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Abstract
This paper discusses the pitfalls of using response surface methods when solving inverse problems and presents an adaptive

artificial neural network-based inverse response surface method. The procedure is based on a coupling of the adaptive

response surface method and artificial neural network-based inverse reliability analysis. The validity and accuracy of the

method are tested on several examples. The first is a problem with a theoretical explicit nonlinear limit state function and

one design parameter. Here, the accuracy of surrogate models for design parameter identification was tested for cases with

the target values of the identified parameter both inside and outside of the initial range of values. The absolute percentage

errors were 11.79 % and 0.19 % after the first and the last iteration of the identification process, respectively. The other two

examples represent practical applications of the reliability design of structures with multiple design parameters and

multiple reliability constraints. In the former, the limit state functions are defined explicitly, while in the latter, they are

defined implicitly in the form of a structural analysis using the nonlinear finite element method. When assessing the

reliability index values, very low absolute percentage error values were obtained in both examples. For the explicit form of

the limit state function, the values were up to 0.50 % in all iterations. In the case of the implicitly defined limit state

function, the absolute percentage error was equal to 6.45 % after the fist iteration and 0.79 % after the second iteration.

Keywords Response surface � Inverse response surface method � Artificial neural network � Inverse reliability analysis �
Reliability-based design � Failure probability

1 Introduction

Probabilistic reliability analysis is a suitable approach that

allows one to take the uncertainties (in material properties,

loads, geometrical imperfections, etc.) that are inherently

present in a structure–load–environment system and

incorporate them into reliability calculations, and then to

quantify the resulting reliability. The quantification is

performed using reliability indicators, most often in the

form of failure probabilities of the limit state being anal-

ysed. The explicit calculation of the probability integral is

generally impossible. In practice, the calculation of failure

probability is solved exclusively using numerical methods

of either the simulation or approximation type.

Simulation methods, such as the Monte Carlo method,

Latin hypercube sampling, and importance sampling, are

inherently close to the general perception of probability

and so are very popular in practical applications [1, 2].

However, by their very nature, they require the execution

of a relatively large number of simulations, i.e. the repeated

evaluation of the mathematical model. However, the model

tends to be quite complex and computationally demanding

in many practical engineering applications, e.g. the solu-

tion of a structure via the nonlinear finite element method

(NLFEM). This entails extreme time demands, especially

when it is necessary to perform repeated reliability analy-

ses, e.g. when solving reliability-based design optimisation

tasks or performing global sensitivity analyses where

thousands of runs are required [3, 4]. Thus, in many of

these cases, it is necessary to employ one of the approxi-

mation methods available. Traditional approximation

methods include the first-order reliability method (FORM)

[5] and the second-order reliability method (SORM) [6].
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With the recent development of metamodelling and the use

of soft computing methods, the response surface method

[7–10] is becoming a very popular approximation method

suitable for solving reliability in the context of complex

engineering problems. Promising examples include

response surfaces based on polynomial chaos expansion

[11], support vector machines [12] and Kriging metamod-

els [13–15]. When dealing with unbalanced data, ensemble

models can help to improve accuracy by combining several

base estimators. Multiple weak estimators can be merged

with adaptive boosting to create a single strong estimator

[16]. Deep learning neural networks, such as convolutional

neural networks and long-short term memory networks,

show exceptional capabilities in improving the accuracy of

classical machine learning approaches [17, 18].

The whole problem becomes a bit more complicated

when solving the inverse reliability problem. Its aim is

usually to determine the ‘‘design parameters’’ (material

properties, dimensions, amount of reinforcement, etc.) for

the required reliability indicators. In the case of a deter-

ministic problem, the trial-and-error method is commonly

used in practice, but its insufficiency is obvious in the case

of a probabilistic solution. In these cases, more advanced

methods need to be employed, e.g. a reliability contour

method [19, 20], an iterative algorithm based on the

modified Hasofer-Lind-Rackwitz-Fiessler scheme used in

reliability analysis [21], a Newton-Raphson iterative

algorithm employed to find multiple design parameters

[22, 23], a decomposition technique [24], or various

implementations of artificial neural networks (ANN) with

other soft-computing techniques [25–28].

When solving inverse reliability problems in practice,

the quantification of reliability indicators is often simplified

by using the FORM method, which corresponds to a linear

approximation of the limit state function. However, this

can lead to considerable inaccuracy in the estimation of

reliability indicators when solving nonlinear problems and,

consequently, to poor estimates of design parameters. So,

naturally, the response surface method with a nonlinear

surrogate model is suggested. In order to construct the

response surface, the values of all variables need to be

known. However, this is not possible in the case of an

inverse problem where design parameters are the subject of

identification. In most cases, the response surface is con-

structed for the initial estimation of the design parameters.

The subsequent inverse analysis may then result in inac-

curate design parameter estimates. Their accuracy depends

on a number of aspects, such as the number of design

parameters, the quality of their initial estimation and the

shape of the limit state function. This inaccuracy is further

accentuated by approximating the limit state function

around the mean values. However, let us not forget that the

accuracy of the failure function approximation in the

failure region is crucial for the correct estimation of the

failure probability. Both of these aspects are addressed by

the inverse response surface method introduced in this

paper. It is an adaptive method that progressively refines

the response surface approximation in the failure region

and thus the estimation of the design parameters.

The presented methodology is closely related to the

authors’ previous work on the reliability calculation of

time-consuming problems using a small-sample ANN-

based response surface method [29] and an ANN-based

inverse reliability method [28]. In the following section,

both methods will be briefly described. Section 2.4 then

introduces the proposed inverse response surface method.

Numerical examples, a discussion of the results and a

summary of the main aspects of the application follow.

