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Abstract
This article focuses on an adaptive neural network (NN) finite-time prescribed performance control problem for nonstrict-

feedback nonlinear systems subject to full-state constraints. Specifically, a finite-time performance function is employed,

which can guarantee that the tracking error converges to a prescribed region within a finite-time. Neural networks (NNs)

are used to approximate the unknown nonlinear function. The unmeasurable states are estimated via constructing a state

observer. By using the dynamic surface control (DSC) technique, the complexity problem has been avoided in traditional

backstepping control. In order to satisfy the state constraint condition, the barrier Lyapunov function (BLF) is incorporated

in the process of backstepping. The developed adaptive finite-time NN backstepping control strategy can make that the

closed-loop system is semiglobally practical finite-time stability (SGPFS). Meanwhile, all states can be guaranteed to

remain in the constrained space. Simulation results demonstrate the validity of the control method.

Keywords Neural networks (NNs) � Adaptive control � Nonstrict-systems � Prescribed performance � Finite-time

1 Introduction

Over the last decades, adaptive backstepping control has

attracted widespread attention due to its broad engineering

applications, such as aircraft attitude systems [1], power

systems [2] and so on. With the development of the Lya-

punov stability theorem, the backstepping control tech-

nique and other tools, some remarkable results have been

proposed (see, [3–6] and their references). It should be

noticed that the control gains in considered nonlinear sys-

tems are assumed known in [7–9]. However, it is difficult

for practical systems to satisfy this assumption [10]. In

order to be more suitable for the practical situation in

engineering applications, neural networks (NNs) or fuzzy

logic systems (FLSs) are incorporated into the adaptive

backstepping control technique. The authors in [11] and

[12] utilized NNs or FLSs fið�vijHiÞ to approximate the

unknown function fið�viÞ. And then, Wang et al. [13]

developed a NN controller for uncertain nonlinear systems

subject to unknown control directions and time delay. The

authors in [14] developed an adaptive backstepping control

method for nonlinear systems with time-varying delay. In

[15], an adaptive NN backstepping controller was devel-

oped for nonlinear systems in presence of unmodeled

dynamics. Combining NNs with the backstepping tech-

nique, Li and Yang [16] developed an adaptive control

strategy for nonlinear systems subject to unknown dead-

zone inputs.

However, an inherent shortcoming of backstepping

control is the complexity problem, which is caused by the

repeated differentiation of the virtual controller in the

process of recursive design. Fortunately, the dynamic sur-

face control (DSC) was proposed to deal with the
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complexity problem. The main idea of the DSC is to

introduce a first-order filter in the traditional backstepping

control procedures. Thus, the proposed DSC-based con-

troller not only overcomes the explosion of differential

terms, but also makes the controller simpler. By combining

the DSC with the backstepping technique, some remark-

able adaptive controllers have been proposed in [17–20].

It should be pointed out that the aforementioned litera-

ture can only guarantee the infinite-time stabilization.

Theoretically, the control systems are regulated to the

desired performance when the time variable goes to infin-

ity. However, from the view of practical applications, the

control objective is expected to be achieved in the finite-

time, which has drawn extensive practical interest as well

as theoretical significance. Therefore, the adaptive finite-

time (AFT) control design has attracted considerable

attention. For example, Li et al. [21] developed an AFT

controller for nontriangular nonlinear systems, and it can

ensure that the closed-loop system is semiglobally practical

finite-time stability (SGPFS). Based on the event-triggering

strategy, Wang et al. [22] solve the AFT control problem

for nontriangular nonlinear systems. The authors in [23]

developed an AFT tracking control scheme for the space-

craft system with state constraints. Based on introducing a

new barrier power integrator, Zhang et al. [24] developed a

novel AFT control scheme for switched systems, which can

deal with the finite-time control problem for some types of

tracking and stabilization issues. By employing the

approximate ability of the RBF-NNs, an AFT control

strategy for MIMO nonlinear systems with the actuator

hysteresis has been developed in [25]. In [26], an AFT

recursive terminal sliding mode controller was proposed

for a linear motor positioner. Based on an integral terminal

sliding mode, Shao et al. [27] developed an adaptive con-

trol method for high-order uncertain nonlinear systems.

Even though the above results regarding the control

theory of nonlinear systems have made abundant progress.

The results proposed in [21–27] do not consider the pre-

scribed performance control problem. Apparently, with the

development of society, tracking control is demanded to

realize tracking error in a precise range. The prescribed

performance control (PPC) technique is a useful method to

realize this demand. The PPC was first proposed in [28],

which can guarantee the transient performance of the

considered systems, and the tracking error can enter into a

given bounded set. Wang et al. [29] presented a prescribed

tracking performance control method for n-link manipula-

tor, and they solved the problem caused by input saturation.

For uncertain MIMO nonlinear systems with input quan-

tization, Bikas et al. [30] constructed an effective adaptive

NN controller to ensure the tracking error can remain in a

prescribed range.

In summary, although the above results have made great

progress in adaptive tracking control, there are still some

problems to be solved in this paper: (1) how to address the

algebraic loop problem caused by the structure of the

nonstrict-feedback systems, (2) how to overcome the

complexity problem in the process of backstepping pro-

cedure, (3) how to ensure that the closed-loop system is

SGPFS and the tracking error converge to a prescribed

range, (4) how to estimate unmeasurable states and make

all states are not transgressed the constrained space. Based

on the above discussion, this paper focuses on the AFT

control for nonstrict-feedback nonlinear systems subject to

unmeasurable states and full-state constraints. The main

work consists of the following aspects:

(1) As more general nonlinear systems, nonstrict-feed-

back nonlinear systems proposed in this study can be

used to control strict-feedback (or pure-feedback)

nonlinear systems.

(2) By utilizing a finite-time performance function

(FTPF), the presented AFT prescribed performance

control method can not only guarantee that the

considered system is stable, but also make the

tracking error enters into the predefined range in a

known time. It can be seen that the adaptive PPC

schemes in [31–33] can only ensure the tracking

error remains in the predefined bounded set without

giving a precise time.

(3) By adopting the DSC, the computational explosion is

avoided in the process of backstepping control. The

log-type BLF is introduced in the process of

backstepping design, and it can guarantee that all

states do not transgress the constrained space.

2 Problem formulation

2.1 System description

Consider the following nonlinear systems

_viðtÞ ¼ viþ1ðtÞ þ fiðvðtÞÞ; i ¼ 1; 2; . . .; n� 1

_vnðtÞ ¼ uðtÞ þ fnðvðtÞÞ;
yðtÞ ¼ v1ðtÞ;

8
<

:
ð1Þ

where vðtÞ 2 Rn is the state variable, yðtÞ 2 R is the output,

uðtÞ 2 R represents the input. fið�Þ is the unknown nonlin-

ear function.

Remark 1 It should be noticed that the controller devel-

oped in [34] does not consider the issue of the full state

constraints. However, it has a solid engineering back-

ground, and the investigation of nonlinear systems subject

to full-state constraints is much more challenging. Mean-

while, as we all know that the full-state constraints are
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widely exist in engineering systems, for example, power

systems [2] and missile systems [35]. If one does not

consider the problem of full-state constraints, stability and

good performance cannot be obtained.

