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Abstract
Existing data race detection approaches based on deep learning are suffering from the problems of unique feature

extraction and low accuracy. To this end, this paper proposes a novel approach called SmartRace based on a CNN-BiLSTM

hybrid neural network to detect data race. To build the dataset, SmartRace selects 25 real-world applications from five

benchmark suites and then extracts multi-level features by a static analysis toolWala. A tool ConRacer is employed to help

label the samples. SmartRace leverages the Kmeans-SMOTE algorithm to make the positive samples and negative

counterparts well distributed. The samples are vectorized and fed into a deep learning model. Finally, a CNN-BiLSTM

hybrid neural network is built and trained to detect data race. The experimental results show that the accuracy of

SmartRace is up to 4.94% higher than that of the existing detection approach. Furthermore, we compare SmartRace with

the existing dynamic and static detection tools, demonstrating the effectiveness of SmartRace.
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1 Introduction

Multithreaded programming becomes increasingly popular

and is constantly leveraged by more and more program-

mers with the prevalence of multicore processors.

Although it brings many advantages (e.g., faster execution

time and higher coefficient), concurrent programs are suf-

fering from several defects. A data race is one of the most

serious defects in the concurrent program. A data race

occurs when more than two threads access the same

memory location without being ordered by a synchro-

nization operation and at least one access operation is a

write. It usually exists in a specific scenario and remains a

potential threat, which can lead to significant damage to

real-world applications. Therefore, there is an urgent need

to detect data race as early as possible.

Most existing works employ dynamic analysis, static

analysis, and hybrid analysis approaches [1–3] to detect

data race. The dynamic analysis approach tends to infer

data races by analyzing the access events and synchro-

nization patterns in a program execution trace. The

advantage of dynamic analysis is the low false-positive

rate, whereas the disadvantage is the high false-negative

rate and the high overhead. The existing dynamic detection

tools include Said [4], RVPredict [5], and SlimFast [6], etc.

Unlike the dynamic analysis approach, data race detec-

tion based on static analysis is performed by analyzing read

and write access to variables with the help of various static

program analysis techniques (e.g., happens-before analysis,

alias analysis, escape analysis, etc.) at source code or an

intermediate representation. It owns the advantages of

lower overhead, more comprehensive detection, and lower

false negatives, while it suffers from the disadvantage of

false negatives. The existing static detection tools based on

static analysis include RELAY [7], Elmas [8], and SRD

[9]. Other researchers try to combine both dynamic and

static analysis to improve the overall efficiency of data race

detection, such as RaceTracker [10] and HistLock ? [11].

With the development of machine learning and the

prevalence of deep learning in recent years, some
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researchers have employed these promising techniques for

concurrency defect detection. However, barely a few types

of research have been conducted on data race detection.

For example, Yu et al. [12] predicted concurrency defects

by proposing static and dynamic features to judge whether

a method has defects or not. Li et al. [13] proposed a

framework called Defect Prediction to leverage Convolu-

tional Neural Network (CNN) for feature generation. Ali

et al. [14] proposed a data race detection method based on

CNN. However, they barely extracted file-level features to

build a data race training dataset, demonstrating that the

accuracy of the detection is around 85%.

Although many promising techniques are proposed,

several problems still exist and remain unsolved. Firstly,

samples in the dataset are not collected from large-scale

real-world applications and may not be representative.

Secondly, the features extracted from these applications are

relatively homogeneous. Without multiple features, we

cannot train a CNN with high accuracy. Furthermore,

without considering the generation conditions of a data

race, we cannot extract enough features to detect data race.

Thirdly, existing approaches mainly rely on CNN which

needs further optimization on the models. Finally, the

accuracy of existing approaches is not satisfying and is

possible to conduct further improvements.

To solve these problems, this paper proposes a new

method of data race detection based on CNN-BiLSTM

hybrid neural network called SmartRace. Firstly, the

approach extracts multi-level features (instruction-level,

method-level, and file-levels) from several real-world

applications via the software analysis tool WALA [15] to

build the training set, followed by the ConRacer [16] tool

for judging the real data race before labeling the samples.

Secondly, the labeled samples are vectorized by the

embedding layer of Keras, and the Kmeans-SMOTE [17]

algorithm is used to distribute the samples balanced.

Finally, a deep neural network of CNN-BiLSTM [18] is

constructed and trained to detect data race. In the experi-

mentation, 25 benchmarks selected from Dacapo [19], IBM

Contest [20], JBench [21], JGF [22] and PJBench [23] are

used to detect data race. The experimental results show that

the accuracy of SmartRace is ranging from 90.91 to

99.69%, which is improved by 9.91–13.69% compared

with the existing deep learning-based detection method. In

addition, we compare SmartRace with the CNN-BiLSTM

hybrid neural network used by SmartRace compared with

the deep neural networks such as RNN, GRU, CNN,

LSTM, and BiLSTM, which have higher accuracy. Smar-

tRace is compared with the existing data race detection

tools Said [4], RVPredict [5], and SRD [9], and the results

show that SmartRace can detect more data races.

The main contributions are summarized as follows:

• We construct a dataset of data race by extracting

multiple-level features from 25 real-world applications.

