
ORIGINAL ARTICLE

Fast homomorphic SVM inference on encrypted data

Ahmad Al Badawi1 • Ling Chen2 • Saru Vig1

Received: 12 October 2021 / Accepted: 22 March 2022 / Published online: 25 April 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Kernel methods are popular machine learning methods that provide automated pattern analysis of raw datasets. Of

particular interest is Support Vector Machines that are used to solve supervised machine learning problems in many areas

such as business, finance and healthcare. Nowadays, complex computations and data analytic tasks can be outsourced to

specialized third parties. However, data owners might be reluctant to share their data especially when it includes sensitive

information. Therefore, a need for privacy-preserving machine learning applications cannot be overstated. We present

FHSVM: a Fast Homomorphic evaluation of non-linear SVM prediction on encrypted data using Fully Homomorphic

Encryption. We provide design, implementation and several algorithmic and architectural optimizations such as novel

packing strategies and parallel implementation to achieve real-time private prediction. We employed the CKKS FHE

scheme to implement FHSVM under 128-bit security level. We evaluated FHSVM on a contemporary real-world large

dataset compiled for anti-money laundering tasks in Bitcoin transactions. Empirical analysis demonstrates that homo-

morphic SVM prediction can be performed in 1.25 s on multi-core CPU platforms. In addition, FHSVM shows zero

accuracy loss when compared to the non-privacy-preserving implementation. This shows that FHSVM is both computa-

tionally secure and fully utilizes the data.

Keywords Privacy-preserving computing � Data privacy � Homomorphic encryption � Support vector machines

1 Introduction

Support Vector Machine (SVM) is a widely used super-

vised machine learning algorithm in the fields of data

mining and data science. Its uses are spread across various

sectors such as marketing [1], finance [2], and healthcare

[3] for data analytic tasks. Developing and deploying

SVM-based solutions goes through two main phases:

training an SVM model and using the model for infer-

encing. The training phase requires a dataset that is used to

develop the SVM network by fine-tuning its parameters

and outputs the SVM model as a result. In the deployment/

testing phase, the generated SVM model is used to make

inferences on newly unseen data samples.

Training an effective SVM model for certain applica-

tions is not a straightforward task. For instance, data col-

lection and engineering might require expert domain

knowledge to identify the relevant features that impact a

response variable. It might also require massive computing

capacity especially in scenarios that include big datasets.

Moreover, model creation and validation includes scientific

and artistic proficiency that are not commonly known.

Developing these capabilities in-house can be very

expensive and waste of resources especially for resource-

limited clients. Due to the above challenges, users revert to

cloud computing and adopt what is broadly known as

Machine Learning as a Service (MLaaS) solutions [4]. In

fact, several ML-solution infrastructures have been devel-

oped by cloud service provides such as Amazon, Google,

Microsoft and IBM to provide MLaaS for clients at

affordable subscription fees. In this paradigm, the cloud

hosts an effective model that can be used for making

& Ahmad Al Badawi

aalbadawi@ra.ac.ae

Ling Chen

Ling_Chen@i2r.a-star.edu.sg

Saru Vig

Saru_Vig@i2r.a-star.edu.sg

1 Homeland Security, Rabdan Academy, Dhafeer St,

114646 Abu Dhabi, UAE

2 Cybersecurity, Institute for Infocomm Research, 1

Fusionopolis Way, Singapore 138632, Singapore

123

Neural Computing and Applications (2022) 34:15555–15573
https://doi.org/10.1007/s00521-022-07202-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-7759-7368
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07202-8&domain=pdf
https://doi.org/10.1007/s00521-022-07202-8

inferences on data points provided by the subscribed users.

While this solution might overcome most of the challenges

mentioned above, there are serious privacy concerns that

arise when the data samples provided by the users are

highly sensitive such as bio-metric traits, medical records,

and financial information. This has motivated several

research efforts to tackle the increasing privacy concerns of

MLaaS and devising privacy-preserving machine learning

inferencing technologies.

One of the most promising privacy-preserving tech-

nologies is the Fully Homomorphic Encryption (FHE).

FHE gives the possibility of performing meaningful arith-

metic operations (e.g. addition/multiplication) on encryp-

ted data [5]. This can enable an untrusted third-party cloud-

based server to perform computations on encrypted data

without compromising the privacy of sensitive information.

In theory, it is possible to apply machine learning algo-

rithms on encrypted data and revert back calculated data/

predictions in encrypted form, but there are computational

limitations leaving with limited practicality. Machine

learning algorithms generally require complex computa-

tions rendering FHE too slow to realize real-time predic-

tion. As such, there is still a need to identify feasible

algorithms with optimizations to make them adaptable and

practical for FHE. Our privacy-preserving SVM prediction

relies heavily on FHE and several optimizations to achieve

an efficient solution.

The literature is abundant with several studies on real-

izing privacy-preserving SVM solutions. Broadly speaking,

two different solution methodologies can be identified,

namely, cryptographic and non-cryptographic methods. In

this work, we focus on cryptographic methods and stress on

the usage of two interesting privacy-preserving technolo-

gies: FHE and Multi-Party Computation (MPC). As MPC

is maturer than FHE, the majority of the early proposed

works employed MPC protocols. Recently, FHE started to

gain more popularity in implementing privacy-preserving

machine learning methods including SVMs. Other privacy-

preserving methods such as Block Scrambling-based

Encryption (BSE) schemes have also been employed. We

briefly review the state of the art on privacy-preserving

SVM frameworks focusing on those that employ HE.

BSE schemes, proposed for Encryption-then-Compres-

sion (EtC) systems, were demonstrated to be applicable for

face recognition problems using SVMs in [6]. In this

framework, the image is divided into non-overlapping

blocks and block-based pre-processing is applied. The

authors propose a similar solution using a random unitary

transformation. The generated templates using the Random

Unitary Matrix method were shown to be performant

secure SVM algorithms. Despite the high efficiency of

these methods, their security guarantees are questionable as

each block in encrypted images with EtC, has a significant

correlation with the corresponding block in the original

images [7].

Moving on to HE solutions, the first known privacy-

preserving protocol for SVM using Pailler homomorphic

encryption was presented in [8]. The authors developed an

interactive protocol that hides the client’s input data and

the server side’s classification parameters for binary and

multi-class classification. Even though the accuracy was

shown to be similar to the plaintext version, the protocol is

computationally intensive requiring 149.82 s for a small

dataset with only 213 data points in addition to the inter-

action required among the parties during computation.

Optimizing the inference time is one of the main factors we

considered in our purposed solution. Another relevant

FHE-based study was conducted in [9]. The authors per-

formed image classification using SVM with polynomial

kernels using Somewhat Homomorphic Encryption (SHE).

They employed an output masking methodology to protect

the privacy of the SVM parameters, which are used in

plaintext. Their experimental evaluation on CIFAR-10

‘car’/‘not car’ identification task [10], using an SVM with a

polynomial kernel of degree 2, and 1191 support vectors of

length 29 features required 8.97 s for prediction. We show

later how our framework can perform SVM prediction for a

very large real-world dataset with 165 features, 200K data-

points and 7780 support vectors in 1.25 s. Besides, their

framework suffered from prediction accuracy loss due to

the use of an integer-based FHE scheme (BGV [11]) unlike

our framework that employs a real-numbers-friendly FHE

scheme (the Cheon-Kim-Kim-Song (CKKS) scheme [12]).

More recently, the authors in [13] proposed an SVM

training algorithm with FHE for binary classification tasks.

They devised an adapted FHE friendly gradient descent

method for the least square problem optimization. The

algorithm has been implemented via CKKS [12] and tested

on eight different datasets. The practicality of their

framework is debatable as the authors used small datasets

(with 6–60 features and less than 100 data points) for

training requiring on average 30–60 s per single gradient-

decent iteration. Moreover, their SVM models severed

from low prediction accuracy ranging from 64 to 98% due

to the low number of training iterations. It should be noted

that the prediction latency was not reported in their

framework. A more relevant framework for privacy-pre-

serving clustering with SVM and FHE was proposed in

[14]. The authors implemented an FHE-friendly SMV

clustering algorithm and evaluated it on six different

datasets. Their experimental evaluation showed that the

framework did not scale as the size of the dataset is

increased despite the employment of low-rank datasets of

only (2–3) features. For instance, their system required

27.24 s and 220.38 s on the Hepta (3 features and 212 data

15556 Neural Computing and Applications (2022) 34:15555–15573

123

points) and the Chainlink (3 features and 1000 data points)

datasets, respectively.

With the advances in security with machine learning

algorithms, their application to the medical industry has

attracted interest [15, 16]. The authors in [17] proposed a

secure pre-diagnosis system (eDiag) using a non-linear

SVM kernel. Although accurate, the computational com-

plexity is dependent on the number of support vectors.

Thus, they choose lightweight multiparty random masking

and polynomial aggregation methods to design the frame-

work. There has been other research on employing MPC

protocols as well [18, 19]. MPC solutions suffer, by design,

from several interactions between the client and server and

may require high bandwidth for complex computations.

Our framework using FHE is conceptually simpler and

more efficient for privacy-preserving SVM prediction tasks

in terms of latency and bandwidth.

