E?3 5.10E?2 3.47E?3 6.08E?3 4.85E?3 4.74E?3 5.79E?2

11 4.14E?3 6.89E?3 5.91E?3 5.79E?3 6.90E?2 5.54E?3 7.20E?3 6.60E?3 6.48E?3 3.76E?2

12 1.65E?0 2.89E?0 2.50E?0 2.40E?0 3.04E21 1.78E?0 2.87E?0 2.45E?0 2.46E?0 2.35E21

13 5.43E21 8.96E21 6.96E21 6.99E21 6.90E22 5.44E21 8.38E21 6.40E21 6.53E21 6.57E22

14 1.83E?0 1.55E?1 6.47E?0 6.67E?0 2.93E?0 1.71E?0 8.88E?0 4.26E?0 4.52E?0 1.98E?0

15 2.94E?1 1.40E?2 3.93E?1 4.18E?1 1.53E?1 2.92E?1 6.35E?1 3.55E?1 3.68E?1 5.51E?0

16 1.09E?1 1.25E?1 1.18E?1 1.17E?1 3.17E21 1.12E?1 1.25E?1 1.19E?1 1.19E?1 3.06E21

17 4.50E?5 5.88E?6 1.16E?6 1.40E?6 9.51E?5 3.68E?5 3.85E?6 1.31E?6 1.46E?6 6.89E?5

18 8.36E?6 7.09E?7 2.23E?7 2.57E?7 1.54E?7 4.70E?6 5.68E?7 2.18E?7 2.44E?7 1.19E?7

19 2.24E?1 7.67E?1 2.87E?1 3.09E?1 8.73E?0 2.21E?1 3.57E?1 2.76E?1 2.79E?1 3.21E?0

20 1.60E?3 1.83E?4 9.71E?3 9.83E?3 4.39E?3 8.23E?2 3.50E?3 1.66E?3 1.76E?3 6.16E?2

21 1.33E?5 1.66E?6 3.69E?5 5.12E?5 3.89E?5 1.16E?5 1.12E?6 3.22E?5 4.00E?5 2.31E?5

22 2.49E?2 7.78E?2 3.68E?2 4.11E?2 1.34E?2 2.17E?2 7.23E?2 4.72E?2 4.52E?2 1.31E?2

23 3.24E?2 3.57E?2 3.30E?2 3.31E?2 4.90E?0 3.22E?2 3.31E?2 3.26E?2 3.26E?2 2.03E?0

24 2.00E?2 2.00E?2 2.00E?2 2.00E?2 0.00E?0 2.00E?2 2.00E?2 2.00E?2 2.00E?2 0.00E?0

25 2.06E?2 2.17E?2 2.12E?2 2.11E?2 2.56E?0 2.00E?2 2.14E?2 2.10E?2 2.10E?2 2.41E?0

26 1.01E?2 1.01E?2 1.01E?2 1.01E?2 8.20E22 1.01E?2 2.01E?2 1.01E?2 1.10E?2 3.00E?1

27 4.21E?2 9.81E?2 8.54E?2 7.78E?2 1.89E?2 4.23E?2 9.37E?2 7.97E?2 7.23E?2 1.85E?2

28 1.04E?3 2.27E?3 1.17E?3 1.25E?3 2.38E?2 1.13E?3 1.56E?3 1.22E?3 1.24E?3 7.46E?1

29 2.00E?5 1.31E?6 4.87E?5 5.56E?5 2.82E?5 3.10E?5 2.00E?6 7.70E?5 9.39E?5 4.99E?5

30 1.37E?4 1.48E?5 4.14E?4 4.35E?4 2.22E?4 1.67E?4 8.62E?4 3.85E?4 4.37E?4 1.71E?4
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Table 4 50D CEC2014 benchmark results for GWO and MsRwGWO algorithms