Remark 2 If fið�Þ ¼ fið�viÞ (or fið�Þ ¼ fið�vi; viþ1Þ) with

�vi ¼ ½v1; . . .; vi�
T
, system (1) is a class of strict (or pure)-

feedback nonlinear systems. However, the unknown non-

linear function fið�Þ considered in this paper contains the

whole state variables vi ¼ ½v1; . . .; vn�T. Thus, the nonlinear
system (1) is a class of nonstrict-feedback systems. In the

process of backstepping control, the considered systems are

divided into n subsystems. The states variables vi (or viþ1)

are viewed as state variables for the first ith subsystems in

the strict-feedback (or pure-feedback) form. And then, the

virtual control signal ai should be constructed to ensure the

stability for the first ith subsystems. However, fið�Þ contains
the whole state variable in nonstrict-feedback systems,

which means that ai also contains the whole state variables

for the first ith subsystems. Then, the designed controller

for nonstrict-feedback systems has more challenges, and

the algebraic loop problem is generated.

In this paper, the designed adaptive tracking controller

satisfies the following objectives:

(1) the closed-loop system is SGPFS.

(2) all the states do not transgress their constrained sets.

(3) the output y(t) can track the desired signal ydðtÞ, that
is to say, the tracking error yðtÞ � ydðtÞ ¼ xðtÞ can

converge to a predefined range in finite-time.

Assumption 1 [36] The reference signal ydðtÞ is a known

bounded function. The time derivatives of _ydðtÞ and €ydðtÞ
are known and bounded. A0, A1 and A2 such that

jydj �A0 � kc1, j _ydj �A1 and j€ydj �A2, 8t[ 0. And there

exists a compact Xyd ¼ fðyd; _yd; €ydÞT : y2d þ _y2d þ
€y2d � dydg � R3 such that ðyd; _yd; €ydÞT 2 Xyd , where dyd is a
positive constant.

Assumption 2 [37] For 8@1;@2, there exists a known

constant li, such that

jfið@1Þ � fið@2Þj � lij@1 � @2j:

Lemma 1 [38] For 8ð‘1; ‘2Þ 2 R2, the following inequality

can be obtained

‘1‘2 �
�hp

p
j‘1jp þ

1

q�hq
j‘2jq;

where �h[ 0, p[ 1, q[ 1 and 1
p þ 1

q ¼ 1.

Remark 3 Assumption 1 implies only the reference signal

without its high-order times derivatives. In addition, for a

given nonlinear function, the locally Lipschitz condition is

easily satisfied. Assumption 2 allows us to consider

unknown functions. Similar assumptions can be found in

[16–18]. Without these assumptions, the proposed control

scheme cannot be realized.

2.2 Prescribed performance function

Definition 1 [39] Suppose that there exists a function qðtÞ
satisfies the following properties:

(1) qðtÞ[ 0;

(2) _qðtÞ� 0;

(3) limt!Tr qðtÞ ¼ qTr , and qTr is an arbitrary positive

constant;

(4) when t[ Tr, qðtÞ ¼ qTr with Tr being a designed

time.

Then, qðtÞ is a FTPF. It can be defined in this paper as

qðtÞ ¼ ðql0 � l.tÞ
1
l þ qTr

; 0� t\Tr
qTr ; t� Tr

(

ð2Þ

where l, . and q0 are positive parameters, l ¼ p
q with q� p,

q and p are positive odd and even integers. And q0 þ qTr ¼
qð0Þ denotes the initial value, Tr ¼ ql

0

l. is the set time. And

qðtÞ is a smooth function, which has been verified in [40].

In order to realize the xðtÞ enters into a prescribed range

in a finite-time, the following error transformation function

is defined

wðtÞ ¼ tan
pxðtÞ
2qðtÞ

� �

;xð0Þ\qð0Þ: ð3Þ

According to (3), one can obtain

xðtÞ ¼ 2

p
qðtÞ arctanðwðtÞÞ: ð4Þ

From (4) and yðtÞ � ydðtÞ ¼ xðtÞ, we have

_xðtÞ ¼ 2

p
_qðtÞ arctanðwðtÞÞ þ 2

p
qðtÞ

_wðtÞ
1þ w2ðtÞ

; ð5Þ

which yields

_wðtÞ ¼ pð1þ w2ðtÞÞ
2qðtÞ ð _v1 � _yd �

2

p
_qðtÞ arctanðwðtÞÞÞ:

Figure 1 exhibits the bound of the xðtÞ under the FTPF.
Thus, the proposed method can better satisfy the actual

engineering application.
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Remark 4 The main intention of using a state transition (3)

is transform the tracking error xðtÞ into another state wðtÞ.
Then, we will design a controller to guarantee the bound-

edness for wðtÞ instead of directly control the tracking error

xðtÞ. From (3), we can see that the boundedness of wðtÞ
stands that �qðtÞ\xðtÞ\qðtÞ. Furthermore,

wðtÞ ! 0 ) xðtÞ ! 0. The readers can refer to [40] for

more details about formula (5).

2.3 NNs approximation

RBF-NNs are utilized to approximate the nonlinear func-

tion. By [41], RBF-NNs can evaluate arbitrary continuous

nonlinear function f(X) with the neural node number q[ 1,

and

f ðXÞ ¼ ðC�ÞT/ðXÞ þ fðXÞ; jfðXÞj � fM

where the approximation error fðXÞ satisfies jfðXÞj � fM
with fM is an unknown constant, /ðXÞ ¼
½/1ðXÞ; . . .;/qðXÞ�T denotes the basis function vector, and

C� denotes the ideal weight vector,

C� ¼ argmin½ sup
X2X0

jf ðXÞ � CT/ðXÞj� ð6Þ

with C ¼ ½|1; . . .; |q�T being the weight vector. And /iðXÞ
is the Guassian function and it can be described as

/iðXÞ ¼ exp
k X � }ik2

s2i

 !

; i ¼ 1; 2; . . .; q

where }i ¼ ½}i1; }i2; � � � ; }il�T is the central vector of

Gaussian function and si represents the breadth of Gaussian
function.

Remark 5 It should be noticed that the basis function of

RBF-NNs satisfies /T
i ðXÞ/iðXÞ�I, which will be greatly

useful in controller design procedure.

According to the above NNs approximation results, it is

known that fi
�
vðtÞ

�
in system (1) is

fiðvðtÞÞ ¼ f̂ 1ðvðtÞjC�
1Þ þ f1ðvðtÞÞ; ð7Þ

where f̂ iðvðtÞjC�
1Þ ¼ C�T

1 .

Further, according to (6) and (7), C�
i is

C�
i ¼ arg min

Ci2Xi

½sup
v̂2U

jf̂i
�
vðtÞ
�
jCiÞ � fi

�
vðtÞ
�
j�; ð8Þ

where Xi and U are the compact set of Ci and vðtÞ,
respectively.

By (7), system (1) is rewritten as

_viðtÞ ¼ viþ1ðtÞ þ C�T
i /iðv̂ðtÞÞ þ Mfi þ fiðvðtÞÞ;

i ¼ 1; 2; . . .; n� 1

_vnðtÞ ¼ uðtÞ þ C�T
n /nðv̂ðtÞÞ þ Mfn þ fnðvðtÞÞ;

yðtÞ ¼ v1ðtÞ;

8
>>>>><

>>>>>:

ð9Þ

where v̂ðtÞ denotes the estimation value of vðtÞ and

Mfi ¼ fi
�
vðtÞ

�
� fi
�
v̂ðtÞ

�
.