Our main contribution in this paper is a framework for

privacy-preserving Fast Homomorphic SVM inference. We

present FHSVM: a Fast Homomorphic SVM for secure

evaluation of SVM models on encrypted data. FHSVM

integrates different technologies such as machine learning

and FHE to execute machine learning tasks on highly

confidential data. A potential system deployment of

FHSVM is depicted in Fig. 1. We assume that the HE

evaluator has a pre-learned SVM model and is willing to

provide SVM predictions on input instances provided by

the end-user at some subscription rate. The SVM model is

trained on plaintext data and it remains in unencrypted

form. This can be done by either training the model on pre-

historical or public data. The end-user provides encrypted

data ENC (x) to the HE evaluator. The latter runs FHSVM

on ENC (x) and generates an encrypted result ENC

(SVM(x)). Eventually, the end-user who has access to the

secret key can decrypt and learn SVM (x).

Although FHE has been realized in practice more than a

decade ago and undergone many optimizations towards

improving its efficiency, the technology is still far from

being an out-of-the-box tool for adoption in practical

applications. Issues related to the choice of the suit-

able FHE scheme, the encryption parameters, noise man-

agement (more on that later), multiplicative depth

optimization, vectorized execution mode, data expansion,

and key management need to be addressed by FHE experts

to realize efficient and practical privacy-preserving appli-

cations with FHE. In this work, we employ the CKKS FHE

scheme that supports natively homomorphic computations

on real numbers. Our second major contribution in this

work is showing how to realize an efficient privacy-pre-

serving algorithm for SVM prediction on encrypted sam-

ples (FHSVM) by utilizing several algorithmic and

architectural optimizations such as intensive packing and

parallel algorithms towards improving efficiency. To

evaluate our framework, we have implemented FHSVM

and evaluated it on a publicly available large (more than

200k instances) real-world dataset (the Elliptic Dataset

[20]) for Anti-Money Laundering (AML) in Bitcoin

transactions. With the proposed optimization methods of

packing and parallel implementation, we were able to

reduce computation time to about 1.25 s.

The main strengths and challenges of selected crypto-

graphic solutions of privacy-preserving SVM on encrypted

data are described in Table 1. We focus on several

dimensions related to privacy-preserving SVM such as

whether the model parameters were encrypted alongside

the input samples, accuracy loss exhibited in the proposed

solution, the guaranteed security level measured in bits,

performance aspects in terms of communication and

computation overhead, statistics of the datasets used in the

evaluation and type of kernel functions supported by the

solution. It can be noticed that no winning solution exists

due to the complexity of the problem at hand and the trade-

off between security, utility and cost.

The rest of the paper is organised as follows. Section 2

provides some background on FHE, CKKS, and the SVM

prediction algorithm. Our methods used to construct

FHSVM are presented in Sect. 3. Section 4 shows our

experimental methodology and security analysis. The

empirical evaluation of FHSVM is presented in Sect. 5.

Further discussion on potential use cases of FHSVM and

security analysis is provided in Sect. 6. Finally, Sect. 7

concludes the work.

Fig. 1 Deployment of privacy-

preserving SVM evaluation

with HE

Neural Computing and Applications (2022) 34:15555–15573 15557

123

2 Background

In this section, we review the basic notions our work builds

on. We start by describing the notations used, the basic

primitives of the CKKS scheme and introduce the SVM

machine learning algorithm.

2.1 Notations

Capital and small letters are used to refer to sets and ele-

ments of sets, respectively. We denote the sets of integers,

reals and complex numbers by Z;R; and C, respectively.

Matrices and vectors are denoted by bold capital and small

letters, respectively. The dot product between two vectors

is denoted by h�i. We use the symbols b�c, d�e, and b�e to
refer to the round down, round up and round to nearest

integer functions, respectively. For an integer a, jajq
denotes the remainder of a when divided by q. If a is a

polynomial, the reduction is performed on each coefficient.

The symbol a � S refers to sampling an element a from

the set S.

2.2 FHE

An FHE scheme is a cryptographic method that allows a

not-necessarily trusted party to compute on encrypted data

without access to the decryption key [5]. In simple terms,

FHE maps plaintext messages P into ciphertexts C without

affecting the algebraic structure between P and C. The

structure is mainly preserved under addition and multipli-

cation. Concretely, denoting the FHE encryption procedure

by ENC, let m1;m2 2 P be two plaintext messages, then

the following property holds: ENCðaÞ � ENCðbÞ ¼
ENCðaþ bÞ and ENCðaÞ � ENCðbÞ ¼ ENCða � bÞ, where
� and � are homomorphic addition and homomorphic

multiplication, respectively. Since addition and

multiplication in Z2 are Turing complete, FHE allows one

to compute arbitrary functions with encrypted operands.

The result itself is also encrypted and can only be

decrypted successfully by the owner of the decryption key.

While working with FHE, one needs to keep in mind the

following notions. Firstly, the magnitude of noise included

in ciphertexts. The security of most FHE schemes relies on

the Learning With Errors (LWE) problem and its ring

variant Ring-LWE (RLWE). These problems use noise

components that are sampled from certain distributions as

part of their operation. The encryption procedure in FHE

inherently introduces some noise in freshly encrypted

messages. As we compute, the magnitude of this noise

grows at a certain rate. The noise growth due to addition is

much slower (almost negligible) when compared to that

due to multiplication. Note that the noise should be

maintained under a certain level so that the decryption

procedure can remove it and retrieve the underlying

plaintext message successfully.

The second important notion is the multiplicative depth

of the target circuit which can be defined as the largest

number of multiplications along any path in the circuit. If

the multiplicative depth is known in advance and quite

small, a levelled FHE scheme [11] can be used. These

schemes allow a limited number of multiplications but can

be much faster than conventional FHE schemes. There are

several instantiations of FHE schemes in the literature

[5, 12, 21–29] that differ in the underlying structure,

capabilities and performance. In this work, we adopt a

Residual Number System (RNS) variant of the CKKS

levelled FHE scheme [30].

2.3 CKKS

In this section, we describe an RNS variant of the levelled

CKKS scheme [30]. The scheme is parameterized by the

ring dimension n that is a power of 2 integer, L 2 Z the

Table 1 Strengths and limitations of some cryptography-based approaches for privacy-preserving SVM with encrypted data

Method Encrypted

model

Accuracy

loss

Security level

(bits)

Comm.

overhead

Comp.

overhead

Dataset Statistics Kernel type

#

Samples

#

Features

#

Classes

[8] No Negligible 112 High Low 150–768 4–2601 Multi Polynomial

[9] No Low 80 Low Mid 30,000 57 Binary Polynomial

[13] Yes Low ? Low High 100 6–60 Binary Polynomial

RBF

[14] No Low 128 Low Mid 212–1000 2–3 N.A. Gauss-ian

Ours No Negligible 128 Low Low 200,000 166 Multi Polynomial

N.A. stands for non-applicable as the problem studied in that work was clustering, Comm. and Comp. stand for communication and compu-

tational, RBF stands for Radial Basis Function, and (?) stands for unknown

15558 Neural Computing and Applications (2022) 34:15555–15573

123

multiplicative depth, the ciphertext coefficients

qL [qL�1 [� � � [q1 all 2 Z and the plaintext scale fac-

tor p 2 Z. The scheme works in the polynomial rings

Rql ¼ Zql ½X�=ðXn þ 1Þ, where 1� l� L is the level number.

A message is first scaled by p before encryption and the

generated ciphertext stars at level L. Multiplying two

ciphertexts p � m1 and p � m2 results in squaring the scale

factor p2m1 � m2. The scheme provides a rescale operation

to divide approximately by 1/p and maintain the precision

fixed. The CKKS scheme includes the following

primitives:

• INIT: this procedure takes as input the security level k,
and maximum multiplicative depth L, initialize the

scheme by setting the ring dimension n, 2 uniform

random distributions: X key over R2 and X qL over RqL ,

and a discrete Gaussian distribution X err with zero

mean and standard deviation r over RqL .

• KEYGEN: this procedure takes the system parameters

and compute: 1) the secret key s X key 2 RqL , and 2)

the public key ða; bÞ 2 R2
qL
, s.t., a X qL and b ¼

�asþ e with e X err.

• ENCODE(z, p): this procedure takes a vector of

complex numbers z 2 Cn=2 and precision p, and returns

l ¼ bIDFTðp � zÞe 2 R, where IDFT is the Inverse

Discrete Fourier Transform.

• ENC ðlÞ: this procedure takes a plaintext message ðlÞ
as input. It samples u X qL and e0; e1 X err and

returns the ciphertext ct ¼ ðc0; c1Þ ¼ ðauþ lþ
e0; buþ e1Þ 2 R2

qL
.

• DEC(ct): this procedure takes a ciphertext ct 2 R2
ql
and

returns l ¼ c0 þ s � c1 2 Rql .

• DECODE(l; p): this procedure takes a plaintext mes-

sage l 2 R and precision p as inputs. It returns

v ¼ DFTðl=2pÞ 2 Cn=2, where DFT is the Discrete

Fourier Transform.

• HADD ðct0; ct1Þ: homomorphic addition takes as input

two ciphertexts and returns ctþ ¼ ct0 þ ct1 2 R2
ql
. Note

that the input ciphertexts must be at the same level l.

• HMUL ðct0 ¼ ðc00; c01Þ; ct1 ¼ ðc10; c11ÞÞ: homomor-

phic multiplication takes two ciphertexts and computes

ct� ¼ ðc00c10; c00c11 þ c01c10; c01c11Þ 2 R3
ql
. Note that

the input ciphertexts are at the same level l. This

operation is usually followed by a relinearization

procedure that is used to reduce the number of

components in ct� from 3 to 2 elements 2 R2
ql
.

