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Abstract
This paper investigates the distributed cooperative learning (DCL) from adaptive neural network (NN) control for a group

of strict-feedback systems, where the structure of all strict-feedback systems is identical. In order to achieve DCL easily,

the system transformation method is employed for the strict-feedback systems. For an agent, only one radial basis function

NN is used to approximate the lumped uncertainty in control design. Then the output tracking performance of all strict-

feedback systems is guaranteed. What’s more, we prove that weights of all NNs in a multi-agent system converge to a

small neighborhood around their common optimal value if the topology of the multi-agent system is connected and

undirected. Thus, the approximation domain of all NNs is enlarged. Further, the previous learned NNs are used to improve

the control performance. Finally, we provide two examples to demonstrate the effectiveness of the proposed scheme.

Keywords Strict-feedback systems � Neural networks � Distributed cooperative learning � System transformation

1 Introduction

Over the past two decades, the study on control of strict-

feedback systems has received considerable attention (for

instance, see [1–25]) due to such systems have wide

applications, such as flexible joint robots, marine vehicles,

and spacecrafts. In general, adaptive neural backstepping

design as one of the most powerful techniques is often

employed to address the control problem of strict-feedback

systems, in which neural networks (NNs) are used to

approximate unknown nonlinear uncertainties over com-

pact sets. However, in the early works [4, 5], to name just a

few, the computational burden exponentially increases as

the system order n grows, which is so-called the explosion

of complexity. The main reason is that there exists the

repeated differentiations of virtual controllers.

The problem of the explosion of complexity is overcome

by proposing a dynamic surface control (DSC) technique

[26]. At each backstepping step, a first-order filter is

introduced to eliminate the repeated differentiation of vir-

tual controllers and the related works on this technique are

found in [27] and [28]. Combining the DSC technique and

backstepping, adaptive neural control of nonlinear systems

is extensively studied [18–25]. In [18], adaptive neural

control design is presented for strict-feedback systems by

applying the DSC technique. This work avoids the problem

of differentiation of NNs in the traditional adaptive neural

backstepping design. In [19], the authors study the robust

adaptive NN tracking control by combining minimal

learning parameter (MLP) methods and DSC, in which the

number of parameters adjusted online is effectively

reduced as well. In [21], a novel predictor-based neural

DSC method is proposed, which systematically improves

transient performance of closed-loop systems. Further-

more, the consideration of global adaptive neural DSC
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[20], composite intelligent learning control [22], full state

constraints [23], input saturation [24] and deterministic

learning [25] is reported, respectively. Although the prob-

lem of explosion of complexity is eliminated in above

studies, many approximators are still used in recursive

backstepping design. The work in [29] proposes a new

method that transforms the strict-feedback system into a

normal form. Thus, the control problem of strict-feedback

systems can be viewed as an output feedback control

problem and only one NN is used to approximate the

lumped uncertainty.

It should be noted that the stability analysis of the above

works is mainly based on the Lyapunov methods. As

approximators, the universal approximation ability of NNs

is emphasized in adaptive neural control, but the learning

ability is not revealed. NNs learn nothing after control

process. As a result, the previously trained NNs cannot be

reused to control the same or similar plants. In order to

solve this problem, a deterministic learning mechanism is

proposed in the pioneering work [30]. The authors prove

that if the inputs of a radial basis function (RBF) NN are

periodic or recurrent, then the regression vector satisfies the

persistent excitation (PE) condition. Therefore, the RBF

NN can store the knowledge after the control process and it

can be reused without updating weights online. A lot of

results on this mechanism are reported in recent years

[25, 31–36]. In [25], with the help of the DSC technology,

the authors study the learning problem of adaptive NN

control of strict-feedback systems. Further, this mechanism

is extended to affine systems [31], nonaffine systems [32]

and pure-feedback nonlinear systems[33], respectively. In

[34], dynamic learning with predefined control perfor-

mance is investigated. In addition, several practical appli-

cations of the deterministic learning theory are explored in

[34, 36], respectively.

Recently, inspired by the consensus theory of multi-

agent systems, in [37], the authors propose a distributed

cooperative learning (DCL) scheme and this approach

enlarges the approximation domain of NNs compared with

the deterministic learning mechanism. An important con-

tribution in the work [37] is that the regression vectors of

all agents in a multi-agent system satisfy the cooperative

PE condition. Therefore, neural weights of all RBF NNs

converge to a small neighborhood of their common optimal

value. In [38], the output feedback control is considered for

DCL if full states of plants are not measurable. With the

help of the DCL scheme, in [39], the formation control is

solved for a group of mechanical systems. It should be

pointed out that the DCL scheme requires agents in multi-

agent systems exchange the weight information with their

neighboring agents. Thus, the DCL law with event-trig-

gered communication is presented in [40] to overcome the

continuous communication [37–39]. Although the DCL

scheme is widely studied in recent years, deciding how to

achieve DCL for a group of high-order strict-feedback

systems is not explored because there are some challenges:

(i) the problem of explosion of complexity, (ii) it is difficult

to verify whether the inputs of NNs are periodic, and (iii)

the learning objective is difficult to be achieved.

Because strict-feedback systems exist widely in prac-

tice, it is necessary to study cooperative learning control of

such systems to improve the control performance. In this

paper, in order to achieve DCL easily, we transform a

group of strict-feedback systems into the normal form. Due

to only one RBF NN is used to approximate the lumped

uncertainty in an agent, it is easy to verify the inputs of

NNs are recurrent signals and easy to achieve cooperative

learning. Further, control performance is improved and

computational burden is reduced in experience control.

The main contributions of this paper are listed as

follows:

(i) The cooperative learning control is addressed for a

group of strict-feedback systems. Most of works on

adaptive neural control of strict-feedback systems

only focus on control performance. However, in

this paper, both control performance and NN

approximation performance are considered.

(ii) In contrast to the existing works [25, 34], the RBF

NNs obtained in this paper have a large common

approximation domain. Thus, the generalization

ability of RBF NNs is improved.

The rest of this paper is organized as follows. In Sect. 2,

some preliminary knowledge is provided. Section 3 pre-

sents problem formulation and the DCL control of strict-

feedback systems. In Sect. 4, we discuss the NN control

with past experience. Sect. 5 gives two examples to

demonstrate the proposed scheme. Then the conclusions

are reached in Sect. 6.