• We propose a novel method of data race detection

based on CNN-BiLSTM hybrid neural network which

uses the convolutional kernel of CNN to get relevant

features and extracts bidirectional timing features by

BiLSTM.

• We compare SmartRace with deep neural networks

(such as RNN, GRU, CNN, LSTM, and BiLSTM) via

cross-validation and statistical test.

• We compare SmartRace with the existing data race

detection tools (such as Said, RVPredict, and SRD),

demonstrating the effectiveness of SmartRace.

The rest of the paper is organized as follows. Section 2

examines the related literature on data race detection. An

overview of SmartRace and the design of each component

are presented in Sect. 3. Section 4 conducts experimenta-

tion to validate the effectiveness of SmartRace. Finally, the

conclusion is drawn in Sect. 5.

2 Related work

Data race detection is one of the hot topics in the field of

concurrent defects. Many methods such as program anal-

ysis, machine learning, and deep learning are used.

The detection method based on program analysis is

classified into dynamic detection, static detection, and

hybrid detection methods. Dynamic detection obtains the

runtime state by program analyses such as program

instruments while running the source program. Said et al.

[4] proposed a symbolic analysis method based on an SMT

solver that can analyze thread scheduling effectively and

locate data race precisely. RVPredict [5] adds abstract

control flow information to the execution model with

causal analysis and detects data races by using satisfiability

modulo theories solvers. SlimFast [6] is a sound race

detector that exploits the novel invariance of dynamic race

detection to reduce data redundancy, memory usage, and

runtime overhead. Li et al. [24] proposed a dynamic con-

tention hybrid detection algorithm AsampleLock based on

lock mode and FastTrack algorithm using cross-thread

sampling technique and using mapping to record read and

write operations on shared variables to reduce false-posi-

tive and false-negative.

The static race detectors try to detect data races via

analyzing source code without executing the code. RELAY

[7] is a static data race detection tool based on flow-sen-

sitive and inter-process analysis. Elmas [8] is a detection

method proposed based on model detection theory, which

analyzes the lock operation paths in a program and filters

the results by the happen-before relationship. SRD [9]
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employs program slicing techniques to determine statically

happens-before relationships between access events and

combines them with static analysis techniques (e.g., alias

analysis) to detect data races. Gao et al. [25] proposed a

static detection technique GUARD to detect possible data

race sub-paths based on value flow analysis and to use

MHP analysis to screen out infeasible data race paths.

The hybrid detection approach first finds all possible

data races by static analysis and then leverages dynamic

analysis to identify the real data race. RaceTracker [10]

adopts both dynamic and static analysis methods. It first

employs the static analysis to generate potential races and

then performs some instrumentation operations at the

location of the potential race to identify data races. Hist-

Lock ? [11] is built based on thread epochs and lock

release events to infer whether two operations on the same

memory location have any lock subset relationship without

performing expensive lock set comparisons.

Some researchers leverage machine learning and deep

learning models to detect concurrency defects, including

data race. Yu et al. [12] proposed features for concurrency

defect prediction. They leveraged static and dynamic fea-

tures to predict whether a method has defects or not. The

prediction task was conducted by using Machine Learning

models, such as Bayesian Network, Decision Tree, Logistic

Regression and Random Forest. Li et al. [13] proposed a

framework called Defect Prediction based on CNN for

effective feature generation. Ali et al. [14] proposed Dee-

pRace, a deep learning-based data race detection tool. The

specific data race type is generated by mutation analysis

[26], followed by constructing the dataset by walking

through the AST of each source file. Finally, the vectorized

values are fed into CNN for training. Their detection

accuracy is around 85%, which shows that the accuracy

still needs to be further improved. Sun et al. [27] proposed

a machine learning-based data race detection method to

detect instruction-level data race. However, they only

extracted only a few features and did not extract features on

the semantic aspects. Furthermore, the size of the selected

programs is too small. A significant improvement has been

achieved for the hybrid model. Ali et al. proposed a

dynamic deep hybrid spatio-temporal model DHSTNet

[28, 29] to predict inflow and outflow throughout a city or

region. DHSTNet handles dynamically spatial and tempo-

ral correlations through the CNN and LSTM models based

on spatial and temporal correlation.

3 Deep-learning-based data race detection

This section introduces the detection framework of Smar-

tRace and then describes each component of the framework

in detail.

3.1 Detection framework

The framework of SmartRace is shown in Fig. 1. Firstly, to

construct the training dataset, we select 25 concurrent

applications with data race from Dacapo [19], IBM Contest

[20], JBench [21], JGF [22], and PJBench [23]. We extract

the features and construct training and test samples by the

static analysis tool WALA [15], and label the samples

using ConRacer [16]. Secondly, to make the textual feature

processed by deep learning models, the embedding layer of

Keras [30] is used to vectorize the text. Considering that

the number of positive samples is relatively small and

further results in the imbalanced distribution of positive

and negative samples, we use the data enhancement algo-

rithm Kmeans-SMOTE [17] to increase the number of

positive samples. Finally, we build a deep neural network

model based on CNN and BiLSTM. With the training

dataset, we obtain a well-trained classifier for data race

detection.