2 Methods

2.1 Reliability problem formulation

The aim of classical (forward) reliability analysis is the

estimation of unreliability using a reliability indicator

called the theoretical failure probability, defined as:

pf ¼ PðZ� 0Þ; ð1Þ

where Z ¼ gðXÞ is a variable called ‘‘safety margin’’,

which is a function of a random vector,

X ¼ fX1;X2; . . .;XngT , where n is the number of random

variables. Random vector X follows a joint probability

distribution function (PDF) fXðxÞ; in general, its marginal

variables can be statistically correlated. The classical

approach deals with situations where the information about

fXðxÞ is limited to knowledge of univariate marginal dis-

tributions fX1
ðxÞ; . . .; fXn

ðxÞ and a correlation matrix, T (a

symmetric square matrix of order N). The output variable Z

represents a transformed variable, and the task is to per-

form reliability analyses upon it. It is assumed that the

analytical analysis of the transformation of input variables

to Z is not possible due to the complexity of the compu-

tational model of gðXÞ. The failure probability is calculated
as a probabilistic integral:

pf ¼ PðZ� 0Þ ¼
Z1

�1

I½gðXÞ�fXðxÞdx ¼
Z

Df

fXðxÞdx; ð2Þ

where I½gðXÞ� is an indicator function that equals one for

the failure event ðgðXÞ� 0Þ and zero otherwise. In this

way, the domain of integration of the joint probability

distribution function fXðxÞ is limited to the failure domain

Df , where gðXÞ� 0. As mentioned in the introduction,

explicit calculation of the integral in Eq. 2 is generally

impossible, and in structural engineering practice, the
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calculation of failure probability is solved using the

aforementioned approximation methods. Their basic fea-

ture is an approximation, either of a limit state function or

of a product of its evaluation: the safety margin Z (which is

a random variable), see Fig. 1.

2.2 Response surface approximation

The general principle of the response surface method is to

replace the original LSF with an approximated (simpler)

function whose evaluation is not so time-consuming. The

reliability indicator is then calculated using classical sim-

ulation methods but with the approximated function instead

of the original one. Response surface methods provide a

more accurate solution in comparison with FORM or

SORM methods, where the limit state function is approx-

imated by a linear or quadratic function at a design point. A

second-order polynomial function is most often used in

case of the polynomial RSM. Instead of replacing the

original LSF with a polynomial one, it is also possible to

use an approximation provided by an arbitrary surrogate

model, or by an ANN, as is detailed in a later section of this

paper. The ANN approximation function, when combined

with classical simulation methods and applied to extensive

reliability problems, is capable of ensuring the calculation

of reliability indicators takes place in a reasonable time and

with sufficient accuracy. The main advantage of the RSM

is the reduction it permits in the number of calculations of

the original function, and thus also the computational time,

or the reduction in the variance of the obtained solutions

with respect to the achieved accuracy.

Both methods, polynomial-based RSM and ANN-based

RSM, are well described in previous work by the authors.

For the sake of simplicity, only the most important points

and equations are repeated in the following Sects. 2.2.1–

2.2.2. For details, the reader is referred to [29].

2.2.1 Polynomial-based response surface approximation
(POLY-RSM)

In general, a full second-order polynomial function [9] is

most often employed. An iterative response surface

approach based on a simplified polynomial function with-

out mixed terms was presented in [10] in the form:

~gðXÞ ¼ aþ
Xn
i¼1

bixi þ
Xn
i¼1

cix
2
i ; ð3Þ

where xi, i ¼ 1, . . ., n are the input basic variables and

parameters a, bi, ci are the unknown regression coefficients

of the approximation function that are obtained by con-

ducting a series of numerical experiments with input

variables selected according to an experimental design.

Values of the interpolation points are situated around the

mean values for the initial approximation. In the next step,

the function ~gðXÞ is used to obtain an estimate of the

‘‘design point’’, XD, for the surface ~gðXÞ ¼ 0 based on the

assumption of uncorrelated Gaussian variables. Once XD is

found, ~gðXDÞ is evaluated and a new centre point for

interpolation, XM, is chosen on a straight line from the

mean vector X to XD in order to position the new centre

point reasonably close to the exact limit state, i.e.:

XM ¼ Xþ ðXD � XÞ ~gðXÞ
~gðXÞ � ~gðXDÞ

: ð4Þ

The same interpolation using Eq. 3 is repeated using XM as

the new anchor point, and hence, the total number of gðXÞ
evaluations (original LSF calculations) is 4nþ 3.

For the sake of completeness, the polynomial-based

RSM appears to be sufficiently accurate when applied to

reliability tasks, although several problems can arise. With

an increasing number of input variables and thus a rise in

the required accuracy of the approximation, the number of

interpolation points also increases, which is a limiting

factor in cases when the structural response is solved using

time-consuming NLFEM analyses. Another issue, which is

probably the largest problem, is the quality of the experi-

mental design, i.e. the selection of interpolation points, as

these have to be chosen so that the original function is best

approximated around the design point. There are various

methods of selecting interpolation points from the area

around the limit state boundary, e.g. the gradient projection

method [30] or the weight regression method [31, 32], in

which higher values of weight coefficients are assigned to

point around the design point when approximating the LSF.

In connection with the location of interpolation points, it

was further shown that the selection of points only from the

tails of probability density functions of input variables does

not lead to significant refinement in the quantification of

the probability of failure [33], and finally, the proper

Fig. 1 Approximation of an original limit state function by a

surrogate model (left), and approximation of the probability distri-

bution of a safety margin by a suitable distribution based on

goodness-of-fit tests (right)
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selection of interpolation points is also affected by the

parameters of the LSF being approximated [34].

2.2.2 ANN-based response surface approximation (ANN-
RSM)

An ANN-based response surface method is a signal pro-

cessing system composed of simple processing elements,

called artificial neurons, which are interconnected by direct

links (weighted connections), see Fig. 2. The ANN serves

as a surrogate model ~gðXÞ for the approximation of an

original gðXÞ, with X being the vector of input basic

variables. The ANN has the ability to adapt itself by

changing its connection strengths or structure, and hence, it

is very efficient at fitting the LSF with only a small number

of simulations. This number depends on several factors,

such as the complexity of the original function, the number

of input variables, their statistical correlation, and the

quality of the sample set.