No GWO MsRwGWO

Best Worst Median Mean Std Best Worst Median Mean Std

1 6.90E?7 2.33E?8 1.23E?8 1.29E?8 2.96E?7 8.36E?7 2.27E?8 1.30E?8 1.36E?8 3.02E?7

2 7.83E?9 1.57E?10 1.07E?10 1.10E?10 1.86E?9 6.64E?9 1.22E?10 9.63E?9 9.66E?9 1.03E?9

3 2.01E?4 7.61E?4 4.17E?4 4.16E?4 1.07E?4 1.80E?4 3.18E?4 2.40E?4 2.42E?4 3.23E?3

4 5.51E?2 1.77E?3 8.25E?2 8.59E?2 2.06E?2 5.57E?2 1.13E?3 7.44E?2 7.65E?2 1.14E?2

5 2.11E?1 2.12E?1 2.11E?1 2.11E?1 3.29E22 2.10E?1 2.12E?1 2.11E?1 2.11E?1 4.65E22

6 3.75E?1 4.97E?1 4.35E?1 4.37E?1 2.57E?0 3.54E?1 4.71E?1 4.14E?1 4.16E?1 2.53E?0

7 6.60E?1 1.32E?2 8.71E?1 8.93E?1 1.32E?1 6.34E?1 1.07E?2 7.94E?1 8.11E?1 9.00E?0

8 2.60E?2 3.89E?2 3.24E?2 3.26E?2 2.39E?1 3.30E?2 4.17E?2 3.75E?2 3.75E?2 2.17E?1

9 3.69E?2 4.39E?2 4.04E?2 4.04E?2 1.91E?1 3.50E?2 4.50E?2 4.03E?2 4.03E?2 1.96E?1

10 6.97E?3 1.03E?4 8.71E?3 8.79E?3 7.07E?2 8.24E?3 1.27E?4 1.10E?4 1.10E?4 9.74E?2

11 1.05E?4 1.32E?4 1.21E?4 1.20E?4 6.76E?2 1.18E?4 1.35E?4 1.28E?4 1.28E?4 4.26E?2

12 2.19E?0 3.86E?0 3.28E?0 3.26E?0 3.12E21 2.61E?0 3.82E?0 3.34E?0 3.28E?0 2.85E21

13 7.52E21 1.37E?0 9.79E21 9.82E21 1.11E21 7.39E21 1.17E?0 9.20E21 9.14E21 7.79E22

14 1.80E?1 3.91E?1 2.41E?1 2.44E?1 4.19E?0 1.65E?1 2.64E?1 2.08E?1 2.11E?1 2.12E?0

15 1.17E?2 3.08E?3 5.07E?2 6.89E?2 5.86E?2 1.45E?2 6.09E?2 2.87E?2 3.06E?2 1.03E?2

16 2.03E?1 2.20E?1 2.12E?1 2.12E?1 4.12E21 2.06E?1 2.20E?1 2.14E?1 2.14E?1 3.21E21

17 2.34E?6 1.30E?7 6.83E?6 7.03E?6 2.79E?6 3.51E?6 1.28E?7 7.50E?6 7.43E?6 2.30E?6

18 1.24E?8 3.80E?8 2.19E?8 2.16E?8 4.56E?7 9.43E?7 3.61E?8 2.24E?8 2.24E?8 5.65E?7