• HADDPLAIN(ct, pt): this procedure adds a ciphertext

ct ¼ ðc0; c1Þ 2 R2
ql

and a plaintext pt 2 R. It com-

putes the summation ciphertext using ctþ ¼ ðc0þ
pt; c1Þ 2 R2

ql
.

• HMULPLAIN(ct, pt): this procedure multiplies a

ciphertext ct ¼ ðc0; c1Þ 2 R2
ql

with a plaintext pt 2 R.

It computes the product ciphertext ct� ¼ ðc0�
pt; c1 � ptÞ 2 R2

ql
.

• RESCALE ðct; l0Þ: this procedure scales an input

ciphertext at level l and l0 ¼ l� 1 by computing

ct0 ¼ bql0=ql � cte 2 Rql0 .

• ROTATE ðct; p 2 ZÞ: this procedure can be used to

rotate the encrypted vector in a ciphertext. The

direction of the rotation (left or right) depends on the

sign of p. ROTATE computes ct0 ¼ ðc0ðXpÞ; c1ðXpÞÞ.
Note that ct0 can only be decrypted by a rotated version

of the secret key s0 ¼ sðXpÞ. However, using a rotation

key that is part of the public key, a procedure known as

key switching can be used to make ct0 decryptable under
the original, ‘‘unrotated’’, secret key s.

2.4 SVM

2.4.1 Training

There are a number of hyperplanes that can be used to

classify data points into different classes. For a binary

classification problem in 2-D data points, the hyperplane is

a line. The SVM algorithm aims to maximize the distance

between the hyper-planes and any data point so future data

points can be classified with more confidence. This is done

by finding the ’widest margin’ between the two classes and

placing the hyper-plane in the middle of this margin.

Training involves running this algorithm on the feature

vectors of the data points for which labels have already

been assigned. This selection is done in lines 2–6 in

Algorithm 1. It should be noted that, kernel functions can

be used to enable SVM to operate in a high dimensional

space. For our use case, we choose a polynomial kernel for

the training phase with degree d.

2.4.2 Testing

To test an unclassified input feature vector x we evaluate

the decision function in Eq. (1), where

c ¼ sign

�X
i2jSj

aiyiKðhxi; xiÞ þ b

�
ð1Þ

– xi 2 Rm are the support vectors in the set S

– m is the number of features in input and support vectors

– b is the model intercept

– ai 2 a is the i-th Lagrange multiplier

– yi 2 y is the class of the i-th support vector

Neural Computing and Applications (2022) 34:15555–15573 15559

123

– Kðhxi; xiÞ is the polynomial kernel function of degree =

d, with c as a scaling factor = ð1=no. of featuresÞ
evaluated on the dot product hxi; xi as

Kðhxi; xiÞ ¼ ðr þ chxi; xiÞd, where r is a scalar inde-

pendent from the kernel function.

Equation 1 will be evaluated with encrypted x for FHSVM

and the other parameters are obtained in clear text from

SVM training done in Algorithm 1.

3 Fast homomorphic SVM prediction

In this section, we present the system components and

methods employed to construct the FHSVM algorithm for

enabling privacy-preserving prediction of nonlinear SVMs

on encrypted data. We start by describing the threat model

assumed for using FHSVM. Next, we briefly describe the

training phase that is performed on data in the clear. Lastly,

a detailed description of the homomorphic prediction phase

of FHSVM is presented.

3.1 Threat model

In FHSVM, the HE evaluator is assumed to own a pre-

learned SVMmodel that has been trained on an unencrypted

dataset. The HE evaluator adopts a Software as a Service

(SaaS) service model and provides an online SVM predic-

tion as a service to end-users who provide their input vectors

in an encrypted form using CKKS. Since the CKKS

scheme is proven to be IND-CPA secure [12], the HE

evaluator cannot infer anything from the encrypted input

except maybe its length. Similar to other FHE applications,

we assume that the HE evaluator is semi-honest, i.e., it fol-

lows the protocol utterly step for step while trying to infer as

much as possible from the data it manipulates. Therefore, the

HE evaluator is trusted to do the expected computation but it

cannot decrypt to reveal the data. Since the homomorphic

evaluation of SVM prediction is entirely performed while

the data is encrypted, we can ensure that the confidentiality

of the data cannot be compromised. As such, FHSVM is

considered as secure as the security level of the employed

CKKS scheme against semi-honest HE evaluators.

3.2 Phase I: Data pre-processing

Since SVM is a supervised machine learning algorithm, it

expects an annotated dataset as input. We assume that the

features in the dataset are all numeric. Our framework does

not support categorical/nominal nor textual data. However,

standard conversion methods from categorical data to

numerical data such as integer encoding and one-hot

encoding can be used to overcome this limitation. This is

not a major limitation of FHSVM since several standard

non-privacy-preserving machine learning algorithms typi-

cally follow this approach [31].

3.3 Phase II: Training SVM in plaintext

In the second phase, we train an SVM model in the

plaintext domain. This step is independent of the FHE

context and can be done via conventional machine learning

frameworks while applying state-of-the-art optimizations

to ensure optimum performance in terms of classification

accuracy and evaluation overhead. This phase requires us

to fix a dataset as input to the SVM learning algorithm.

Also, there are a few hyperparameters that need to be fixed

as shown in Algorithm 1. In this work, we adopt the scikit-

learn machine learning module in python. While this

module supports several kernel functions, the current ver-

sion of FHSVM supports linear and polynomial kernels.

One particular requirement FHSVM imposes is the

employment of polynomial kernel functions. This is due to

the fact that evaluating polynomials on encrypted data in

CKKS is naturally supported via homomorphic addition

and multiplication operations. Moreover, it is of paramount

importance to optimize the degree of the kernel polynomial

to reduce the multiplicative depth of the SVM prediction

computation. This has a large impact on the size of CKKS

parameters, encryption keys and ciphertext sizes, compu-

tational overhead, security level, and correctness or the

precision of the computation. We note that FHSVM can be

adapted to support other kernel functions such as Radial

Basis Functions (RBFs). These functions however need to

be approximated as polynomials. Another way of evalu-

ating these functions is via Look-up Table (LUT) search,

but this might be more expensive to do in CKKS.

While training the SVM model in plaintext, one can still

use standard machine learning evaluation practices such as

precision, recall, prediction accuracy, Receiver Operating

Characteristic (ROC) curves, and F scores to evaluate and

improve the SVM model. Note that other than employing a

low-degree polynomial kernel, FHSVM is oblivious to

which learning algorithm is used in training. Moreover,

advanced training optimizations such as weight initializa-

tion, and regularization can be applied without affecting

FHSVM workflow. Once this phase is complete, the SVM

model parameters (S, a, y,K, b) are extracted to be used in the

third phase, homomorphic prediction of SVM on encrypted

data.

Lastly, an important design aspect of FHSVM is that it

natively supports binary classification problems, i.e., 2-class

problems. In addition, it is suitable for single-label classifi-

cation problems, i.e., assigning one label to each input

instance. If the classification problem at hand includes

multiple classes or multiple labels per instance are desired,

15560 Neural Computing and Applications (2022) 34:15555–15573

123

some out-of-the-box machine learning methods can be used

such as one vs. all classifiers and using a separate model for

each label to adapt FHSVM to these problems.

3.4 Phase III: Homomorphic prediction of SVM
on an encrypted feature vector

This is the core phase of FHSVM in which we evaluate the

decision function in Eq. (1) homomorphically. A

flowchart of FHSVM protocol for conducting this task is

depicted in Fig. 2. FHSVM requires cooperation between

the user (who has the sensitive data point) and the HE

evaluator (who has the SVM model) to do the SVM

inference securely—Step 0. The user selects suit-

able CKKS encryption parameters, instantiates the cryp-

tographic context and generates the encryption keys. The

cryptographic context alongside the public-key material are

sent to the evaluator to be used in the homomorphic

evaluation of the SVM function—Steps 1–2. The evaluator

can now encode the SVM parameters using the crypto-

graphic context and wait for input encrypted data—Step 3.

The user encodes and encrypts the input data point x and

sends the resultant ciphertext to the evaluator—Steps 4–5.

Fig. 2 Flowchart of FHSVM

homomorphic prediction

protocol. pt and ct refer to
plaintext and ciphertext,

respectively. SK and PK refer to

the secret key and public key,

respectively

Algorithm 1: SVM training with scikit-learn for binary classification
tasks
Input: Classes vector ccc, matrix FFF comprising the feature vectors and

polynomial kernel function with degree d
Output: svc: SVM model parameters S,α,y,K, b

1 j = 0
2 for i ← 0 to total number of transactions do
3 if ccci ∈ {0, 1} then
4 Yj = ccci
5 XXXj = FFF i

6 j++;

7 X train, Y train = TRAIN TEST SPLIT(X, Y, test size = 0.25)
8 svc = SVC(kernel = poly, degree = d)
9 svc = svc.fit(X train, Y train)

Neural Computing and Applications (2022) 34:15555–15573 15561

123

Upon the receipt of the ciphertext encrypting the data

point, the evaluator evaluates the SVM decision function

homomorphically—Step 6. The resultant ciphertext is sent

back to the user who can decrypt, decode and compute the

sign function to obtain the classification result—Steps 7–9.

