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Abstract
Deep learning has been applied in mechanical fault diagnosis. Hereinto, the convolutional neural network (CNN) has the

shallow convolution operation, supporting the function of feature learning. However, the interpretability of CNN has

always been an urgent problem to be solved. Due to the advantages of lifting wavelets and their transforms for impact fault

diagnosis, an interpretable network called LW-Net with smart lifting wavelet kernels is proposed for mechanical feature

extraction and fault diagnosis. Different from the traditional CNN, the shallow layer of the net is designed to be the lifting

layer, concluding split, prediction and update sublayers by the natural convolution operation of lifting wavelet transforms.

The smart lifting wavelet kernels are constructed by the mathematic constraints of lifting wavelets, resulting in the nice

properties of signal processing. Meanwhile, the kernels with only two parameters are learned from the input data and

updated by the back-propagation process. The lifting layer is suitable to accurately extract the impact fault features,

improving the effective fault diagnosis of LW-Net. Moreover, the interpretability of LW-Net to achieve shallow feature

extraction is verified and discussed by the repeatable simulations. The underlying logic and physical meaning of the lifting

layer is revealed to be the adaptive waveform matching and learning based on the inner product matching principle. LW-

Net is applied to the engineering diagnostic cases of the Case Western Reserve University dataset and planetary gearbox

dataset to verify the effectiveness. The results show the method outperforms the classical and popular methods on the

converge speed, classification accuracy and feature extraction.
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1 Introduction

With the rapid development of artificial intelligence tech-

nology, modern mechanical equipment has been widely

used in various industries of the national economy. It is

particularly important to ensure the safe operation of

mechanical equipment and reduce its maintenance cost.

Therefore, how to use fault diagnosis technology to iden-

tify and maintain the faults in the process of mechanical

equipment operation has become the focus of researchers’

attention. The traditional intelligent diagnosis process

includes signal processing and feature extraction, machine

learning and pattern recognition, among which signal

processing and feature extraction technology are the key

techniques in mechanical fault diagnosis, directly related to

the accuracy and reliability of fault diagnosis. Yuan et al.

proposed dual-core denoised synchrosqueezing wavelet

transform [1] and multi-lifting synchro-squeezing trans-

form [2] for mechanical fault detection. Zhang et al. [3]

proposed a whale optimization algorithm-optimized

orthogonal matching pursuit with a combined time–fre-

quency atom dictionary for bearing fault diagnosis. Qian

et al. [4] developed an enhanced sparse regularization

method by weighted l1-norm convex optimization for

impact force identification. Based on the above studies, it

can be found that the traditional fault diagnosis method

should depend on manual feature extraction. If the

extracted features are inadequate for the task, the perfor-

mance of the final classification algorithm will greatly

degenerate.
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At the same time, deep learning has been developed for

intelligent fault diagnosis, benefited from the development

of advanced sensing technology and computing systems in

recent years. Zhu et al. [5] proposed an intelligent fault

diagnosis approach by principal component analysis and

deep belief network for rolling bearings. Li et al. [6]

designed a domain generalization framework, i.e.,

whitening-net for handling domain deviations caused by

the different cases of machines, operating conditions and

noise. Deep learning is a hierarchical method of machine

learning involving multi-level nonlinear transformation,

which could avoid feature extraction problems compared

with traditional fault diagnosis methods. The deep learning

model is directly processed with original signals, the

establishment of which is a large amount of data as the

support training model to improve diagnostic accuracy,

robustness and sensitivity.

As one of the representative deep learning algorithms,

convolutional neural network (CNN) contains convolution

layer, pooling layer and complete connection layer and has

strong robustness and fault tolerance with the easy training

and optimization. Yu et al. [7] developed a multi-channel

one-dimensional convolutional neural network for dealing

with the noise and high dimension signals for fault diag-

nosis of industrial processes. Cao et al. [8] designed a

pseudo-categorized maximum mean discrepancy and then

applied it to the multi-input multi-output convolutional

network for intelligent fault diagnosis of rolling bearings.