2.4 Finite-time

Definition 2 [42] Consider a simple nonlinear system

_g ¼ f ðg; uÞ, where g represents the state, and u is the input.

The nonlinear system _g ¼ f ðg; uÞ is SGPFS, if for every

initial condition gðt0Þ ¼ g0 2 X0 with X0 is the compact

set, there exists |[ 0 and a setting time Tð|; g0Þ\1 such

that kgðtÞk\|, for all t� t0 þ T .

Lemma 2 [43] For ðu1;u2Þ 2 R2, and there exists posi-

tive constants �1, �2 and �3, such that

ju1j�1 ju2j�2 �
�1

�1 þ �2
�3ju1j�1þ�2 þ �1

�1 þ �2
�
��1

�2

3 ju2j�1þ�2 :

Lemma 3 [44] Consider the nonlinear system _g ¼ f ðgÞ. If
for all g0 2 X0, there exists a smooth function VðgÞ with

constants c[ 0, 0\r\1, and b[ 0, such that

_VðgÞ� cVrðgÞ þ b; t� 0

then _g ¼ f ðgÞ is SGPFS.

Lemma 4 [45] For any vr 2 R; ðr ¼ 1; . . .; n) and

0\p� 1, we have

Xn

r¼1

jvrj
 !p

�
Xn

r¼1

jvrjp � n1�p
Xn

r¼1

jvrj
 !p

:

Fig. 1 The finite-time prescribed performance on the error

12792 Neural Computing and Applications (2022) 34:12789–12805

123



3 Main results

3.1 Observer design

Since only the output y(t) is measured, a NN state will be

developed to obtain the unmeasurable states.

In order to design the state observer, we transform the

nonlinear system (9) as the following matrix form

_vðtÞ ¼AvðtÞ þ KyðtÞ þ
Xn

i¼1

BiC
�T
i /iðv̂ðtÞÞ

þ BnuðtÞ þ Mf þ f;

yðtÞ ¼CvðtÞ;

8
>>>>><

>>>>>:

ð10Þ

where

A ¼

�k1

�k2 In�1

..

.

�kn 0 . . . 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;

K ¼ ½k1; . . .; kn�T, Bi ¼ ½0; . . .; 1
|fflfflffl{zfflfflffl}

i

; . . .; 0�T, C ¼ ½1; 0; . . .; 0
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n

�,
Mf ¼ ½Mf1; � � � ;Mfn�T, f ¼ ½f1

�
v̂ðtÞ

�
; . . .; fn

�
v̂ðtÞ

�
�T.

Vector K is chosen such that A is a Hurwitz matrix. And

then, there exists a positive defined matrix W [ 0, for any

given matrix Q satisfies Q ¼ QT [ 0 such that the fol-

lowing equality holds

ATW þWA ¼ �Q: ð11Þ

An NN observer is established as

v̂ðtÞ ¼ Av̂ðtÞ þ KyðtÞ þ
Pn

i¼1

BiC
T
i /iðv̂ðtÞÞ þ BuðtÞ;

ŷðtÞ ¼ Cv̂ðtÞ:

8
<

:

:

ð12Þ

Remark 6 Many works of literature require that all state

variables are measured directly, for example, [46]. How-

ever, this requirement is almost impossible to achieve in

practical engineering. Thus, we construct a state observer

to estimate the unmeasurable states. Compared with [46],

the system in this paper is more suitable for the actual

systems.

According to (10) and (12), choose e(t) as

eðtÞ ¼ vðtÞ � v̂ðtÞ ð13Þ

satisfies

_eðtÞ ¼ AeðtÞ þ
Xn

i¼1

Bi
~Ci/iðv̂ðtÞÞ

þ fþ BuðtÞ þ Mf ;

ð14Þ

where ~Ci ¼ C�
i � Ci, and Ci is the optimal parameter of C�

i .

Choose a Lyapunov function as

V0ðtÞ ¼ eTðtÞWeðtÞ: ð15Þ

And then, the derivative of V0 satisfies

_V0 � � q0kek2 þ IkWk2
Xn

i¼1

~C
T

i
~Ci þM0; ð16Þ

where q0 ¼ kminðQÞ � Wk k2
Pn

i¼1 l
2
i � 3, M0 ¼ Wk k2

kf�k2. Specifically, the calculation process can be found in

Appendix 1.

Remark 7 For unmeasured state variables, a linear obser-

ver was proposed in [47] as the following form:

_̂vi ¼ v̂iþ1 � ki
�
v1 � v̂1

�
; 1� i� n� 1

_̂vn ¼ u� kn
�
v1 � v̂1

�
:

8
<

:

where the observer gain parameter ki is chosen such that

the polynomial sðpÞ ¼ pn þ k1p
n�1 þ � � � þ kn�1pþ kn is

Hurwizts. It will lead to the developed observer indepen-

dent of considered systems. However, observer (12) uti-

lizes RBF-NNs CT
i /iðv̂ðtÞÞ to estimate the unknown

nonlinear functions fiðviðtÞÞ, ði ¼ 1; . . .; nÞ. Via online

estimation, a better estimation performance can be

obtained.

Remark 8 In [13, 14], unmeasurable states make these

methods no longer effective, and thus the NN state obser-

ver (12) is constructed. From (16), the convergence of the

designed state observer cannot be ensured. It is thus nec-

essary to develop a control scheme in the next section to

guarantee the finite-time stability of the closed-loop

system.

3.2 Backstepping control design

An AFT prescribed performance tracking controller is

presented for considered nonstrict-feedback nonlinear

systems in this subsection.

Choose the following coordinates change.

z1 ¼ w;

zi ¼ v̂i � ci;

1i ¼ ci � ai�1; i ¼ 2; . . .; n

8
>><

>>:

ð17Þ

where ci represents the filter signal and 1i denotes the error
surface.
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Design the virtual control signal a1 and the adaptive

function _C1 as

a1 ¼�
2qðk2b1 � z21Þ

1�r

pð1þ w2Þ
c1z

2r�1
1 � CT

1/1ðv1Þ

� ð3þ sÞpð1þ w2Þ
4q

z1 þ
2

p
_q arctanðwÞ þ _yd;

_C1 ¼ d1
pð1þ w2Þ
2qðk2b1 � z21Þ

z1/1ðv1Þ � l1C1;

8
>>>>>>>>>><

>>>>>>>>>>:

ð18Þ

where 0\r\1, c1 [ 0 and l1 [ 0 are design parameters.

Choose the virtual controller a2 and the adaptive law _C2

as

a2 ¼� c2z
2r�1
2

ðk2b2 � z22Þ
r�1

� k2e1 � CT
2/2ð �̂v2Þ þ _c2

� ðsþ 2Þz2
2ðk2bi � z2i Þ

�
pð1þ v2Þðk2b2 � z22Þ

k2bi�1
� z2i�1

zi�1;

_C2 ¼
d2/2ð �̂v2Þ
k2b2 � z22

z2 � l2C2;

8
>>>>>>>>>><

>>>>>>>>>>:

ð19Þ

where c2 and l2 are positive designed parameters.