3.2 Pseudo-code of SmartRace

We describe the process of SmartRace in the form of

Pseudo-code in Fig. 2. Benchmarks are taken as the input.

We create Cset to collect the feature information for

detecting data race (Line 1). These features of the code are

extracted by walking through the class and the methods,

and are obtained the access operations by static analysis

tool WALA. Next, the feature f is extracted from the access

operations and is added to the Cset (Lines 2–8). The data

race analysis tool ConRacer is leveraged to generate our

Samples (Lines 9–10). We use the embedding layer in

Keras to transform those text features into vectors (Line

11). The Kmeans-Smote oversampling method is used for

data enhancement (Line 12). The Dataset is divided into

training and testing sets (Lines 13–14). It is utilized for the

initialization of the neural network model parameters

(Lines 15–17). We applied TensorFlow to build the net-

work. A CNN model is composed of four convolutional

layers, and each convolutional layer is followed by a max

pooling layer to remove redundant information (Lines

18–25). A BiLSTM layer is added as a temporal feature

extraction model (Lines 26–27). The concatenation func-

tion is used to concatenate the features extracted by CNN

and BiLSTM (Line 28). Fully connected layers are con-

sidered as classifiers for data race classification prediction

(Lines 29–31). Finally, the training and testing sets are

placed into the CNN-BiLSTM hybrid neural network

model and adopted k-fold cross-validation (k = 6) for

training and testing (Lines 32–37).
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Fig. 1 Framework of SmartRace

Fig. 2 Pseudo-code of SmartRace

15444 Neural Computing and Applications (2022) 34:15441–15455

123



3.3 Selecting real-world applications

Since no public dataset is available for data race detection,

we first construct a dataset to train a deep neural network

for data race detection.

Twenty-five benchmarks with data race are selected

from benchmark suites Dacapo, IBM Contest, JBench,

JGF, and PJBench. We extract 19,949 samples from 16 of

25 benchmarks as the training dataset of SmartRace, and

2053 data samples from 9 benchmarks as the test dataset.

The configuration of these benchmarks is described in

detail in Sect. 4.2.

3.4 Features extraction

During constructing the dataset, we consider the occur-

rence conditions of data race: (1) Threads access the same

memory position simultaneously. (2) At least one operation

is a write. (3) The operations are protected by a lock with

the same monitor object.

Based on these conditions, we construct the dataset by

selecting the features including the instructions (such as the

hash value of the instruction, whether it is a write opera-

tion, whether it is included by the synchronization block or

synchronization method) and the location where data race

occurs (such as the package name, class name, method

name, and variable name). Where instruction-related

information is used to indicate the conditions under which

the data race is generated, and location-related information

is used to indicate the location where the data race occurs.

To obtain these features from benchmarks, SmartRace

leverages WALA [15] to extract features. Firstly, Smar-

tRace uses the method makeNCFABuilder() of WALA to

build a control flow graph (CG). Secondly, it traverses CG

to collect all access operations under CGNode. Then, it

obtains the instructions in each access operation and

determines whether the instructions are written operations

and whether they are protected by a synchronized block or

synchronized method. Also, it extracts the hash value as the

unique identification of variable access. Finally, the loca-

tion of each data race is indicated by obtaining the package

name, class name, method name, and variable name (in-

cluding both static and instance variables).

Table 1 presents the numerical features in the Account

benchmark of the IBM Contest benchmark suite [20],

where ‘‘1’’ in the ‘‘Read/Write’’ column represents a write

operation and ‘‘0’’ represents a read operation, ‘‘1’’ in the

‘‘Label’’ column represents that there is data race while

‘‘0’’ represents no data race. The other columns have the

value ‘‘1’’ for yes and the value ‘‘0’’ for no. Each sample is

composed of two access operations and includes four

instruction-level features such as read/write access, hash

value, protected by synchronization method or block.

The textual features of some samples in the Account

benchmark are illustrated in Table 2 where ‘‘1’’ in the

‘‘Label’’ column represents the occurrence of data race and

‘‘0’’ represents no data race. Each sample consists of two

access operations each of which contains four textual fea-

tures such as package name, class name, method name, and

variable name. Among these features, package name and

class name are considered as file-level features, while

method name and variable name belong to method-level

features.

We use a context-sensitive analysis tool ConRacer [16]

to judge whether data race occurs, and further label the

sample. ConRacer can find data race effectively by con-

sidering the context of function calls. As a result, few false

positives and false negatives are reported. Therefore, we

choose ConRacer as the auxiliary tool of SmartRace. To

remove false positives and false negatives in ConRacer and

enhance the accuracy of the dataset, we manually verified

the labeled samples.

3.5 Textual feature vectorization

For the deep learning model, the textual feature is hardly

processed since it can only take numerical features as

input. To this end, we must transform the textual features

into numerical vectors.

For textual feature vectorization, SmartRace uses the

embedding layer of Keras [30] which is a supervised

approach to learn and update weights based on labeled

information. Its definition can be formulated as:

f : N ! Rn ð1Þ

where N represents the integer encoding of the word, Rn

represents the n-dimensional vector, and f represents a

mapping from words to n-dimensional vectors.