CNN has the characteristics of local connection, weight

sharing and pooling operation, which could effectively

reduce the network complexity, accelerate neural network

fast learning, and carry out translation invariant classifi-

cation of input feature information. More importantly, the

shallow convolution operation is very similar to the feature

extraction function in fault diagnosis, which could support

the function of feature learning for fault diagnosis. How-

ever, the interpretability of CNN has always been an urgent

problem to be solved, especially the underlying logic and

physical implications of the shallow convolution operation

for feature extraction and learning.

For the challenging of the interpretability network, the

researchers further promote the construction of dynamic,

robust and credible intelligence models. Hereinto, several

scholars have introduced wavelet transform into the con-

volutional layer design for CNN and successively proposed

such new deep learning networks as wavelet kernel and

lifting kernel, which provide the possible explanations for

the physical meaning of ‘black box model.’ Li et al. [9]

proposed a deep one-dimensional convolutional neural

network driven by continuous wavelets at a shallow layer

and compared the recognition ability of various types of

wavelet cores for feature models. Wang et al. [10] designed

an interpretable neural network for machine condition

monitoring from the aspects of signal processing and

physical feature extraction. Pan et al. [11] proposed lifting

net by integrating the second-generation wavelet and CNN.

Unfortunately, it only introduced the second-generation

wavelet transform to the convolutional layer, lack of the

constraint on the convolutional net with the properties of

wavelets, which is not a real lifting wavelet kernel.

In the inner product matching principle for mechanical

feature extraction and fault diagnosis, it is revealed that the

essential nature of FFT, wavelet and lifting wavelet is to

explore the components in the signals that are closest or

most related to the ‘basis function’ [12, 13]. Hence, the

critical issue for meaningful and effective mechanical fault

diagnosis is to construct and choose the appropriate basis

functions most similar or related to the desired fault fea-

tures. Impact fault features are one of the most typical and

common fault features in mechanical fault diagnosis

caused by local faults of key parts such as gears and

bearings. Therefore, the basis functions similar or related to

impact fault features are pivotal for feature extraction and

fault diagnosis of local faults. Compared with the classical

wavelet, the lifting wavelet (i.e., the second-generation

wavelet) proposed by Swendes [14–16] is a type of basis

function with typical impact waveform characteristics,

which is more suitable for local fault diagnosis than clas-

sical wavelets according to the inner product matching

principle. Meanwhile, the design of lifting wavelet is in the

time domain without Fourier transform, leading to the easy

construction adapted to the input signals with the nice

wavelet properties. More importantly, the lifting wavelet

transform is a kind of natural convolution operation, which

has the advantages of simple algorithm, fast operation

speed and less memory space.

Thus, the lifting wavelet is introduced into the CNN

convolution layer, and a new interpretability smart lifting

wavelet kernel is proposed based on the inner product

matching principle for mechanical feature extraction and

fault diagnosis. Compared with the research of Ref. [11],

the smart lifting wavelet kernel is developed by the lifting

wavelet basis functions with the adaptive characteristic and

the excellent properties of signal processing. With the

smart lifting wavelet kernel, the shallow layer network is

designed by lifting wavelet transforms to help CNN for

discovering the feature extraction principle with physical

meaning. On this basis, CNN driven by the smart lifting

wavelet kernel is proposed and called LW-Net, which

could offer a physical interpretation for the shallow layer of

CNN. Particularly, different from the standard convolu-

tional layer depending on a set of randomly initialized

parameters, LW-Net convolves the input signals with a set

of parameterized lifting wavelet kernels to achieve shallow

feature extraction, with the two parameters of predictors

and updaters learning from the input signals. Based on the
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inner product matching principle, the shallow layer of the

network is focused on extracting the impact fault features,

and also makes the results of the network output have clear

physical meaning with the robustness to different data.

Thus, the contributions of this paper are summarized as

follows.

1) A smart lifting wavelet kernel is constructed with the

excellent signal processing properties of high-order

vanishing moment, short compactly supported and

regularity, restrained by the lifting wavelet theory.