2 Preliminary

2.1 Kronecker product

Definition 1 [41]: Let A 2 Rp�q and B 2 Rm�n. The Kro-

necker product of A and B is defined by

A� B ¼

a11B � � � a1qB

..

. . .
. ..

.

ap1B � � � apqB

2
664

3
775 2 Rpm�qn:
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2.2 Graph theory

A graph is defined as G ¼ ðV; E;AÞ, where V ¼
f1; 2; :::;Ng is a set of vertices, E � V � V is a set of edges

and the matrix A is the adjacency matrix of the graph. The

elements of A are defined as aij ¼ 1 in this paper if ði; jÞ 2
E and aij ¼ 0 otherwise. If for every ðj; iÞ 2 E , ði; jÞ 2 E,

the graph G is called the undirected graph. If there is a path

from i to j, then i and j are connected. If all pairs are

connected, then G is connected. The elements of the

Laplacian matrix L of a graph are defined as lii ¼
PN

j¼1 aij

and lij ¼ �aij if i 6¼ j. For an undirected graph, its Lapla-

cian matrix L is symmetric and positive semidefinite, and if

ðj; iÞ 2 E, it means that vertices i and j can exchange

information. For a connected graph, only one of the

eigenvalues of its Laplacian matrix L is zero and the others

are positive.

2.3 RBF NNs

In adaptive neural control, RBF NNs are used to approxi-

mate the continuous lumped uncertainties. Generally, for

any continuous function f(X), it can be approximated by an

RBF NN over a compact set, which is described by

f ðXÞ ¼ SðXÞTW þ eðXÞ; ð1Þ

where X 2 XX � Rq is the input vector of the RBF NN,

SðXÞ ¼ ½s1ðXÞ; . . .; slðXÞ�T is the regression vector, W ¼
½w1; . . .;wl�T is the weight vector and eðXÞ represents the

approximation error. l[ 1 is the number of neurons and

sjðXÞ ¼ exp
h
� kðX�hjÞk2

i2

i
; j 2 f1; . . .; lg; is the Gaussian

function, where i[ 0 and hj 2 XX are the width and center

of the Gaussian function, respectively. If l is sufficient

large, then there exists a ideal weight W such that the

approximation error eðXÞ can be made small enough

[42, 43], i.e., jeðXÞj\e	, where e	 is a small positive

constant.

It is pointed out in [30] that along a bounded trajectory

XðtÞ � XX , the continuous function f ðXðtÞÞ also can be

approximated, which is described by

f ðXðtÞÞ ¼ S1ðXðtÞÞTW1 þ e1ðXðtÞÞ; ð2Þ

where ð�Þ1 represents the region that is close to XðtÞ, W1 ¼
½wl1 ; . . .;wl1 �

T
is a subvector of W with l1\l, S1ðXðtÞÞ ¼

½sl1ðXðtÞÞ; . . .; sl1ðXðtÞÞ�
T

is a subvector of SðXðtÞÞ, and

e1ðXðtÞÞ is the new approximation error.

In a multi-agent system, assume that there are N agents

(or N systems), we use XkðtÞ to denote the trajectory of the

kth subsystem. Further, we use W denote the union tra-

jectory of all agents, i.e.,

W ¼ X1ðtÞ [ � � � [ XNðtÞ ¼ [N
k¼1XkðtÞ. In [37], the cooper-

ative PE condition is explored for a group of regression

vectors of RBF NNs. This is a key property to achieve the

convergence of NN weights.

Lemma 1 (Cooperative PE Condition of RBF NNs) [37]:

Assume that XkðtÞ; k ¼ 1; . . .;N are periodic or recurrent.

Let I be a bounded l-measurable subset of ½0;1Þ (take

I ¼ ½t0; t0 þ T0�), where T0 is the period of W. Then

S1ðXkðtÞÞ; k ¼ 1; . . .;N satisfy the cooperative PE condi-

tion, that is, there exists a positive constant a such that
Z

I

hXN
k¼1

S1ðXkðsÞÞS1ðXkðsÞÞT
i
dlðsÞ
 aIl1 ; ð3Þ

where ð�Þ1 represents the region that is close to the trajec-

tory WðtÞ.

3 Cooperative learning from adaptive
neural control

3.1 Problem formulation

Consider a group of strict-feedback systems

_xk;i ¼ fið�xk;iÞ þ gið�xk;iÞxk;iþ1 i ¼ 1; . . .; n� 1;

_xk;n ¼ fnð�xk;nÞ þ gnð�xk;nÞuk
yk ¼ xk;1; k ¼ 1; . . .;N;

8>><
>>:

ð4Þ

where N is the number of strict-feedback systems (or the

number of agents), n is the order of each strict-feedback

system, �xk;n ¼ ½xk;1; . . .; xk;n�T 2 Rn is the system state

vector, �xk;i ¼ ½xk;1; . . .; xk;i�T , and yk is the system output.

Suppose that the full states of each system are measurable.

fið� � �Þ and gið� � �Þ are unknown smooth nonlinear functions

of �xk;i. For further analysis, we need the following

assumptions for systems (4).

Assumption 1 gið�Þ; i ¼ 1; � � � ; n, are bounded for all

�xk;n 2 X and their signs are also known, where X is a

compact set. Without losing generality, assume that

g0 � gið� � �Þ � g1 for i ¼ 1; � � � ; n, where 0\g0 � g1 are

positive constants.

Remark 1 Assumption 1 is standard and widely used in the

literature, for example see [21, 25, 29, 34, 44]. It ensures
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that control direction is known and system (4) is control-

lable. Assumption 1 is only used for stability and conver-

gence analysis. The controller design is not required.

In this paper, each strict-feedback system, and its

reference model serve as an agent in a multi-agent system.

Next, we introduce the reference models.

Consider the following reference models

_yk;i ¼ yk;iþ1; i ¼ 1; . . .; n� 1;

_yk;n ¼ fdkð�yk;n; tÞ;

ydk ¼ yk;1 k ¼ 1; . . .;N;

8>><
>>:

ð5Þ

where �yk;n ¼ ½yk;1; . . .; yk;n�T is the state vector, ydk 2 R is

the output and fdkð� � �Þ is a known smooth function. For the

kth reference model, we use udk to denote its orbit starting

from the initial state �yk;nð0Þ. Let ud denote the union tra-

jectory of all reference models, i.e., ud ¼ [N
k¼1udk.