Note that all the SVM model parameters are used

without encryption. The only encrypted parameter in the

decision function is the end-user’s input (the feature vector

x of length m). A question that might arise at this stage is

how to encrypt the feature vector. A naive solution is to

encrypt each component of the feature vector (a scalar) in a

separate ciphertext element. This solution results in the

simplest FHE code design but would impose enormous

computation and bandwidth requirements. For instance, the

client needs to encrypt and communicate m ciphertexts to

the HE evaluator. The HE evaluator would need m

homomorphic multiplications and m� 1 homomorphic

additions to compute the dot product in the decision

function. Due to the enormous computational and band-

width requirements of this solution, we do not recommend

it. Instead, we opt to exploit the plaintext/ciphertext

packing method offered by the CKKS scheme which

allows us to encrypt vectors instead of a single scalar.

3.4.1 Plaintext and ciphertext packing

The plaintext/ciphertext packing method is due to Smart

and Vercauteren [32]. It allows one to encode multiple

messages in one plaintext element that can be encrypted to

generate only one packed ciphertext element. More con-

cretely, an array of up to t ¼ n=2 complex numbers can be

encoded as one plaintext element. This enables the Single-

Instruction Multiple-Data (SIMD) execution mode of

homomorphic operations on packed ciphertexts for free.

One may view the plaintext or ciphertext elements as a

container with a fixed number of slots. In each slot, one

input message (a numeric value) can be stored. Homo-

morphic addition/multiplication of two packed ciphertexts,

say a ¼ ENCðv0; . . .; vt�1Þ, and b ¼ ENCðu0; . . .; ut�1Þ
results in component-wise homomorphic addition or mul-

tiplication of vi and ui; 8 0� i� t � 1.

3.4.2 Design decisions

An important design decision that might arise here is how to

compose the feature vector we would like to encrypt.

Whether to encrypt the entire feature vector x as a whole in

one ciphertext, or interleaving more than one feature vector,

say matrixXr�m, and storing them inm different ciphertexts,

with ciphertext i contains Xji; 0� j\r and 0� i\m. The

former is suitable for low-latency single-prediction-at-a-

time applications and it imposes less communication over-

head [33, 34]. The latter on the other hand is more suited for

high-throughput batched-prediction applications, i.e., per-

forming multiple predictions at a time, but it incurs higher

communication and computation overhead [35, 36]. In

FHSVM,we adopt the former design and offer a low-latency

and low-bandwidth single prediction service.

We assume that the number of features m in x is less

than the number of slots supported by CKKS. This is to

ensure that the entire feature vector can be encrypted in a

single ciphertext using the CKKS plaintext/ciphertext

Fig. 3 Our ultra-packing

strategy for the first batch of

computing the decision function

addends in parallel. The

quantities si’s are some inter-

slot summations that will be

masked out

15562 Neural Computing and Applications (2022) 34:15555–15573

123

packing method. If m is larger than t, multiple ciphertexts

(dmt e) would be required to encrypt the whole feature vec-

tor. While the current version of FHSVM does not support

this case, FHSVM can be easily adapted to tackle it.

3.4.3 FHSVMVanilla

Our first version of FHSVM, which we call FHSVMVanilla

is shown in Algorithm 2. The algorithm loops over all the

support vectors in S to compute a single addend of the

decision function. In each iteration, the SVM model

parameters of the i-th support vector are loaded and

encoded in plaintext objects (lines 3–7). The dot product

between the encrypted end-user feature vector x and the i-

th support vector xi is computed via 1 HMULPLAIN, 1

RESCALE, and a call to Total_Sum in Algorithm 3 (see

also Fig. 4 for illustration) to add up all the values in the

ciphertext slots (lines 8–10). Next, we evaluate the kernel

function K on the dot product result (line 11). Finally, we

multiply the output of the kernel evaluation by the coeffi-

cient aiyi and accumulate the result in the output ciphertext.

We note that in FHSVM, we do not evaluate the sign

function in the encrypted domain as it is not FHE friendly

and would require expensive approximation. Instead, we

send the summation value to the client who can decrypt and

evaluate the sign function to learn the classification result.

The computational complexity of FHSVMVanilla is of the

order OðjSjÞ of 1 homomorphic computation of one addend

in the decision function in Eq. (1). We will present algo-

rithmic and architectural optimization strategies to reduce

FHSVM computational overhead.

3.4.4 Algorithmic optimization: ultra-packing (FHSVMPack)

Our ultra-packed plaintext/ciphertext strategy stems from

the fact that instead of packing a single support vector in

one plaintext element, we pack multiple support vectors in

one plaintext element. The only assumption we require for

this strategy is to ensure that the number of features in a

support vector is less than the number of slots in CKKS

plaintexts. We believe that this is usually the case as the

number of slots is usually in the orders of thousands

whereas the number of features in SVM problems is in the

orders of hundreds. Hereafter, we refer to this ultra-packed

design of FHSVM as FHSVMPack. We provide below a

concrete treatment of the packing strategy in FHSVMPack.

Let m denote the number of features in a support vector.

As mentioned previously, the number of slots in CKKS

plaintexts is t ¼ n=2. Firstly, we compute s ¼ 2dlog2 me,
which is, the smallest power of 2 number that is greater

than m. We create a vector that contains g ¼ t
s support

vectors. In this vector, support vector xi is stored at index

is 8 0� i\g. Note that any unpopulated component in this

vector should be filled with zeros. This vector of linearly

Neural Computing and Applications (2022) 34:15555–15573 15563

123

packed support vectors is encoded in a single plaintext

element. A visual illustration can be found in Fig. 3.

We also require the client who provides the encrypted

feature vector x to create a vector of linearly packed g
clones of x similar to the way xi is packed. The vector will

be encoded, encrypted and sent to the server for homo-

morphic evaluation of SVM prediction. By doing so, we

can compute g addends of ct sum in each loop in Algo-

rithm 2. To do that, two major changes to Algorithm 2

need to be done. Firstly, a procedure known as Par-

tial_Sum (see Fig. 5) instead of Total_Sum needs to be

invoked. The only difference between these two functions

is the number of iterations we loop over the ciphertext (see

line 1 in Algorithm 3). In Partial_Sum, we loop over

log2 s instead of all slots in the ciphertext. This results in

the dot product result computed for support vector i stored

in slot ðiþ 1Þ � s� 1 8 0� i\g.
Secondly, the slots that contain the partial sum results

need to be added only without the remaining slots in the

packed resultant ciphertext. This can be done simply by

using appropriate masking to keep the desired dot product

results. The pseudo-code of the batched version of our

FHSVM is shown in Algorithm 4.

In terms of computational complexity, since we com-

pute a batch of g support vectors at a time, we expect that

the performance of FHSVMPack to be of the orderOðjSj=gÞ.
Note that there is an extra masking operation included in

FHSVMPack which may lower the expected speedup.

Fig. 4 Illustration of

Total_Sum for a vector of eight

slots

Algorithm 3: Total Sum [36]
Input: ciphertext ct encrypting vector v and number of slots t
Output: ciphertext encrypting the total sum of elements in v,

duplicated in slots
1 for j ← 0 to (log2 t) − 1 do
2 c = ROTATE(ct, 2j)
3 ct= HADD(ct, c)

4 return ct

15564 Neural Computing and Applications (2022) 34:15555–15573

123

Fig. 5 Illustration of Partial_Sum for a vector of 16 slots, m ¼ 3 and s ¼ 4

Neural Computing and Applications (2022) 34:15555–15573 15565

123

4 Experimental methodology

In this section, we describe how to select the CKKS

parameters to achieve the desired security level and enable

efficient and correct implementation of FHSVM. We also

present another architectural optimization suitable for

parallel execution platforms.

4.1 CKKS parameters choice

As mentioned previously, we adopt the RNS variant of the

CKKS scheme [30] to implement the two versions of

FHSVM: FHSVMVanilla and FHSVMPack. The CKKS

scheme can be viewed as a calculator for performing

arithmetic on real numbers represented as fixed-point

numbers. The typical workflow in this scheme is as fol-

lows. Firstly, as part of the encoding step, the input oper-

ands are multiplied by a predefined scale factor p and

rounded to the nearest integer. Thus, the first parameter that

needs to be fine-tuned is the scale factor p. This can be

done by simulating the target computation using a fixed-

point arithmetic simulator to find the best value of p that

provides sufficient precision. Then, the scaled data can be

encrypted to be used as operands of the homomorphic

computation.

In fixed-point representation, adding/subtracting two

numbers can be carried out by adding/subtracting the

underlying integers if they have the same scale factor. The

result will also have the same scale factor. Extra caution is

required that no overflow occurs during the addition/sub-

traction of the underlying integers. If the numbers have

different scale factors, one of them needs to be scaled down

to match the scale factor of the other number. This scale

down operation might result in precision loss due to

rounding. To multiply two numbers, we only need to

multiply the two underlying integers and compute the new

scaling factor of the result as the product of operands

scaling factors. To maintain the number of bits for the

product, we can scale down the integer part by the number

of bits required. CKKS emulates fixed-point arithmetic on

encrypted data such as addition, subtraction, multiplication

and truncation.

To ensure high precision homomorphic computation, we

scale down the product ciphertext after each multiplication.

This results in consuming one level in RNS CKKS. We use

250 as the input scale factor and set the ciphertext coeffi-

cient qL as the product of 60-bit and 50-bit primes. Denote

to a 60-bit and 50-bit prime numbers by qð60Þ and qð50Þ,

respectively. We set qL ¼
Q
fqð60Þ0 , qð50Þ0 ; . . ., qð50ÞL�2, q

ð60Þ
1 g.