19 7.02E?1 1.14E?2 9.72E?1 9.54E?1 1.07E?1 6.68E?1 1.12E?2 9.05E?1 9.05E?1 1.42E?1

20 2.20E?3 2.40E?4 1.07E?4 1.14E?4 4.81E?3 1.97E?3 6.93E?3 3.44E?3 3.52E?3 9.01E?2

21 1.00E?6 5.95E?6 2.46E?6 2.59E?6 1.11E?6 9.27E?5 6.66E?6 2.11E?6 2.46E?6 1.15E?6

22 6.20E?2 2.08E?3 1.32E?3 1.33E?3 3.02E?2 9.92E?2 1.86E?3 1.48E?3 1.48E?3 2.06E?2

23 4.05E?2 4.92E?2 4.38E?2 4.44E?2 1.90E?1 3.94E?2 4.55E?2 4.25E?2 4.24E?2 1.22E?1

24 2.00E?2 2.00E?2 2.00E?2 2.00E?2 0.00E?0 2.00E?2 2.00E?2 2.00E?2 2.00E?2 5.05E22

25 2.19E?2 2.43E?2 2.29E?2 2.29E?2 4.94E?0 2.19E?2 2.39E?2 2.31E?2 2.30E?2 4.03E?0

26 1.01E?2 3.91E?2 2.00E?2 1.56E?2 6.05E?1 1.01E?2 2.10E?2 2.03E?2 1.76E?2 4.67E?1

27 1.32E?3 1.64E?3 1.45E?3 1.45E?3 6.00E?1 1.24E?3 1.54E?3 1.40E?3 1.40E?3 6.80E?1

28 1.90E?3 4.27E?3 2.27E?3 2.49E?3 6.04E?2 2.16E?3 4.58E?3 2.44E?3 2.57E?3 4.01E?2

29 4.00E?6 2.93E?7 7.90E?6 8.93E?6 4.12E?6 6.30E?6 2.72E?7 1.41E?7 1.44E?7 4.89E ? 6

30 8.69E?4 3.71E?5 2.04E?5 2.07E?5 6.85E?4 1.45E?5 5.80E?5 2.56E?5 2.74E?5 8.29E?4

Table 5 Summary results of

CEC 2014 benchmarks for

GWO and MsRwGWO

algorithms

GWO MsRwGWO

10D (%) 30D (%) 50D (%) 10D (%) 30D (%) 50D (%)

Best 50.00 46.67 46.67 50.00 53.33 53.33

Worst 30.00 23.33 30.00 70.00 76.67 70.00

Median 43.33 30.00 46.67 56.67 70.00 53.33

Mean 30.00 40.00 50.00 70.00 60.00 50.00

Std 23.33 10.00 36.67 76.67 90.00 63.33

Total 35.33 30.00 42.00 64.67 70.00 58.00
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Table 6 Comparison results of MsRwGWO and other algorithms for 30D CEC2014 problems