Moreover, the kernel could learn from and be adapted

to various input signals, which is suitable to accu-

rately extract the impact fault features resulting in the

effective fault diagnosis of LW-Net.

2) This paper designs a shallow feature extraction

network that is embedded with underlying logic and

physical meaning based on lifting wavelet transform.

The interpretability of the shallow layer with the new

kernel is verified and discussed by repeatable simu-

lations, focusing on the aspects of waveform

matching.

3) A new LW-Net model is established and applied to

two experimental data cases to verify the effective-

ness, compared with the classical and popular

networks. Moreover, the kernel layer of the lifting

wavelet proposed in this model is universally appli-

cable and can be applied to any convolutional

network. In addition, compared with the traditional

CNN, LW-Net greatly reduces the parameters of the

shallow layer and thus improves the convergence

speed of the network.

The remaining arrangement of this paper is as follows:

The basic theory and the method of this paper are

addressed in Sect. 2. Section 3 uses simulations to study

the physical significance of LW-Net. In Sect. 4, two

engineering datasets are used to verify the effectiveness of

the proposed method. Section 5 is the conclusion.

2 Theoretical foundation

2.1 CNN

As a kind of neural, CNN is easy to train and has higher

recognition rate compared with ordinary networks because

of its convolutional layer and pooling layer. The working

principle of the convolution layer is to take a kernel with a

fixed size to scan the entire input matrix and filter out the

useless information in the matrix so as to condense a small

matrix of useful information. The convolution calculation

of the j-th activated feature hlj of layer l is described as:

hlj ¼ f1 wl
j � xðl�1Þ þ blj

� �
ð1Þ

where xl�1 is the input signal of layer l� 1, wl
j is the j-th

convolution kernel of layer l, the symbol � denotes the

convolutional operation, and blj is the corresponding devi-

ation. Furthermore, f1 �ð Þ is the activation function after the

convolution operation, where ReLU activation function is

selected.

The pooling layer is used to reduce the dimension of

data, and also has the function of feature extraction. The

mathematical expression of the pooling layer is

ylþ1
j ¼ hlj � b

lþ1
j

m�n

ð2Þ

where blþ1
j is the j-th weight matrix of layer lþ 1, and

m� n is the size of the matrix,b is set to be a maxð�Þ
function when the pooling layer is maximum pooling.

After the pooling layer, a full-connection layer is used

for selecting features shown as

z ¼ f2ðWyþ bÞ ð3Þ

where W is the full-connection matrix, y is the output of

pooling layer, and z is output. Softmax is selected as the

nonlinear function f2 �ð Þ of probability mapping, which is

often used to map the last layer of the network to get the

probability of categories.

pi ¼
eziPn
j¼1 e

zj
ð4Þ

where pi is the probability of the i-th label, zi is the i-th

value of the output by the full connection layer, and n is the

number of total label.

Different from the general loss function, the cross-en-

tropy function increases geometrically with the increase of

error; that is, the cross-entropy function is very sensitive to

error. Its function expression is:

Loss ¼ Hðr; pÞ ¼ �ri log pið Þ ð5Þ

where ri is the true value of the i-th sample in the class and

pi is the predicted value output in softmax function cor-

responding to the true value.

2.2 Lifting wavelet transform

Lifting wavelets could be easily designed in the time

domain, breaking the convention that classical wavelets

can only be constructed in the frequency domain. This not

only greatly expands the types of wavelets, but also leads

to construct appropriate wavelets in time domain according

to the input signals to achieve the high degree of feature

matching by the inner product matching principle. The

framework of lifting wavelet transform consists of three

steps: split, prediction and update. Figure 1 shows the
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operation process of lifting wavelet transform, and its

specific formula is as follows [16].

seðnÞ ¼ xð2nÞ ð6Þ
soðnÞ ¼ xð2nþ 1Þ ð7Þ
d ¼ so� PðseÞ ð8Þ
s ¼ seþ UðdÞ ð9Þ

where (6), (7) are the process of split for x, generating the

even samples se and odd samples so; (8) is the prediction

process, in which se is convolved with the prediction

coefficient P to predict so. d is the prediction error as the

high-frequency part of x after the decomposition, and P �ð Þ
is a convolutional mode of prediction; (9) is the update

process, in which d is convolved with the update coeffi-

cient U to update se. s is the approximation signal as the

low-frequency part of x after the decomposition, and U �ð Þ
is a convolutional mode of update.