Choose the virtual controller ai and the adaptive func-

tion _Ci as

ai ¼� ciz
2r�1
i

ðk2bi � z2i Þ
r�1

� kie1 � CT
i /ið �̂viÞ

� sþ 2

2ðk2bi � z2i Þ
zi �

k2bi � z2i
k2bi�1

� z2i�1

zi�1 þ _ci;

_Ci ¼
di/ið �̂viÞ
k2bi � z2i

zi � liCi;

8
>>>>>>>>>><

>>>>>>>>>>:

ð20Þ

where ci [ 0, li [ 0 are designed parameters.

Choose the control input u and the adaptive function _Cn

as

u ¼� cnz
2r�1
n

ðk2bn � z2nÞ
r�1

� kne1 �
zn

2ðk2bn � z2nÞ

�
ðk2bn � z2nÞzn�1

k2bn�1
� z2n�1

� CT
n/nð �̂vÞ þ _cn;

_Cn ¼
dn/nðv̂Þ
k2bn � z2n

zn � lnCn;

8
>>>>>>>>>><

>>>>>>>>>>:

ð21Þ

where cn [ 0 and ln [ 0 are designed parameters.

The specific design process can be found in Appendix 2.

Based on the above analysis, we summarize the main

results in Theorem 1.

Theorem 1 Choose virtual controllers (18), (19) and (20),

the actual control input (21), adaptive laws (18), (19), (20)

and (21), the NN state observer (12) for system (1). Then,

the developed controller can be guaranteed the closed-loop

system is SGPFS under the full-state constraints.

Proof By Appendix 2 and Lemma 1, one has

li
di

~C
T

i Ci ¼
li
di

~C
T

i ðC�
i � ~CiÞ

� � li
di

~C
T

i
~Ci þ

li
di
C�T
i C�

i ;
ð22Þ

1iYið�Þ�
1

2s
12i #

2
i þ

s
2
: ð23Þ

From (22) and (13), one gets

_Vn � � q1
kmaxðWÞ e

TWe�
Xn

i¼1

2rcið
z2i

2ðk2bi � z2i Þ
Þr

� ððl1 � IkWk2d1Þ
1

2d1
~C
T

1
~C1

þ
Xn

i¼2

ðli � Idi � IkWk2diÞ
1

2di
~C
T

i
~CiÞ

þ
Xn

i¼2

ð 2
-i

� #2
i

s
� 1Þ 1

2
12i þM;

ð24Þ

where kmaxðWÞ is the maximal eigenvalue of matrix W, and

M ¼ Mn þ
Pn

i¼1
li
2di

� �
C�T
i C�

i þ n�1
2
s.

Defining

C ¼ min
n
2rc1; . . .; 2

rcn; l1 � IkWk2d1;

l2 � IkWk2d2 � Id2; . . .;

ln � IkWk2dn � Idn;
2

-2

� #2
2

s
� 1;

. . .;
2

-n
� #2

n

s
� 1
o

ð25Þ

and substituting (25) into (24), we can obtain

_Vn � � q1
kmaxðWÞ e

TWe� C
Xn

i¼1

z2i

2 k2bi � z2i

� �

0

@

1

A

r

�
Xn

i¼1

C
1

2di
~C
T

i
~Ci � C

Xn

i¼2

1

2
12i þM:

ð26Þ

According to Lemma 2, combining with q1 ¼ 1,

q2 ¼
Pn

i¼2 1
2
i , e1 ¼ 1� r, e2 ¼ r, and e3 ¼ r

r
1�r, we can

obtain
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Xn

i¼2

1

2
12i

 !r

� 1� rð Þr r
1�r þ

Xn

i¼2

1

2
12i : ð27Þ

Similarly, one has

Xn

i¼1

1

2di
~C
T

i
~Ci

 !r

� 1� rð Þr r
1�r þ

Xn

i¼1

1

2di
~C
T

i
~Ci; ð28Þ

eTWe
� �r � 1� rð Þr r

1�r þ eTWe: ð29Þ

According to (27)-(29), it yields

_Vn � � q1
kmaxðWÞ eTWe

� �r�C
Xn

i¼1

z2i

2 k2bi � z2i

� �

0

@

1

A

r

� C
Xn

i¼1

1

2di
~C
T

i
~Ci

 !r

�C
Xn

i¼2

1

2
12i

 !r

þM

þ 2C þ q1
kmax Wð Þ

� �

1� rð Þr r
1�r:

ð30Þ

Defining

c ¼min
	 q1
kmax Wð Þ ;C



;

b ¼M þ 2C þ 2q1
kmax Wð Þ

� �

1� rð Þr r
1�r;

and utilizing Lemma 4, we can obtain

_Vn � � cVr
n þ b: ð31Þ

According to (31), 80\ı\1, one has

_Vn hð Þ� � ıcVr
n hð Þ � 1� ıð ÞcVr

n hð Þ þ b; ð32Þ

where h ¼ ½z1; . . .; zn; ~C1; . . .; ~Cn; 12; . . .; 1n�T.
Let

mh ¼ hjVr
n hð Þ� b

1� ıð Þc

� �

;

�mh ¼ hjVr
n hð Þ[ b

1� ıð Þc

� �

:

If h 2 �mh, then one has

_Vn hð Þ� � ıcVr
n hð Þ: ð33Þ

From (33), one has

Z T

0

_Vn hð Þ
Vr
n hð Þ dt� �

Z T

0

ıcdt: ð34Þ

According to (34), one has

1

1� r
V1�r
n h Tð Þð Þ � 1

1� r
V1�r
n h 0ð Þð Þ� � ıcT ; ð35Þ

where hð0Þ is the initial value of h.
Let

T� ¼ 1

1� rð Þıc ½V
1�r
n h 0ð Þð Þ � b

1� ıð Þc

� �1�r
r

�: ð36Þ

It follows from (36) that h 2 mh for T � T�, the trajectory of
h does not outstrip the set mh.

From (33) and (36), _Vn � 0. Therefore, it can now be

concluded form stability that the dynamic of the closed-

loop system is SGPFS. On the other hand, by Lemma 4 in

[48], it can be obtained that zi 2 Xzi , that is, jzij\kbi . As

mentioned in Remark 4, z1 ¼ vðtÞ is transformed form

xðtÞ ¼ yðtÞ � ydðtÞ. Then, one can obtain

jv1j\jz1j þ jydj\kb1 þ A0. Choose kb1 ¼ kc1 � A0. We

can obtain jv1j\kc1 . The state of v1 is constrained in

Xv1 . According to z2 ¼ v̂2 � c2 ¼ v2 þ e2 þ 12 þ a1,
jv2j � jz2j þ je2j þ j12j þ ja1j holds. Because a1 is a smooth

function of v1, z1, yd and _yd, jv1j\kc1 , jz1j\kb1 , yd �A0,

and j _ydj �A1. Then there exists a constant �a1 [ 0 makes

ja1j � �a1. 8t� T�, Vr
n [

b
1�ic, one has je2j � kek� s2 and

j12j � kð12; . . .; 1nÞk�K2, which means

jv2j � kb2 þ s2 þ K2 þ �a1. Let kb2 ¼ kc2 � s2 � K2 � �a1,
jv2j\kc2 can be obtained, and v2 is constrained in the set

Xv2 . In this way, the state variable vi 2 Xvi can be obtained.