Figure 3 demonstrates the process of textual feature

vectorization by taking textual feature information in the

Account benchmark as an example. The dimension of

vector n is 8. Firstly, all the words in the word list are

extracted for word frequency statistics and integer encod-

ing. The conversion from words to numeric vectors is case-

insensitive. For example, the word ‘‘Account’’ and ‘‘ac-

count’’ are coded as 53. The coding of ‘‘go’’, ‘‘out’’,

‘‘num’’, ‘‘Service’’, and ‘‘Bank_Total’’ are 60, 239, 189,

581, and 554, respectively. Each word in the sample is

represented by an integer code in this case. Secondly, the

numerical encoding is transformed into a word vector

matrix M5000 9 8 by embedding layer processing, where

the row size is the number of words and the column size is

the dimensionality of the word vector. Finally, the mean
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value is calculated so that each word is represented by only

one value.

3.6 Balanced distribution of sample

We adopt the oversampling method to achieve a balanced

sample distribution, which can both ensure the integrity of

feature information and contribute to the expansion of

training samples to improve the model accuracy. Although

25 concurrent applications with data race are selected

during sample extraction, the number of samples with label

‘‘1’’ is far less than the number of the sample with label

‘‘0’’ in the generated dataset, which leads to an imbalance

between distribution positive and negative samples. Using

this dataset for training can seriously decrease the accuracy

of the deep learning model. To avoid imbalanced distri-

bution, the undersampling and oversampling methods are

usually used. The undersampling method makes data bal-

ance by reducing the number of training instances from the

majority of samples. The oversampling method increases

the number of training instances by analyzing a few sam-

ples, which helps in increasing the number of positive

samples for a data race.

The training dataset is expanded from the original

19,949 up to 39,304 by the Kmeans-SMOTE algorithm.

After expansion, the distribution of positive and negative

samples is balanced.

3.7 CNN-BiLSTM neural network

We implement a neural network CNN-BiLSTM in Keras.

By combining both CNN and Bi-directional Long Short-

Term Memory (BiLSTM), we enhance the accuracy of

detection for data race detection. The semantic features of

the text are extracted by the convolutional layer in CNN

and refined by the pooling layer to retain the representative

information in the data race. However, the presence of

convolutional kernels limits the long-term dependency

problem of CNN in processing time-series signal data.

BiLSTM can not only retain longer effective memory

information but also better capture bidirectional semantic

dependencies.

The architecture of SmartRace deep learning model is

presented in Fig. 4. To train the network, feature infor-

mation for each pair of access operations is fed into the

CNN-BiLSTM neural network. The feature input of

SmartRace is defined as:

Input ¼ \d1; d2; d3; d4;m1;m2; f1; f2 [ ð2Þ

where di(1 B i B 4) represents the ith instruction-level

feature, m1 and m2 represent method-level features, f1 and

f2 represent file-level features.

The CNN contains four convolutional layers and four

max-pooling layers. The BiLSTM consists of a BiLSTM

layer and a dense layer. The function concatenate is used to

merge both the output of the convolutional feature in CNN

and the temporal features extracted by BiLSTM into the

dense layer, and to prevent overfitting by the function

Table 1 Numerical feature

No Access operation 1 Access operation 2 Label

Read/

Write

Hash value Protected by

synchronized

method

Protected by

synchronized

block

Read/

Write

Hash value Protected by

synchronized

method

Protected by

synchronized

block

1 0 1,055,461,584 0 0 0 952,975,668 0 0 0

2 0 1,055,461,584 0 0 0 1,656,402,084 0 0 0

3 1 1,578,914,784 0 0 1 1,578,914,784 0 0 1

Table 2 Text feature

Serial number Access operation 1 Access operation 2 Label

Package Name Class Name Method

Name

Variable

Name

Package Name Class Name Method

Name

Variable Name

1 Account Account go out account Account go num 0

2 Account Account go out account Account go out 0

3 Account Account Service Bank_Total account Account Service Bank_Total 1
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Fig. 3 Text feature vectorization

Fig. 4 CNN-BiLSTM neural network model
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dropout. All layers use Relu as the activation function

except for the final layer which uses the activation function

Sigmoid. The BiLSTM layer uses Tanh as the activation

function. We will discuss the details of parameter settings

in Sect. 4.4.

4 Evaluation

This section first introduces the experimental setup, then

evaluates the effectiveness of SmartRace. Finally, Smar-

tRace is compared with traditional data race detection tools

based on dynamic and static analysis.

4.1 Experimental setup

The evaluation is conducted on a Dell Z820 workstation

with a 3.2 GHz Intel Xeon CPU and 8 GB main memory.

The operating system is 64-bit Windows 7. Python 3.7 and

Tensorflow 1.9 are used as the runtime environment for

CNN-BiLSTM hybrid neural network. Eclipse 4.5.1 and

JDK 1.8.0_31 are used as a running platform for WALA.