Notice that for all the strict-feedback systems (4), their

system functions fið� � �Þ and gið� � �Þ are identical. But their

reference models are different. Therefore, the goals of this

paper have three aspects: (i) guarantee the tracking per-

formance and the stability of the closed-loop systems, (ii)

approximate the lumped uncertainties by using the coop-

erative learning method, and what’s more, obtain a large

common approximation domain in multi-agent systems

compared with [25, 34], and (iii) design the controllers

with the learned RBF NNs to improve control performance.

Remark 2 In a multiagent system, each agent can

exchange information with its neighbouring agents. Thus,

the agent can learn the knowledge not only from itself but

also from its neighbouring agents by communication. This

is called ‘‘cooperative learning’’. The cooperative learning

is originally proposed in [37]. For more details on coop-

erative learning, we refer the reader to [37].

3.2 Neural controller design and stability
analysis

For any system of (4), most of adaptive neural control

methods based on the traditional backstepping need to use

n NNs to approximate lumped uncertainties. As pointed out

in [25, 29] and [34], computational complexity will expo-

nentially increase as the order n grows. To avoid this, the

authors in [29] propose a system transformation method,

i.e., (4) can be transformed into the following nonlinear

systems in a normal form,

_zk;i ¼ zk;iþ1; i ¼ 1; . . .; n� 1;

_zk;n ¼ Fnð�xk;nÞ þ Gnð�xk;nÞuk
yk ¼ zk;1; k ¼ 1; . . .;N;

8>><
>>:

ð6Þ

where

zk;1 ¼ yk ¼ xk;1;

zk;iþ1 ¼ _zk;i ¼ Fið�xk;iÞ þ Gið�xk;iÞxk;iþ1; i ¼ 1; . . .; n� 1;

Fið�xk;iÞ ¼
Xi�1

j¼1

oFi�1

oxk;j
þ oGi�1

oxk;j

� �
xk;j þ Gi�1fið�xiÞ;

i ¼ 2; . . .; n;

and

Gið�xk;iÞ ¼Gi�1ð�xk;i�1Þgið�xk;iÞ ¼
Yi
j¼1

gjð�xk;jÞ;

i ¼ 2; . . .; n:

Remark 3 The above transformation requires that fið�xk;iÞ
and gið�xk;iÞ in (4) are smooth functions of �xk;i. This

requirement is satisfied in many practical systems, such as

robot manipulators [19] and unmanned surface vehicles

[21, 44].

In what follows, we will control systems (6) such that yk
tracks the reference signal ydk with a small error. Notice

that the control target is the same as (4), which is not

changed.

Although zk;1 and the full states of (4) are available for

measurement, zk;i; i ¼ 2; . . .; n; are not computable because

the functions Fið�Þ;Gið�Þ; i ¼ 2; . . .; n, are totally unknown.

In this paper, we employ high-gain observers (HGOs) to

estimate zk;i of (6).

Lemma 2 (HGO) [45, 46]: Consider the linear systems as

follows

�k _fk;1 ¼ fk;2;

..

.

�k _fk;n�1 ¼ fk;n;

�k _fk;n ¼� pk;1fk;n � pk;2fk;n�1 � � � � � pk;n�1fk;2

� fk;1 þ ykðtÞ; k ¼ 1; . . .;N;

8>>>>>>>>>><
>>>>>>>>>>:

ð7Þ

where �k is any small positive constant and pk;1; pk;2; . . .;

pk;n�1 are chosen such that the polynomial sn þ pk;1s
n�1 þ

� � � þ pk;n�1sþ 1 is Hurwitz. Assume that the function
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ykðtÞ; k ¼ 1; . . .;N and their first n derivatives are bounded.

Then, there exist small positive constants hj, j ¼ 2; . . .; n,

and T	 such that, for all t[ T	,

fk;jþ1

� jk
� y

ðjÞ
k ¼ ��kw

ðjþ1Þ
k j ¼ 1; . . .; n� 1;

j fk;jþ1

� jk
� y

ðjÞ
k j � �khjþ1 j ¼ 1; . . .; n� 1;

where wk ¼ fk;n þ pk;1fk;n�1 þ � � � þ pk;n�1fk;1 and wðjÞ
k

denotes the jth derivative of wk, and jwðjÞ
k j � hj. h

From (6), it can be seen that although the first n

derivatives of ykðtÞ include the unknown continuous

functions fi; gi;Fi and Gi, they are bounded if �xk;n is

bounded. In the Theorem 1, which will be stated later, we

prove that all signals are bounded. Therefore, ykðtÞ and its

first n derivatives are bounded. By Lemma 2, we can use

fk;jþ1=�
j
k to estimate zk;i of (6). Let ẑk;i be the estimation of

zk;i; i ¼ 2; . . .; n and ẑk ¼ ½ẑk;1; . . .; ẑk;n�T . Then,

ẑk ¼ ½ẑk;1; . . .; ẑk;n�T ¼ zk;1;
fk;2

1
k

;
fk;3

2
k

; . . .;
fk;n
n�1
k

� �T
:

Based on [31, 34] and [38], we design the neural con-

trollers of (6) as follows

uk ¼ �ck;nek;n � SðZk;nÞTŴk; k ¼ 1; . . .;N; ð8Þ

where

ek;1 ¼ zk;1 � yk;1; ð9Þ

ek;j ¼ ẑk;j � ak;j�1; j ¼ 2; . . .; n ð10Þ

ak;1 ¼ yk;2 � ck;1ek;1; ð11Þ

ak;j ¼ _ak;j�1 � ek;j�1 � ck;jek;j; j ¼ 2; . . .; n� 1; ð12Þ

with ck;1; . . .; ck;n [ 0 being control gains. Ŵk and Zk;n will

be specified later.