Note that in RNS CKKS, scale down from level l to level

l� 1 is done by integer division of ql=ql. Hence, there is

even another source of precision loss as we are not scaling

down by 250.

Next, we estimate the number of levels required by

FHSVM. In the FHSVMVanilla, we need 2 plus the multi-

plicative depth of evaluating the kernel function K.

Whereas one extra level is required in FHSVMPack due to

the masking step in line 14 in Algorithm 4. Once the size

of the ciphertext coefficient and the desired security level

are fixed, one can refer to the LWE hardness estimator [38]

to find the polynomial ring dimension n. We target a

128-bit security level. These parameters are application-

dependent; therefore, specific parameters will be provided

later when we present a concrete use case application of

FHSVM.

As for the CKKS encryption keys generation, we follow

the recommendations of the draft version of the FHE

standard [39]. The secret key is sampled from a uniform

ternary distribution (i.e., polynomials with coefficients in

X key ¼ f�1; 0; 1g sampled uniformly). The Gaussian dis-

tribution of the noise X err has a mean of zero and standard

deviation of 3.19.

4.2 Architectural optimization: multi-threading

An immediate optimization of FHSVM is to employ a

multi-threaded implementation. We can exploit the paral-

lelism in the main loop in Algorithms 2 and 4 using a

parallel implementation. We used the OpenMP C??

library to develop a parallel version of FHSVM that we call

FHSVMOMP. In the following paragraphs, we describe this

optimization on Algorithm 2. However, the same approach

can be used to parallelize Algorithm 4.

We basically parallelize the main loop that runs over all

the support vectors. To do that, we create a vector of

ciphertexts of length |S| to store all the addends in ct_sum.

The homomorphic computation of each addend in ct_sum

is computed independently in parallel by an individual

CPU thread. The loop in Algorithm 2 is followed by

another loop that is used to sum all the addends in ct_sum.

The cost of this optimization is the need to create a

vector of ciphertext addends in memory. As the size of

CKKS ciphertexts is quite large (approximately 2 � n �
log2 q bits), this can be quite expensive especially when the

number of support vectors is large. If the system memory is

not sufficient to support this execution, a batched execution

mode would be preferable where a batch (a subset of all

addends) of addends is computed at a time.

During the evaluation, we vary the number of CPU

threads and observe the latency of FHSVMOMP. Our

experiments suggest that a number of OMP threads that is

equal to the number of CPU cores on the system provides

15566 Neural Computing and Applications (2022) 34:15555–15573

123

the best performance. This will be empirically proven later

in the subsequent section.

In terms of computational complexity, since we com-

pute in parallel as many batches of g support vectors as the

number of threads (T), we expect that the performance of

FHSVMOMP Pack to be of the order OðjSj=ðgTÞÞ.

5 Experimental results

In this section, we evaluate FHSVM algorithm in a real-

world use case scenario related to the detection of Anti-

Money Laundering (AML) in Bitcoin transactions. We

describe the AML classification task, dataset employed,

FHSVM implementation parameters, execution platform,

and experimental configurations. We also provide an

extensive list of experiments to analyze the performance of

FHSVM with and without the optimization strategies pre-

sented earlier.

5.1 AML classification use case

We employ FHSVM for private detection of AML in bit-

coin transactions. Given a labeled dataset, we train an SVM

model that is able to classify bitcoin transactions into licit

and illicit transactions.

5.1.1 Dataset

For our evaluation, we employed the Elliptical Dataset of

real bitcoin transactions [20]. The dataset is presented as a

time series graph with nodes representing transactions and

edges of the directed payment flow between nodes. It

consists of over 200K transactions with each having 166

features. All the features are standardized, i.e., with zero-

mean and a unit standard deviation/variance. The first 94

features are based on local information e.g. time steps,

transaction fees. The remaining are aggregated features

obtained by one hop backward/forward transactions. The

training dataset consists of around 23% of the transactions

labeled as illicit and licit, while the remaining unlabelled

ones become a part of the testing dataset. Statistics of the

dataset are shown in Table 2.

5.1.2 Training an SVM model in the clear

Following the procedure shown in Sect. 3.3, we train an

SVM model in the plaintext domain using a polynomial

kernel of the form K ¼ cX2. The generated SVM model

has 7780 support vectors. We evaluate the performance of

the SVM model on the testing dataset (25% of the entire

dataset) in the plaintext domain. The classification accu-

racy of the generated SVM model is found to be 96.43%.

We believe that this classification accuracy is quite high as

state-of-the-art methods show slightly higher accuracy

figures (96.60%) using Graph Neural Networks [20]. These

classification accuracy figures are useful to assess the

classification accuracy achieved by FHSVM on the

encrypted testing dataset and have been shown in Table 3.

Precision is intuitively the ability of the classifier not to

label as positive a sample that is negative. The recall metric

is the ability of the classifier to find all the positive sam-

ples. F1-score is a way of combining the precision and

recall into a single number by finding their harmonic mean.

The microAvg-F1 score can be considered the classifier’s

Table 2 Statistics of the elliptic dataset

Statistic Value

Number of nodes 203,769

Number of edges 234,355

Number of features 166

Number of licit transactions 42,019

Number of Illicit transactions 4,545

Number of unknown transactions 187,791

Table 3 Illicit classification evaluation metrics of our SVM model

with polynomial kernel. LR refers to logistic regression, RF refers to

random forest, MLP refers to multi-layer perceptron and GCN refers

to graph convolutional networks

Method Precision Recall F1 MicroAvg-F1

LR [20] 0.404 0.593 0.481 0.931

RF [20] 0.956 0.670 0.788 0.977

MLP [20] 0.694 0.617 0.653 0.962

GCN [20] 0.812 0.623 0.705 0.966

Ours 0.840 0.376 0.520 0.964

Table 4 CKKS and FHSVM parameters for the AML task

Framework CKKS parameters FHSVM parameters

n log2 q p L |S| m r d c

FHSVMVanilla 214 320 50 4 7780 165 0 2 1/m

FHSVMPack 214 370 50 5 7780 165 0 2 1/m

The SVM polynomial kernel is parameterized by d, r and c. |S| denote
the number of support vectors in the SVM model. The security level

of CKKS under these parameters is k[128 bit against the Unique

Shortest Vector Problem (uSVP), Dual and Decoding attacks [38, 39]

Neural Computing and Applications (2022) 34:15555–15573 15567

123

overall accuracy: the proportion of correctly classified

samples out of all the samples.

5.2 Implementation of FHSVM

In this section, we describe in detail our implementation of

FHSVM for the AML use case.

5.2.1 Development environment

We used Microsoft SEAL version 3.6.2 to implement

FHSVM in C??. Microsoft SEAL includes an efficient

C?? implementation of an RNS variant of the CKKS

scheme. FHSVM has been developed and compiled on a

machine equipped with the ArchLinux operating system

vecsion 5.9.14-arch1-1 and the C?? compiler GCC

version 10.2.0.

5.2.2 FHSVM and CKKS parameters

As mentioned in Sect. 5.1.2, the kernel function is of

degree 2 of the form K ¼ cX2. Therefore; the multiplica-

tive depth for the homomorphic evaluation of K (line 11 in

Algorithms 2 and 4) is 2. This means the total multi-

plicative depth of FHSVMVanilla and FHSVMPack is 4 and 5,

respectively. The concrete FHSVM and CKKS parameters

to support this computation with k ¼ 128 bit security can

be found in Table 4.

5.3 Performance evaluation

To evaluate the performance of FHSVM, we use three

main experiments. In Experiment I, we analyze the per-

formance of FHSVMVanilla without optimizations reporting

the average prediction latency. In Experiment II, we

evaluate the performance of FHSVMOMP to analyze the

effect of multi-threading execution. Lastly, we study the

performance of FHSVM after applying both the multi-

threading optimization and our packing strategy in Exper-

iment III. This implementation is termed as

FHSVMOMP Pack. Note that in our timing analysis, we only

report the homomorphic computation time. Any system

initialization operations or encoding of the constant SVM

model parameters are done once at the system setup. The

latency of FHSVM prediction is calculated using the

std::chrono C?? library [40].

5.3.1 Platform configuration

We ran our experiments on a server that hosts 64-bit Intel

Xeon Platinum 8170 CPUs rated @ 2.10 GHz with 2 CPU

sockets. There are 26 physical CPU cores on each socket.

Each physical CPU core is able to run two logical threads.

Therefore, the total number of physical cores on the

machine is 52 cores, whereas the total number of logical

cores is 104 cores. The server is equipped with a 188 GB

RAM with a speed of 2666 MT/s.

5.3.2 Experiment I: FHSVMVanilla performance

We implemented FHSVMVanilla as described in Algo-

rithm 2 as a baseline unoptimized implementation. This

implementation is single-threaded and does not include any

advanced optimizations except for ensuring that the SVM

model constants are all encoded in CKKS plaintext objects

before the homomorphic computation is carried out. For

instance, the plaintext objects in lines 3–7 in Algorithm 2

are pre-computed and stored in memory.

Table 5 shows the number of tested examples and

average latency per example using FHSVMVanilla. The

recorded average prediction latency per example is found

to be 687.75 s (or 11.46 min). This experiment has not been

tested for all examples in the testing dataset due to the high

prediction latency. We ran this experiment for 100 ran-

domly selected examples from the testing dataset. We do

not report the accuracy results in this experiment due to the

limited number of examples tested. Later on, we will

provide prediction accuracy results over all the examples in

the testing dataset. The main purpose of FHSVMVanilla is to

serve as a baseline for studying the effect of our opti-

mization strategies on the prediction latency in FHSVM.

