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Abstract
Marine object detection has become increasingly important in intelligent underwater robot. Because of color cast and blur

in underwater images, features directly extracted from backbone networks usually lack interesting and discriminative

characters, that affects performance on marine object detection. To this end, this paper proposes a novel refined marine

object detector with attention-based spatial pyramid pooling networks and bidirectional feature fusion strategy to relieve

the weakening of features and address marine object detection issues. Firstly, an attention-based spatial pyramid pooling

network named as SA-SPPN is proposed to enrich interesting information and extend receptive field on original features

extracted from backbone network. Based on enhanced multiple level features, the bidirectional feature fusion strategy is

designed to fuse different level features and generate robust feature maps for detection. Specifically, the top-down

connection could transfer semantic information from high-level features to enhance low-level features. The bottom-up

pathway could extend resolution of high-level features. Furthermore, the cross-layer connections are integrated into both

top-down passway and bottom-up passway to carry out multiple branch fusion. On bounding boxes regression phase, the

distance-IoU loss is adopted to improve regression speed and accuracy. Finally, this paper conducts series experiments on

underwater image datasets and URPC datasets to detect marine objects. The experimental results reveal that our approach

could achieve impressive performance and reach 79.64% mAP on underwater image datasets, 79.31% mAP on URPC2019

datasets and 79.93% mAP on URPC2020 datasets, respectively. For standard object detection, the proposed algorithm also

could realize notable performance and get 81.9% mAP on PASCAL VOC datasets.

Keywords Marine object detection � Feature enrichment � Feature fusion � Convolutional neural network

1 Introduction

With the development of underwater robot, marine object

detection has become a hot and urgent research topic.

Because it is the foundational condition for underwater

robot to realize intelligent observation and automatic cap-

ture of marine objects. Detection algorithms based on

underwater optimal image have superiority on real-time

detecting small objects in short-distance detection task,

taking holothurian and scallop as example.

However, marine object detection task based on under-

water optimal image still faces great challenges on feature

representation. Because of the scattering and absorption of

light transferred under the water, underwater optimal

images captured by underwater cameras are usually color

cast and blurry, as shown in Fig. 1. Features directly

extracted from underwater images with convolutional
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neural networks usually lack interesting and discriminative

characters, that affects performance on marine object

detection. Thus, some popular object detectors [1–12] are

not effective when applied directly to marine object

detection task. This paper summarizes this phenomenon as

the weakening of features.

To deal with weakening of features, it is of great

importance to reinforce original features extracted from

backbone networks, as represented in Fig. 2. It mainly

includes two way to reinforce features: feature enhance-

ment and feature fusion. Recently, attention mechanism

has been adopted in popular methods to enhance features,

because it could focus on interesting features. There are

lots of classic attention structure, such as [13–15], and so

on. Woo et al. [15] applies attention-based feature refine-

ment with two distinctive modules, channel and spatial,

and improves representation power of CNN networks. So,

this paper introduces spatial attention mechanism into our

detector framework and develops an attention-based spatial

pyramid pooling network to enrich features.

To further improve discrimination of features, a broad

range of prior researches have been proposed in recent

years. At the beginning, [1–5] just collect scale-fixed fea-

tures generated by convolutional neural networks to detect

object and cannot reach high accuracy. To adapt to dif-

ferent scale object detection, [6–9, 16, 17] extract different

scale features from backbone networks. Recently, to fur-

ther enrich features, [18] designs a top-down connection

structure to carry out semantic information transferring

from high-level features to low level. The main contribu-

tion of [18] is that it provides a novel strategy of feature

fusion on different level features. Activated by [18, 19]

proposes a bottom-up pathway to improve resolution of

high-level features. Furthermore, [20] builds scalable fea-

ture pyramid network by neural architecture search. And

[21] proposes an efficient feature fusion strategy. Based on

above exploration, this paper designs a special bidirectional

feature fusion architecture that could generate both high

resolution and semantically strong features.