4.2 Dataset

We extract samples from 16 benchmarks from the Dacapo

[19], IBM Contest [20], JBench [21], JGF [22], and

PJBench [23] benchmark suites, as training datasets for

SmartRace. Table 3 lists the configurations of these

benchmarks. The number of samples is expanded from

19,949 to 39,304. Benchmarks Lusearch and Sunflow are

selected from the Dacapo benchmark suite. We extract a

maximum of the number of training samples. The number

of samples is expanded from 5683 to 11,336 for the

Lusearch benchmark, and from 7891 to 15,720 for the

Sunflow benchmark. For benchmark SimpleExample, only

13 samples are extracted initially, which is the minimum

number of training samples among all benchmarks. The

number of training samples is expanded to 22 by the

Kmeans-SMOTE algorithm. Other benchmarks own the

number of training samples ranging from 36 to 4618 after

expansion.

We validate the performance of SmartRace on 9

benchmarks such as Account, AirlineTickets, and Bound-

edbuffer. The LOC and the number of samples are listed in

Table 4. Benchmarks Boundedbuffer extracts a total of 961

test samples, which owns a maximum of testing samples

among the nine benchmarks. Benchmark Critical extracts

only 11 test samples, which has the smallest number of

testing samples. The number of samples in the other

benchmarks ranges from 25 to 477.

4.3 Metrics

We evaluate SmartRace against existing detection

approaches by calculating accuracy, precision, recall, and

F1. These metrics can be computed as follows.

Table 3 Training dataset

Benchmarks Functional description LOCs Original dataset Expanded dataset

Animator Interpreter command set algorithm 1397 161 308

Elevator Elevator scheduling algorithm 1155 960 1850

JBench_Bench Java concurrent vulnerability detection program 37 83 162

Lufact LU factor decomposition algorithm 806 326 326

Lusearch Text Search Tools 49,785 5683 11,336

Rax Multithreading algorithm 52 23 36

RayTracer Ray tracing program 985 789 1560

Readerswriters Reader–Writer algorithm 285 193 382

ReplicatedCaseStudies Multithreading algorithm 890 424 844

Series Fourier coefficient analysis algorithm 476 796 1588

SimpleExample Multithreading case algorithm 23 13 22

SOR Successive over-relaxation method 499 95 184

Sunflow Ray tracing rendering image program 25,118 7891 15,720

TestRace Simple multithreading algorithm 217 128 238

Tsp Traveling salesman problem solving algorithm 450 2315 4618

Weblech Java web download tool 1464 69 130

Total 83,639 19,949 39,304
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Accuracy ¼ TNþ TP

TPþ TNþ FPþ FN
ð3Þ

Precision ¼ TP

TPþ FP
ð4Þ

Recall ¼ TP

TPþ FN
ð5Þ

F1 ¼ 2� Precision� Recall

Precisionþ Recall
ð6Þ

where TP, TN, FP, and FN represent the numbers of true

positives, true negatives, false positives, and false nega-

tives, respectively.

4.4 The configuration of CNN-BiLSTM

Table 5 presents the configuration of CNN-BiLSTM

architecture. These parameters are selected by conducting

experimentation multiple times.

Selecting a better oversampling method plays a pivotal

role in both dataset enhancements and accuracy improve-

ment. To this end, we conduct experimentation to compare

the performance of several oversampling. Table 6 sum-

marizes the results of these oversampling methods

including RandomOverSample, Smote, Svm-Smote,

Kmeans-Smote [17, 31]. Kmeans-Smote obtains the high-

est accuracy and F1 compared to the other three methods.

Therefore, we use the Kmeans-SMOTE algorithm for data

enhancement, which contains clustering, filtering, and

oversampling steps. In the clustering step, the input space

is clustered into k groups using a k-means cluster. The

filtering step is charged for sparsely distributing minority

samples. In the oversampling step, SMOTE algorithm is

applied to each cluster for oversampling. It retains those

clusters with a high proportion of minority samples and

assigns more samples to clusters with selected clusters to

achieve a target ratio of minority to majority instances.

4.5 Results of SmartRace

Table 7 presents the detection results of SmartRace. The

BoundedBuffer benchmark obtains the highest accuracy

(99.69%) and the highest recall (99.69%) among all

benchmarks. Considering that samples in the Montecarlo

benchmark are all negative, the precision can reach

100.00% and the F1 can reach 99.79%, which is the highest

among all benchmarks. The Critical benchmark has the

worst performance because of insufficient training and

testing samples. The performance of a deep model is highly

dependable on the size of the dataset. Generally, the more

training samples are available to the model, the better the

performance could be. In general, the accuracy of the

datasets ranges from 90.91 to 99.69%, which indicates

SmartRace is effective in finding data races.