5.3.3 Experiment II: FHSVMOMP performance

We parallelized Algorithm 2 using OMP threads to con-

struct FHSVMOMP. Table 6 shows the number of CPU

threads used, average latency per example, and the

achieved speed up by FHSVMOMP over 500 examples

randomly selected from the testing dataset (except for the

Table 5 Performance analysis of FHSVMVanilla in terms of average prediction latency per example (in s)

Framework # Examples Avg latency StdDev Min Max

FHSVMVanilla 100 687.75 18.72 659.34 705.35

Avg and StdDev stand for the average and standard deviation, respectively

15568 Neural Computing and Applications (2022) 34:15555–15573

123

1, 2, and 4 threads configurations which we ran only for

100 examples). The speedup is calculated as the ratio

between single-threaded latency (i.e., average latency per

example in FHSVMVanilla to the multi-threaded latency in

FHSVMOMP). As we can see, FHSVMOMP improves the

latency by almost one order of magnitude when the number

of threads is 8 or above. The speedup factors show decent

scalability results as the number of threads is increased

until it plateaus around 52 threads. The highest perfor-

mance speed up (27.28�) is achieved at 52 threads, which

is the number of physical CPU cores on the testing

machine.

5.3.4 Experiment III: FHSVMOMP Pack performance

In the last experiment, we evaluate the performance of

FHSVM after including both optimizations: the multi-

threaded execution and the packing strategy. We imple-

mented FHSVMPack as described in Algorithm 4. We also

parallelized the main loop using OMP threads to build

FHSVMOMP Pack. Table 7 shows the performance results

of FHSVMOMP Pack while varying the number of CPU

threads. The overall speed up factors shown are computed

with respect to the FHSVMVanilla average latency. As

expected, the highest overall speed up factor (550.20�) is
achieved at 52 CPU threads. The best average latency

reported is 1.25 s demonstrates that FHSVMOMP Pack is

suitable for real-time predictions. In addition, we notice

that there is a zero loss in the prediction accuracy when the

system is tested over all the examples in the testing dataset.

To verify the speedup we got from employing our

algorithmic and architectural optimizations in

FHSVMOMP Pack, we calculate an estimated value of the

expected speedup on the AML task on our testbed machine.

Table 6 Performance analysis

of FHSVMOMP in terms of

prediction latency per example

(in s) while varying the number

of CPU threads

Threads # Examples Avg latency Speed up StdDev Min Max

1 100 687.75 1.00� 18.72 659.34 705.35

2 100 350.10 1.96� 25.60 313.34 385.33

4 100 187.01 3.68� 18.68 154.18 210.85

8 500 96.53 7.12� 12.89 76.76 115.46

16 500 51.21 13.43� 13.72 28.45 76.14

26 500 34.88 19.72� 12.28 20.33 55.13

27 500 34.15 20.14� 7.33 24.79 44.27

32 500 30.76 22.36� 6.42 21.91 39.23

52 500 25.21 27.28 � 3.75 18.83 30.19

64 500 27.93 24.62� 5.05 21.95 36.61

104 500 30.62 22.46� 8.67 19.88 42.28

128 500 32.25 21.33� 7.76 17.55 45.55

Table 7 Performance analysis

of FHSVMOMP Pack in terms of

average prediction latency (over

all testing examples) and overall

speed up factors (with respect to

FHSVMVanilla) while varying

the number of CPU threads

Threads Avg Latency (sec) Overall Speed up StdDev Min Max

1 29.89 23.01� 6.33 20.30 39.23

2 15.30 44.95� 3.05 11.45 20.86

4 8.14 84.49� 2.47 4.60 12.22

8 4.33 158.83� 1.23 2.47 6.17

16 2.33 295.17� 0.77 1.19 3.82

26 1.62 295.17� 0.39 0.77 2.25

27 1.64 424.01� 0.95 0.65 3.89

32 1.51 419.36� 0.45 0.35 1.85

52 1.25 550.20 � 0.28 0.79 1.71

64 1.47 467.86� 0.71 0.43 2.87

104 1.38 498.37� 0.19 1.15 1.74

128 1.41 487.77� 0.53 1.01 2.69

FHSVMOMP Pack achieves 96.43% prediction accuracy

Neural Computing and Applications (2022) 34:15555–15573 15569

123

As described in Sect. 3.4.4, the speed up factor achieved

due to packing is found to be g. In this problem, g ¼
n ¼ 214

2s ¼ 2log2 dm¼165eÞ
¼ 32� achieved from packing alone.

Referring to Table 6, we estimate that the speed up we get

from multi-threading is 23.91�. Thus, the overall theo-

retical speed up expected from both optimizations is close

to 32 � 23:91 ¼ 764:8� which is not much higher than the

actual maximum speed up (550.20�) reported in Table 7.

5.3.5 Scalability

We are also interested in the scalability (or parallelism

efficiency) of our implementations of the optimized

FHSVM. We study the improvement in average prediction

latency in both optimized implementations: FHSVMOMP

and FHSVMOMP Pack as we vary the number of threads.

We aim to show that the performance of FHSVM can be

dramatically increased as we increase the number of CPU

threads. Figure 6 can be useful to study the scalability of

our implementations. As we can see, both implementations

show consistent scalability trajectories. The speedup fac-

tors are almost doubled as we double the number of CPU

threads from 1 to 16 threads. This shows a perfect scala-

bility situation which is expected when the computational

problem is embarrassingly parallel and the workload is

balanced among the worker threads; both apply to the

FHSVM case. Starting from 32 threads, the rate at which

the speedup factors grow becomes slower. We found that

this is a common problem in high-end servers where the

physical CPU cores are hosted across multiple sockets [41].

These systems show linear scalability as long as all CPU

threads run on the same socket. However, the performance

can deteriorate if a single thread runs on a different socket.

Recall that our testbed server hosts 26 CPUs on each

socket. The reason behind this behavior can be attributed to

any of the following: data bus contention, memory con-

tention, higher cache misses, cache coherency protocols

overhead, and synchronization overhead [42].

In both FHSVM frameworks, the speedup factors keep

increasing until they plateau at 52 threads, which is the

total number of physical CPU cores on the server. After

that, the scalability starts to decrease slowly as the CPU

threads become more overloaded. We believe that the

performance of FHSVM can be improved further on

machines that are equipped with a higher number of CPUs

on one socket. Or on execution platforms that do not suffer

from the aforementioned scalability issue.

5.3.6 Message size

We are also interested in the encryption keys and ciphertext

message sizes used in FHSVM. Table 8 shows the sizes in

MiB of all the keys and messages used in FHSVMVanilla

and FHSVMPack. The public, relinearization and Galois

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 2 4 8 16 26 27 32 52 64 104 128
Sp

ee
d

up
Number of threads

(a) FHSVMOMP

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 2 4 8 16 26 27 32 52 64 104 128

Sp
ee

d
up

Number of threads

(b) FHSVMOMP Pack

Fig. 6 Speedup factors achieved

in FHSVMOMP and

FHSVMOMP Pack as we vary the

number of CPU threads. The

i-th speed up factor is computed

as the ratio between the average

latency achieved in FHSVMOMP

and FHSVMOMP Pack with

T threads to the average latency

with 1 thread

Table 8 CKKS encryption keys

and ciphertext messages sizes in

MiB (220 bytes) used in

FHSVM

Framework Public key Secret key Relin key Galois keys Input ciphertxt Output ciphertxt

FHSVM Vanilla 1.399 0.699 6.995 182.184 1.149 0.250

FHSVM Pack 1.624 0.812 9.742 253.671 1.374 0.250

The Relinearization key refer to the keys used CKKS RELINEARIZE. The Galois keys refer to the keys

used in CKKS ROTATE. The input ciphertext refers to the ciphertext message communicated from the end

user to the HE evaluator, whereas the output ciphertext refers to the encrypted SVM prediction result

communicated from the HE evaluator back to the end user

15570 Neural Computing and Applications (2022) 34:15555–15573

123

keys are transferred once and can be stored at the HE

evaluator. This should be done per each end-user. The

input ciphertext is an encrypted instance communicated

from the end-user to the HE evaluator. The output

ciphertext is the homomorphic SVM prediction result

communicated by the HE evaluator back to the end-user. It

can be noticed that FHSVMPack requires larger data trans-

fers due to the larger ciphertext coefficient size q. The

output ciphertext is of the same size as we drop all the

smaller primes from q when we reach the last level con-

figured in CKKS.

5.4 Comparison with prior works

Lastly, we compare our best FHSVM results with state-of-

the-art solutions. Table 9 contrasts the reported prediction

time results of prior works on privacy-preserving SVM

prediction on different tasks and datasets. FHSVM clearly

outperforms existing solutions in the prediction latency.

The results show that FHSVM is also efficient at evaluating

SVMs with a large number of support vectors and a non-

trivial number of features on large real-world datasets. We

note that this is not a fair comparison due to the employ-

ment of different datasets, execution platforms, and FHE

libraries.

6 Discussion

We have seen that FHSVM provides fast and accurate

SVM prediction on encrypted data using CKKS. In this

section, we discuss some of the issues related to the real-

world deployment of FHSVM such as security, potential

improvements, and limitations.