In this paper, we propose a novel refined marine object

detector with attention-based spatial pyramid pooling net-

works and bidirectional feature fusion strategy. Firstly, to

enhance original features extracted from backbone net-

works, we develop an attention based spatial pyramid

pooling network to strengthen interesting information and

extend receptive field of features. What’s more, each fea-

ture generating branch adjoined to backbone network is

integrated with SA-SPPN. Secondly, this paper designs a

bidirectional feature fusion architecture to improve dis-

crimination of features. On one hand, the top-down con-

nection is adopted to enrich low-level features by fusing

semantic information from high-level features. On the

other hand, the bottom-up pathway is utilized to extend

resolution of high-level features by fusing detail informa-

tion from low-level features. Furthermore, this paper adds

cross-layer fusion pathway into both vertical and horizontal

path to provide multiple input features. Finally, this paper

adopts distance-IoU loss to speed up bounding box

regression. To validate performance of proposed method,

we conduct experiments on underwater image datasets and

reach 80.2% mAP. The experimental results reveal that our

algorithm could improve performance on marine object

detection.

The main contributions of this paper can be summarized

as follows:

(1) An attention-based spatial pyramid pooling network

is proposed to reinforce original convolutional

features extracted from convolutional neural net-

works. SA-SPPN could increase the receptive field

and separate out the most significant contextual

features.

Fig. 1 Some frames in underwater datasets. Underwater optimal

images captured by underwater robot are usually color cast and blurry

DetectCNNs

Detect

Input image

Feature maps
Detection results

Feature reinforce

Reinforced feature maps
Detection results

Fig. 2 The feature reinforcement strategy to relieve the weakening of

features. By reinforcing feature maps extracted from CNNs, marine

object detector could improve object detection performance
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(2) A bidirectional feature fusion architecture is

designed to strengthen the discriminative of feature

maps. Our feature fusion manners include top-down

up-sampling passway, bottom-up down-sampling

passway and cross-layer fusion passway.

(3) The refined marine object detector is developed to

improve performance on marine object detection.

The experimental results reveal that our detector

could achieve the latest state-of-the-art results on

marine object detection.

The rest of the paper is organized as follows. Sect. 2

systematically introduces the proposed methods. Sect. 3

conducts experiments to support our method and analyzes

experimental results. Sect. 4 summarizes related works

involved in our algorithm. In addition, Sect. 5 makes a final

conclusion on this paper.

2 The proposed method

To settle the issue on marine object detection, this paper

proposes refined single shot detector with attention-based

spatial pyramid pooling networks and bidirectional feature

fusion strategy. In Sect. 2.1, we introduce the whole

architecture of proposed method. In Sect. 2.2, we develop

SA-SPPN structure to enhance features. In Sect. 2.3, we

design bidirectional feature fusion network to build feature

pyramid. In Sect. 2.4, we introduce distance-IoU loss for

bounding box regression.

2.1 Framework architecture

Our object detector framework is mainly equipped with

feature extraction, feature enrichment, feature fusion, and

prediction head network. The architecture of proposed

algorithm is represented in Fig. 3.

Firstly, we employ Darknet-53 as backbone network to

extract original convolutional features from input images.

Darknet is firstly proposed in [4], which has 24 convolu-

tional layers followed by 2 fully connected layers. Then,

[5] attempts various improvements on Darknet and pro-

poses a new model, called Darknet-19, which has 19

convolutional layers and 5 maxpooling layers. Further-

more, [9] designs a new network named as Darknet-53,

which is a hybrid approach between Darknet-19 and

residual network stuff. Darknet-53 runs significantly faster

than most detection methods with comparable perfor-

mance. So, this paper adopts Darknet-53 as backbone

network and extracts features from top three convolutional

block to build feature pyramid.

Then, we develop an attention-based spatial pyramid

pooling network equipped on each branch of backbone

network to enhance interesting information and extend the

receptive field of features. In SA-SPPN, we introduce

spatial attention mechanism to adaptively refine interme-

diate feature map in spatial dimension. And spatial pyra-

mid pooling network [22] could generate a fixed-length

representation regardless of image size/scale and extend

receptive field on convolutional features. This paper com-

bines spatial attention mechanism with spatial pyramid

pooling structure and redesigns them as a whole structure

to enhance features. The details of SA-SPPN are intro-

duced in Sect. 2.2.

Before predicting bounding boxes from features, we

design an improved bi-directional feature pyramid network

to fuse features from different layers and produce multi-

scale refined features. After firstly proposed in [18], feature

pyramid network becomes a crucial components in popular

detection frameworks. Motivated by [18–21], this paper

proposes a novel bidirectional feature fusion network to

fuse features. The specific feature fusion manner is dis-

cussed in Sect. 2.3.