In the proposed method, a feed-forward multi-layer

network type is used (e.g. [35–37]) with the artificial

neurons organised into different layers – an input layer,

several hidden layers, and an output layer. All of the

neurons in a layer are connected to all of the neurons in the

adjacent layers through unidirectional links represented by

synaptic weights. These synaptic weights act as signal

multipliers on the corresponding interconnections. Con-

nections within a layer are not permitted (Fig. 2).

The input signal only moves in the forward direction,

i.e. the data go from the input nodes through the hidden

nodes (if any) to the output nodes. If the output vector of

the whole neural network is required, output vectors have

to be calculated layer by layer from the input layer to the

output layer of the network. The output from a single

neuron is calculated as (Fig. 2 right):

y ¼ f xð Þ ¼ f
X
k

wk � pk þ bð Þ
 !

; ð5Þ

where k indicates the input number, wk is the synaptic

weight of the connecting path from the kth neuron of the

previous layer, pk is the input signal coming from the kth

neuron of the previous layer, b is the bias of the neuron,

and f is a transfer (activation) function of the neuron.

ANNs must be trained (i.e. the values of synaptic

weights and biases must be adjusted) to solve the particular

problem for which they are intended. A feed-forward type

network is trained using ‘‘supervised’’ learning, where a set

of example pairs of inputs and corresponding outputs

(p, y), p 2 P, y 2 Y is introduced to the network. The aim

of the subsequent optimisation procedure is to find a neural

network function fANN : P ! Y in the allowed class of

functions that matches the examples. ANN training is an

optimisation task which consists in minimising the criteria:

E ¼ 1

2

XN
i¼1

XK
k¼1

y0ik � y�ik
� �2

; ð6Þ

where N denotes the number of ordered input-output pairs

in the training set, y�ik is the required new value of the kth

output neuron at the ith input, and y0ik is the actual output

value of the kth output neuron at this input. There are

various optimisation methods by which the minimisation of

criteria E is achieved, e.g. gradient descent methods, evo-

lutionary methods, stochastic methods, or a combination of

them.

The usefulness of the ANN model depends on both the

size of the data, i.e. the number of features, and their

corresponding distribution, as discussed in [38]. Since the

number of computations of the nonlinear structural model

may be limited due to the extreme computational demands,

the efficiency of the ANN-RSM method is emphasized by

using the small sample LHS simulation method, which is

used for stochastic preparation of the training data set [29].

An important step before the training process begins is

the design of the appropriate ANN structure, which is

generally dependent on the type of reliability task. The

number of inputs of the ANN, Ninp, is given by the number

of input random variables, while the number of output

neurons, Nout, corresponds to the LSF values (there is

usually just one). Note that the number of ‘‘experimental

samples’’ needed to adjust the parameters of the ANN-

based response surface does not directly depend on the

number of input random variables like it does in the case of

a polynomial-based response surface approximation. Let us

also mention that the number of inputs and the number of

output neurons are known in advance. The number of

hidden layers and the number of neurons in them are other

parameters of the ANN. Two hidden layers with a suffi-

cient number of neurons are enough to compute any reli-

ability task. The best practice is to start with one hidden

layer. If the neural network cannot be trained, then a sec-

ond hidden layer is added.

A key influence on the complexity and performance of

the ANN is also exerted by the choice of activationFig. 2 Example of a feed-forward ANN (left) and a single neuron

model (right)

12848 Neural Computing and Applications (2022) 34:12845–12859

123



function [39]. Depending on the type of original LSF

being employed, both linear and nonlinear activation

functions can be used. In general, if one wishes to intro-

duce nonlinearity into the neural network, the nonlinear

activation function must be employed. In that case, we use

the hyperbolic tangent activation function, which was

selected based on the initial tuning of the model

hyperparameters.

2.3 The ANN-based inverse reliability method

Inverse reliability analysis can be categorised as a struc-

tural design, i.e. a means of identifying design parameters

that enable the achievement of the desired reliability

described by reliability indicators related to particular limit

states. The parameters to be identified are deterministic or

random design parameters related to the structure itself, the

acting load or the surrounding environment. The known (in

this case desired) response is a safety level described by

reliability indicators. The functional relationship between

design parameters and reliability indicators can take the

form of an analytical formulation or a stochastic NLFEM

model.

In addition to the vector of basic random variables

X ¼ X1, X2, . . ., Xi, . . ., Xn, let us include the vector of

design deterministic parameters d ¼ d1, d2, . . ., dk, . . ., dp
and the vector of the design parameters of random vari-

ables r ¼ r1, r2, . . ., rl, . . ., rq. Note that the design

parameters of random variables can be statistical moments

of the first and/or second order. In the case of multiple limit

states, there are several safety margins Zj and target failure

probabilities pf;j or reliability indices bj, where j ¼ 1, 2,

. . ., m is the number of limit state functions. The inverse

problem can generally be stated as:

Given : pf;j or bj
Find : d and=or r

Subject to : Zj ¼ gðX; d; rÞj ¼ 0 for j ¼ 1; 2; . . .; m

ð7Þ

A soft computing-based inverse reliability method has been

proposed by Lehký and Novák [28]. The method is based

on the coupling of a stratified Latin hypercube sampling

(LHS) simulation technique and an ANN. The ANN, as a

cornerstone of the method, is used as a surrogate model of

an unknown inverse function describing the relation

between the design parameters and corresponding relia-

bility indicators:

P ¼ f�1
ANNðIÞ; ð8Þ

where: P ¼ d [ r is the vector of all design parameters

(both deterministic and random; number of design

parameters u ¼ pþ q), and I ¼ b (or I ¼ pf) is the vector

of reliability indicators.

As mentioned above, the efficiency of the inverse

method is emphasised by the utilisation of the small-sam-

ple LHS simulation method used for the stochastic prepa-

ration of the training set employed in training the ANN.