6.1 Security

It should be noted here that FHSVM assumes that the input

samples have higher importance compared to the SVM

model owned by the HE evaluator. In fact, a malicious end-

user can recover the SVM model parameters if he or she is

given arbitrary access to the homomorphic SVM prediction

service. The reason is that in FHSVM and most existing

privacy-preserving machine learning applications that

employ FHE and multi-party computing, the HE evaluator

returns the class scores vector instead of the class which is

opted for to improve efficiency. It has been shown that this

approach can lead to model inversion and extraction

attacks [43]. Despite the large computational overhead of

such attacks as the client needs to communicate a large

number of queries with the server, nevertheless, these

attacks can be tackled in several ways such as 1) evaluating

the sign function in SVM prediction on the server using

polynomial approximation but this can be costly, 2) adding

extra noise to the computed prediction result before

returning it to the end-user and 3) limiting the number of

queries the end-user can instantiate. Note also that machine

learning models undergo constant and frequent updates as

new data and training methods are used, which makes these

attacks less realistic.

6.2 Hardware acceleration

Hardware acceleration of FHE has shown dramatic

improvement over single-threaded and multi-threaded CPU

implementations [44]. Recent work showed that the per-

formance of CKKS on GPUs can be improved by almost

two orders of magnitude compared with Microsoft SEAL

[45]. By analogical reasoning, for the encryption parame-

ters used in FHSVM here, the GPU implementation may

provide about 30� improvement in the performance

pushing FHSVM latency down to 42 ms. This can make

FHSVM even more attractive for real-time applications.

6.3 Limitation of FHSVM

Besides the model inversion and extraction attacks (see

Sect. 6.1) that FHSVM is vulnerable to, the main limitation

of FHSVM is the support for polynomial kernels only.

Other kernel functions such as RBFs are commonly used in

SVMs. Support for these kernels is possible via approxi-

mation methods or LUT search at a reasonable cost.

Table 9 Comparison of

prediction latency (s) between

prior privacy-preserving SVM

and our FHSVM. RM and PA

stand for random masking and

polynomial aggregation

Framework Year | S | m Method Latency Dataset

[8] 2014 \ 213 2601 Pailler ? MPC 149.82 JAFFE

[9] 2017 1191 29 FHE 8.97 CIFAR-10

[17] 2017 100 10 RM ? PA 2.00 PID

[13] 2020 \ 100 60 FHE – Sonar

[14] 2021 \ 1000 3 FHE 220.38 Chainlink

Ours 2021 7780 165 FHE 1.25 Elliptic

PID stands for Pima Indians Diabetes

Neural Computing and Applications (2022) 34:15555–15573 15571

123

Further investigation is required to estimate the feasibility,

limitations, and computational cost of these approaches.

Another limitation of FHSVM is the lack of training SVMs

on encrypted datasets.

7 Conclusion

We presented FHSVM: a method for fast and accurate

privacy-preserving implementation of SVM prediction on

encrypted data using FHE. In particular, the CKKS

scheme has been used to realize FHSVM while ensuring

correct and precise functionality (full utility of SVM) and

more than a 128-bit security level (satisfactory protection

of data privacy). At the core of FHSVM is the employment

of algorithmic and architectural optimization strategies to

overcome the profound FHE computational overhead. We

showed how we can fully utilize the plaintext space in

CKKS through packing algorithms that result in reducing

the total number of homomorphic operations. The archi-

tectural optimization was driven by parallel programming

methods and show high scalability on multi-core execution

platforms. We evaluated FHSVM on a large real-world

dataset related to AML in Bitcoin transactions. Our anal-

ysis shows that FHSVM provides very fast prediction

latency (about 1.25 s) per example. Moreover, FHSVM

does not suffer from prediction accuracy loss when com-

pared with the unencrypted SVM prediction.

We provided a thorough performance analysis to show

the effect of each optimization included in FHSVM on the

system overall performance. Our experiments showed that

the packing method can provide 23.01� improvement in

prediction latency compared to the non-packed (vanilla)

version of FHSVM. We also showed that FHSVM scales

well when the number of computing cores is increased.

Including both optimizations generated more than 550�
overall speed up in the prediction latency. We believe that

FHSVM is suitable for real-time prediction as a service

cloud application for secure SVM algorithms. We plan to

evaluate FHSVM on other datasets using other alternative

kernel functions. We will also investigate methods to

expand the functionality of FHSVM and include support

for SVM training on encrypted datasets.

Acknowledgements Ahmad Al Badawi was supported by Rabdan

Academy. Ling Chen and Saru Vig were supported by A*STAR

under its RIE2020 Advanced Manufacturing and Engineering (AME)

Programmatic Programme (Award A19E3b0099).

Declarations

Declarations The authors have no conflicts of interest to declare that

are relevant to the content of this article.

References

1. Cui D, Curry D (2005) Prediction in marketing using the support

vector machine. Market Sci 24(4):595–615

2. Yu H, Chen R, Zhang G (2014) A SVM stock selection model

within PCA. Proc Comput Sci 31:406–412

3. Venkatesan C, Karthigaikumar P, Paul A, Satheeskumaran S,

Kumar R (2018) ECG signal preprocessing and SVM classifier-

based abnormality detection in remote healthcare applications.

IEEE Access 6:9767–9773

4. Ribeiro M, Grolinger K, Capretz MAM (2015) MLaaS: Machine

learning as a service. In: 2015 IEEE 14th international conference

on machine learning and applications (ICMLA), pp 896–901.

https://doi.org/10.1109/ICMLA.2015.152

5. Gentry C (2009) Fully homomorphic encryption using ideal lat-

tices. In: STOC ’09. New York, NY, USA: Association for

Computing Machinery, pp 169–178. https://doi.org/10.1145/

1536414.1536440

6. Maekawa T, Kawamura A, Kinoshita Y, Kiya H (2018) Privacy-

preserving svm computing in the encrypted domain. In: Asia-

Pacific signal and information processing association annual

summit and conference (APSIPA ASC). IEEE, pp 897–902

7. Chuman T, Kurihara K, Kiya H (2017) Security evaluation for

block scrambling-based ETC systems against extended jigsaw

puzzle solver attacks. In: 2017 IEEE international conference on

multimedia and expo (ICME), pp 229–234. https://doi.org/10.

1109/ICME.2017.8019487

8. Rahulamathavan Y, Phan RCW, Veluru S, Cumanan K, Rajarajan

M (2014) Privacy-preserving multi-class support vector machine

for outsourcing the data classification in cloud. IEEE Trans

Dependable Secure Comput 11(5):467–479. https://doi.org/10.

1109/TDSC.2013.51

9. Barnett A, Santokhi J, Simpson M, Smart NP, Stainton-Bygrave

C, Vivek S et al (2017) Image classification using non-linear

support vector machines on encrypted data. IACR Cryptol ePrint

Arch 2017:857

10. Krizhevsky A, Nair V, Hinton G (2010) Cifar-10 (canadian

institute for advanced research), vol 5, no. 4. http://www.cs.tor

onto.edu/kriz/cifar.html

11. Brakerski Z, Gentry C, Vaikuntanathan V (2014) (Leveled) fully

homomorphic encryption without bootstrapping. ACM Trans

Comput Theory 6(3):1–36

12. Cheon JH, Kim A, Kim M, Song Y (2017) Homomorphic

encryption for arithmetic of approximate numbers. In: Takagi T,

Peyrin T (eds) Advances in cryptology – ASIACRYPT 2017.

Lecture notes in computer science, vol 10624. Springer, Cham.

https://doi.org/10.1007/978-3-319-70694-8_15

13. Park S, Byun J, Lee J, Cheon JH, Lee J (2020) HE-friendly

algorithm for privacy-preserving SVM training. IEEE Access

8:57414–57425

14. Byun J, Lee J, Park S (2021) Privacy-preserving evaluation for

support vector clustering. Electron Lett 57(2):61–64

15. Liu X, Lu R, Ma J, Chen L, Qin B (2016) Privacy-preserving

patient-centric clinical decision support system on Naı̈ve Baye-

sian classification. IEEE J Biomed Health Inform 20(2):655–668.

https://doi.org/10.1109/JBHI.2015.2407157

16. Gong Y, Fang Y, Guo Y (2016) Private data analytics on

biomedical sensing data via distributed computation. IEEE/ACM

Trans Comput Biol Bioinform 13(3):431–444. https://doi.org/10.

1109/TCBB.2016.2515610

17. Zhu H, Liu X, Lu R, Li H (2017) Efficient and privacy-preserving

online medical prediagnosis framework using nonlinear SVM.

IEEE J Biomed Health Inform 21(3):838–850. https://doi.org/10.