Based on final feature maps extracted from our archi-

tecture, prediction head could classify the bounding boxes

to possible categories and regress them to the proper

locations. In regression phase, we adopt the distance IoU

loss function to speed up box regression process. The

distance IoU loss has more specific regressing direction and

could avoid unnecessary regression process.

2.2 Attention-based spatial pyramid pooling
network for feature enrichment

This paper designs an attention-based spatial pyramid

pooling network named as SA-SPPN, which is combined

with spatial attention module and spatial pyramid pooling

module. Recently, attention mechanism becomes popular

in convolutional neural networks and shows good perfor-

mance on computer vision tasks, such as classification,

object detection, image translation, and so on. Attention

not only tells where to focus, it also improves the repre-

sentation of interests. Thus, this paper increases represen-

tation power of features by adopting attention mechanism.

Spatial pyramid pooling component could increase the

receptive field and generate the most significant context

features without incurring extra computational burden.

Original features extracted from convolutional layers are

input into SA-SPPN and they will be reinforced. The out-

put features are much discriminative.

To represent the whole process, input features of SA-

SPPN are defined as Fin 2 Rc�w�h, and output features are

defined as Fout 2 R5c�w�h. Firstly, Fin is sent into spatial

attention module to generate attention feature

Fa 2 Rc�w�h. Spatial attention block is a pre-process
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component of SA-SPPN. Here, we replace max pooling

and average pooling operation with convolutional opera-

tion to realize point-wise attention. So, Fa could be for-

mulated as follows:

Fa ¼ ConvðFinÞ; ð1Þ

where Conv is behalf of convolutional operation. Fa

mainly includes interesting information extracted from Fin.

Then point-wise addition operation between Fin and Fa is

conducted to produce reinforced feature Fim, which is

represented as follows:

Fim ¼ rðFaÞ � Fin; ð2Þ

where r denotes sigmoid process and � represents the

point-wise addition. Thus, Fim includes more interesting

information than Fin, and will be input into SPP module as

basic feature.

After then, SPP module augments receptive field of

input feature map by series of max-pooling operation. For

instance, one of augmented feature map could be formu-

lated as follows:

f2 ¼ MaxPoolj5�5
s¼1 Fimð Þ; ð3Þ

where MaxPoolj5�5
s¼1 represents max-pooling operation to

generate f2 2 Rc�w�h. Here, the filter size is set as 5 � 5

and the mask strides by one pixel at each step. As shown in

Fig. 4, we design a group of filter sizes

ð1 � 1; 5 � 5; 9 � 9; 13 � 13; 17 � 17Þ to conduct max-

pooling operation on Fim and generate feature maps

ðf1; f2; f3; f4; f5Þ. Specifically, f1 could be directly expressed

by Fim. Thus, max-pooling operation with filter size of

1 � 1 could be omitted.

Finally, augmented feature maps are concatenated to

output enhanced feature maps. The output feature maps

could be represented as follows:

Fout ¼ f1 � f2 � f3 � f4 � f5; ð4Þ

where � denotes the operation of feature concatenation.

Each branch dilates receptive field with different scales.

Feature FusionFeature Extraction Prediction

P1  / 2

P2  / 4

P3  / 8

P4  / 16

P5  / 32

SA-SPPNSA-SPPN

SA-SPPNSA-SPPN

SA-SPPNSA-SPPN

SA-SPPN Structure

Input Features
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Spatial Pyramid Pooling Block Output Features

F51F51
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Fig. 3 The architecture of proposed marine object detector. We

employ Darknet-53 as feature extraction network to get basic feature

maps. Then, we design the attention-based spatial pyramid pooling

network to enhance interesting features and augment receptive field of

features. After that we build bidirectional feature fusion network to

realize fast multi-scale feature fusion. Based on the refined feature

maps, classification and regression are conducted to produce detection

results. While regressing bounding boxes, we adopt the distance IoU

loss to improve the speed of regression

Input feature mapsc×w×h

c×w×h c×w×h c×w×h c×w×h c×w×h

5c×w×h
Output feature maps

+ Concatenate

Max-pooling

Feature maps
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Fig. 4 Constructing of the spatial pyramid pooling network by

concatenating feature maps from multiple branches. Each branch

dilates receptive field of input feature maps with max-pooling

operation. Specially, original feature maps could be regarded as

operating with 1� 1 max-pooling
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After reinforced by SA-SPPN, feature maps extracted by

backbone network are realized multi-scale receptive field

augmentation. In this paper, we integrate SA-SPPN struc-

ture into each output branch of backbone network to

enhance basic features.