That is, the state systems do not violate constraint

conditions. h

Remark 9 For any positive constants dyd and P, the set

Xyd ¼
n
ðyd; _yd; €ydÞT : y2d þ _y2d þ €y2d � dyd

o
2 R3 and Xi ¼

eTWeþ
Pi

j¼1

log
k2bj

k2
bj
�z2j

� �

þ
Pi

j¼1

1
dj
eCT
j
eCj þ

Pi�1

j¼1

12iþ1 � 2P

( )

2

R3i. Furthermore, Xyd 	 Xi is compact in R3þ3i. Thus, Yið�Þ
has a maximum #i [ 0, such that jYið�Þj �#i.

Remark 10 It can be seen that the nonlinear function fiðvÞ
in the nonlinear system (1) contains the whole states. If the

traditional backstepping control method for strict-feedback

systems is adopted, the algebraic loop problem will be

caused. To avoid this problem, the equation

/T
i /iðv̂Þ ¼ /�T

i /iðv̂Þ � e/T
i /iðv̂Þ � /�T

i /iðb�viÞ
þ /T

i /iðb�viÞ þ e/T
i /iðb�viÞ

is adopted in (72). By employing this equation, NNs

concluding state variables �̂vi appear. Then, the property of

RBF-NNs is utilized to design the controller.

Neural Computing and Applications (2022) 34:12789–12805 12795

123



Remark 11 According to the Lyapunov stability theorem,

the above theorem presents a result on AFT prescribed

performance control strategy. Obviously, the tracking error

can converge to a prescribed range by designing reasonable

FTPF. It theoretically ensures that the tracking error can

converge to a prescribed range in the finite-time. In addi-

tion, it should be noticed that the BLF may generate the

infinite control signal or even the actuator saturation, which

has been discussed in [49].

Remark 12 The AFT control diagram is exhibited in

Fig. 2. It can be seen that an observer (12) is designed for

the considered nonlinear system (1), which can estimate the

unmeasurable states. And then, utilizing the state estima-

tion, we introduce the finite-time performance function

qðtÞ and the reference signal ydðtÞ into the backstepping

design procedure to obtain the virtual controller, the

adaptive law and the actual controller. We summarize the

algorithm in this paper as follows

Step I: Choose the vector K ¼ ½k1; k2; . . .; kn�T, such that

A is the Hurwitz matrix. Furthermore, by solving equation

(11), we can get the positive defined matrix W.

Step II: Select the initial conditions such that the initial

tracking error is smaller than the initial value of FTPF.

Step III: Specify suitable designed parameters, such as

c1 [ 0, d1 [ 0, l1 [ 0 and -2 [ 0. And decide the virtual

control signal a1 and the parameter update law _C1.

Step IV: Specify suitable designed parameters, such as

ci [ 0 , di [ 0, li [ 0 and -i [ 0. And decide the virtual

control signal ai and the parameter update law
_Ciði ¼ 2; . . .; n� 1Þ.
Step V: Specify suitable designed parameters, such as

cn [ 0, s[ 0, dn [ 0, ln [ 0 and 0\r\1. And decide

the control input u and the parameter update law _Cn.

4 Simulation examples

In order to verify the reliability of the designed controller, a

numerical example and a practical example are given.

Example 1 Choose a nonstrict-feedback nonlinear systems

_v1ðtÞ ¼ v2ðtÞ þ sin v1v
2
2;

_v2ðtÞ ¼ uþ 1þ v21
� �

v22;

(

ð37Þ

where v1 and v2 represent the system state, u is the system

input, and the boundary of constrained space is selected as

kc1 ¼ 1:5 and kc2 ¼ 1:65. The ideal reference signal

yd ¼ 0:5 sinðtÞ. In this example, Gaussian functions contain

Fig. 2 Block diagram of the

developed control strategy
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eleven nodes with centers bi evenly in ½�5; 5� and widths

bi ¼ 1.

Define the FTPF qðtÞ as

q tð Þ ¼ ql0 � l.t
� �1

lþqTr ; 0� t� Tr
qTr ; t� Tr

(

ð38Þ

with l ¼ 2
13
, . ¼ 0:7, q0 ¼ 0:6 and qTr ¼ 0:025. It should

be noticed that the set time of finite-time performance

function can be calculated as Tr ¼ ql
0

l. ¼ 8:5839 seconds.

Design a1, u, _C1 and _C2 as

a1 ¼�
2q k2b1 � z21

� �1�r

p 1þ w2
� � c1z

2r�1
1 þ _yd � CT

1/1 v1ð Þ

�
3þ sð Þp 1þ w2

� �

4q
z1 þ

2

p
_q arctan vð Þ;

ð39Þ

u ¼� c2z
2r�1
2

k2b2 � z22

� �r�1
� k2e1 þ _c2 �

z2

2 k2b2 � z22

� �

�
k2b2 � z22

� �
z1

k2b1 � z21
� CT

2/2 �̂v
� �

;

ð40Þ

_C1 ¼
d1p 1þ w2
� �

2q k2b1 � z21

� � z1/1 v1ð Þ � l1C1; ð41Þ

_C2 ¼
d2/2 v̂ð Þ
k2b2 � z22

z2 � l2C2: ð42Þ

Choose the NN state observer as

Fig. 3 Trajectories of y and yd

Fig. 4 Trajectories of v1 and v̂1

Fig. 5 Trajectories of v2 and v̂2

Fig. 6 Trajectories of x
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v̂1 ¼ v̂2 � k1 v̂1 � v1ð Þ þ C�T
1 /1 v̂ð Þ;

v̂2 ¼ u� k2 v̂1 � x1ð Þ þ C�T
2 /2 v̂ð Þ:

(

ð43Þ

The parameters are selected as � ¼ 99=101, s ¼ 1,

d1 ¼ d2 ¼ 0:5, l1 ¼ l2 ¼ 0:5, c1 ¼ 15, c2 ¼ 18, k1 ¼ 20,

k2 ¼ 50. ½v1ð0Þ; v2ð0Þ� ¼ ½0:3; 0�, ½v̂1ð0Þ; v̂2ð0Þ� ¼ ½0; 0�,
C1ð0Þ ¼ C2ð0Þ ¼ ½0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0�T.

To verify the effectiveness of the developed controller,

figures (Figs. 3, 4, 5, 6, 7 and 8) have been displayed for

this example. Figure 3 exhibits the tracking performance of

the considered system. Figure 4 plots the system state v1
and the estimation v̂1. Figure 5 depicts the system state v2
and its estimation v̂2. Figure 6 shows the tracking error, and
it can be seen the tracking error remains in the prescribed

range. Figure 7 depicts the constrained space and states

trajectories remain in the constrained space. The system

input u is exhibited in Fig. 8. It should be noticed that the

designed parameters, the initial conditions, the centers of

the receptive and the width of Gaussian functions based on

DSC in [11] are selected the same with the controller

proposed in this paper. Form Figs. 5 and6, we can see that

the trajectory of the tracking error xðtÞ based on DSC in

[11] is out of the prescribed range and v2 based on DSC in

[11] is out of constraint interval. Thus, the control

scheme developed in this paper can ensure the full states

and the tracking error do not violate constraint conditions

and prescribed range, respectively.