Nos. MFO PSO DA SCA WOA MsRwGWO

Mean 7.59E?7 8.19E?7 4.49E?8 2.24E?8 3.24E?7 5.53E?7

1 Std 9.77E?7 8.27E?9 3.88E?8 7.18E?7 1.42E?7 1.27E?7

Rank 3 4 6 5 1 2

Mean 1.36E?10 2.81E?4 3.67E?10 1.60E?10 5.05E?6 2.97E?9

2 Std 8.42E?9 5.30E?2 1.55E?10 3.12E?9 4.79E?6 3.63E?8

Rank 4 1 6 5 2 3

Mean 8.99E?4 2.09E?1 1.81E?5 3.79E?4 2.97E?4 9.30E?3

3 Std 4.98E?4 2.77E?1 9.61E?4 7.28E?3 2.10E?4 1.67E?3

Rank 5 1 6 4 3 2

Mean 1.14E?3 9.01E?3 4.86E?3 1.02E?3 1.76E?2 2.56E?2

4 Std 1.13E?3 1.85E?2 3.72E?3 2.04E?2 4.70E?1 2.27E?1

Rank 4 6 5 3 1 2

Mean 2.04E?1 2.19E?2 2.08E?1 2.09E?1 2.04E?1 2.10E?1

5 Std 1.75E21 6.01E?3 1.17E21 5.00E22 1.80E21 5.39E22

Rank 1 5 2 3 1 4

Mean 2.40E?1 6.78E?3 3.72E?1 3.44E?1 3.48E?1 2.03E?1

6 Std 3.33E?0 2.46E?0 3.71E?0 2.61E?0 3.61E?0 1.29E?0

Rank 2 6 5 3 4 1

Mean 1.17E?2 1.61E?0 3.54E?2 1.33E?2 1.03E?0 2.57E?1

7 Std 6.91E?1 2.67E?1 1.59E?2 2.91E?1 5.00E22 3.19E?0

Rank 4 2 6 5 1 3

Mean 1.43E?2 1.10E?3 2.89E?2 2.36E?2 1.76E?2 1.68E?2

8 Std 3.81E?1 1.24E?1 4.77E?2 2.08E?1 3.73E?1 1.50E?1

Rank 1 6 5 4 3 2

Mean 2.23E?2 2.30E?6 3.01E?2 2.67E?2 2.13E?2 1.97E?2

9 Std 6.06E?1 8.06E?7 6.73E?1 2.04E?1 5.22E?1 1.17E?1

Rank 3 6 5 4 2 1

Mean 3.47E?3 4.43E?1 6.57E?3 5.88E?3 3.77E?3 4.74E?3

10 Std 8.85E?2 7.82E?3 6.79E?2 4.51E?2 5.30E?2 5.79E?2

Rank 2 1 6 5 3 4

Mean 4.15E?3 6.50E?5 6.92E?3 7.04E?3 4.50E?3 6.48E?3

11 Std 6.90E?2 6.35E?2 7.41E?2 2.77E?2 7.58E?2 3.76E?2

Rank 1 6 4 5 2 3

Mean 4.30E21 3.73E?2 2.21E?0 2.45E?0 1.67E?0 2.46E?0

12 Std 2.60E21 2.76E?2 5.26E21 2.30E-1 3.60E21 2.35E21

Rank 1 6 3 4 2 5

Mean 2.21E?0 2.14E?2 5.14E?0 2.89E?0 5.00E21 6.53E21

13 Std 1.34E?0 1.58E?2 1.65E?0 3.30E21 1.20E21 6.57E22

Rank 3 6 5 4 1 2

Mean 3.54E?1 9.05E?2 1.31E?2 4.11E?1 2.80E21 4.52E?0

14 Std 2.47E?1 1.92E?3 5.52E?1 5.51E?0 4.00E22 1.98E?0

Rank 3 6 5 4 1 2

Mean 2.23E?5 1.04E?7 2.85E?5 2.82E?3 7.00E?1 3.68E?1

15 Std 5.77E?5 6.54E?4 4.25E?5 3.62E?3 2.52E?1 5.51E?0

Rank 4 6 5 3 2 1

Mean 1.27E?1 2.49E?7 1.32E?1 1.28E?1 1.26E?1 1.19E?1

16 Std 5.30E21 2.21E?9 3.23E21 3.10E21 5.80E21 3.06E21

Rank 3 6 5 4 2 1
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Table 6 (continued)