2.3 Bidirectional feature fusion network to build
feature pyramid

To enhance feature pyramidal representation, this paper

proposes a novel bidirectional feature fusion network

named as BiFFN with top-down fusion pathway and bot-

tom-up fusion pathway. For multi-scale feature pyramidal

representation, while high-level features are semantically

strong but lower resolution, low-level features have richer

detailed information but lack contextual content. Thus,

recent research works are mainly focusing on generating

feature representations that both high resolution and

semantically strong. This section aims to optimize feature

fusion strategy on feature pyramid network.

Activated by [18–21], this paper designs a special fea-

ture fusion architecture. As shown in Fig. 5, [18] combines

two adjacent layers in feature hierarchy with top-down and

lateral connections to enhance semantic information for

low-level features. What’s more, [19] adds an extra bot-

tom-up pathway on feature pyramid to improve feature

representations for lower resolution features. To improve

model efficiency, [21] proposes several optimizations for

cross-scale connections. Based on above researches, Our

feature fusion architecture adopts both bottom-up pathway

and top-down pathway to fuse features and adds cross-layer

fusion pathway into both vertical and horizontal path to

further fuse features.

As described in Fig. 5d, our feature fusion network

includes three branch from P3 to P5. High-level features

are up-sampled to enhance semantic information for low-

level features with top-down pathway. after then, low-level

features are down-sampled to improve resolutions and

enrich detail information for high-level features by bottom-

up pathway. Meanwhile, cross-scale connections could

provide multiple input for feature fusion operation. So, our

feature fusion network could fuse more features without

adding much cost.

To represent the process of feature fusion, input feature

maps from P3 to P5 are defined as F31, F41 and F51,

respectively. The intermediate feature maps of F32 and F42

are formulated as follows:

F42 ¼ Conv F41 � Resizeþ F51ð Þð Þ
F32 ¼ Conv F31 � Resizeþ F42ð Þð Þ

;

�
ð5Þ

where Resizeþ denotes up-sampling function to increase

the scale of features. Finally, the output feature maps are

formulated as follows:

F33 ¼ Conv F31 � F32ð Þ
F43 ¼ Conv F41 � F42 � Resize� F33ð Þð Þ
F53 ¼ Conv F51 � Resize� F32ð Þ � Resize� F42ð Þð Þ

;

8<
:

ð6Þ

where Resize� denotes down-sampling function to reduce

the scale of features.

After fusion process, output features are enhanced with

semantic information and details from contextual layers.

Therefore, the feature pyramid generated from BiFFN

could perform well on prediction.

2.4 Distance-IoU loss for bounding box
regression

Bounding box regression is crucial to object detection task.

Although IoU loss [23] and generalized IoU loss [24] have

been proposed to tailor to the IoU metric, they still suffer

from the problems of slow convergence and inaccurate
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F53

upsample
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(d) Our BiFFN
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Fig. 5 The design of feature fusion network. a FPN [18] proposes a

top-down pathway to fuse multi-scale features from low-level layers

to high-level layers. b PANet [19] introduces a bottom-up pathway

based on FPN. c BiFPN [21] adds cross-layer fusion pathway and

omit some medial node. d Our BiFFN adds cross-layer fusion

pathway into both vertical and horizontal path to fuse features
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regression. This paper adopts Distance-IoU loss [25] by

incorporating the normalized distance between predicted

box and target box to accelerate bounding box regression in

training.

The intersection over union (IoU) between predicted

box and ground-truth box is calculated as following:

IoU ¼ jB \ Bgtj
jB [ Bgtj ; ð7Þ

where Bgt ¼ xgt; ygt;wgt; hgtð Þ is the ground-truth box and

B ¼ x; y;w; hð Þ is predicted boxs.

The DIoU loss is formulated as follows:

LDIoU ¼ 1 � IoU þ q2 b; bgtð Þ
c2

; ð8Þ

where b and bgt denote the central points of B and Bgt, q �ð Þ
is the Euclidean distance, and c is the diagonal length of the

smallest enclosing box covering the two boxes. DIoU loss

could directly minimize the distance of two boxes to pro-

vide moving directions for bounding boxes, even when

non-overlapping with target box. Thus, DIoU loss achieves

faster convergence for predicted box and target box.