Table 4 Testing dataset
Benchmarks Functional description LOCs Number of test samples

Account Account counting system 87 143

AirlineTickets Airline ticket sales system 83 139

Bubblesort Bubble sort algorithm 274 177

BoundedBuffer Producer–Consumer algorithm 334 961

Bufwriter Multi-threaded buffer pool simulation program 199 88

Critical Two-threaded environment simulation program 63 11

Mergesort Summarization algorithm 298 25

Montecarlo Financial simulation program 1501 477

PingPong Table tennis game simulation program 124 32

Total 2963 2053

Table 5 Configuration of CNN-BiLSTM

Network layer Parameters

Conv1 Filters = 32, activation = relu

MaxPool1 Shape = 1 9 32

Conv2 Filters = 64, activation = relu

MaxPool2 Shape = 1 9 64

Conv3 Filters = 128, activation = relu

MaxPool3 Shape = 1 9 128

Conv4 Filters = 256, activation = relu

GlobalMaxPool Shape = 1 9 256

BiLstm Units = 128, activation = tanh

Dense1 Shape = 1 9 200

Concatenate Shape = 456

Dense2 Shape = 1 9 1024

Dropout Rate = 0.5

Dense3 Shape = 1 9 2, activation = softmax
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4.6 Comparison with other deep neural network
methods

DeepRace [14] is an existing data race detection tool based

on deep learning. Since neither its dataset nor its model is

open, we cannot compare it directly with SmartRace.

Hence, we reimplement its model according to the design

of DeepRace [14]. Since DeepRace uses a deep learning

model CNN, we use CNN to represent the DeepRace

method in this section.

To verify the performance of the CNN-BiLSTM hybrid

neural network, we compare it with RNN [32], GRU [33],

CNN [14], LSTM [34], and BiLSTM [35] under the same

configuration. For a fair comparison, we follow the same

process and tools to parse source code and encode tokens,

as well as handle data imbalance. When constructing the

network layers, all employed the Adam [36] optimizer with

a learning rate of 0.001.

To make our experimental results reliable, we use a

sixfold cross-validation method to evaluate our results. We

mix the training dataset with the test dataset and then

divide the whole dataset into 6 groups. 5 of 6 groups are

taken as the training set and the remainder is considered as

the test dataset. We repeat this process until each group is

used as the test dataset, and finally, compute the mean

value of six times. The experimental results are presented

in Table 8. It can be seen from Table 8 that CNN-BiLSTM

obtains the best performance, which demonstrates the

effectiveness of SmartRace. For data race detection, CNN-

BiLSTM significantly outperforms other models (RNN,

GRU, CNN, LSTM, and BiLSTM) when considering the

results of precision, recall, and F1. To be more specific,

CNN-BiLSTM improves F1 by 3.84% (= 97.89–94.05%)

compared to CNN. It also improves accuracy by 4.94%

(= 97.26–92.32%) compared to CNN. Both LSTM and

BiLSTM have lower accuracy and F1 than CNN-BiLSTM.

Specifically, it has 14.06% (= 97.26–83.20%) improve-

ment for accuracy and 9.62% (= 97.89–88.27%) improve-

ment for F1 when comparing to LSTM. The same situation

happens for comparison with BiLSTM with 9.28%

(= 97.26–87.98%) and 6.21% (= 97.89–91.68%) improve-

ments for accuracy and F1, respectively.

To evaluate the performance of multiple algorithms

across a set of data sets more intuitively, the STAC tool

[37] is leveraged to test the significant statistical results

between CNN-BiLSTM and other models. We use a non-

parametric Friedman Aligned Ranks test [38] with signif-

icance level of 0.05 to examine the significant difference of

accuracy as we consider that the data set is less than twice

the number of models. From the first part, it can be seen

that the H0 is rejected which means that there is a signif-

icant difference among these methods. Therefore, it is

necessary to conduct pairwise comparisons to confirm the

differences between the methods. We use the post-hoc

Holm test [39] to choose CNN-BiLSTM as the control

method to compare with other algorithms. From the

Ranking part of Table 9, it indicates the average algorithm

ranking of all algorithms on the same dataset. The lower

the average rank of an algorithm is, the better the classi-

fication performance of the algorithm is. Results observed

from Table 9 shows that the CNN-BiLSTM obtained the

Rank value of 3.50000, which achieves the top rank when

compared to other methods like LSTM, BiLSTM, GRU,

RNN, and CNN. The next algorithm in the Ranking is the

Table 6 Oversampling method
Oversampling method Accuracy (%) Precision (%) Recall (%) F1 (%)

RandomOverSampler 93.13 98.37 91.02 93.94

Smote 94.63 98.37 92.11 94.59

Svm-smote 94.74 98.47 93.50 95.42

Kmeans-smote 97.26 98.09 97.23 97.89

Table 7 Detection results of

SmartRace
Benchmarks Accuracy (%) Precision (%) Recall (%) F1 (%)

Accoount 99.30 99.44 99.30 99.34

AirlineTickets 98.56 98.49 98.56 98.02

Bubblesort 96.63 97.48 96.63 96.92

BoundedBuffer 99.69 99.99 99.69 98.74

Bufwriter 96.63 98.31 96.63 97.16

Critical 90.91 91.92 90.91 90.27

Mergesort 92.00 95.20 92.00 92.81

Montecarlo 99.58 100.00 99.58 99.79

PingPong 93.75 95.00 93.75 93.96
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CNN approach, followed by the RNN, GRU, BiLSTM,

LSTM approaches with a big difference in the Ranking. In

addition, it can be seen that the H0 is accepted between

CNN-BiLSTM and CNN from the last part of Table 9,

which shows that there is no statistically significant dif-

ference for the accuracy. Based on these comparisons, we

find that the two models CNN and CNN-BiLSTM produce

similar accuracy. However, the performance of CNN-

BiLSTM is observed to be the best among the considered

models in terms of statistical significance.