2.3 Lifting layer

Generally speaking, the features extracted from the first

layer of convolutional neural network have a great rela-

tionship with the performance of the whole network [17].

The traditional convolution layer cannot effectively extract

the useful impact fault features from the input signals. Due

to the superiority of lifting wavelets along with the nature

convolution of the transforms, the lifting layer is designed

by the smart lifting wavelet kernel, which learns from and

is adapted to the input signals for extracting the impact

fault features.

The whole data flow path of lifting layer is a time-

domain lifting processing including the split, prediction

and update sublayers to obtain the underlying features.

Split sublayer. The input signal x is split into odd sample

and even sample sequences, shown as:

soðnÞ ¼ xð2nþ 1Þ; seðnÞ ¼ xð2nÞ ð10Þ

Prediction sublayer. The calculation is as follows:

d ¼ so� f3 se;Psð Þ ð11Þ

where f3ð�Þ is the convolutional mode. Ps is a predictor of

the smart lifting wavelet.

Update sublayer. The calculation is as follows:

s ¼ seþ f3 d;Usð Þ ð12Þ

where Us is the updater of the smart lifting wavelet.

Next, the smart lifting wavelet kernel xif g of the lifting

layer will be designed. Based on the wavelet theory, the

smart lifting wavelet ws is constrained by the filter coeffi-

cients indeed related with Ps and Us, which also have the

nice properties of high order vanishing moment, short

compactly supported and regularity [16]. First, we assume

in the prediction sublayer

Ps ¼ ½p1; p2; . . .; pN=2; pN=2þ1; . . .; pN �, and eg to be the

equivalent high-pass filter coefficients of ws corresponding

to Ps. The relation between eg and Ps is

~g ¼
�p1 0 �p2 0 � � � �pN=2�1 1 �pN=2þ1 0 � � � 0 �pN

� �

ð13Þ

It has been proved that the order of the polynomial is

equal to the vanishing moment of the wavelet [18]. That is,

ws and eg have the same vanishing moments. Thus, for Ps

with a length N, the polynomial order is limited to be less

than N, and the remaining degree of freedom will be used

to adjust to the signals, shown as follows [19]. The specific

expression is

XN�1

k¼�Nþ1

kq ~gk ¼ 0; 0 6 q\M ð14Þ

In the update sublayer, assume Us ¼ ½u1; u2; . . .; ueN �
with the length eN . The relation between the dual equivalent

high-pass filter g of the dual wavelet ~ws for wavelet

reconstruction and Us is given by

g2l�1 ¼
1�

PN
m¼1

PsmUsl�mþ1 l ¼ ðN þ ~NÞ=2

PN
m¼1

PsmUsl�mþ1 l 6¼ ðN þ ~NÞ=2

8>>><
>>>:

g2lþN�2 ¼ Usl l ¼ 1; 2; . . .; eN

ð15Þ

Then, it could be obtained from (15) that [19]

~Vg ¼ 0 ð16Þ

where eV is a matrix with the size of ~N � ð2N þ 2 ~N � 1Þ,
and its elements are represented as

½ ~V�m;n ¼ nm ð17Þ

where n ¼ �N � ~N þ 2; . . .;N þ ~N � 3;N þ ~N � 2 and

m ¼ 0; 1; . . . eN � 1. It could be seen from (13) and (14) that

the coefficients of Ps is determined by restraining the

polynomial order of Ps. Meanwhile, (17) is a system of

equations only containing Us, so the coefficients of Us can

be determined by solving the equations of coefficients.