3 Experiments and analysis

In this section, we design several experiments on different

image datasets to verify the performance of proposed

method on object detection. We firstly conduct compre-

hensive experiments on our 4 category underwater image

dataset. Then, we continue testing on 4 category

URPC2019 and URPC2020, respectively. To further

explore effectiveness of our method, we experiment on the

20 category PASCAL VOC datasets [26] and compare with

popular detector. This paper adopts mean average precision

(mAP) as evaluation criterion of accuracy. The experi-

mental results represent the performance of our method on

detection task.

3.1 Implementation details

This paper takes Darknet-53 as backbone networks and

initializes the detector with parameters pre-trained on

ImageNet1k classification set [27]. Generally, we train the

detector with stochastic gradient descent (SGD) for 50 K

iterations. The learning rate is initially set as 0.001, which

is reduced by a factor of 10 at 40 K and 45 K iterations,

respectively. In addition, the weight decay is set as 0.0005

and the momentum is set as 0.95 during training phase. All

of the experimental results are implemented using a Nvidia

GeForce GTX 1080 Ti GPU and cuDNN v7.6 and an Intel

Core i7-6700K@4.00 GHz. To reduce computing burden,

each image should be firstly resized to 608� 608 and then

input into our model.

3.2 Experiments on our underwater image
datasets

Our underwater image datasets are built to explore the

detection of marine objects. Specifically, it is mainly

including 25,400 pictures with 4 categories: holothurian,

echinus, scallop, and starfish. Part of images in our datasets

are captured by our underwater robot in naturalistic ocean

environment, and others are from videos on Internet. We

have labeled them by ourselves. To validate the perfor-

mance of proposed algorithm, we conduct series of

experiments on underwater image datasets, including

ablation study and comparison with other detectors.

3.2.1 Ablation study

In this section, we conduct several ablation experiments to

verify the effect of each component in proposed algorithm.

This paper takes Darknet-53 as backbone network and

combines each component on it to improve performance.

The experimental results are listed in Table 1.

In Table 1, the first row is the detection results of

original method. Normal FPN structure is added into

Darknet-53 and executed on underwater image datasets.

This strategy could reach 76.11% mAP, which is set as

baseline performance. Then, the proposed SA-SPPN

components are combined into original method to enrich

features. Experimental results from first two rows in

Table 1 reveal that the proposed SA-SPPN could achieve

1.52% mAP improvement. What’s more, this paper designs

a bidirectional feature fusion network to replace original

FPN to fuse contextual information. The comparison of

second row with third row in Table 1 illustrates that our

BiFFN could generate 1.23% mAP gains on detection. To

explore the contribution of distance IoU loss, this paper

conducts experiments on original method. Results from

first row and fourth row represent that adopting distance

IoU loss could get 0.7% mAP gains on marine object

detection.

The last row in Table 1 is the setting of proposed

algorithm in this paper, which combines with SA-SPPN

components, designed BiFFN, and distance IoU loss.

Experimental results show that our proposed method could

reach 79.64% mAP on marine object detection task, which

outperform original method by 3.53% mAP.

Some detection results of proposed method on under-

water image datasets are represented in Figs. 6 and 7. Our

method has good performance on marine object detection

not only for big scale targets but also for small objects.

Even in blurry environment, our algorithm still works well
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and could detect almost all targets. Nevertheless, our

method still faces the challenge of missing detection, as

some objects are difficult to be discriminated from back-

ground. For instance, third row in Fig. 7 is local area of

second row images. There are some missing detected

objects that are labeled with blue rectangle.

The training loss of our model is represented in Fig. 8.

When the learning rate is reduced at 40K iterations during

training phase, the loss decreases obviously. In addition,

the Precision-Recall curves of different object categories

on test image dataset are shown in Fig. 9. Different color

curves represent different categories of objects.

3.2.2 Comparison with popular detector

To compare with popular detectors on marine object

detection task, we conduct experiments with popular

detectors using default settings in opened source code on

underwater image datasets. And the experimental results

are listed in Table 2.