Define the lumped uncertainty

HðZk;nÞ ¼
Fnð�xk;nÞ þ bk

Gnð�xk;nÞ
ð13Þ

where Zk;n ¼ ½�xTk;n; bk�
T

and bk ¼ ek;n�1 � _ak;n�1 Since

HðZk;nÞ is unknown, an RBF NN can approximate it, that

is,

HðZk;nÞ ¼ STðZk;nÞW þ ek; ð14Þ

where Zk;n is the NN input, W is the common optimal

weight and ek is the approximation error. In this paper, each

agent only uses one RBF NN, and their width and centers

of the Gaussian functions of all RBF NNs are identical.

Thus, the dimensions of Sð�Þ and W are identical for all

agents although the inputs of Sð�Þ are different. Therefore,

we define that W is the common optimal weight along the

union orbit Z ¼ [N
k¼1Zk;n rather than along the orbit Zk;n.

Before the control process, the common optimal weight

W is unknown. In control law (8), Ŵk denotes the

estimation of W in the kth agent (or system) and

SðZk;nÞTŴk is employed to approximate the lumped uncer-

tainty HðZk;nÞ in the control process. From the above

analysis, it can be seen that only one RBF NN is used in an

agent and computational complexity is reduced effectively.

In order to achieve cooperative learning, design the NN

weight update laws as follows

_̂Wk ¼ q
�
ek;nSðZk;nÞ � rkŴk

�
� c

X
j2N k

akj

�
Ŵk � Ŵj

�
;

k ¼ 1; . . .;N;

ð15Þ

where q; rk; c[ 0 are the design parameters, akj [ 0

means that the kth agent can receive the NN weight Ŵj

from the jth agent and akj ¼ 0 means that there is no

communication between the agents k and j. Based on the

above analysis, one of the results is summarized as follows.

Theorem 1 Consider a multi-agent system consisting of

systems (4) with Assumption 1, the reference models (5),

the HGOs (7), the controllers (8) and weight update laws

(15). Assume that the communication topology of the multi-

agent system is undirected and connected. For any initial

conditions �xk;nð0Þ 2 Xk (where Xk is a compact set), it

holds that

(i) All the signals in the multi-agent system are still

bounded;

(ii) The output tracking errors

ek;1 ¼ xk;1 � yk;1; k ¼ 1; . . .;N, exponentially con-

verges to a small neighborhood around zero by

properly choosing design parameters. h

Proof (i) In order to show all the signals in the multi-agent

system are still bounded, consider the following Lyapunov

candidate

V ¼ 1

2

XN
k¼1

Xn
j¼1

e2
k;j þ

1

2q

XN
k¼1

~W
T

k
~Wk: ð16Þ

Let ~Wk ¼ Ŵk �W . From (8)–(14) and (15), we deduce the

closed-loop error system is that
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_ek;1 ¼� ck;1ek;1 þ ek;2 þ �kw
ð2Þ
k ;

_ek;j ¼� ek;j�1 � ck;jek;j

þ ek;jþ1; j ¼ 2; . . .; n� 1;

_ek;n ¼Gð�xk;nÞ
hFnð�xk;nÞ þ ek;n�1 � _ak;n�1

Gnð�xk;nÞ
þ uk

i

� ek;n�1 � �kw
ðnþ1Þ
k

¼Gð�xk;nÞ
h
STðZk;nÞW þ ek þ uk

i

� ek;n�1 � �kw
ðnþ1Þ
k

¼Gð�xk;nÞ
h
� ck;nek;n � STðZk;nÞ ~Wk þ ek

i

� ek;n�1 � �kw
ðnþ1Þ
k ;

_~Wk ¼ q
�
ek;nSðZk;nÞ � rkŴk

�

� c
X
j2N k

akj

�
Ŵk � Ŵj

�
;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð17Þ

The time derivative of V along (17) is that

_V ¼
XN
k¼1

Xn
j¼1

ek;j _ek;j þ
1

q

XN
k¼1

~WT
k
_~Wk

¼�
XN
k¼1

Xn�1

j¼1

ck;je
2
k;j �

XN
k¼1

ck;nGnð�xk;nÞe2
k;n

þ
XN
k¼1

�
�kek;1w

ð2Þ
k ��kek;nw

ðnþ1Þ
k þek;nGnð�xk;nÞek

�

þ
XN
k¼1

�
ek;nS

TðZk;nÞ ~Wk�ek;nGnð�xk;nÞSTðZk;nÞ ~Wk

� rk ~WT
k Ŵk

�
� c
q

~WTðL� IlÞ ~W ;

ð18Þ

where ~W ¼ ½ ~WT
1 ; . . .; ~WT

N �
T
. Since the communication

topology is undirected and connected, then the term
c
q
~WTðL� IlÞ ~W is always nonnegative. Notice that

g0 � gið�Þ � g1, then g�Gnð�xk;nÞ� g, where g and �g are

positive constants. According to the Young’s inequality,

we have the following inequalities,

�kek;1w
ð2Þ
k �

.1e
2
k;1

2
þ �2

kh
2
k

2.1

;

� �kek;nw
ðnþ1Þ
k �

.2e
2
k;n

2
þ
�2
kh

2
nþ1

2.2

;

ek;nGnð�xk;nÞek �
.3e

2
k;n

2
þ g2e	2

2.3

;

ek;nS
TðZk;nÞ ~Wk �

s2e2
k;n

r
þ r ~WT

k
~Wk

4
;

� ek;nGnð�xk;nÞSTðZk;nÞ ~Wk �
s2g2e2

k;n

r
þr

~WT
k
~Wk

4
;

� rk ~WT
k Ŵk � � 3r ~WT

k
~Wk

4
þ rkkWk2;

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð19Þ

where kSðZk;nÞk� s, r ¼ minfr1; . . .; rNg, and s; .1; .2; .3

are positive constants. By using (19), it follows that

_V � �
XN
k¼1

Xn�1

j¼1

ck;je
2
k;j �

XN
k¼1

ck;nGnð�xk;nÞe2
k;n

þ
XN
k¼1

� .1e
2
k;1

2
þ
.2e

2
k;n

2
þ
.3e

2
k;n

2
þ
s2e2

k;n

r
þ
s2g2e2

k;n

r

�

þ
XN
k¼1

� �2
kh

2
k

2.1

þ
�2
kh

2
nþ1

2.2

þ g2e	2

2.3

þ rkkWk2
�

�
XN
k¼1

r ~WT
k
~Wk

4
:

ð20Þ

Choosing the parameters ck;1 and ck;n such that ck;1 ¼
c0k;1 þ .1=2 and

ck;ng ¼ c0k;n þ .2=2 þ .3=2 þ s2=rþ s2g2=r, then we

obtain that

_V � � c
XN
k¼1

Xn
j¼1

e2
k;j �

XN
k¼1

r ~WT
k
~Wk

4
þ l

� � dV þ l;

ð21Þ

where c ¼ minfc0k;1; ck;2; . . .; ck;n�1; c
0
k;ng; k ¼ 1; . . .;N, d¼

minf2c; qr=2g and l¼
PN

k¼1

�
�2
kh

2
k=2.1 þ �2

kh
2
nþ1=2.2

þg2e	2=2.3 þ rkkWk2
�

. From (21), we directly obtain

VðtÞ�Vð0Þe�dt þ l
d
: ð22Þ

This implies that ek;j; ~Wk; j ¼ 1; . . .; n; k ¼ 1; . . .;N are

bounded. Further, Ŵk; ẑk;j; zk;j; xk;j; j ¼ 1; . . .; n; k ¼
1; . . .;N are also bounded. The conclusion is reached.

(ii) In view of (16) and (22), one has

XN
k¼1

Xn
j¼1

e2
k;j � 2VðtÞ� 2Vð0Þe�dt þ 2l

d
: ð23Þ
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It is obvious that 2l
d can be made small enough by properly

choosing large ck;j; j ¼ 1; . . .; n; k ¼ 1; . . .;N and small

rk; k ¼ 1; . . .;N. Thus ek;j; j ¼ 1; . . .; n; k ¼ 1; . . .;N,

exponentially converge to a small neighborhood around

zero after a finite time T. This means that tracking errors

ek;1; k ¼ 1; . . .;N; exponentially converge to a small

neighborhood around zero after a finite time T. The proof is

completed. h

3.3 Cooperative learning

In Theorem 1, the control objective is achieved. In what

follows, the learning ability of RBF NNs will be illustrated.

Note that the NN weight update law
_̂Wk contains the

cooperative learning term �c
P

j2N k
akjðŴk � ŴjÞ. This

implies that any agent in the multi-agent system can learn

the knowledge not only from itself but also from its

neighboring agents. The following theorem shows that

once the learning is completed, the common approximation

domain is the union of all orbits of all agents.

Theorem 2 Consider a multi-agent system consisting of

systems (4) with Assumptions 1, the reference models (5),

the HGOs (7), the controllers (8) and weight update laws

(15). Assume that the communication topology of the multi-

agent system is undirected and connected. For any recur-

rent orbits udk; k ¼ 1; . . .;N and any bounded initial con-

ditions �xk;n 2 Xk (where Xk is a compact set), and Ŵk ¼ 0,

the weight estimates Ŵk; k ¼ 1; . . .;N converge to a small

neighborhood of W, and the lumped uncertainty HðZk;nÞ
can be approximated by STðZÞWk along the union orbit

Z ¼ [N
k¼1Zk;n, where

Wk ¼ meant2½t1;t2�Ŵk;

½t1; t2�(t2 [ t1 [ T1) represents a time segment after the

transient process and meant2½t1;t2� stands for calculating the

mean value on the time segment ½t1; t2�. h

Proof According to the localized approximation property

of RBF NNs and noting that ~Wk1 ¼ Ŵk1 �W1, (15) and (17)

can be expressed as

_ek;n ¼ Gð�xk;nÞ �ck;nek;n � ST1 ðZk;nÞ ~Wk1

h i
þ ek1Gð�xk;nÞ

þ gk;

ð24Þ
_~Wk1 ¼ q ek;nS1ðZk;nÞ � rkŴk1

� 	
�c

X
j2N k

akj ~Wk1� ~Wj1

� 	

ð25Þ

and

_̂Wk�1 ¼ q
�
ek;nS�1ðZk;nÞ � rkŴk�1

�
�c

X
j2N k

akj

�
Ŵk�1�Ŵj�1

�
;

ð26Þ

where ð�Þ1 and ð�Þ�1 represent the region close to and away

from the union orbit Z ¼ [N
k¼1Zk;n, respectively.

gk ¼ �ek;n�1 � �kw
ðnþ1Þ
k . ST1 ðZk;nÞ; ~Wk1 and ~Wj1 are the

subvectors of STðZk;nÞ; ~Wk and ~Wj, respectively, and ek1 ¼
ek � ST�1 ðZk;nÞ ~Wk�1 is the new approximation error along the

orbit Z. Because S�1ðZk;nÞ is away from Z, then S�1ðZk;nÞ is

very small. Choosing small rk and noting that

Ŵk�1ð0Þ ¼ Ŵj�1ð0Þ ¼ 0, it is clear that Ŵk�1 is slightly upda-

ted. Based on the above analysis, ST�1 ðZk;nÞ ~Wk�1 is very small

such that ek1 ¼ OðekÞ.
It is worth noting that ek1Gð�xk;nÞ will be a perturbation

term if we use (24) and (25) to construct a closed-loop error

system. However, ek1Gð�xk;nÞ may be not a small value

owing to Gnð�xk;nÞ
 g. To avoid this problem, similar to

[31, 34], a linear transformation nk;n ¼ ek;n=g is employed.

It can be deduced from (24) and (25) that

_nk;n ¼ �ck;nGð�xk;nÞnk;n �
Gð�xk;nÞST1 ðZk;nÞ

g
~Wk1 þ g0k; ð27Þ

_~Wk1 ¼ q
�
gS1ðZk;nÞnk;n�rkŴk1

�
�c

X
j2N k

akj

�
~Wk1� ~Wj1

�
;

ð28Þ

where g0k ¼ ðGð�xk;nÞ=gÞek1 þ gk=g. Due to Gð�xk;nÞ=g� 1,

thus it is clear that g0k is a small value. Combining (27) and

(28), the overall closed-loop system of the multi-agent

system can be expressed by

_n
_~W1

" #
¼ AðtÞ �WðtÞT

CðtÞWðtÞ � cðL� Il1Þ

" #
n
~W1

� �

þ
g0

KŴ1

� �
;