Example 2 Based on the designed adaptive NN control

scheme, the model of the electromechanical system

exhibited in Fig. 9. Its dynamics can be modeled as the

following form in [40]

M €qþ B _qþ N sin qþ D1 _q; q; Ið Þ ¼I;

Ve � RI � KB _qþ D2 _q; q; Ið Þ ¼L _I;
ð44Þ

where

M ¼ J

Ks
þ mL20

3Ks
þM0L

2
0

Ks
þ 2M0R

2
0

5Ks
;

N ¼mL0g

2Ks
þM0L0g

Ks
;B ¼ B0

Ks
;

and I represents the motor armature current, Ve is the input

voltage, and q represents the angular motor position. To

consider the influence of the model error on the real sys-

tem, D1 and D2 denote the model error, respectively. The

parameters of the electromechanical system are shown in

Table 1.

Define v1 ¼ q, v2 ¼ _q, v3 ¼ I and u ¼ Ve. Equation (44)

is transformed as

_v1 tð Þ ¼v2 tð Þ;

_v2 tð Þ ¼ 1

M
v3 �

B

M
v2 �

N

M
sin v1 þ

B

M
cos v2 sin v3;

_v3 tð Þ ¼ 1

L
u� K

L
v2 �

R

L
v3:

8
>>>>><

>>>>>:

ð45Þ

In this example, we give yd ¼ 0:5 sinðtÞ þ sinð0:5tÞ. The
Gaussian functions in this example contain nine nodes with

center bi evenly in ½�4; 4� and widths bi ¼ 1. And the

prescribed performance function keeps the same as

Example 1. Furthermore, the design parameters are chosen

as � ¼ 97=101, s ¼ 1, d1 ¼ d2 ¼ d3 ¼ 1, c1 ¼ 8, c2 ¼ 10,

c3 ¼ 12, k1 ¼ 20, k2 ¼ 40, k3 ¼ 50, l ¼ 2
13
, . ¼ 0:7,

q0 ¼ 0:6, qTr ¼ 0:05 and Tr ¼ 8:5839.

Meanwhile, the initial values are selected as

v1ð0Þ ¼ 0:3, v2ð0Þ ¼ �1, v3ð0Þ ¼ �1, v̂1ð0Þ ¼ 0:3,

v̂2ð0Þ ¼ �1, v̂3ð0Þ ¼ 0:3, C1ð0Þ ¼ C2ð0Þ ¼
C3ð0Þ ¼ ½0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1�T.

Fig. 7 State trajectories remain in the constrained space

Fig. 8 Trajectories of u
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Figures 10, 11, 12, 13, 14 and 15 give the simulation

results of the designed AFT control scheme. Figure 10 is

described to show the tracking performance of the consid-

ered systems. The system state v1 and the estimation v̂1 are
shown in Fig. 11. Figure 12 shows the system state v2 and
its estimation v̂2. And the system state v3 and the

estimation v̂3 are exhibited in Fig. 13. Figure 14 depicts

the tracking performance, and we can see that the tracking

error remains in the described range. The control input u is

depicted in Fig. 15.

Fig. 9 Schematic of

electromechanical system

Table 1 Parameters of the electromechanical system

Symbol Physical meaning Value

J Rotor inertia 1.625 9 10-3 Kg�m2

m Link mass 0.506 Kg

R0 Load radius 0.023 m

M0 Load mass 0.434 Kg

L0 Link length 0.305 m

KB Back-emf coefficient 0.9 N�m/A

L Armature Inductance 25 9 10-3 H

B0 Friction coefficient 0.01625 N�m�s/rad
R Armature resistance 5X

Ks Conversion value 0.9 N�m/A

g Gravity coefficient 9.8 N/ kg

Fig. 10 Trajectories of y and yd

Fig. 11 Trajectories of v1 and v̂1

Fig. 12 Trajectories of v2 and v̂2
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5 Conclusion

This article has investigated the AFT prescribed perfor-

mance control for nonstrict-feedback nonlinear systems

subject to unmeasurable states and full-state constraints.

The unmeasurable states are estimated via designing an NN

observer. Meanwhile, the BLF method has been introduced

in the process of the backstepping design, and the con-

straint condition is satisfied. It has been proven that the

developed NN control strategy can ensure that the con-

trolled system is SGPFS and the tracking error can con-

verge to a predefined interval. Moreover, the DSC

technique is utilized to address the complexity problem.

Therefore, it has enriched the adaptive NN control theories

of the nonstrict-feedback nonlinear systems.

Appendix 1

By (15), _V0 is calculated as

_V0ðtÞ ¼ � eTðtÞQeðtÞ þ 2eTðtÞW
Xn

i¼1

~Ci/iðv̂ðtÞÞ

þ 2eTðtÞW
�
fþ Mf

�
:

ð46Þ

According to Lemma 1, Assumption 2 and

/T
i ðXÞ/iðXÞ�I, the following inequalities hold

2eðtÞTW
Xn

i¼1

~Ci/iðv̂Þ�IkWk2
Xn

i¼1

~C
T

i
~Ci þ kek2; ð47Þ

2eðtÞTWf�kWk2kf�k2 þ kek2; ð48Þ

2eðtÞTWMf � kWk2
Xn

i¼1

l2i þ 1

 !

kek2; ð49Þ

where f� ¼ ½f�1; . . .; f
�
n�
T
.

According to (47, 48 and 49), it yields

_V0 � � eðtÞTQeðtÞ þ kWk2
Xn

i¼1

l2i þ 3

 !

kek2

þ kWk2kf�k2 þ IkWk2
Xn

i¼1

~C
T

i
~Ci

� � q0kek2 þ IkWk2
Xn

i¼1

~C
T

i
~Ci þM0:

ð50Þ

Appendix 2

Step 1: From (1), (5) and (17), _z1 can be given as

Fig. 13 Trajectories of v3 and v̂3

Fig. 14 Trajectories of x

Fig. 15 Trajectories of u
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_z1 ¼
pð1þ w2Þ

2q
ð _v1 � _yd �

2

p
_q arctanðwÞÞ

¼ pð1þ w2Þ
2q

ðz2 þ a1 þ 12 þ C�T
1 /1ðv̂Þ � _yd

þ e2 þ f1 �
2

p
_q arctanðwÞÞ

¼ pð1þ w2Þ
2q

ðz2 þ a1 þ 12 þ C�T
1 /1ðv̂Þ

� C�T
1 /1ðv̂1Þ þ CT

1/1ðv̂1Þ þ ~C
T

1/1ðv̂1Þ þ f1

þ e2 � _yd �
2

p
_q arctanðwÞÞ:

ð51Þ

Choose a Lyapunov function as

V1 ¼ V0 þ
1

2
log

k2b1
k2b1 � z21

þ 1

2d1
~C
T

1
~C1; ð52Þ

where kb1 ¼ kc1 � A0, and d1 is the design parameter.

Obviously, V0 � 0 and ~C
T

1
~C1 � 0. In addition,

k2b1=ðk2b1 � z21Þ� 1, that is , 1
2
log

k2b1
k2
b1
�z2

1

� 0. Then, V1 � 0

can be obtained.