Recent popular object detectors, such as Faster R-CNN,

YOLO, SSD, and so on, have represented interesting per-

formance on usual object detection task. However, it is still

challengeable on marine object detection task. So this

paper conducts experiments on underwater image datasets

using popular detectors and collects results to compare. As

shown in Table 2, while changing backbone network from

ZFNet to VGGNet, Faster R-CNN could achieve 69.16%

Table 1 Ablation experiments

on underwater image dataset
Darknet-53 SA-SPPN FPN BiFFN DIoU AP(%) mAP(%)

Holothurian Echinus Scallop Starfish

U U 73.02 72.46 81.82 77.14 76.11

U U U 74.71 74.22 82.91 78.68 77.63

U U U 76.59 75.47 83.47 79.91 78.86

U U U 73.74 73.05 82.60 77.85 76.81

U U U U 77:22 76:38 84:23 80.73 79:64

Fig. 6 Qualitative detection results of proposed algorithm on our underwater image dataset. Different categories of objects are drawn with

different color
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mAP. Comparing the results from third row to sixth row, it

is surprising that YOLO series methods have continuous

improvement on detection. At the beginning, first vision

YOLO approach just could get 61.18% mAP with 41 FPS.

But YOLOv4 has realized impressive performance of

79.26% mAP with 65 FPS. YOLOv5m could get compet-

itive performance of 79.19% mAP with 68 FPS. The

development of YOLO series methods is heuristic. In

addition, SSD detector could obtain moderate precision

with fast processing speed. Although FPN and SA-FPN

methods acquire excellent performance on precision, they

cost too much computing time. The experimental results

reveal that our proposed method performs best on marine

object detection task with 79.64% mAP and accept-

able processing speed.

3.3 Experiments on URPC datasets

In this part, we evaluate our approach on two opened

underwater datasets URPC2019 and URPC2020, which are

from the Underwater Robot Picking Contest.1 The

URPC2019 and URPC2020 datasets have four object

Fig. 7 Qualitative detection results of small objects in underwater

images. The first row is behalf of original images and the second row

represents detection results on original images. Some local areas in

second row images are zoomed in and shown in third row. And the

missing detected objects are labeled with blue rectangle

Fig. 8 The training loss of our model

Fig. 9 The Precision-recall curves of different object categories on

test image dataset

1 Underwater Robot Picking Contest. http://www.cnurpc.org/.
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categories, including echinus, scallop, holothurian and

starfish.

As represented in Table 3, the URPC2019 dataset has

4757 images, which are split into a training set of 3567

images and a testing set of 1190 images. The URPC2020

dataset has 6575 images, which are split into a training set

of 4929 images and a testing set of 1646 images. What’s

more, we have finished statistics of ground-truth annota-

tions of different categories on URPC2019 and URPC2020,

respectively. Figure 10 represents that echinus is more

ampler than other category objects and takes over half of

annotations. Holothurian, scallop, and starfish have com-

parative ground-truth boxes.

This paper conducts experiments with proposed algo-

rithm on URPC2019 and URPC2020 datasets, separately.

The experimental results are listed in Table 4. Our algo-

rithm could achieve 79.31% mAP on URPC2019 and

79.93% mAP on URPC2020. Notably, detection perfor-

mance on echinus is higher than others, and holothurian is

hard to detect in URPC datasets.

Some detection results of proposed method on

URPC2019 dataset and URPC2020 dataset are shown in

Figs. 11 and 12, respectively. Detection results reveal that

the proposed method could perform well in different

underwater conditions, even with complicated background.

For instance, detection results of last two rows in Fig. 12

show that our trained detector could successfully detect

targets even in rocks.

In addition, the variable light within the images and the

object distance also could affect detection results. While

lacking enough light, the images are dark that increases the

difficulty of distinguishing objects from background. From

Figs. 11 and 12, it is revealed that the distance between

objects and the distance between object and camera also

could affect detection results. While the distance between

objects is small, the objects are easy to be occluded by

others, that may lead to miss detection. Furthermore, the

smaller distance between object and camera is, the bigger

scales of objects in images are. Usually, detections on

small objects are more difficult than large objects.

3.4 Experiments on pascal VOC datasets

To further explore the effect of proposed algorithm on

standard object detection task, this paper also implements

experiments on the Pascal VOC dataset. Images in Pascal

VOC dataset are annotated with 20 classes. We train the

designed detector on the VOC 2007 and VOC 2012

trainval sets (16551 images), and test on the VOC 2007 test

set (4952 images). The experimental results are represented

in Table 5.

We compare our proposed algorithm with one-stage

object detectors and two-stage detectors, respectively.