Nos. MFO PSO DA SCA WOA MsRwGWO

Mean 3.39E?6 1.26E?4 1.61E?7 6.61E?6 4.33E?6 1.46E?6

17 Std 4.07E?6 3.30E?2 1.36E?7 2.94E?6 2.22E?6 6.89E?5

Rank 3 1 6 5 4 2

Mean 5.19E?6 4.80E22 6.11E?8 1.85E?8 1.55E?4 2.44E?7

18 Std 3.61E?7 1.43E?0 8.31E?8 8.68E?7 4.80E?4 1.19E?7

Rank 3 1 6 5 2 4

Mean 7.36E?1 2.91E?1 2.68E?2 9.08E?1 4.48E?1 2.79E?1

19 Std 5.32E?1 1.48E?1 1.08E?2 2.42E?1 3.14E?1 3.21E?0

Rank 4 2 6 5 3 1

Mean 5.67E?4 1.34E?1 2.78E?5 1.31E?4 2.04E?4 1.76E?3

20 Std 4.34E?4 4.16E?2 5.77E?5 4.83E?3 1.06E?4 6.16E?2

Rank 5 1 6 3 4 2

Mean 7.83E?5 3.88E?2 8.23E?6 1.48E?6 9.48E?5 4.00E?5

21 Std 1.18E?6 2.70E21 8.77E?6 8.55E?5 9.91E?5 2.31E?5

Rank 3 1 6 5 4 2

Mean 8.67E?4 7.40E21 1.12E?3 7.54E?2 7.49E?2 4.52E?2

22 Std 2.29E?4 1.19E?1 4.04E?2 1.25E?2 1.99E?2 1.31E?2

Rank 6 1 5 4 3 2

Mean 3.71E?2 2.94E?3 5.76E?2 3.70E?2 3.31E?2 3.26E?2

23 Std 3.98E?1 3.10E21 1.98E?2 1.37E?1 6.24E?0 2.03E?0

Rank 4 6 5 3 2 1

Mean 2.76E?2 1.05E?6 2.81E?2 2.01E?2 2.06E?2 2.00E?2

24 Std 2.73E?1 4.44E?7 4.14E?1 9.10E21 5.95E?0 0.00E?0

Rank 4 6 5 2 3 1

Mean 2.14E?2 1.64E?1 2.40E?2 2.27E?2 2.25E?2 2.10E?2

25 Std 7.65E?0 1.52E?4 2.28E?1 6.18E?0 1.66E?1 2.41E?0

Rank 3 1 6 5 4 2

Mean 1.03E?2 2.83E?5 1.04E?2 1.02E?2 1.00E?2 1.10E?2

26 Std 1.50E?0 1.99E?2 1.69E?0 5.60E21 1.00E21 3.00E?1

Rank 3 6 4 2 1 5

Mean 9.21E?2 2.28E?1 1.09E?3 7.22E?2 9.05E?2 7.23E?2

27 Std 2.23E?2 2.15E?0 3.58E?2 2.91E?2 4.15E?2 1.85E?2

Rank 5 1 6 2 4 3

Mean 1.12E?3 2.59E?0 2.24E?3 2.00E?3 2.15E?3 1.24E?3

28 Std 1.57E?2 5.98E?1 5.47E?2 3.17E?2 4.80E?2 7.46E?1

Rank 2 1 6 4 5 3

Mean 3.06E?6 2.71E?2 2.15E?7 1.34E?7 4.38E?6 9.39E?5

29 Std 3.62E?6 5.04E?2 1.09E?7 7.63E?6 4.68E?6 4.99E?5

Rank 3 1 6 5 4 2

Mean 5.89E?4 1.18E?7 4.79E?5 2.48E?5 8.20E?4 4.37E?4

30 Std 5.40E?4 8.87E?4 3.77E?5 8.39E?4 6.61E?4 1.71E?4

Rank 2 6 5 4 3 1

Average rank 3.13 3.63 5.23 3.97 2.57 2.30

Overall rank 3 4 6 5 2 1
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algorithm in 50 runs and error performance analyses are

shown in Fig. 17a, b for short-term wind speed forecasting.

As can be seen from these graphs, it is seen that MLP

model, which has the best parameter optimized by

MsRwGWO algorithm, gives successful performance in

1-h wind speed estimation in test and training stages. Also

MsRwGWO-based MLP model performance is shown for

training and test phases in Fig. 18 as scatter plots.

As shown in Fig. 17, prediction model performs poorly

at overshoot points where wind speed changes suddenly.

However, error performance metrics are needed to

demonstrate the overall performance of the proposed

MsRwGWO-MLP model against traditional GWO-MLP

model. In practice, the forecasting capability of the pro-

posed models can be evaluated by multiple statistical

indices between the predicted and observed wind speed

time series.