For that purpose, the design parameters P (e.g. the mean

values or standard deviations of selected random variables)

are considered random variables with a scatter reflecting

the physical range of design values. Subsequently, the

calculation of reliability is performed using an appropriate

simulation or approximation method, and reliability indi-

cators I are obtained. Once the ANN has been trained, it

represents an approximation which is subsequently used in

the following way: to provide the best possible set of

design parameters corresponding to the prescribed relia-

bility. See [28] for a more complex explanation of the

method.

The procedure of the ANN-based inverse reliability

method is implemented as follows:

a. The design parameters are considered random vari-

ables with selected (physically reasonable) appropriate

scatter and probability distribution. A rectangular

distribution is often used.

b. Random samples of design parameters (possibly cor-

related) are generated using the LHS simulation

method.

c. A stochastic model of the analysed problem is prepared

including generated samples of design parameters.

d. Reliability analyses are performed repeatedly for

individual samples of design parameters, and sets of

reliability indicators, such as failure probabilities or

reliability indices, are calculated.

e. Reliability indicators obtained from simulations are

used together with the set of random design parameters

as a training set for ANN training. During training, the

discrepancy between the simulated and desired outputs

of the ANN (here in the form of a mean square error

according to Eq. 6) is minimised using an appropriate

optimisation technique (e.g. back propagation methods,

evolutionary algorithms).

f. Desired reliability indicators are used as an input signal

which is distributed through the ANN structure to its

output, where optimal design parameters are obtained.

g. Verification of the results via the calculation of failure

probabilities related to limit state functions using the

optimal parameters is carried out. Comparison with

target failure probabilities will show the extent to

which the inverse analysis was successful.

In the case of inverse reliability analysis, a double

stochastic analysis is needed to prepare the training set for

the ANN (steps b and d of the procedure). In the outer loop,
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random realisations of design parameters are generated

using the LHS simulation technique. The inner loop rep-

resents the reliability calculation for one particular reali-

sation of design parameters. The number of simulations in

the outer loop is driven by the ANN, and only a few dozen

simulations are usually needed. The number of simulations

in the inner loop depends on the utilised reliability method.

When using the Monte Carlo method, as in the applications

below, it is appropriate to run millions of simulations ns. In

this case, the failure probability is calculated as

pf ¼
Z1

�1

I½~gðXÞ�fXðxÞdx ¼ lim
ns!1

1

ns

Xns
j¼1

I½~gðXÞ�: ð9Þ

2.4 The inverse response surface method

As described in Sect. 2.2, the response surface approxi-

mation is an alternative to the real LSF. However, in

contrast to the forward approach, when a structure is being

designed, the function values that are used to construct the

response surface are not available until the desired design

variables have been determined. Therefore, an inverse

response surface method (IRSM) is proposed.

This IRSM method is based on a coupling of the

adaptive response surface method developed by Bucher

and Bourgund [10] and the ANN-based inverse reliability

method created by Lehký and Novák [28] (see also

Sect. 2.3). The method is inspired by the procedure laid out

by Li [40], which combines the response surface method

with the Newton-Raphson iterative algorithm to solve an

inverse reliability problem [22]. The method proposed in

this paper utilises ANN and LHS methods, which makes it

more robust and efficient, and therefore feasible for use

when solving time-consuming problems such as structural

design.

An iterative scheme to upgrade the response surface

model and, at the same time, to accomplish inverse relia-

bility analysis is proposed as follows:

1. In the first step of the IRSM, the initial values for the

design parameters are used to construct the initial

response surface using a direct RSM (polynomial-

based or ANN-based methods are used in this paper;

see Sect. 2.2). Based on this approximate response

surface (see the light orange dashed line in Fig. 3b),

ANN-based inverse reliability analysis is carried out,

and a new estimate of design parameters is obtained as

well as the design point. A response surface with the

newly estimated design parameters is depicted using a

dark orange solid line in Fig. 3b. Note here that in the

proposed small-sample polynomial- or ANN-based

RSM, the LHS method is not utilised for the evaluation

of the reliability indicators (failure probabilities or

reliability indices), but it is employed for the efficient

stochastic preparation of the training set for ANN

training. The reliability indicators are calculated using

classical simulation or approximation methods (e.g. the

Monte Carlo method, FORM, etc.).

2. In the next step, the new anchor point is calculated

from the design point using Eq. 4. The obtained anchor

point is used as a new centre point and employed

together with the previously obtained design parame-

ters when preparing a new set of samples for the

construction of an updated response surface (see the

brown dashed line in Fig. 3c). At first glance, this

updated response surface may appear worse than the

original response surface (dark orange solid line).

However, on looking more closely, it is clear that there

has been a significant refinement of the approximation,

particularly in the failure region where gðX; PÞ\0.

Moreover, the determined design parameters were

obtained with the initial (inaccurate) response surface.

3. Based on this updated response surface, ANN-based

inverse reliability analysis is carried out again to seek a

new set of design parameters and a new design point.

The updated response surface together with the

updated estimate of design parameters is depicted by

a red solid line in Fig. 3d.

4. Finally, the process is repeated until convergence is

achieved at design parameters with

acceptable tolerance.

The individual steps of the proposed procedure are

schematically shown in Fig. 3a.

3 Numerical examples

Three different examples were selected to show the proce-

dure of the proposed IRSM. An explicit nonlinear function

with only one design parameter to be identified is described

in Sect. 3.1. Here, the whole IRSM process is described in

detail. Sect. 3.2 focuses on an example in which the

dimensions of a timber beamare to be designed, requiring the

identification of two parameters for two limit states. A post-

tensioned bridge made of MPD girders is the subject of the

last example (Sect. 3.3). In this case, the limit state function

is given in implicit form as an NLFEM model. The decom-

pression and crack initiation limit states for the target bridge

load-bearing capacity are solved to determine the values of

two bridge design parameters. The accuracy of the response

surfaces and surrogate models used for the inverse reliability

problems is discussed in terms of an absolute percentage

error (APE) and a coefficient of determination (R2). These

metrics are defined in the form of:
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APE ¼ 100 � jVt � Vaj
Vt

; ð10Þ

R2 ¼ 1� Vt � Vað Þ2

V2
t

; ð11Þ

where Vt is the target value and Va is the approximated

value.