Generally, object detection approaches are usually divided

into one-stage detection methods and two-stage detection

Table 2 Comparison with popular detectors on the underwater image

datasets

Approach Backbone Input size FPS mAP(%)

Faster R-CNN ZFNet � 1000� 600 14 61.95

Faster R-CNN VGGNet � 1000� 600 5.6 69.16

YOLO GoogLeNet 448� 448 41 61.18

YOLOv2 Darknet-19 416� 416 61 73.86

YOLOv3 Darknet-53 416� 416 30 74.43

YOLOv4 CSPDarknet-53 512� 512 65 79.26

YOLOv5m CSPDarknet-53 640� 640 68 79.19

SSD VGGNet 300� 300 42 70.03

FPN ResNet-50 � 1280� 768 4.1 74.25

SA-FPN ResNet-50 � 1280� 768 3.5 76.27

Ours Darknet-53 608� 608 29 79:64

Table 3 The training and testing images in URPC datasets

Datasets Total images Training images Testing images

URPC2019 4757 3567 1190

URPC2020 6575 4929 1646

(a) URPC2019 (b) URPC2020

Fig. 10 The statistics of ground-truth boxes of different categories on

URPC2019 and URPC2020. Each dataset has four categories

Table 4 Experimental results on URPC dataset

Datasets AP(%) mAP(%)

Holothurian Echinus Scallop Starfish

URPC2019 69.60 87.70 79.03 80.92 79.31

URPC2020 71.03 88.03 79.38 81.27 79.93
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methods. While one-stage detectors could classify and

detect targets with a single neural network, two-stage

detectors need firstly generating region proposals with RPN

and then detect objects based on proposals. Thus, one-stage

detection approaches have advantages on real-time

detection.

At the beginning, two-stage detectors could achieve

surprising detection performance on precision. As shown in

Table 5, faster R-CNN with VGGNet and ResNet-101

could reach 73.2% mAP and 76.4% mAP, respectively.

FPN could get 77.1% mAP and SA-FPN can gain 79.1%

mAP. However, the process of detection with two-stage

detectors cost too much time. So it is challengeable for

two-stage detectors to realize real-time detection. In con-

trast, one-stage methods could achieve fast detecting speed.

In particular, YOLO series methods could process more

than 34 frames per seconds. Recent YOLOv4 detector

could achieve a competitive detection performance of

81.3% mAP with 65 FPS and YOLOv5m could reach

81.2% mAP with 68 FPS.. In addition, SSD, DSSD and

DSOD methods also could realize reliable detection per-

formance on the cost of increasing computation burden.

Comparatively, the proposed algorithm could outperform

state-of-the-art detectors and get 81.9% mAP on the

PASCAL VOC datasets. The experimental results reveal

that our designed framework also has good performance on

standard object detection task.

4 Related work

4.1 Attention module

Attention plays an important role in human perception.

Specifically, humans exploit a sequence of partial glimpses

rather than a whole scene at once and selectively focus on

salient parts in order to capture visual structure better [35].

For machine translation task, [36] proposes a sequence

transduction model based entirely on attention, replacing

the recurrent layers most commonly used in encoder-

Fig. 11 Qualitative detection results of proposed algorithm on URPC2019 dataset
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decoder architecture with multi-headed self-attention.

Wang et al. [13] proposes a non-local blocks to capture

long-range dependencies and bridges self-attention for

machine translation to general task in computer vision,

such as video classification, object detection and segmen-

tation, pose estimation, and so on. To explore channel

relationship, [14] proposes Squeeze-and-Excitation (SE)

block to adaptively recalibrate channel-wise feature

responses by explicitly modeling interdependencies

between channels. [37] proposes residual attention network

to generate attention-aware features. Woo et al. [15]

applies attention-based feature refinement with two dis-

tinctive modules, channel and spatial, and improve repre-

sentation power of CNN networks. Activated by [13] and

[14, 38] simplifies non-local network and proposes the GC

block to improve effectiveness. This paper adopts [15] as

basic attention structure and modifies it from spatial-wise

attention to point-wise attention. Specifically, [15]

sequentially infers attention maps along two separate

dimensions, channel and spatial, then the attention maps

are multiplied to the input feature map for adaptive feature

refinement. We replace max pooling and average pooling

operations in spatial attention module with convolutional

operation to realize point-wise attention.