4.7 Compared with dynamic detection tools

We compare SmartRace with existing dynamic detection

tools (Said [4] and RVPredict [5]) in Table 10, where ‘‘#R-

races’’ represents the actual number of the known data

races, ‘‘#TP’’ represents the number of detected data races,

‘#FN’ represents the number of false negatives, and ‘#FP’

represents the number of false positives.

As seen in Table 10, SmartRace reports 52 real data

races in total, while Said reports 42 real data races and

RVPredict reports 48 real data races. For the benchmarks

Airlinetickets, BoundedBuffer, Bufwriter, and Critical, the

real number of races detected by SmartRace is higher than

Said. For the benchmark PingPong, SmartRace detected

more than 4 real races than Said and RVPredict. By

checking the real races of these benchmarks, we find that

the numbers of data races detected by SmartRace are the

same as the number of real races except for the Bubblesort

benchmark.

For false negatives, the total number of false negatives

for the Said and RVPredict tools are 11 and 5, respectively.

Compared to both tools, the total number of false negatives

for SmartRace is 1. In comparison, SmartRace detects

fewer false negatives of data race. We find that this false

negative occurs only in the Bubblesort benchmark. We

insight this benchmark and related dataset. The possible

reason is the low word relevance when converting a text

Table 8 Comparison of

different deep neural networks
Accuracy (%) Precision (%) Recall (%) F1 (%)

RNN 89.73 91.11 89.48 89.76

GRU 89.45 90.32 89.77 89.37

CNN 92.32 96.35 92.32 94.05

LSTM 83.20 96.05 82.74 88.27

BiLSTM 87.98 97.61 87.86 91.68

CNN-BiLSTM 97.26 98.09 97.23 97.89

Table 9 STAC Analysis

Statistic p value Result

Friedman Aligned Ranks test (significance level of 0.05)

25.84163 0.00010 H0 is rejected

Ranking

Algorithm Rank

CNN-BiLSTM 3.50000

CNN 10.75000

RNN 17.83333

GRU 20.66667

BiLSTM 24.83333

LSTM 33.41667

Comparison Statistic Adjusted p value Result

CNN-BiLSTM versus LSTM 4.91827 0.00000 H0 is rejected

CNN-BiLSTM versus BiLSTM 3.50718 0.00181 H0 is rejected

CNN-BiLSTM versus GRU 2.82218 0.01431 H0 is rejected

CNN-BiLSTM versus RNN 2.35639 0.03691 H0 is rejected

CNN-BiLSTM versus CNN 1.19189 0.23330 H0 is accepted
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feature with a label of 1 into a numerical vector, which

results in a false negative.

Although SmartRace detects more real data races and

has fewer false negatives, the other two detection tools

outperform SmartRace when considering the number of

false positives. SmartRace reports 20 false positives. Most

false positives are found in Bubblesort, BoundedBuffer,

and Bufwriter benchmarks. The possible reason is that

many samples are labeled with 0 while few samples are

labeled with 1, which results in an unbalanced sample

distribution. When the Kmeans-SMOTE algorithm is used

to enhance the balanced distribution, it inevitably results in

a few false positives, which shows that SmartRace requires

more improvement in detecting false positives.

4.8 Compared with static data race detection
tools

To evaluate the effectiveness of SmartRace, we evaluate it

on 9 benchmarks and compare it with the existing static

tool SRD [9] in Table 11. The total number of real data

races detected by SmartRace is the closest to the number of

real races. A total of 52 data races is detected by Smar-

tRace, while only 39 real data races are detected by SRD.

SRD also reports 14 false negatives in total on the Bub-

blesort, Critical, and PingPong. Specifically, it reports 2

false negatives for the Critical benchmark and 4 false

positives for the PingPong benchmark.

For these two benchmarks, SmartRace does not report

any false negatives. For the Bubblesort benchmark, SRD

reports 8 false negatives.

We should note that one false negatives is reported by

SmartRace. The possible reason for false negatives has

been mentioned in Sect. 4.7.

As far as false positives are concerned, SmartRace has

one less than SRD in general. Compared to SRD, Smar-

tRace effectively decreases the number of false positives

for these benchmarks. However, the false positives of SRD

are mainly manifested in Mergesort, while SmartRace is

evenly distributed in every program. The possible reason is

that the final test result of the neural network cannot reach

100% without overfitting. Overall, SmartRace outperforms

SRD, in terms of the total number of actual races detected,

as well as false negatives and false positives.