To have the excellent performance on signal adaptation,

the value of N minusM should be less than or equal to 2 for

Fig. 1 Schematic diagram of lifting wavelet decomposition
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the predictors [20]. Therefore, the order of coefficient

polynomial of Ps in ws is set as N � 2 in the paper. Then,

the remaining degrees of freedom of Ps are determined by

the LW-Net through training and learning to make the

feature matching close to the input signals. In the actual

prediction, these two parameters directly affect the results

of network feature learning and training. It is known from

the wavelet theory that the two parameters in the middle of

the predictor directly affect the main waveform part of

lifting wavelets. Thus, the i-th smart lifting wavelet kernel

xif g of lifting layer is set to be xif g ¼ ½pN=2; pN=2þ1�
which is adaptively constructed by according to the input

signals. Then, the coefficients of Ps can be obtained from

the following relationship:

Ps ¼
PN�1

K¼�Nþ1

Kq egk ¼ 0; 0� q\N � 2

xi ¼ ½pN=2; pN=2þ1�

8><
>:

¼ p1 p2 � � � pN=2 pN=2þ1 � � � pN
� �

ð18Þ

Us can be determined by Ps through (15)–(17).

It could be found that there are only two parameters in

the smart lifting wavelet kernel xif g, improving the con-

vergence speed of the network. By the kernel, the smart

lifting wavelet with the high-order vanishing moment,

short compactly supported and regularity could be acquired

by Ps and Us. Meanwhile, it is a type of basis function with

typical impact waveform characteristics, which is suit-

able for local fault diagnosis according to the inner product

matching principle and will discuss in the following sim-

ulations. More importantly, the smart lifting wavelet ws

could be adaptively constructed according to the feature

learning by the two free parameters, which leads to the

effective feature extraction of the designed lifting layer by

(10)–(12). Thus, the lifting layer could be a shallow layer

embedded with underlying logic and physical meaning.

2.4 Overall structure and parameters of LW-Net

Table 1 shows the specific parameters of LW-Net, hereinto

the input sample in this paper is set to have 1024 points: (1)

The size of convolution kernel of lifting layer is 2 with the

kernel number 6 according to the experimental experience,

which greatly promotes the training and convergence rate

of the network; (2) Two one-dimensional convolutional

layers (Conv1D) are set to conduct deeper mining of the

feature information extracted after the lifting layer, one of

which is with the kernel size 5 and the kernel number 10,

and the other of which is with the kernel size 25 and the

kernel number 16; 3) The adaptive maximum pooling layer

(AdaptiveMaxPool1D) is designed with the kernel number

16 to make the characteristics obviously; 4) Linear layers

with 1 kernel number is added to identify characteristics; 5)

The final output is with the size of m, where m represents

the number of labels.

Figure2 shows the flowchart of LW-Net for mechanical

feature extraction and fault diagnosis, describing as

follows.

Step 1 In the stage of data processing, the collected fault

data containing various types is divided into the training

set and testing set.

Step 2 In the training stage, the LW-Net is initialized.

Step 3 According to the initialization of xif g and the

order constraint (N ¼ ~N ¼ 10 here), Ps and Us are

designed.

Step 4 The data are processed by the split, prediction and

update sublayers by the adaptive ws with Ps and Us.

Step 5 Combined with the two Conv1Ds and Adap-

tiveMaxPool1D, the fault features of the input signals are

extracted.

Step 6 The output results are calculated by the softmax

mapping and cross-entropy function. At the same time,

the gradient of ws in lifting layer and parameters in other

layer is calculated by using the back-propagation

algorithm.

Step 7 Judge whether the network has been completely

trained according to the training loss rate, setting as

0.001 considering the high accuracy and high efficiency.

Step 8 The well-trained LW-Net is applied to the testing

data, and the classifier of fault types is performed.

Step 9 Output the labels for fault diagnosis.

Table 1 Model parameters of

LW-Net
Layer type Kernel size Kernel number Output size Padding Activation function

Input 1 * 1024

Lifting layer 1 * 2 6 1 * 6 * 512 Yes ReLU

Conv1D 1 * 5 10 1 * 10 * 508 No ReLU

Conv1D 1 * 25 16 1 * 16 * 484 No ReLU

AdaptiveMaxPool1D 16 1 * 16 * 16 No Max

Linear layer 1 1 * 1 * 100 ReLU

Output 1 m Softmax
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It could see from the flowchart that LW-Net is a shallow

feature extraction network that is embedded with under-

lying logic and physical meaning based on the inner pro-

duct of lifting wavelet transforms.