According to (51), the derivative of V1 yields

_V1 ¼ _V0 þ
z1 _z1

k2b1 � z21
� 1

c1
~C
T

1
_C1

¼ _V0 þ
pð1þ w2Þ
2qðk2b1 � z21Þ

z1ða1 � _yd þ z2 þ 12

þ e2 þ f1 þ CT
1/1ðv̂1Þ �

2

p
_q arctanðwÞÞ

þ pð1þ w2Þ
2qðk2b1 � z21Þ

z1ðC�T
1 /1ðv̂Þ � C�T

1 /1ðv̂1ÞÞ

� 1

d1
~C
T

1 ð _C1 � d1
pð1þ w2Þ
2qðk2b1 � z21Þ

z1/1ðv̂1ÞÞ:

ð53Þ

According to (53), Lemma 1 and /T
i ðXÞ/iðXÞ�I, we can

obtain

pð1þ w2Þ
2qðk2b1 � z21Þ

z1f1 �
1

2
ð pð1þ w2Þ
2qðk2b1 � z21Þ

Þ2z21 þ
1

2
f�21 ; ð54Þ

pð1þ w2Þ
2qðk2b1 � z21Þ

z112 �
1

2
ð pð1þ w2Þ
2qðk2b1 � z21Þ

Þ2z21 þ
1

2
122; ð55Þ

pð1þ w2Þ
2qðk2b1 � z21Þ

z1e2 �
1

2
ð pð1þ w2Þ
2qðk2b1 � z21Þ

Þ2z21 þ
1

2
kek2; ð56Þ

pð1þ w2Þ
2qðk2b1 � z21Þ

z1ðC�T
1 /1ðv̂Þ � C�T

1 /1ðv̂1ÞÞ

� s
2
ð pð1þ w2Þ
2qðk2b1 � z21Þ

Þ2z21 þ
2I

s
kC�

1k
2;

ð57Þ

From (54)-(57), (53) can be written as

_V1 � _V0 þ
pð1þ w2Þ
2qðk2b1 � z21Þ

z1ða1 � _yd þ CT
1/1ðv̂1Þ

þ ð3þ sÞpð1þ w2Þ
4qðk2b1 � z21Þ

z1 �
2

p
_q arctanðwÞÞ þ 1

2
kek2

þ 2I

s
kC�

1k
2 þ pð1þ w2Þ

2qðk2b1 � z21Þ
z1z2 þ

1

2
f�21 þ 1

2
122

� 1

d1
~C
T

1 ð _C1 � d1
pð1þ w2Þ
2qðk2b1 � z21Þ

z1/1ðv̂1ÞÞ:

ð58Þ

Considering (18), it follows that

_V1 � � q1kek2 þ IkWk2
Xn

i¼1

~C
T

i
~Ci þM1

� c1z
2r
1

ðk2b1 � z21Þ
r þ

pð1þ w2Þ
2qðk2b1 � z21Þ

z1z2

þ l1
d1

~C
T

1C1 þ
1

2
122;

ð59Þ

where q1 ¼ q0 � 1
2
and M1 ¼ M0 þ 1

2
f�21 þ 2I

s kC�
1k

2
.

The following first-order low-pass filter will be utilized

to filter a1 and to obtain c2

-2 _c2 þ c2 ¼ a1; c2ð0Þ ¼ a1ð0Þ; ð60Þ

where -2 is a positive constant.

Define 12 ¼ c2 � a1. According to (60), it is easy to

obtain _c2 ¼ � 12
-2
, and then one gets

_12 ¼ _c2 � _a1 ¼ � 12
-2

þ Y2ð�Þ; ð61Þ

where

Y2ð�Þ ¼ oa1
ov̂1

_̂v1 �
oa1
oC1

_C1 �
oa1
oyd

_yd �
oa1
o _yd

€yd:

Step 2: According to (1), (5) and (17), _z2 can be calculated

as

_z2 ¼ _̂v2 � _c2

¼v̂3 þ k2ðy� v̂1Þ þ CT
2/2ðv̂Þ � _c2

¼ z3 þ 13 þ a2 þ k2e1 þ C�T
2 /2ðv̂Þ � ~C

T

2/2ðv̂Þ

� C�T
2 /2ð �̂v2Þ þ CT

2/2ð �̂v2Þ þ ~C
T

2/2ð �̂v2Þ � _c2;

ð62Þ
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where �̂v2 ¼ ðv̂1; v̂2ÞT.
Choose a Lyapunov function as

V2 ¼ V1 þ
1

2
log

k2b2
k2b2 � z22

þ 1

2
122 þ

1

2d2
~C
T

2
~C2; ð63Þ

where d2 is the positive designed parameter, and kb2 will be

given later. Similar to (52), V2 � 0 can be obtained.

From (62) and (63), one has

_V2 ¼ _V1 þ
z2

k2b2 � z22
ða2 þ k2e1 þ z3 þ 13 � _c2

þ CT
i /ið �̂v2ÞÞ �

z2
k2b2 � z22

~C
T

2/2ðv̂Þ

þ z2
k2b2 � z22

ðC�T
2 /2ðv̂Þ � C�T

2 /2ð �̂v2ÞÞ

þ 12 _12 �
1

d2
~C
T

2 ð _C2 �
d2

k2b2 � z22
z2/2ð �̂v2ÞÞ:

ð64Þ

By Lemma 1, we can obtain the following inequalities

z2
k2b2 � z22

ðC�T
2 /2ðv̂Þ � C�T

2 /ð �̂v2ÞÞ

� sz22
2ðk2b2 � z22Þ

þ 2I

s
kC�

2k
2;

ð65Þ

z2
k2b2 � z22

13 �
z22

2ðk2b2 � z22Þ
2
þ 1

2
123; ð66Þ

� z2
k2b2 � z22

~C
T

2/2ðv̂Þ�
z22

2ðk2b2 � z22Þ
2
þ I

2
~C
T

2
~C2; ð67Þ

According (65)-(67), one has

_V2 � _V1 þ
z2

k2b2 � z22
ða2 þ k2e1 � _c2 þ CT

2/2ð �̂v2Þ

þ ð2þ sÞz2
k2b2 � z22

Þ þ 1

2
123 þ

I

2
~C
T

2
~C2 þ

2I

s
kC�

2k
2

þ 12 _12 �
1

d2
~C
T

2 ð _C2 �
d2

k2b2 � z22
z2/2ð �̂v2ÞÞ

þ z2z3
k2b2 � z22

;

ð68Þ

where M2 ¼ M1 þ 2I
s kC�

2k
2
.