1109/JBHI.2016.2548248

15572 Neural Computing and Applications (2022) 34:15555–15573

123

https://doi.org/10.1109/ICMLA.2015.152
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1109/ICME.2017.8019487
https://doi.org/10.1109/ICME.2017.8019487
https://doi.org/10.1109/TDSC.2013.51
https://doi.org/10.1109/TDSC.2013.51
http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1109/JBHI.2015.2407157
https://doi.org/10.1109/TCBB.2016.2515610
https://doi.org/10.1109/TCBB.2016.2515610
https://doi.org/10.1109/JBHI.2016.2548248
https://doi.org/10.1109/JBHI.2016.2548248

18. Teo SG, Han S, Lee VC (2013) Privacy preserving support vector

machine using non-linear kernels on hadoop mahout. In: 2013

IEEE 16th international conference on computational science and

engineering, pp 941–948. https://doi.org/10.1109/CSE.2013.200

19. Rahulamathavan Y, Phan RCW, Veluru S, Cumanan K, Rajarajan

M (2013) Privacy-preserving multi-class support vector machine

for outsourcing the data classification in cloud. IEEE Trans

Dependable Secure Comput 11(5):467–479

20. Weber M, Domeniconi G, Chen J, Weidele DKI, Bellei C,

Robinson T et al (2019) Anti-money laundering in bitcoin:

Experimenting with graph convolutional networks for financial

forensics. arXiv preprint. arXiv:1908.02591

21. van Dijk M, Gentry C, Halevi S, Vaikuntanathan V (2010) Fully

homomorphic encryption over the integers. In: Gilbert H (ed)

Advances in cryptology – EUROCRYPT 2010. Lecture notes in

computer science, vol 6110. Springer, Berlin, Heidelberg. https://

doi.org/10.1007/978-3-642-13190-5_2

22. Brakerski Z, Vaikuntanathan V (2011) Efficient fully homo-

morphic encryption from (standard) LWE. SIAM J Comput

43(2):831–871. https://doi.org/10.1137/120868669

23. Brakerski Z, Vaikuntanathan V (2011) Fully homomorphic

encryption from ring-LWE and security for key dependent mes-

sages. In: Rogaway P (ed) Advances in cryptology – CRYPTO

2011. Lecture notes in computer science, vol 6841. Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22792-9_

29

24. Brakerski Z (2012) Fully homomorphic encryption without

modulus switching from classical GapSVP. In: Cryptology ePrint

Archive, Report 078. http://eprint.iacr.org/2012/078. Accessed 1

Mar 2021

25. López-Alt A, Tromer E, Vaikuntanathan V (2012) On-the-fly

multiparty computation on the cloud via multikey fully homo-

morphic encryption. In: Proceedings of the forty-fourth annual

ACM symposium on theory of computing (STOC ’12). Associ-

ation for computing Machinery, New York, USA, pp. 1219–1234.

https://doi.org/10.1145/2213977.2214086

26. Fan J, Vercauteren F (2012) Somewhat practical fully homo-

morphic encryption. In: Cryptology ePrint archive, Report /144.

http://eprint.iacr.org/2012/144. Accessed 1 Mar 2021

27. Gentry C, Sahai A, Waters B (2013) Homomorphic encryption

from learning with errors: conceptually-simpler, asymptotically-

faster, attribute-based. In: Canetti R, Garay JA (eds) Advances in

cryptology – CRYPTO 2013. Lecture notes in computer science,

vol 8042. Springer, Berlin, Heidelberg, pp 75–92. https://doi.org/

10.1007/978-3-642-40041-4_5

28. Chillotti I, Gama N, Georgieva M, Izabachène M (2016) Faster

fully homomorphic encryption: bootstrapping in less than 0.1

seconds. Cryptology ePrint Archive, Report 2016/870. http://

eprint.iacr.org/2016/870. Accessed 23 Mar 2021

29. Cheon JH, Han K, Kim A, Kim M, Song Y (2019) A full RNS

variant of approximate homomorphic encryption. In: Cid C,

Jacobson M Jr (eds) Selected areas in cryptography – SAC 2018.

Lecture notes in computer Science, vol 11349. Springer, Cham,

pp 347–368. https://doi.org/10.1007/978-3-030-10970-7_16

30. Potdar K, Pardawala TS, Pai CD (2017) A comparative study of

categorical variable encoding techniques for neural network

classifiers. Int J Comput Appl 175(4):7–9

31. Smart NP, Vercauteren F (2014) Fully homomorphic SIMD

operations. Des Codes Cryptogr 71(1):57–81

32. Brutzkus A, Gilad-Bachrach R, Elisha O (2019) Low latency

privacy preserving inference. In: Proceedings of the 36th inter-

national conference on machine learning. Proceedings of machine

learning research, vol 97, pp 812–821. https://proceedings.mlr.

press/v97/brutzkus19a.html

33. Jin C, Badawi AA, Unnikrishnan B, Lin J, Mun CF, Brown JM

et al (2019) CareNets: efficient homomorphic CNN for high

resolution images. In: NeurIPS workshop on privacy in machine

learning. NeurIPS; 2019, pp 1–6. https://oar.a-star.edu.sg/com

munities-collections/articles/14613. Accessed 25 Mar 2021

34. Gilad-Bachrach R, Dowlin N, Laine K, Lauter K, Naehrig M,

Wernsing J (2016) CryptoNets: applying neural networks to

encrypted data with high throughput and accuracy. In: Proceed-

ings of the 33rd international conference on machine learning.

Proceedings of machine learning research, vol 48, pp 201–210.

https://proceedings.mlr.press/v48/gilad-bachrach16.html

35. AlBadawi A et al (2020) Towards the alexNet moment for

homomorphic encryption: HCNN, the first homomorphic CNN

on encrypted data with GPUs. IEEE Trans Emerg Top Comput

9(3):1330–1343. https://doi.org/10.1109/TETC.2020.3014636

36. Halevi S, Shoup V (2014) Algorithms in helib. In: Annual

cryptology conference. Springer, pp 554–571

37. Albrecht MR, Player R, Scott S (2015) On the concrete hardness

of learning with errors. J Math Cryptol 9(3):169–203

38. Albrecht MR, Chase M, Chen H, Ding J, Goldwasser S, Gor-

bunov S et al (2019) Homomorphic encryption standard. IACR

Cryptol ePrint Arch 2019:939

39. Chrono.: C?? Chrono time library. http://en.cppreference.com/

w/cpp/chrono. Accessed 2021 Online

40. Brown T, Kogan A, Lev Y, Luchangco V (2016) Investigating

the performance of hardware transactions on a multi-socket

machine. In: Proceedings of the 28th ACM symposium on par-

allelism in algorithms and architectures (SPAA ’16). Association

for Computing Machinery, New York, NY, USA, pp 121–132.

https://doi.org/10.1145/2935764.2935796

41. Bardhan S, Menascé DA (2014) Predicting the effect of memory
contention in multi-core computers using analytic performance

models. IEEE Trans Comput 64(8):2279–2292

42. Boemer F, Cammarota R, Demmler D, Schneider T, Yalame H

(2020) MP2ML: a mixed-protocol machine learning framework

for private inference. In Proceedings of the 15th international

conference on availability, reliability and security (ARES ’20).

Association for Computing Machinery, New York, NY. https://

doi.org/10.1145/3407023.3407045

43. Al Badawi A, Polyakov Y, Aung KMM, Veeravalli B, Rohloff K

(2019) Implementation and performance evaluation of RNS

variants of the BFV homomorphic encryption scheme. IEEE

Trans Emerg Top Comput 9(2):941–956. https://doi.org/10.1109/

TETC.2019.2902799

44. Al Badawi A, Hoang L, Mun CF, Laine K, Aung KMM (2020)

Privft: private and fast text classification with homomorphic

encryption. IEEE Access 8:226544–226556

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2022) 34:15555–15573 15573

123

https://doi.org/10.1109/CSE.2013.200
http://arxiv.org/abs/1908.02591
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1137/120868669
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
http://eprint.iacr.org/2012/078
https://doi.org/10.1145/2213977%2E2214086
http://eprint.iacr.org/2012/144
https://doi.org/10.1007/978%2D3%2D642%2D40041%2D4%5F5
https://doi.org/10.1007/978%2D3%2D642%2D40041%2D4%5F5
http://eprint.iacr.org/2016/870
http://eprint.iacr.org/2016/870
https://doi.org/10.1007/978-3-030-10970-7_16
https://proceedings.mlr.press/v97/brutzkus19a.html
https://proceedings.mlr.press/v97/brutzkus19a.html
https://oar.a-star.edu.sg/communities-collections/articles/14613
https://oar.a-star.edu.sg/communities-collections/articles/14613
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://doi.org/10.1109/TETC.2020.3014636
http://en.cppreference.com/w/cpp/chrono
http://en.cppreference.com/w/cpp/chrono
https://doi.org/10.1145/2935764.2935796
https://doi.org/10.1145/3407023.3407045
https://doi.org/10.1145/3407023.3407045
https://doi.org/10.1109/TETC.2019.2902799
https://doi.org/10.1109/TETC.2019.2902799

	Fast homomorphic SVM inference on encrypted data
	Abstract
	Introduction
	Background
	Notations
	FHE
	CKKS
	SVM
	Training
	Testing

	Fast homomorphic SVM prediction
	Threat model
	Phase I: Data pre-processing
	Phase II: Training SVM in plaintext
	Phase III: Homomorphic prediction of SVM on an encrypted feature vector
	Plaintext and ciphertext packing
	Design decisions
	FHSVM_{\rm {Vanilla}}
	Algorithmic optimization: ultra-packing (FHSVM_{\rm {Pack}})

	Experimental methodology
	CKKS parameters choice
	Architectural optimization: multi-threading

	Experimental results
	AML classification use case
	Dataset
	Training an SVM model in the clear

	Implementation of FHSVM
	Development environment
	FHSVM and CKKS parameters

	Performance evaluation
	Platform configuration
	Experiment I: FHSVM_{\rm {Vanilla}} performance
	Experiment II: FHSVM_{\rm {OMP}} performance
	Experiment III: FHSVM_{\rm {OMP\underscore Pack}} performance
	Scalability
	Message size

	Comparison with prior works

	Discussion
	Security
	Hardware acceleration
	Limitation of FHSVM

	Conclusion
	Acknowledgements
	References