ð29Þ

where

n ¼ ½n1;n; . . .; nN;n�T

~W1 ¼ ½ ~WT
11
; . . .; ~WT

N1
�T

AðtÞ ¼ diagf�c1;nGð�x1;nÞ; . . .;�cN;nGð�xN;nÞg
WðtÞ ¼ diagfGð�x1;nÞS1ðZ1;nÞ=g; . . .;Gð�xN;nÞS1ðZN;nÞ=gg
CðtÞ ¼ diagfqg2=Gð�x1;nÞ; . . .; qg2=Gð�xN;nÞg

g0 ¼ ½g01; . . .; g0N �
T

K ¼ diagfqr1; . . .; qrNg:

Note that CðtÞ is a symmetric positive definite matrix. Let

PðtÞ ¼ CðtÞ, and then
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_PðtÞ þ PðtÞAðtÞ þ ATðtÞPðtÞ
¼ �diag 2q�g2c1;n þ q�g2 _Gð�x1;nÞ=G2ð�x1;nÞ;




. . .; 2q�g2cN;n þ q�g2 _Gð�xN;nÞ=G2ð�xN;nÞ
� ð30Þ

where q and g2 are positive. Since gið�Þ 
 g0; i ¼ 1; . . .; n,

are smooth nonlinear functions, we can easily obtain that

Gð�xk;nÞ
 0 and _Gð�xk;nÞ are the continuous function. Fur-

thermore, according to the boundness of �xk;n, _Gð�xk;nÞ is also

bounded, but its direction is also unknown. Consequently,

we can properly choose large ck;n such that

2qg2ck;n þ qg2 _Gð�xk;nÞ=G2ð�xk;nÞ[ 0; k ¼ 1; . . .;N, as well

as there exist a symmetric positive definite matrix Q(t) such

that _PðtÞ þ PðtÞAðtÞ þ ATðtÞPðtÞ ¼ �QðtÞ, where QðtÞ ¼
diagf2qg2c1;n þ qg2 _Gð�x1;nÞ=G2ð�x1;nÞ. . .;
2qg2cN;n þ qg2 _Gð�xN;nÞ=G2ð�xN;nÞg.

On the other hand, Theorem 1 shows that ek;j; j ¼
1; . . .; n; k ¼ 1. . .;N; converge to a small neighborhood

around zero after the finite time T. Thus, ẑk converges

closely to �yk;n after the time T. It follows from Lemma 2

that zk ¼ ½zk;1; . . .; zk;n�T is the recurrent signal. Moreover,

fið�Þ and gið�Þ are smooth functions. We can conclude that

�xk;n is recurrent. Using (9)–(12) and (17) and with simple

mathematical operation, we have

_ak;n�1 ¼Lk1ðek;1; . . .; ek;nÞ þ Lk2ð�kwð2Þ
k ; . . .; �kw

ðnÞ
k Þ

þ fdkð�yk;n; tÞ;
ð31Þ

where Lk1ð�Þ and Lk2ð�Þ are linear combinations. Because

Lk1ðek;1; . . .; ek;nÞ and Lk2ð�kwð2Þ
k ; . . .; �kw

ðnÞ
k Þ are very small.

Therefore, _ak;n�1 is the recurrent signal. Further, the NN

input Zk;n is also recurrent. By Lemma 1, S1ðZk;nÞ; k ¼
1; . . .;N are cooperative PE, then Gð�xk;nÞS1ðZk;nÞ=g; k ¼
1; . . .;N; satisfy the cooperative PE condition.

According to the Theorem 1 of [37], the solution of (29)

converges to a small neighborhood of zero. As a result, the

weight estimation Ŵk1 converges to a small neighborhood

of Wk1 , that is, Ŵ11 ffi � � � ffi ŴN1 , as well as

W1 ffi � � � ffi WN . This means that the lumped uncertainty

Hð�Þ can be approximated by RBF NNs along the union

orbit Z, that is,

HðZÞ ¼ S1ðZÞTW1 þ e1

¼ S1ðZÞTWk1 þ ek11

¼ S1ðZÞTWk1 þ S�1ðZÞTWk�1 þ ek11 � S�1ðZÞTWk�1

¼ SðZÞTWk þ ek2
;

where ek2
¼ ek11

� S�1ðZÞTWk�1 and ek11
are approximation

errors. They are very small. Thus, the approximation of

Hð�Þ along the union orbit Z ¼ [N
k¼1Zk;n is obtained. The

proof is completed. h

Remark 4 It should be pointed out that the NN weignt

update law
_̂Wk in this paper is different from that in

[25, 34]. Due to the existence of the cooperative learning

term �c
P

j2N k
akj

�
Ŵk � Ŵj

�
, any agent in the multi-agent

system can learn the knowledge from its neighbor in a

distributed manner. The benefits add this term is that the

approximation domain of RBF NNs obtained in this paper

is the union orbit of all agent, which is larger than that in

[25] and [34]. But it is necessary to transmit weight

information between agents.

Remark 5 The proposed solution in this paper can be used

in many practical strict-feedback systems, such as robot

manipulators [19] and unmanned surface vehicles [21, 44],

because these systems satisfy Assumption 1. In contrast to

the existing works, the main factor affecting practical

applicability of the proposed solution is that we add the

cooperative learning term �c
P

j2N k
akj

�
Ŵk � Ŵj

�
in the

NN weight update law (15). It requires the communication

between the neighbouring agents and a lot of weight

information is transmitted over the communication net-

work. Thus, high-performance communication networks,

such as Ethernet, should be used in practice.

4 Control with experience

In Sect. 3, the NN approximation of the lumped uncer-

tainty is obtained along the union orbit. In this section, we

will use the obtained NNs to design the controller to con-

trol the same plant. Compared with adaptive neural control,

the neural weight Wk obtained in Theorem 2 can be

directly used to design controllers, which does not adapt

online. Therefore, the control performance, such as the

convergence rate and transient performance, will be

improved effectively. To show this, let us consider the

same plant as (4)

_xi ¼ fið�xiÞ þ gið�xiÞxiþ1 i ¼ 1; . . .; n;

_xn ¼ fið�xnÞ þ gið�xnÞu

y ¼ x1;

8>><
>>:

ð32Þ

where �xi ¼ ½x1; . . .; xi�T , �xn ¼ ½x1; . . .; xn�T 2 Rn is the state

vector, and y is the output. First of all, we transform (32)

into the normal form of (6)

_zi ¼ ziþ1; i ¼ 1; . . .; n;

_zn ¼ Fnð�xnÞ þ Gnð�xnÞu

y ¼ z1 ¼ x1;

8>><
>>:

ð33Þ
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where z ¼ ½z1; . . .; zn�T is the state vector. The HGO (7) is

still used to estimate the unknown state z of (33). Denote

the estimation of z as ẑ ¼ ½z1; ẑ2; . . .; ẑn�T .