And then, we can obtain

_V2 � � q1kek2 þ IkWk2
Xn

i¼1

~C
T

i
~Ci þM2

þ z2z3
k2b2 � z22

þ z2
k2b2 � z22

�
a2 þ k2e1 � _c2

þ CT
i /2ð �̂v2Þ þ

ð2þ sÞz2
k2b2 � z22

þ
pð1þ v2Þðk2b2 � z22Þ

2qðk2b1 � z21Þ
z1

�
þ 1

2
123

þ I

2
~C
T

2
~C2 þ

l1
d1

~C
T

1C1 þ
1

2
122 �

c1z
2r
1

ðk2b1 � z21Þ
r

þ 12 _12 �
1

d2
~C
T

2 ð _C2 �
d2

k2b2 � z22
z2/2ð �̂v2ÞÞ:

ð69Þ

Substituting (19) into (69), one has

_V2 � � q1kek2 þ IkWk2
Xn

i¼1

~C
T

i
~Ci þM2

� c1z
2r
1

ðk2b1 � z21Þ
r �

c2z
2r
2

ðk2b2 � z22Þ
r þ

I

2
~C
T

2
~C2

þ l1
d1

~C
T

1C1 þ
l2
d2

~C
T

2C2 þ
1

2
122 þ

1

2
123

þ 12 � 12
-2

þ Y2ð�Þ
� �

þ z2z3
k2b2 � z22

:

ð70Þ

The first-order filter is designed as

-3 _c3 þ c3 ¼ a2; c3ð0Þ ¼ a2ð0Þ: ð71Þ

Define 13 ¼ c3 � a2. According to (71), we can obtain

_c3 ¼ � 13
-3
, which implies

_13 ¼ _c3 � _a2 ¼ � 13
-3

þ Y3ð�Þ;

where

Y3ð�Þ ¼ � oa2
ov̂1

_̂v1 �
oa2
ov̂2

_̂v2 �
oa2
oC1

_C1 �
oa2
oC2

_C2 �
oa2
oc2

_c2:

Step i (3� i� n� 1): By (17), _zi is

_zi ¼ _̂vi � _ci

¼ v̂iþ1 þ kiðy� v̂1Þ þ CT
i /iðv̂Þ � _ci

¼ ziþ1 þ 1iþ1 þ ai þ kie1 þ C�T
i /iðv̂Þ

� ~C
T

i /iðv̂Þ � C�T
i /ið �̂viÞ þ CT

i /ið �̂viÞ

þ ~C
T

i /ið �̂viÞ � _ci:

ð72Þ

Choose a Lyapunov function as
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Vi ¼ Vi�1 þ
1

2
log

k2bi
k2bi � z2i

þ 1

2
12i þ

1

2di
~C
T

i
~Ci; ð73Þ

where di is the positive parameter, and kbi will be given

later. Similar to (63), it can be seen Vi � 0.

From (72) and (73), one has

_Vi ¼ _Vi�1 þ
zi

k2bi � z2i
ðai þ k2e1 þ ziþ1 þ 1iþ1

� _ciþ1 þ CT
i /ið �̂viÞÞ �

zi
k2bi � z2i

~C
T

i /iðv̂Þ

þ zi
k2bi � z2i

ðC�T
i /iðv̂Þ � C�T

i /ið �̂viÞÞ

þ 1i _1i �
1

di
~C
T

i
_Ci �

di
k2bi � z2i

zi/ið �̂viÞ
 !

:

ð74Þ

Similarly, it yields

zi
k2bi � z2i

ðC�T
i /iðv̂Þ � C�T

i /ð �̂viÞÞ

� sz2i
2ðk2bi � z2i Þ

þ 2I

s
kC�

i k
2;

ð75Þ

zi
k2bi � z2i

1iþ1 �
z2i

2ðk2bi � z2i Þ
2
þ 1

2
1iþ1; ð76Þ

� zi
k2bi � z2i

~C
T

i /iðv̂Þ�
z2i

2ðk2bi � z2i Þ
2
þ I

2
~C
T

i
~Ci: ð77Þ

The first-order filter is designed as

-iþ1 _ciþ1 þ ciþ1 ¼ ai; ciþ1ð0Þ ¼ aið0Þ: ð78Þ

Define 1iþ1 ¼ ciþ1 � ai. According to (78), we can obtain

_ciþ1 ¼ � 1iþ1

-iþ1
, which implies

_1iþ1 ¼ _ciþ1 � _ai ¼ � 1iþ1

-iþ1

þ Yiþ1ð�Þ;

where

Yiþ1ð�Þ ¼ �
Xi

j¼1

oai
ov̂j

_̂vj �
Xi

j¼1

oai
oCj

_Cj �
Xi

j¼1

oai
oci

_ci:

Substituting (75)-(77) and (19) into (53), it yields

_Vi � � q1kek2 þ IkWk2
Xn

i¼1

~C
T

i
~Ci þ

Xi

j¼1

1

2
12jþ1

�
Xi

j¼1

cjz
2r
j

ðk2bj � z2j Þ
r �

Xi

j¼1

lj
dj

~C
T

j Cj þ
ziziþ1

k2bi � z2i

þ
Xi

j¼2

I

2
~C
T

j
~Cj þ

Xi

j¼2

1jð�
1j
-j

þ Yjð�ÞÞ þMi;

ð79Þ

where Mi ¼ Mi�1 þ 2I
s kC�

i k
2
.

Step n: From (1) and (17), the derivation of zn is given

as

_zn ¼ uþ kne1 þ CT
n/nðv̂Þ � ~C

T

n/nðv̂Þ

þ ~C
T

n/nðv̂Þ � _ci:
ð80Þ

The Lyapunov function is given as

Vn ¼ Vn�1 þ
1

2
log

k2bn
k2bn � z2n

þ 1

2
12n þ

1

2dn
~C
T

n
~Cn; ð81Þ

where dn [ 0 is a designed parameter. Similar to (73),

Vn � 0 can be obtained.

According to (80) and (81), one has

_Vn ¼ _Vn�1 þ
zn

k2bn � z2n
ðuþ kne1 � _cn þ CT

n/nð �̂vÞÞ

� zn
k2bn � z2n

~C
T

n/nðv̂Þ þ 1n _1n

� 1

dn
~C
T

n ð _Cn �
dn

k2bn � z2n
zn/nðv̂ÞÞ:

ð82Þ

From Lemma 1, it yields

�
~C
T

n/nðv̂Þ
k2bn � z2n

zn �
z2n

2ðk2bn � z2nÞ
2
þ I

2
~C
T

n
~Cn: ð83Þ

From (79), (82) and (83), one gets

_Vn � � q1kek2 þ IkWk2
Xn

i¼1

~C
T

i
~Ci þMn�1

�
Xn�1

i¼1

ciz
2r
i

ðk2bi � z2i Þ
r þ

zn
k2bn � z2n

ðuþ kne1 � _cn

þ zn
2ðk2bn � z2nÞ

þ
ðk2bn � z2nÞzn�1

k2bn�1
� z2n�1

þ CT
n/nð �̂vÞÞ

�
Xn�1

i¼1

li
di

~C
T

i Ci þ
Xn�1

i¼1

1

2
12iþ1 þ

Xn

i¼2

I

2
~C
T

i
~Ci

þ
Xn

i¼2

1ið�
1i
-i

þ Yið�ÞÞ

� 1

dn
~C
T

n ð _Cn �
dn

k2bn � z2n
zn/nðv̂ÞÞ:

ð84Þ

Considering (21), it yields
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_Vn � � q1kek2 þ IkWk2
Xn

i¼1

~C
T

i
~Ci þ

Xn

i¼1

1

2
12i

�
Xn

i¼1

li
di

~C
T

i Ci �
Xn

i¼1

ciz
2r
i

ðk2bi � z2i Þ
r

þ
Xn

i¼2

1i � 1i
-i

þ Yið�Þ
� �

þ
Xn

i¼2

I

2
~C
T

i
~Ci þMi:

ð85Þ
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