3 Interpretability

In this section, the interpretability of the shallow feature

extraction network will be studied by exploring the oper-

ation mechanism of lifting layer on the repeatable simula-

tions. A commonly used standard lifting wavelet [16] is

denoted as SLW(10,10), where N of Ps and eN of Us are

both 10 and xif g ¼ ½0.6056, 0:6056� is employed as the

fault feature of the simulation signal. Meanwhile, two

interference features constructed by Daubechies wavelets

with the order 2 (Db2) and the order 12 (Db12) are intro-

duced to expand the label types of the simulations. Figure 3

shows the waveforms of the three wavelet labels of the

simulations. In addition, a sinusoidal signal restrained by

(19) is added to three wavelet labels as the interfering

noise.

y ¼ sinð100ptÞ
t ¼ ð0; 1; . . .; 1024Þ=2p

�
ð19Þ

The mixed signals are shown in Fig. 4. The simulated

signals including three wavelet labels are rearranged and

randomly intercepted to form the simulation data of each

label number 60 with each signal length 1024. Then, the

data are divided into the training set and testing set by the

ratio of 2:1.

Due to the three wavelet labels, the number of output

labels for LW-Net is 3. In the simulations, LW-Net has

been trained for three times, and the changes of the loss and

classification accuracy during the training are shown in

Fig. 5. Specially, in the 30th iteration, the parameter update

falls into a local optimization. But in the 31th iteration, the

parameter update jumps out of the local optimal solution to

find the global optimal solution. Then, it could be seen

from Fig. 5 that LW-Net gradually converges in the

training process. Meanwhile, the accuracy of LW-Net on

the testing set after training is 100%.

The purpose of lifting layer is to make the smart lifting

wavelet kernel learn from the characteristics of input sig-

nals for matching impact features, the corresponding lifting

wavelet of which also possesses the nice properties of

Fig. 2 The flowchart of LW-Net for mechanical feature extraction and fault diagnosis LW-Net
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signal processing on the high-order vanishing moment,

good compact-support and regularity. Next, we will adopt

the inner product matching principle to verify the under-

lying logic and physical meaning of lifting layer.

SLW(10,10) shown in Fig. 3a is the designed impact fea-

ture submerged in the input data and is supposed to be

extracted by the lifting layer. Figure 6 shows the changes

of lifting wavelet waveforms of the lifting wavelets in the

lifting layer before and after three training sessions.

Hereinto, smart lifting wavelet 1 and smart lifting wavelet

2 are, respectively, corresponding to two of the six smart

lifting wavelet kernels, the first two of which are most

similar to the simulated feature of SLW(10,10) after the

training. We could see that although within the different

initialization xif g, the smart lifting wavelet kernels could

learn from the characteristic of input signals, i.e., the

waveform of SLW(10,10). Thus, the various initialization

of the smart lifting wavelet in the green lines is learned

from the feature waveforms of SLW(10,10) in the input

data and trained to approximate to the embedded impact

features in the red lines. Especially, the waveforms of

smart lifting wavelet 1 and smart lifting wavelet 2 after the

third training are extremely similar to SLW(10,10), whose

correlation coefficients between them are both more than

99.9%. Obviously, the lifting wavelet kernels of lifting

layer perform the effectiveness of feature extraction by

learning and matching the embedded features from the

input signals, in order to improve the ability of conver-

gence and the accuracy of the network. Meanwhile, the

performance of lifting layer is indeed the inner product

matching process, which constructs and chooses the

(a) (b) (c)Fig. 3 The waveforms of three

wavelet labels: a SLW(10,10),

b Db2, and c Db12
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Fig. 4 Mixed signals: a with SLW(10,10) wavelet label, b with Db2 label, and c with Db12 label

Epoch

C
ro

ss
 e

nt
ro

py
 lo

ss

(a) (b)
C

la
ss

ifi
ca

tio
n 

ac
cu

ra
cy

Epoch

Fig. 5 The training process of LW-Net: a changes of cross-entropy loss, and b changes of classification accuracy
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appropriate basis function most similar or related to the

desired fault features.