3.1 An explicit nonlinear limit state function

An explicit nonlinear LSF was selected to show the pro-

posed IRSM procedure in detail. The function was adopted

from [30] and was defined as:

gðXÞ ¼ exp½0:4ðX1 þ 2Þ þ 6:2�
� expð0:3X2 þ dÞ � 200;

ð12Þ

where X1 and X2 were the standard normal variables, and d

was an unknown deterministic design parameter subjected

to identification (marked with ‘‘?’’ in Table 1); see the

stochastic model in Table 1. The target reliability index

was considered to be b ¼ 2:688, which corresponds to the

target value of d ¼ 5 (calculated using 10 million Monte

Carlo simulations of the original LSF).

In order to construct the response surface and perform

an ANN-based inverse reliability analysis (Fig. 3a), the

design parameter d has been treated as a uniformly dis-

tributed random variable. Two cases with the initial range

of values were used; see Table 2. In case 1, a wider range

of values was used with the target value of parameter d

inside this range, i.e. d 2 h4; 8i. In case 2, the target value

of parameter d was placed outside of a narrower range of

values, i.e. d 2 h6; 8i.
Both polynomial-based and ANN-based response sur-

face approximations (see the approximation phase in

Fig. 3a) were used as substitutes for the original LSF in

Eq. 12. A two-degree polynomial response surface without

the mixed terms employed in Eq. 3 has been used in the

case of the POLY-RSM. In the case of the ANN-RSM, an

ANN with three input neurons corresponding to variables

X1 and X2, and design parameter d, one linear output

neuron corresponding to the value of the original LSF gðXÞ
and eight nonlinear neurons in a hidden layer has been used

as a substitute for the original LSF; see Fig. 4 (left). A

hyperbolic tangent activation function in the hidden layer

and a linear activation function in the output layer were
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Fig. 3 Schematic diagram of the

proposed inverse response

surface method: a iterative

procedure; b response surface

with initial estimate of design

parameters; c updated response

surface; d final response surface

achieved with

acceptable tolerance

Table 1 Stochastic model for the example with explicit LSF

Variable Distribution Mean value Standard deviation

X1 Normal 0 1

X2 Normal 0 1

d Deterministic ? –
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used. In order to calculate unknown coefficients of the

polynomial response surface, 30 evaluations of the original

LSF gðXÞ were carried out with random samples of input

parameters generated via the LHS method according to the

stochastic model (see Tables 1 and 2). The same 30 ran-

dom samples of input parameters generated via the LHS

method were used as the training set for the ANN training,

which was performed using the gradient descent method

with momentum. The learning rate was 0.01, and the

momentum was 0.5.

An ANN-based inverse reliability analysis (see the

inverse reliability phase in Fig. 3a) was carried out using

the created response surfaces. The utilised ANN consisted

of one input to the network corresponding to reliability

index b, two nonlinear neurons in a hidden layer and a

linear output neuron corresponding to the design parameter

d; see Fig. 4 (right). A hyperbolic tangent activation

function in the hidden layer and a linear activation function

in the output layer were used again. In order to create the

training set, reliability calculations using 1 million Monte

Carlo simulations were performed for each of the 30

individual random samples of design parameter d. Thus,

the vector b of the reliability indices was obtained. After

the ANN had been trained, it was ready to provide the best

design parameter related to the initial response surface.

This was performed by means of a network simulation

using target reliability index b ¼ 2:688 as an input.

Finally, the reliability level was calculated with the

identified design parameter and compared to the target

value in order to verify the accuracy achieved in the

identification process.

To achieve a good level of accuracy, the response sur-

face was subsequently updated based on an iterative solu-

tion. The value of design parameter d obtained in the

calculation was used in the construction of an updated

response surface for the next iteration. Here, the stochastic

model was changed with respect to the updated design

parameter and the new anchor point calculated according to

Eq. 4, i.e. random sampling was performed in a region

closer to the failure domain. The standard deviation of the

design parameter has been reduced to half of the original

value in order to speed up the process and improve its

convergence.

Table 3 summarises the design parameter and reliability

index values during the iteration process. Note that relia-

bility index b was calculated by 10 million Monte Carlo

simulations of the response surface. The whole process of

the IRSM was repeated until the desired accuracy was

reached. In this example, 2 or 3 iterations were sufficient to

reach the acceptable accuracy.

Analysis of the results for case 1 (with a wide initial

range of design parameter values) shows that both

approximations were able to find the target design param-

eter value in two iterations. The ANN-RSM method had

negligibly better accuracy. A graphical comparison is

shown in Fig. 5. Case 2 (where the target value of the

design parameter was placed outside of a narrower range of

values) proved to be slightly more difficult and sensitive to

the surrogate model used. The ANN-RSM needed 3 itera-

tions to identify the target value of the design parameter. In

contrast, the POLY-RSM did not reach the correct result.

This was due to its insufficiently accurate approximation of

the response surface for the initial estimation of the design

parameter. This led to inaccurate estimation both of the

design point and of the value of the updated design

parameter. The obtained updated response surface did not

allow the detection of any failures or the estimation of the

design parameter (N/A values in the Table 3). The same

finding was obtained using a polynomial response surface

with mixed terms.

Figure 5 shows how polynomial-based and ANN-based

response surfaces approach the real LSF (gorig, blue

coloured surface) for case 1 of the example. In the figure,

there are response surfaces (~gi;v, red coloured surfaces)

corresponding with individual iterations of the process

(i ¼ 1 and 2 in this case), each depicted for both the initial

value (v ¼ ‘‘ini’’) as well as the updated value (v ¼ ‘‘upd’’)

of the design parameter. The grey coloured surface corre-

sponds to the failure boundary gðXÞ ¼ 0 and splits the

space into a safe domain (gðXÞ[ 0) and a failure domain

(gðXÞ\0). Note that in order to improve the visibility of

the failure domain, the graph has a flipped vertical axis, i.e.

negative values of gðXÞ are above the failure boundary.