In this paper, the root-mean-squared error (RMSE),

mean absolute percentage error (MAPE), mean-squared

error (MSE), and mean absolute error (MAE) are utilized to

evaluate the model performance. Generally, the smaller

these performance metrics are, the better the model per-

forms. These three performance metric indexes are calcu-

lated as follows [85, 86]:

MSE ¼ 1

N

XN

i¼1

yi � ŷið Þ2 ð19Þ

MAE ¼ 1

N

XN

i¼1

yi � ŷij j ð20Þ

Table 7 Comparison results of MsRwGWO and GWO versions for 30D CEC2014 problems

No OBGWO IGWO EEGWO MsRwGWO No OBGWO IGWO EEGWO MsRwGWO

1 Mean 3.19E?08 2.71E?08 1.77E?09 5.53E?07 16 Mean 1.40E?01 1.21E?01 1.40E?01 1.19E?01

Rank 3 2 4 1 Rank 3 2 3 1

2 Mean 1.42E?10 1.93E?10 8.18E?10 2.97E?09 17 Mean 1.72E?07 7.30E?06 2.76E?08 1.46E?06

Rank 2 3 4 1 Rank 3 2 4 1

3 Mean 8.81E?04 4.04E?04 1.08E?05 9.30E?03 18 Mean 2.39E?08 3.72E?07 7.62E?09 2.44E?07

Rank 3 2 4 1 Rank 3 2 4 1

4 Mean 8.09E?02 1.25E?03 1.65E?04 2.56E?02 19 Mean 1.39E?02 1.39E?02 5.49E?02 2.79E?01

Rank 2 3 4 1 Rank 2 2 3 1

5 Mean 2.12E?01 2.09E?01 2.12E?01 2.10E?01 20 Mean 2.61E?05 4.09E?04 4.74E?06 1.76E?03

Rank 3 1 3 2 Rank 3 2 4 1

6 Mean 3.30E?01 1.99E?01 4.51E?01 2.03E?01 21 Mean 1.21E?07 2.90E?06 1.44E?08 4.00E?05

Rank 3 1 4 2 Rank 3 2 4 1

7 Mean 9.51E?01 1.87E?02 8.27E?02 2.57E?01 22 Mean 1.20E?03 5.61E?02 5.72E?04 4.52E?02

Rank 2 3 4 1 Rank 3 2 4 1

8 Mean 4.32E?02 1.31E?02 3.93E?02 1.68E?02 23 Mean 4.09E?02 3.73E?02 2.00E?02 3.26E?02

Rank 4 1 3 2 Rank 4 3 1 2

9 Mean 3.12E?02 1.48E?02 3.99E?02 1.97E?02 24 Mean 2.02E?02 2.02E?02 2.01E?02 2.00E?02

Rank 3 1 4 2 Rank 3 3 2 1

10 Mean 7.29E?03 3.01E?03 8.48E?03 4.74E?03 25 Mean 2.00E?02 2.05E?02 2.00E?02 2.10E?02

Rank 3 1 4 2 Rank 1 2 1 3

11 Mean 7.08E?03 3.42E?03 9.07E?03 6.48E?03 26 Mean 1.48E?02 1.01E?02 1.96E?02 1.10E?02

Rank 3 1 4 2 Rank 3 1 4 2

12 Mean 2.75E?00 2.35E?00 5.06E?00 2.46E?00 27 Mean 1.04E?03 8.04E?02 2.00E?02 7.23E?02

Rank 3 1 4 2 Rank 4 3 1 2

13 Mean 2.90E?00 3.22E?00 8.76E?00 6.53E201 28 Mean 2.50E?03 1.38E?03 2.00E?03 1.24E?03

Rank 2 3 4 1 Rank 4 2 3 1

14 Mean 3.38E?01 5.11E?01 3.06E?02 4.52E?00 29 Mean 1.38E ? 08 6.96E?06 2.00E?05 9.39E?05

Rank 2 3 4 1 Rank 4 3 1 2

15 Mean 1.67E?03 9.51E?03 4.61E?05 3.68E?01 30 Mean 3.79E?06 1.62E?05 4.14E?05 4.37E?04

Rank 2 3 4 1 Rank 4 2 3 1

Average rank 2.9 2.1 3.3 1.4

Overall rank 3 2 4 1
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MAPE ¼ 1

N

XN

i¼1

yi � ŷi
yi

�
�
�
�

�
�
�
�
� 100 ð21Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

yi � ŷið Þ2

v
u
u
t ð22Þ

where byi and yi represent predictive and observed values of

the wind speed, and N is the total number of data used for

performance evaluation and comparison.