For the kth reference model of (5), similar to (8)–(13),

we directly give the controller of (32)

u ¼ �cnen � SðZnÞTWk; k 2 f1; . . .;Ng: ð34Þ

where Wk is the previously learned NN weight.

Theorem 3 Consider the closed-loop system consisting of

the plant (32), the HGO (7), the kth renference model of

(5), and the controller (34). For the initial condition �yk;nð0Þ
generates the same periodic reference trajectory udk as in

Theorem 2, and with the initial condition �xnð0Þ of (32) in a

small neighborhood of � xð0Þ, where � xð0Þ represents the

value of xnðtÞ when �yk;nðtÞ ¼ �yk;nð0Þ, then the following

statements are true,

(i) All the signals in the closed-loop system are still

bounded;

(ii) The system output y ¼ x1 exponentially converges

to a small neighborhood of yk;1. h

Proof The proof is similar to the proof of Theorem 2 of

[40]. Thus, it is omitted here. h

5 Simulation

In this section, two examples are provided to validate the

effectiveness of the proposed mechanism.

5.1 Numerical example

Consider a multi-agent system consisting of the following

three strict-feedback systems [29]

_xk;1 ¼ 0:1x2
k;1 þ ð1 þ 0:1 sinðxk;1ÞÞxk;2

_xk;2 ¼ 0:2e�x2
k;2 þ xk;1 sinðxk;2Þ þ uk

yk ¼ xk;1; k ¼ 1; 2; 3;

8>>><
>>>:

ð35Þ

where xk;1 and xk;2 are the system states, and yk is the

output. The communication topology of the multi-agent

system is shown in Fig. 1. We assume that

f1ð�xk;1Þ ¼ 0:1x2
k;1, f2ð�xk;2Þ ¼ 0:2e�x2

k;2 þ xk;1 sinðxk;2Þ and

g1ð�xk;1Þ ¼ 1 þ 0:1 sinðxk;1Þ are totally unknown, but they

satisfy Assumption 1. The initial state values of (35) are

�x1;2 ¼ ½0:2; 0:4�T , �x2;2 ¼ ½0:3; 0:4�T and �x3;2 ¼ ½0:1; 0:3�T .

Denote zk;1 ¼ xk;1 and zk;2 ¼ _zk;1. Then we transform

(35) into the normal form

_zk;1 ¼ zk;2

_zk;2 ¼ F2ð�xk;2Þ þ G2ð�xk;2Þuk
yk ¼ zk;1 ¼ xk;1; k ¼ 1; 2; 3;

8>><
>>:

ð36Þ

where

F2ð�xk;2Þ ¼ ½0:2xk;1 þ 0:1xk;2 cosðxk;1Þ�½0:1x2
k;1 þ ð1

þ 0:1 sinðxk;1ÞÞxk;2� þ ð1
þ 0:1 sinðxk;1ÞÞ½0:2e�x2

k;2 þ xk;1 sinðxk;2Þ�

and G2ð�xk;2Þ ¼ 1 þ 0:1 sinðxk;1Þ. Next, the following three

HGOs are designed to estimate the states of (36)

�k _fk;1 ¼ fk;2

�k _fk;2 ¼ �pk;1fk;2 � fk;1 þ ykðtÞ; k ¼ 1; 2; 3;

8<
: ð37Þ

where p1;1 ¼ p2;1 ¼ p3;1 ¼ 1 and �1 ¼ �2 ¼ �3 ¼ 0:0008.

In this example, Duffing oscillators [30] are used as the

reference models

_yk;1 ¼ yk;2

_yk;2 ¼ �kk;1xk;1 � kk;2x
3
k;1 � kk;3xk;2 þ qk cosðwktÞ

ydk ¼ yk;1; k ¼ 1; 2; 3;

8>><
>>:

ð38Þ

where the parameters ½k1;1; k2;1; k3;1� ¼ ½�1:1;�0:8;�0:6�,
k1;3 ¼ k2;3 ¼ k3;3 ¼ 0:55, k1;2 ¼ k2;2 ¼ k3;2 ¼ 1,

½q1; q2; q3� ¼ ½1:4; 1:2; 1�, and w1 ¼ w2 ¼ w3 ¼ 1. The ini-

tial conditions are set to be �y1;2 ¼ ½1:5; 0:4�T , �y2;2 ¼
½1:2; 0:8�T and �y3;2 ¼ ½1:6; 0:5�T .

From Sect. 3, we know that after the system transfor-

mation, an agent only use one RBF NN to approximate the

lumped uncertainty H(Z) along the union orbit

Z ¼ [3
k¼1Zk;2. This means that only three RNF NNs are

used in this simulation. Note that the parameters of the

three RBF NNs are the same. Each RBF NN contains 11 �
11 � 11 centers and these centers are spaced in

½�2:5; 2:5� � ½�2:5; 2:5� � ½�5; 5�. The width of RBF NNs

is i ¼ 0:8. Other design parameters are set to be q ¼ 2,

c ¼ 1, r1 ¼ r2 ¼ r3 ¼ 0:00001, c1;1 ¼ c2;1 ¼ c3;1 ¼ 6 and

c1;2 ¼ c2;2 ¼ c3;2 ¼ 10.

Figures 2, 3, 4 and 5 show the simulation results. In

Fig. 2, we can see that the output of each agent can follow

its reference signal effectively. Figures 3 and 4 show the

approximation performance of RBF NNs, where

Wk ¼ meant2½330s;350s�Ŵk; k ¼ 1; 2; 3. To verify the

approximation domain of each RBF NN is the union orbit

1 2 3

Fig. 1 Numerical example: communication topology G
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Z ¼ [3
k¼1Zk;2 rather than its own orbit Zk;2, we exchange

the inputs of the RBF NNs and Fig. 4 shows the corre-

sponding function approximation performance. From

Fig. 4, it is clear that the approximation performance is still

very good. Fig. 5 shows that the NN weights of all agents

converge to a small neighborhood of their common optimal

value, which also implies the approximation domain is the

union orbit. For the purpose of comparison, let c ¼ 0, and

then the weight update law is same as that in [25, 34].