4.2 Feature pyramidal representations

To detect multiple scale objects, it is of great importance to

build and represent multi-scale features. In early works,

[6, 7, 39] directly perform predictions based on the pyra-

midal feature hierarchy extracted from backbone networks.

As one of the pioneering researches, [18] builds a feature

Fig. 12 Qualitative detection results of proposed algorithm on URPC2020 dataset
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pyramid network (FPN) with a top-down pathway to

transmit contextual information. Based on FPN, [19] pro-

poses an extra bottom-up path aggregation network to

enhance the entire feature hierarchy with accurate local-

ization signals in lower layers. Ghiasi et al. [20] adopts

neural architecture search and discovers a new feature

pyramid architecture named as NAS-FPN, which consists

of a combination of top-down and bottom-up connections

to fuse features across scales. Although NAS-FPN achieves

better accuracy, it requires thousands of GPU hours during

search. To optimize multi-scale feature fusion with more

intuitive and principled way, [21] proposes a weighted bi-

directional feature pyramid network (BiFPN), which

allows easy and fast multi-scale feature fusion. Wang et al.

[40] directly handles the multi-view feature representation

in the kernel space, which provides a feasible channel for

direct manipulations on multiview data with different

dimensions. Based on above researches, this paper aims to

further explore the possibility of multi-scale feature fusion

and designs a novel bidirectional feature fusion

architecture.

5 Conclusion

This paper proposes a novel refined marine object detection

framework with attention-based spatial pyramid pooling

networks and bidirectional feature fusion strategy to

address marine object detection issue. To verify the

effectiveness of proposed approach, we conduct series

experiments on underwater image datasets and URPC

datasets. With the foundation of original features extracted

from backbone network, an attention-based spatial pyramid

pooling network named as SA-SPPN is designed to enrich

interesting information and extend receptive field on orig-

inal features. The experimental results reveal that intro-

ducing SA-SPPN could gain about 1.52% mAP

improvement on marine object detection. Furthermore, this

paper proposes bidirectional feature fusion strategy to fuse

different level features from SA-SPPN branches. The out-

put feature maps are discriminative and expressive. By

ablation experiments, our new feature fusion strategy could

improve 1.23% mAP. In addition, this paper adopts Dis-

tance-IoU loss to improve speed and accuracy of regression

that could bring 0.7% mAP increase. Finally, our proposed

algorithm achieves 79.64% mAP on underwater image

datasets, 79.31% mAP on URPC2019 datasets and 79.93%

mAP on URPC2020 datasets, respectively. Even on PAS-

CAL VOC datasets, the designed approach could outper-

form state-of-the-art detectors and reach 81.9% mAP.

Our research work could achieve competitive perfor-

mance on marine object detection task but still has room

for further improvement. In the future, we plan to explore

how to improve the speed of detection and integrate our

refined marine object detector into underwater robot to

realize fast and accurate detection.

Table 5 Detection results on the

PASCAL VOC 2007 datasets
Approach Backbone Input size FPS mAP(%)

Two-stage detectors

Fast R-CNN [2] VGGNet � 1000� 600 0.6 70.0

Faster R-CNN [3] VGGNet � 1000� 600 7 73.2

Faster R-CNN [28] ResNet-101 � 1000� 600 5 76.4

FPN [18] ResNet-50 � 1280� 768 5 77.1

R-FCN [29] ResNet-50 � 1000� 600 11 77.4

MR-CNN [30] VGGNet � 1000� 600 0.03 78.2

SA-FPN [31] ResNet-50 � 1280� 768 4 79.1

One-stage detectors

YOLO [4] GoogLeNet 448� 448 45 63.4

YOLOv2 [5] Darknet-19 416� 416 67 76.8

YOLOv3 [9] Darknet-53 416� 416 34 77.2

SSD300 [6] VGGNet 300� 300 46 74.3

SSD512 [6] VGGNet 512� 512 19 76.8

DSSD321 [7] ResNet-101 321� 321 9.5 78.6

DSOD300 [8] DS/64-192-48-1 300� 300 17.4 77.7

GFR-DSOD300 [32] DS/64-192-48-1 300� 300 17.5 78.9

YOLOv4 [33] CSPDarknet-53 512� 512 65 81.3

YOLOv5m [34] CSPDarknet-53 640� 640 68 81.2

Ours Darknet-53 608� 608 30 81:9
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