For comparison, forecasting training and test results of

the traditional GWO-MLP model and the MsRwGWO-

MLP model is shown in Fig. 19, respectively. In order to

present the model performance more clearly, convergence

curves of the both algorithms during the training MLP

model are shown in Fig. 20. Here, the RMSE values of

MLP models with the best parameter value obtained from

50 runs are presented depending on the iterations. From the

zoom window shown at the end of iteration, it can be said

that the proposed MsRwGWO algorithm converges better

than the original GWO algorithm.

Although the both of the MLP models show a compet-

itive result from figures, we presented Tables 8 and 9

summarizing the training and test results of MLP models

with the 50 independent runs for both algorithms to better

evaluate the performance of the proposed MsRwGWO

algorithm. These tables have statistical results of MSE,

RMSE, MAE, and MAPE metrics found by MsRwGWO-

based MLP model and GWO-based MLP model for wind

speed estimation. The best in these metrics has been

emphasized in boldface. As can be seen from the training

results in Table 8, MsRwGWO-MLP model gives better

results than GWO-MLP model for all error metrics. Also,

MsRwGWO-MLP model is the best in terms of all statis-

tical metrics except of the standard deviation. From the test

results given in Table 9, it is observed that for the

MsRwGWO-based MLP model, the MSE, RMSE, MAE,

and MAPE for mean performance metrics are 3.95E–3,

6.28E-2, 4.53E-2, and 20.8%, respectively. According to

the best, mean, and median statistical metrics, the MLP

model based on MsRwGWO algorithm has the better

results than the other MLP model for the test part of the

wind speed dataset. From the table, it can be confirmed that

the proposed model achieves lower error values compared

to GWO-MLP presented in these analysis results. The fact

that the standard deviation of GWO is lower than that of

MsRwGWO shows that the positions of the gray wolves

are closer to each other in the GWO solution in the search

space.

Finally, the comparison results of MsRwGWO algo-

rithm and standard neural network training methods are

summarized in Table 10. The classic methods used in this

table are Gradient Descent with Momentum (GDM), Gra-

dient Descent with momentum and adaptive learning rate

(GDX), Conjugate Gradient with Polak-Ribiére updates

Fig. 16 MsRwGWO-based MLP hybrid model for wind speed forecasting
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(CGP), Conjugate Gradient with Powell-Beale restarts

(CGB), One-Step Secant (OSS), BFGS quasi-Newton

(BFG), Gradient Descent (GD), Gradient descent with

adaptive learning rate (GDA), and Conjugate Gradient with

Fletcher-Reeves updates (CGF) back propagation methods.

This table has the results of MSE, RMSE, MAE, MAPE

metrics, and training times. The best error metrics and

algorithm duration are shown in bold in the table.

(a
)

(b
)

Fig. 17 MLP model with the best parameter obtained by MsRwGWO in 50 runs a training and b test results with statistical errors
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The training times of all algorithms were obtained for

only one run. Note that the training time of GWO is higher

than with traditional methods and MsRwGWO. As can be

seen from Table 10, the proposed MsRwGWO has the best

performance in terms of all metrics, but, as expected, its

training time is higher than the other training methods.

However, since the training of the model is generally done

once, this long training time is not as important as expected

in real-world problems.