Table 10 Comparison with

dynamic detection tools
Benchmarks #R-races Said RVPredict SmartRace

#TP #FN #FP #TP #FN #FP #TP #FN #FP

Account 4 4 0 1 4 0 1 4 0 1

AirlineTickets 7 6 1 0 7 0 2 7 0 2

Bubblesort 9 8 1 0 8 1 0 8 1 4

BoundedBuffer 12 10 2 0 12 0 1 12 0 3

Bufwriter 2 0 2 0 2 0 0 2 0 3

Critical 8 7 1 0 8 0 0 8 0 1

Mergesort 3 3 0 4 3 0 6 3 0 2

Montecarlo 0 0 0 0 0 0 0 0 0 2

PingPong 8 4 4 0 4 4 0 8 0 2

Total 53 42 11 5 48 5 10 52 1 20

Table 11 Compared with static data race detection tools

Benchmarks #R-races SRD SmartRace

#TP #FN #FP #TP #FN #FP

Account 4 4 0 1 4 0 1

AirlineTickets 7 7 0 3 7 0 2

Bubblesort 9 1 8 0 8 1 4

BoundedBuffer 12 12 0 4 12 0 3

Bufwriter 2 2 0 0 2 0 3

Critical 8 6 2 0 8 0 1

Mergesort 3 3 0 12 3 0 2

Montecarlo 0 0 0 1 0 0 2

PingPong 8 4 4 0 8 0 2

Total 53 39 14 21 52 1 20

Table 12 Time overheads
Component Time (S)

Feature extraction 86.17

Data pre-processing 3.40

Embedding layer 30.37

Data set expansion 0.91

Data set loading 0.02

Model training 6096.73

Total 6217.60
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4.9 Time overhead

We evaluate the time performance of SmartRace in

detecting data race for 9 benchmarks. Table 12 presents the

time overhead of SmartRace in detecting data race, with a

total time of 6217.6 s. The time-consuming step is the

training time of the deep neural network model with a total

of 6096.73 s which is more than 98% of the overall

detection time. The main reason is that both the time and

space complexity of the model have a huge impact on the

training time. SmartRace leverages four convolutional

layers and one BiLSTM layer to obtain different features

and merge them. The number of iterations also contributes

to the training time.

5 Threats to validity

This section discusses several factors that threaten the

validity of our experimental results.

The main threat to the validity of our results is that we

barely generate the dataset from 25 real-world applications

that may not be representative of all programs. However,

we have chosen programs from several different bench-

mark suites: Dacapo, IBM Contest, JBench, JGF, and

PJBench. Although it may be that other classes of appli-

cations could exhibit very different attributes, it seems very

likely that our results should still obtain good accuracy

based on these applications.

The second threat to the validity of our results is that we

use the tool ConRacer to mark the dataset. Although

ConRacer uses a context-sensitive program analysis

approach to effectively report data race, there are still false

positives and false negatives. To mitigate this threat, we

employ a manual approach to reported data races by

checking the location of codes where data races occur to

remove false positives and false negatives as much as

possible to maximize the accuracy of the dataset.

The third threat to the validity of our results is that when

converting text features into numerical vectors, conversion

similarity affects the accuracy of the final result. In this

paper, we adopt the embedding layer of Keras for text

vectorization. By training the embedding layer of Keras

and tuning its parameters, the conversion accuracy is up to

99.2. Although 100% accuracy is not achieved, the

numerical vectors can better describe the textual features of

the data race, effectively reducing the impact of text vec-

torization on the final results.

The final threat to the validity of our results is that

various data enhancement algorithms have variable effects

on the final results of training. Kmeans-SMOTE employs

both the Kmeans algorithm [40] and SMOTE oversampling

to reduce the impact of data enhancement algorithms on

model training. The uniqueness of the method lies not only

in the breadth and simplicity of SMOTE and k-means but

also in its novel and effective synthetic sample distribution

method. The sample distribution is based on the clustering

density, which produces more samples in sparse minority

areas than in dense areas to eliminate imbalances. More-

over, Kmeans-SMOTE is applicable since it clusters

regardless of the class label to enable the detection of areas

safe for oversampling. Overfitting is prevented by gener-

ating new samples instead of replicating them.

6 Conclusion

This paper proposes a novel approach based on CNN-

BiLSTM hybrid neural network called SmartRace. Firstly,

the approach extracts multi-level features from several

real-world applications via a static analysis tool WALA to

build the training set. To judge the real data race, we

employ the existing data race detection tool ConRracer and

mark the samples. Secondly, the samples are vectorized by

the Embedding layer of Keras. We also leverage the

Kmeans-SMOTE algorithm to make the samples distribute

balancing. Finally, the CNN-BiLSTM network is con-

structed and trained to detect data race. In the experimen-

tation, 9 benchmarks are selected to verify the

effectiveness of the method. The experimental results show

that the accuracy of SmartRace is 97.26%, which is

improved 4.94% compared with the existing deep learning-

based detection method called DeepRace. In addition, we

have analyzed the experimental of each model using sta-

tistical tests including Friedman Aligned Ranks test and the

post-hoc Holm test. The study also finds that the two

models CNN and CNN-BiLSTM produced more or less

similar forecast accuracy. However, the performance of

CNN-BiLSTM is observed to be best among the considered

models. In addition, we compare SmartRace with the

existing data race detection tools Said, RVPredict and SRD

and validate the effectiveness of SmartRace.

The future work includes that we will improve our

approach to eliminate false positives as many as possible

by enriching the training dataset with the positive samples.

Although the accuracy of SmartRace is higher than existing

deep-learning-based approaches, we will continue to opti-

mize our model to further improve the accuracy.
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