It needs to point out that because the smart lifting

wavelets are derived from the type of lifting wavelets, the

lifting layers could perform the inner product matching to

the typical impact waveform characteristics similar to that

of Fig. 3a. For example, for bearing fault diagnosis, the

lifting layer is suitable to learn and extract the different

impact fault feature waveforms for bearings from the noisy

input signals, and the different labels of bearing fault types

mainly lie in the fault feature frequencies, i.e., the inverse

of the interval time among these extracted fault features.

Hence, although with one type of lifting wavelets, the

smart lifting layer of LW-Net is powerful for mechanical

fault diagnosis, especially characterized as impact fault

features.

To sum up, we could conclude from the simulations that

the interpretability of LW-Net on the lifting layer conforms

to the inner product matching principle for mechanical

feature extraction and fault diagnosis [12]. The underlying

logic and physical meaning of shallow lifting layer with the

new kernel is the adaptive waveform matching for the

impact fault features.

4 Engineering data validation

In this section, two fault datasets will be used to verify the

performance of LW-Net, including bearing fault dataset

collected on the bearing test rig of Case Western Reserve

University (CWRU), and the gear and bearing fault dataset

collected on the planetary gearbox test rig (planetary

gearbox dataset). At the same time, a classical 1DCNN

[21] and three popular intelligent models outlined in Ref.

[22] are also introduced as the comparison methods. Three

popular ones include LENet1D, bi-directional LSTM

(BILSTM) and multilayer perceptron (MLP), whose details

are referred to Ref. [22].

4.1 Case 1: CWRU dataset

CWRU dataset is a pubic experimental dataset widely used

in mechanical fault diagnosis [23]. The test rig consists of a

two-horsepower (2HP) reliance electric motor, a

dynamometer and torque sensor for different motor load,

shown in Fig. 7. Single point failures of different diameters

are manufactured on the roller, inner ring and outer ring of

the testing bearings. The accelerometers are fixed on the

bearing house at the driving end and the fan end.

Fig. 6 Learning of smart lifting

wavelets in lifting layer before

and after three training session

Fig. 7 CWRU bearing test rig [23]
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In the experiment, a total of four types of outer ring

faults, inner ring faults and roller faults and normal state

are selected. For bearings with the same fault type, there

are three fault diameters, including 0.007 inches, 0.014

inches and 0.021 inches. Therefore, there are 10 kinds of

labels in this dataset. The motor running speed is

1750 rpm, and the sampling frequency of the acceleration

at the driving end is 12 kHz. Figure 8 shows the typical

input signals of 10 labels. The length of each input signal is

set to 1024, and 100 original signals of each label are

intercepted, randomly allocated to the training set and

testing set by a ratio of 3:2. Therefore, the total number of

training samples is 600, and the total number of test sam-

ples is 400. It should be noted that the proposed method

and the compared methods are all trained by the same data

in the same environment, and each network has been

trained four times, so as to ensure the objectivity and

authenticity of the results. Figures 9 and 10 show the

training and learning process of LW-Net and the compared

methods for CWRU dataset. In Figs. 9 and 10, the abnor-

mal jumping point appears for the same reason when

training the iteration to 30 times of Fig. 5. It could be seen

that the cross-entropy loss of LW-Net reduces to tiny close

to 0 at the eighth round and is faster than those of the

compared methods. Meanwhile, the classification accuracy

of LW-Net is close to 1 more faster than those of the

compared methods. The lifting layer in LW-Net has the

fewer parameters than the general convolutional layer of

the comparisons, leading to the quick converge of the

network in training. Table 2 shows classification results of

LW-Net and comparisons in case 1. It can be seen from

Table 2 that LW-Net performs better on CWRU dataset

than other classical and popular intelligent diagnosis

models, with a mean accuracy of 99.37%. The effective

fault diagnosis of LW-Net is due to the smart lifting
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wavelet kernels of lifting layer, which not only have the

excellent properties of signal processing but also could

adaptively match the fault features of the input signals.