Fig. 18 Training and test

performances of MsRwGWO-

based MLP model

Fig. 19 Comparative training and test results of GWO and MsRwGWO-based MLP models
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5 Conclusion

In this paper, a new GWO variant is proposed, named

MsRwGWO, which presented a novel approach based on

multi-strategy random weighted of GWO. The perfor-

mance of the MsRwGWO is extensively analyzed based on

three factors: (1) using convergence, search history, tra-

jectory, and average distance analyses, (2) using CEC 2014

benchmarks with 10, 30, and 50 dimensions and some of

the popular meta-heuristic algorithms such as MFO, PSO,

DA, SCA, and WOA for 30D CEC 2014 test problems, (3)

using the real-world problem like wind speed forecasting.

As a result of the convergence analysis, it is seen that

MsRwGWO has a faster convergence than the GWO

algorithm in solving the problem. The ability of the pro-

posed MsRwGWO to find a solution closer to the global

optimum is seen. The results of search history analysis

show that the distribution of gray wolves around the global

optima, which are updated by the MsRwGWO algorithm, is

higher than the distribution of gray wolves updated by the

GWO algorithm in the search space during the exploration

and exploitation phases. The gray wolves found by the

GWO algorithm are stuck on the boundary values of the

search space, especially on the surfaces of the benchmark

problems except for the FN6 test problem in the search

history analyses process. According to the trajectory

analysis results of MsRwGWO algorithm, the alpha wolf’s

position is faster updated in the exploration stage and it

gets closer to global optima in the exploitation stage. The

proposed algorithm successfully avoids the local optimum

points of the problem in the parts that show an increase in

the average distance curve of the MsRwGWO algorithm

during the exploration phase. Tests on CEC2014 show the

MsRwGWO is a promising algorithm. At the same time,

MsRwGWO algorithm is observed to perform better than

MFO, PSO, DA, SCA, and WOA. In addition, the hybrid

approach MsRwGWO-MLP model gives better results than

GWO-MLP model for wind speed forecasting. The analy-

ses results demonstrate that the proposed MsRwGWO-

MLP hybrid model is a promising wind power forecasting

Fig. 20 Convergence curves of the MsRwGWO and GWO in the

training of the MLP model

Table 8 Training results of

GWO-MLP and MsRwGWO-

MLP with 50 runs

Metric Best Worst Median Mean Std

GWO MSE 4.05E23 4.25E23 4.12E23 4.12E23 3.97E25

RMSE 6.37E22 6.52E22 6.42E22 6.41E22 3.08E24

MAE 4.60E22 4.80E22 4.67E22 4.66E22 3.78E24

MAPE 2.00E?1 2.03E?1 2.01E?1 2.01E?1 7.40E22

MsRwGWO MSE 4.03E23 4.21E23 4.10E23 4.10E23 4.35E25

RMSE 6.35E22 6.49E22 6.41E22 6.40E22 3.39E24

MAE 4.60E22 4.72E22 4.65E22 4.65E22 3.66E24

MAPE 1.99E?1 2.02E?1 2.00E?1 2.01E?1 7.63E22

Table 9 Test results of GWO-

MLP and MsRwGWO-MLP

with 50 runs

Metric Best Worst Median Mean Std

GWO MSE 3.75E23 4.25E23 4.03E23 3.99E23 1.31E24

RMSE 6.12E22 6.52E22 6.35E22 6.31E22 1.04E23

MAE 4.42E22 4.76E22 4.59E22 4.56E22 8.43E24

MAPE 2.06E?1 2.14E?1 2.09E?1 2.09E?1 1.44E21

MsRwGWO MSE 3.73E23 4.26E23 3.97E23 3.95E23 1.50E24

RMSE 6.11E22 6.53E22 6.30E22 6.28E22 1.19E23

MAE 4.41E22 4.71E22 4.55E22 4.53E22 9.12E24

MAPE 2.06E?1 2.12E?1 2.08E?1 2.08E?1 1.47E21
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method, and it has higher forecasting accuracy and stronger

stability. It is planned to develop hybrid models with

decomposition methods in the future by incorporating

correlated features in to input values.
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