Table 2 Randomisation of the

design parameter for the

example with explicit LSF

Variable Distribution Mean value Standard deviation (COV) Min Max

d – case 1 Rectangular 6 1.155 (0.19) 4 8

d – case 2 Rectangular 7 0.577 (0.08) 6 8

d
1

1

2d

1

2
3
4

5
6
7

8

1

X1

X2

Fig. 4 Schematic view of the ANN utilised to create the ANN-based

response surface (left) and the ANN for the inverse reliability analysis

(right)
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The blue and black lines represent the intersections of the

original and approximated functions, respectively, with the

‘‘zero surface’’.

It is obvious that the POLY-RSM matches the entire

surface of the original LSF reasonably well in all steps of

the iterative process. In contrast, the ANN-RSM progres-

sively refines the approximation mainly in the failure

domain, which is, however, essential for the determination

of the reliability indicator. The ANN-RSM thus proved its

robustness and suitability for reliability-based design.

3.2 A timber beam

In this example, two design parameters corresponding to

mean values of width, b, and height, h, as cross-sectional

dimensions of a simply supported timber beam were to be

identified using the proposed IRSM in order to fulfil the

target reliability levels for the ultimate and serviceability

limit state.

The ultimate limit state (ULS) was defined according to

the LSF in the form of:

gULS ¼ MRd �MEd ¼ UR

1

6
bh2kmodfm

� UE

1

8
ðgþ qÞl2:

ð13Þ

The target reliability index value was set up as bULS ¼ 3:8.

In the case of the serviceability limit state (SLS), the limit

value of the midspan deflection was analysed and the LSF

was evaluated according to:

gSLS ¼ ulim;fin � unet;fin ¼

¼ l

200
� UE

5

384

l4

E 1
12
bh3

½gð1þ k1;defÞ

þ qð1þ k2;defÞ�;

ð14Þ

with the target value of reliability index bSLS ¼ 1:5. The

meaning of the input variables for the LSFs mentioned

above was as follows: l was the span of the beam, b and h

were the width and height of the beam (subjects of iden-

tification marked with ‘‘?’’ in Table 4), E was the modulus

of elasticity, fm was the flexural strength of the timber, g

and q were the dead-load and payload of the beam, UR and

UE were the model uncertainties of the response and action,

and kmod, k1;def and k2;def were the modification and creep

coefficients of the timber, these being kmod ¼ 0:8, k1;def ¼
0:8 and k2;def ¼ 0:25. For the stochastic model of the input

variables see Table 4.

In the first step of the IRSM procedure, the design

parameters mean b and mean h were treated as uniformly

distributed random variables; see Table 5. ANN-based

response surface approximations were used to substitute

the original LSFs in Eqs. 13–14. ANNs with six or seven

input neurons based on the LSF, one linear output neuron

and five nonlinear neurons in a hidden layer were used. 50

random samples of input parameters generated by the LHS

method were employed to set the response surfaces. The

gradient descent method with momentum was used to train

the ANNs. The learning rate was between �0.001 and 0.01,

and the momentum was 0.5.

Table 3 Results of the iterative

process for the example with

explicit LSF

Parameter Identification Target value

iteration 1 iteration 2 iteration 3

(APE; R2) (APE; R2) (APE; R2)

POLY-RSM: d – case 1 4.8321 4.9996 – 5.000

(3.36; 0.9989) (0.01; 1.0000) (–)

b – case 1 2.979 2.669 – 2.688

(10.86; 0.9882) (0.68; 1.0000) (–)

d – case 2 4.4803 N/A – 5.000

(10.39; 0.9892) (–) (–)

b – case 2 -0.387 N/A – 2.688

(114.41; -0.3089) (–) (–)

ANN-RSM: d – case 1 5.0512 4.9999 – 5.000

(1.02; 0.9999) (0.00; 1.0000) (–)

b – case 1 2.690 2.685 – 2.688

(0.11; 1.0000) (0.10; 1.0000) (–)

d – case 2 5.5894 4.9369 4.9906 5.000

(11.79; 0.9861) (1.26; 0.9998) (0.19; 1.0000)

b – case 2 2.299 2.655 2.686 2.688

(14.45; 0.9791) (1.20; 0.9999) (0.07; 1.0000)
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The ANN-based inverse reliability analysis was carried

out using the constructed response surfaces. The utilised

ANN consisted of two inputs to the network corresponding

to reliability indices bULS and bSLS, five nonlinear neurons

in a hidden layer and two linear output neurons corre-

sponding to the identified design parameters mean b and

mean h. The training set was created using 50 LHS random

simulations of the design parameters. Reliability indicators

in the form of reliability indices for the SLS and ULS were

assessed based on the FORM method in this case. The

results of the iterative IRSM process are summarised in

Table 6. In this example, 4 iterations were performed to

show gradual convergence of the design parameters. Note

that from a practical point of view, two iterations would be

sufficient to obtain design parameters with acceptable ac-

curacy. The target values in Table 6 were obtained using

100 million Monte Carlo simulations since the LSFs in this

test example were explicitly defined functions whose

evaluation was relatively fast. Note that a hyperbolic tan-

gent activation function in the hidden layer and a linear

activation function in the output layer were used during the

ANN training process.
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3.3 A post-tensioned composite bridge made
of MPD type girders

A single-span post-tensioned concrete bridge built in 1957

in the Czech Republic was chosen as an example to illus-

trate the utilisation of the IRSM in the case of NLFEM

analysis (Fig. 6). This example follows on from a work by

the authors [29] in which the small-sample response sur-

face method was used to approximate an original LSF in

order to reduce the computational effort in the case of time-

consuming FEM analyses of structures.