4.2 Case 2: planetary gearbox dataset

A planetary gear test rig [24] is constituted by a motor,

encoder, two-stage planetary gearbox, two-stage fixed-axle

reducer and magnetic powder brake, shown in Fig. 11. In

the experiments, different types of damage were preset on

the planetary wheel, sun wheel and bearing of the two-

stage planetary gearbox. The motor rotates at the fre-

quencies of 35 Hz, 40 Hz and 45 Hz, and the sampling

frequency of the sensor is 5120 Hz.

The labels of the dataset are comprised of the normal

status (NO) and the five faults of the first planetary gear-

box, i.e., first-stage planetary wheel crack (GCP), first-

stage sun wheel pitting (GWS), first-stage sun wheel crack

(GCS), first-stage bearing inner ring wear (BI) and first-

stage bearing needle roller crack (BP). In the experimental

analysis, 100 groups of input signals with a length of 1024

are intercepted from each type of data, and then randomly

divided into the training data and testing data in a ratio of

6:4. Since there are six signal types, the total number of the

training set is 360 and that of the testing set is 240.

The proposed method and the comparisons are applied

to the dataset. Table 3 is the recognition results of Case 2

by each method at different rotational speeds. It can be

seen that LW-Net has the best diagnostic performance

among the five methods, the accuracy of which for each

speed is, respectively, 95.17%, 95.3% and 99.03%. More-

over, due to a small floating range of the maximum and

minimum recognition rates, LW-Net shows a stable per-

formance on recognition accuracy.

T-distributed stochastic neighbor embedding (T-SNE)

[25] can transform high-dimensional information into low-

dimensional information, which is often used for network

visualization to show the extracted features. Figure 12

plots a feature visualization of LW-Net for the three

speeds. Obviously, the six features are significantly divis-

ible, especially at the speed of 45 Hz, which also shows the

excellent feature extraction and diagnostic performance of

LW-Net.

5 Conclusion

To explore the ‘black box model’ of CNN and improve the

effectiveness of CNN to extract the fault features and

diagnose mechanical faults, a new deep convolutional

neural network embedded with underlying logic and

physical meaning based on the inner product matching

principle of smart lifting wavelets are proposed and named

LW-Net. The conclusions of the paper are summarized as

follows.

1) The first layer of the network, i.e., lifting layer, is

designed to be the convolutional layer driven by

smart lifting wavelet kernels. Split, prediction and

update sublayers are set up in the layer. The smart

lifting wavelet kernels are constructed by the math-

ematic constraints of wavelet scale and vanishing

moment, resulting the nice properties of signal

processing. Meanwhile, the kernels with only two

parameters are learned from the fault features of

input data and updated by the back-propagation

process.

2) The interpretability of LW-Net to achieve shallow

feature extraction is verified and discussed by the

repeatable simulations. The simulated results show

that the interpretability of LW-Net on the lifting layer

conforms to the inner product matching principle.

The underlying logic and physical meaning of lifting

Table 2 Classification results in

Case 1
Method Max accuracy (%) Min accuracy (%) Mean accuracy (%)

LW-Net 99.8 98.8 99.37

1DCNN 99.3 96.5 98.2

LENet1D 97.2 94.2 96.07

BILSTM 96.2 93.0 95.07

MLP 68.8 67.5 68.27

Fig. 11 Planetary gear test rig
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layer is the adaptive waveform matching by contin-

uously learning and matching the impact features

from the signals during training.

3) LW-Net is applied to the engineering diagnostic

cases of CWRU dataset and planetary gearbox

dataset, compared with the classical and popular

methods. The results demonstrate that LW-Net can

converge faster than the compared methods. Mean-

while, it performs the best classification accuracy

along with the stable performance among all the

tested methods. Furthermore, the feature visualiza-

tion of LW-Net is studied for validating the excellent

feature extraction of LW-Net.
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