Fig. 6 depicts the convergence of the NN weights, where

only c ¼ 0 and other parameters are same as before. It is

evident from Fig. 6 that convergence values of their

weights are different. Further, we exchange the inputs of

RBF NNs. The approximation performance is shown in

Fig. 7. Obviously, the approximation performance is worse

than that in Fig. 4. This implies that the approximation

domain of each agent in its own orbit rather than the union

orbit. Thus, the approximation domain of NNs that are

obtained in this paper is larger than that in [25, 34].

After the above cooperative learning control process, we

obtain the NNs, such as Sð�ÞW1, Sð�ÞW2 and Sð�ÞW3. They

can be used to design the controller to control the same

plant, see (34). Compared with the adaptive neural control,

the performance of neural control with the learned NNs is

improved. The effectiveness can be found in

[25, 30, 34, 36] and [37]. Thus, the simulation of neural

control with past experience is omitted here.

5.2 Inverted pendulum example

Consider the following five inverted pendulum systems

[29, 47],

_xk;1 ¼ xk;2

_xk;2 ¼
g sinðxk;1Þ �

mlx2
k;2 cosðxk;1Þ sinðxk;1Þ

mcþm

lð4
3
� m cos2ðxk;1Þ

mcþm Þ

þ
cosðxk;1Þ
mcþm

lð4
3
� m cos2ðxk;1Þ

mcþm Þ
uk

yk ¼ xk;1; k ¼ 1; 2; 3; 4; 5;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

where yk and xk;2 are the angle and angular velocity of the

kth pendulum, respectively, uk is the input force. mc is the

mass of cart, m is the mass of a pole, l is the half length of a

pole and g ¼ 9:8m=s2 is the gravity acceleration. The

parameters are given by mc ¼ 1 Kg, m ¼ 0:1 Kg and

330 332 334 336 338 340 342 344 346 348 350

time(s)

-3

-2

-1

0

1

2

3
(a)

330 332 334 336 338 340 342 344 346 348 350
time(s)

-3

-2

-1

0

1

2

3
(b)

330 332 334 336 338 340 342 344 346 348 350

time(s)

-3

-2

-1

0

1

2

3
(c)

Fig. 2 Numerical example: control performance
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Fig. 3 Numerical example: function approximation
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l ¼ 0:5 m. Notice that f1ð�xk;1Þ ¼ 0 and g1ð�xk;1Þ ¼ 1. Thus,

there is no need to use HGOs to estimate the unknown

states.

The reference models are given as follows

_yk;1 ¼ yk;2

_yk;2 ¼ �0:0025xk;1 � 0:2xk;2 þ q0k cosð2tÞ

ydk ¼ yk;1; k ¼ 1; 2; 3; 4; 5;

8>><
>>:

ð39Þ where ½q01; q02; q03; q04; q05� ¼ ½0:05; 0:08; 0:1; 0:13; 0:16�. The

initial states of (39) are set to be

�yk;2 ¼ ½0; 0�T ; k ¼ 1; 2; 3; 4; 5.
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Fig. 4 Numerical example: function approximation with exchanging

inputs
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Fig. 5 Numerical example: the convergence of NN weight
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Fig. 6 Numerical example: the convergence of NN weight in [25, 34]
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Fig. 7 Numerical example: function approximation using the schemes

in [25, 34] with exchanging inputs

Fig. 8 Inverted pendulum sys-

tems: communication topology
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In this example, five RBF NNs are used to approximate

H(Z) along the union orbit Z ¼ [5
k¼1Zk;2. Each RBF NN

contains 11 � 11 � 11 centers and these centers are spaced

in ½�0:1; 0:1� � ½�0:2; 0:2� � ½�0:3; 0:3�. The width of

RBF NNs is i ¼ 0:05. The design parameters are selected

as q ¼ 2, c ¼ 1, r1 ¼ r2 ¼ r3 ¼ 0:00001, c1;1 ¼ c2;1 ¼
c3;1 ¼ 4 and c1;2 ¼ c2;2 ¼ c3;2 ¼ 10. Figure 8 is the topol-

ogy of the multiagent system.
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Fig. 9 Inverted pendulum systems: control performance
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Fig. 10 Inverted pendulum systems: function approximation with exchanging inputs
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Simulation results are shown in Figs. 9, 10 and 11. Fig. 9

shows that tracking performance. Figure 10 shows the

function approximation with exchanging inputs. It indi-

cates that approximation performance is still very good.

Figure 11 shows that the NN weights of all agents converge

to a small neighborhood of their common optimal value.

Figures 12 and 13 are obtained by using the scheme in

[25, 34]. They show that the function approximation with

exchanging inputs is very bad because NN weights do not

converge to a small neighborhood of their common optimal

value.

6 Conclusion

This paper explores the DCL from adaptive NN control for

a group of strict-feedback systems. First, we transform the

strict-feedback systems into a normal form. With the help

of this transformation, the number of RBF NNs is reduced

in an agent, and it is easy to verify that the inputs of NNs

are recurrent. Then we prove that all the signals in the

multi-agent system are still bounded and the system output

of each agent tracks its reference signal with a small error.

Furthermore, the convergence of NN weights is achieved

and the lumped uncertainty is approximated along the

union orbit by RBF NNs. This implies that the RBF NNs

have a large common approximation domain compared

with the existing works. Finally, the learned NNs can be
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Fig. 11 Inverted pendulum systems: the convergence of NN weight
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Fig. 12 Inverted pendulum systems: the convergence of NN weight in

[25, 34]
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Fig. 13 Inverted pendulum systems: function approximation using the schemes in [25, 34] with exchanging inputs
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reused to design controller to improve the control

performance.

It is found that NN weights are transmitted over the

communication network. In other words, a large amount of

data should be transmitted. This may cause the channel

congestion. In the future work, we can study intermittent

communication and quantification to overcome this

problem.
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