The analysed bridge is made of twelve precast post-

tensioned concrete MPD3 (outer) and MPD4 (intermediate)

type girders. Each of the MPD girders was composed of six

segments that are connected to each other by transverse

joints; see Fig. 6 top right. In order to model the structural

response, a simplified numerical FEM model was created

in ATENA 2D software [41]. Here, data on the geometry

and material parameters assessed within the bridge

diagnostic survey were used. The following load cases

were modelled: the dead load of the structure, longitudinal

prestressing, secondary dead load and traffic load corre-

sponding to the normal loading class according to Czech

technical standard ČSN 73 6222 [42].

Based on the former sensitivity analysis of the input

variables, the reduced stochastic model (Table 7) was used,

within which only the most significant variables affecting

the structural response were randomised. These were the

tensile strength, ft, and fracture energy, Gf , of the concrete

of the transverse joints, the prestressing force in the bottom

tendon, P1, and the secondary dead load, g1;n. The statis-

tical correlation between the tensile strength and fracture

energy of the concrete was also considered and imposed

using a simulated annealing approach [43]. The value

qðft;P1Þ ¼ 0:8 was defined with respect to previously

performed tests [44].

There was high variability in the compressive strength

values measured for the concrete of the joints between

Table 4 Stochastic model for

the example of a timber beam
Variable Distribution Mean value Standard deviation (COV)

l [m] Deterministic 3.5 –

b [m] Normal ? ? (0.05)

h [m] Normal ? ? (0.05)

E [GPa] Log-normal (2par.) 10 1.3 (0.13)

fm [MPa] Log-normal (2par.) 34 8.5 (0.25)

g [kN/m] Gumbel Max EV I 1.686 0.1686 (0.10)

q [kN/m] Gumbel Max EV I 2.565 0.7695 (0.30)

UR [–] Log-normal (2par.) 1 0.1 (0.10)

UE [–] Log-normal (2par.) 1 0.1 (0.10)

Table 5 Randomisation of the

design parameters for the

example of a timber beam

Variable Distribution Mean value Standard deviation (COV) Min Max

mean b Rectangular 0.10 0.014434 (0.14) 0.11 0.15

mean h Rectangular 0.25 0.014434 (0.06) 0.20 0.25

Table 6 Results of the iterative

process for the example of a

timber beam

Parameter Identification Target value

iteration 1 iteration 2 iteration 3 iteration 4

(APE; R2) (APE; R2) (APE; R2) (APE; R2)

mean b 0.1187 0.1239 0.1268 0.1288 0.1285

(7.62; 0.9942) (3.53; 0.9988) (1.26; 0.9998) (0.25; 1.0000)

mean h 0.2181 0.2152 0.2131 0.2126 0.2127

(2.52; 0.9994) (1.17; 0.9999) (0.20; 1.0000) (0.06; 1.0000)

bULS 3.7899 3.8047 3.7993 3.8012 3.8

(0.27; 1.0000) (0.12; 1.0000) (0.02; 1.0000) (0.03; 1.0000)

bSLS 1.4986 1.4933 1.4971 1.5047 1.5

(0.09; 1.0000) (0.45; 1.0000) (0.19; 1.0000) (0.31; 1.0000)
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precast segments of the bridge, which was probably caused

by the spatial deterioration of the bridge and accompanying

uncertainty in the current loss of prestressing. As a result,

the mean values of parameters ft and P1 were considered as

uncertain design parameters (marked with ‘‘?’’ in Table 7)

with the aim of finding their critical values corresponding

to the desired reliability level and load-bearing capacity.

According to the diagnostic survey and the needs of the

bridge administrator, the desired load-bearing capacity

related to the normal loading class was considered to be 25

tons.

Only serviceability limit states were investigated as

being critical for the assessment of the load-bearing

capacity of the bridge. Two limit states were taken into

account – the serviceability limit state of decompression

(SLSD) and the serviceability limit state of crack initiation

(SLSC). Both limit states had an implicit form, i.e. struc-

tural resistance was calculated using the NLFEM model.

The target reliability indices were considered to be bSLSD =

0 and bSLSC = 1.3, respectively.

In order to construct the response surface and perform

ANN-based inverse reliability analysis, the identified

design parameters mean ft and meanP1 were randomised

with initial ranges according to Table 8. ANN-based

response surface approximations were created as

substitutes for the original LSFs corresponding to both

analysed limit states. The ANNs consisted of four inputs to

the network corresponding to four input random variables

according to the stochastic model in Table 7, three non-

linear neurons in a hidden layer and a linear output neuron

corresponding to the safety margin of the particular limit

state. 50 random samples of input parameters generated by

the LHS method were used to set the response surfaces.

The gradient descent method with momentum was used to

train the ANNs as in the previous examples. The learning

rate was between �0.001 and 0.01, and the momentum was

0.5.

The inverse reliability analyses were carried out based

on the constructed response surfaces. The ANN utilised in

the inverse reliability analyses consisted of two inputs to

the network corresponding to the reliability indices of two

analysed limit states, five nonlinear neurons in a hidden

layer and two linear output neurons corresponding to the

mean values of two design parameters, mean ft and

meanP1. In order to create the ANN training set, reliability

calculations using a hundred thousand Monte Carlo simu-

lations were performed with 50 individual vectors of ran-

dom samples of the design parameters. A hyperbolic

tangent activation function in the hidden layer and a linear

Fig. 6 Side and bottom view

(left) and longitudinal and

transversal section (right) of the

analysed bridge

Table 7 Stochastic model for

the example of a bridge made of

MPD girders

Variable Distribution Mean value Standard deviation (COV)

ft [MPa] Weibull min (2par.) ? ? (0.35)

Gf [N/m] Weibull min (2par.) 47.82 11.955 (0.25)

P1 [MN] Normal ? ? (0.09)

g1;n [kN/m] Normal 65.55 3.2775 (0.05)
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activation function in the output layer were used as in the

previous examples during the ANN training process.

An iterative IRSM process was carried out with updated

design parameters. Here, the stochastic model was changed

with respect to the updated design parameters and the new

anchor points calculated according to Eq. 4. Table 9 shows

the values obtained for the design parameters and relia-

bility indices during the iteration process. Here, 2 iterations

were enough to reach acceptable accuracy. Note that the

reliability indices were calculated via a hundred thousand

Monte Carlo simulations of response surfaces. The target

values of the design parameters are not known in this

example, as it takes anything from tens of minutes to an

hour to quantify the original LSF in the form of an NLFEM

model, and so performing this many simulations is not

practically possible. This is a typical example of a case

where the use of a response surface is necessary.

The results of the iterative process in Table 9 show a

more stable convergence when identifying the prestressing

force compared to the tensile strength of concrete. This is

in agreement with the findings of the sensitivity analysis,

which confirmed the dominant influence of the prestressing

on response in both the SLSD and the SLSC, while tensile

strength is important just for the SLSC. The results also

show that the required mean value of concrete tensile

strength in transverse joints corresponds to concrete

strength class C20/25. It matches the concrete type used for

transverse joints during bridge construction, as was also

confirmed by the findings of the diagnostic survey. Note

that the requirement for reliability index bSLSC ¼ 1:3 in the

case of the SLSC is relatively strict too. For lower values,

an even lower demand for concrete strength would be

obtained. The resulting requirement for the value of pre-

stressing force is almost the same as that estimated

according to code specifications, where loss of prestressing

was considered to be 17 %. The identified prestressing

force value indicates a loss of prestressing equal to 15 %.

From both results we can conclude that the requirement for

a normal load-bearing capacity of Vn ¼ 25 t is adequate,

and the desired level of safety would be met.

4 Discussion and conclusion

The paper presents an adaptive ANN-based inverse

response surface method. This approach effectively com-

bines the adaptive response surface method with ANN-

based inverse reliability analysis. From the described the-

ory and the results of application examples, the following

conclusions can be drawn:

• Employing the response surface method in solving the

inverse reliability problem can lead to inaccurate

estimates of design parameters due to initial uncertain-

ties in their true values which result in an inaccurate

initial approximation of the original limit state function.

This is obvious from the results of the example in

Sect. 3.1. For the case with the target value of the

identified parameter inside the initial range of values,

the surrogate models provided very accurate results.

When estimating the design parameter d, the APE was

equal to 3.36 % and 1.02 % for the POLY-RSM and

ANN-RSM in the first iteration, respectively. After the

second iteration, the APE decreased to 0.01 % and

0.00 %, respectively. For the case with the target value

of the parameter outside the initial range of values, the

APE for POLY-RSM was equal to 10.39 % after the

first iteration. After the second iteration, the POLY-

RSM did not achieve the correct result. In the case of

ANN-RSM, three iterations were required to identify

the value of the design parameter with the APE equal to

11.79 %, 1.26 % and 0.19 %, respectively.

• In order to obtain correct values for the design

parameters, it is necessary to iteratively refine their

Table 8 Randomisation of the

design parameters for the

example of a bridge made of

MPD girders

Variable Distribution Mean value Standard deviation (COV) Min Max

mean ft Rectangular 2.4 0.346 (0.14) 1.8 3.0

meanP1 Rectangular 15 1.732 (0.12) 12 18

Table 9 Results of the iterative process for the example of a bridge

made of MPD girders

Parameter Identification Target value

iteration 1 iteration 2

(APE; R2) (APE; R2)

mean ft 2.916 2.277 –

mean P1 14.538 14.544 –

bSLSD 0.076 0.005 0.000

(0.0758�) (0.0050�)

bSLSC 1.384 1.310 1.300

(6.45; 0.9958) (0.79; 0.9999)

�Given a zero target value, the absolute error AE ¼ jVt � Vaj is

evaluated in this case
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estimates, which goes hand in hand with a gradual

refinement of the response surface in the failure region.

• The ANN-based inverse reliability method is used

within the proposed inverse response surface method to

identify design parameters, where the ANN represents a

surrogate model of the inverse relationship between

design parameters and reliability indicators. This makes

the determination of the resulting design parameters

very fast, and the values obtained implicitly guarantee

the desired reliability. Using the ANN-RSM, the

reliability indices b were evaluated with very low

APE values in all the examples and iterations. In the

case of the explicit form of the LSF (example in

Sect. 3.2), the APE values were up to 0.50 % in all

iterations. The efficiency of the proposed method was

also proved in the case of the LSF specified in the

implicit form as the NLFEM model (Sect. 3.3). Here,

the APE was equal to 6.45 % after the first iteration and

0.79 % after the second iteration. Compared to POLY-

RSM, the ANN-RSM was able to achieve the target

reliability index value even when the target value of the

identified parameter was outside the initial range of

values (Sect. 3.1). The APE value was 14.45 % after

the first iteration and 0.07 % after the last iteration. (In

this case, three iterations were needed.)

• An important step in the whole procedure is to choose a

good surrogate model to approximate the limit state

function. In practical cases, it always depends on the

type of problem to be solved. In the examples, we have

presented, in the cases with nonlinear LSF, the ANN

response surface was confirmed to be more efficient

compared to the polynomial response surface, which is

consistent with our earlier findings.

• The number of iterations of the adaptive process

depends on the type of problem being solved, the

surrogate model used and the initial estimation of the

design parameters. In practical applications, it will

always depend on the time required to evaluate the

original model. In extreme cases, e.g. when analysing

large structures using the NLFEM, just one level of

refinement often yields a significant qualitative

improvement in the estimation of design parameters

compared to the initial response surface estimate. In

extreme cases, it is always necessary to consider

whether adding another iteration, which means running

dozens of simulations that may each take several hours,

is worth it for the slight refinement of the results that

may occur. In example 3.3, the absolute percentage

error for SLSC decreased from 6.45 % to 0.79 % after

the second iteration, and for SLSD, the absolute error of

the reliability index value decreased from 0.0758 to

0.0050.

The presented inverse response method, thanks to its

advantageous synergy of traditional and modern mathe-

matical methods based on artificial intelligence, brings

reliability-based design and optimisation into common

engineering practice while maintaining sufficient accuracy

and acceptable time demands.
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