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Abstract
BackgroundAlzheimer’s disease (AD) is a degenerated condition of the brain where memory loss is fully depleted for

elderly individual. Efficient machine learning methods are accessible, producing low classification accuracy since single

modality features are being evaluated. In this paper, the multimodal approach is developed and execution of comprehensive

validation for structural atrophy through Magnetic Resonance Imaging decreases metabolism through Fluorodeoxyglucose

Positron Emission Tomography (FDG-PET), and accumulation of amyloid plaques through Pittsburgh compound B (PiB-

PET), as well as cognitive assessment for identifying the early onset of AD. It has been stated that additional information

from multiple image modalities would ameliorate the classification accuracy while diagnosing early AD. The novel

classifier, Adaptive Hyperparameter Tuning Random Forest Ensemble Classifier (HPT-RFE), is proposed for three binary

classifications. In this classifier, the tunning of hyperparameters is automated for computing the best features while

constructing the optimum size of Random Forest. The advantage of using the classifier is computationally much faster

when compared with Support Vector Machine, Naı̈ve Bayes, K-Nearest Neighbour and Artificial Neural Network. Sim-

ulation results show that the performance of the Adaptive HPT-RFE classifier has been regarded as best among all binary

classifications in the ADNI dataset. For AD versus Normal Control (NC) binary classification, 100% accuracy, sensitivity,

and specificity have been achieved, whereas the accuracy of 91% and 100% specificity for NC versus Mild Cognitive

Impairment (MCI) classification and 95% accuracy, 100% specificity, 80% sensitivity for AD versus MCI classification are

compared with four state-of-the-art techniques.

Keywords Alzheimer disease � Magnetic resonance imaging � Fluorodeoxyglucose � Pittsburgh compound B �
Positron emission tomography � High performance computing � FreeSurfer

1 Introduction

One of the global challenges in the health care industry is

AD, affecting more than 5 million American people [1].

Due to adverse complications in AD, it has been predicted

that more than 7 million people died aging more than

65 years [2]. The cases of AD patients would be double

every five years after attaining the age of 65 years. In

addition to that, AD is almost one-third of the total popu-

lation aging more than 85 years [3]. For memory disability

and other cognitive problems, the characterization of AD is

exhibited by neurofibrillary entanglement [4, 5]. For an

association in the memory losses in AD patients, molecular

mechanisms are still unknown. Some healthy individuals

do not have memory loss but possessing plaques and

deposits [6]. Risk factors such as obesity, age, diabetics,

and inflammation increment in the brain occurred in AD

[7]. APOE is the most vital supplementary risk factor

among CR1, FERMT2, and COMT genotypes [8].

According to the National Institute of Aging and the Alz-

heimer’s Disease Association, preclinical AD, MCI, and

dementia are the three stages of AD [9]. Encephalopathy or

cognitive impairment occurs at the first stage (preclinical)

AD. The primary cause of AD is dementia which encom-

passes mild, moderate, and severe phases. Amyloid
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positivity, Asymptomatic cerebral amyloidosis [10],

synaptic dysfunction are the divisions of Preclinical AD.

Declining of cognitive functions and neurodegeneration are

shreds of evidence found in all three divisions. Clinical

diagnosis, the background of the disease, psychological

tests with additional information are some of the methods

in diagnosing AD. To assist AD, non-protruding eye tests

are being conducted. In addition to that, an association of

beta-amyloid protein present in the eye has significant roles

in the levels of the brain [11]. Neuroimaging method poses

a crucial part of evaluating suspected AD patients. The two

other modalities for diagnosing AD are PET and MRI.

Brain’s structural and functional information is acquired

through MRI using the detailed characterization of tissues

with a difference in soft tissues. This technique can easily

differentiate white matter and grey matter where brain

tissues are displayed. Molecular and metabolic information

of the brain is obtained by PET imaging which is not

restrained to Ab and glucose. High sensitivity is achieved

for the distribution of tangles and plaque lesions in AD

patients. As a result, this modality helps to diagnose normal

and different stages of AD qualitatively and quantitively

[12]. Hence, combined imaging techniques of MRI and

PET would facilitate diagnosing AD other than any other

technique. In the last few decades, the application of hybrid

imaging models is gaining importance in the clinical fields.

Some of the models include PET/Computed Tomography

(CT), single-photon emission computed tomography

(SPECT), and fluorescence molecular tomography (FMT).

In radiation areas, the PET/MR hybrid imaging model is

applied to AD patients for better performance [13]. For

correction in attenuation of soft tissues, Dixon MR pro-

duces satisfactory results and is applicable in FDG uptakes

to identify lesions in brain tissues. Hence, PET/MR

imaging model finds its potential application in the areas

such as classification, different stages of the disease,

diagnostic evaluation, and comprehension of pathomecha-

nisms [14]. In addition to that, a single imaging session

produces all imaging and biomarkers information that

assists patients and referred physicians [12].

Previous studies show that there has been a remarkable

increase in retention of PiB Biomarker, which is observed

as elevated plaques levels comparing with HC subjects.

PiB patterns produce retention in parietal and frontal cor-

tices of brain regions, which is entirely different for AD

patients [15]. In cortical areas of AD patients, PiB retention

has been considered most prominent, whereas lowest in

areas of white region processing the studies related to a

post-mortem of Ab plaques [16]. In AD’s frontal, temporal,

parietal cortex of the brain, retention of PiB has been

observed. Significantly affected areas in the brain’s

occipital and lateral temporal cortex have prudently been

observed in mesial temporal regions. In the previous

studies relating extensive Ab deposition, retention of stri-

atal PiB has been significantly observed in AD striatum

patients [17]. Hence, the description of Ab deposition is

mentioned and confirmed by using PiB in AD and CN

subjects [18]. The main highlights of the paper are as

follows:

1. In this study, multimodal approach is developed for

comprehensive validation in structural atrophy through

MRI, decrease metabolism through FDG-PET and

accumulation of amyloid plaques through PiB-PET as

well as cognitive assessment for studying early patterns

for diagnosing AD.

2. FreeSurfer 6.0.1 has been applied in MRI, FDG-PET

and PiB-PET images for extracting different features,

such as morphometric features, Region of Interest

(ROI), Surface features, Standard Uptake Values

(SUV) and cognitive assessment in High Performance

Computing (HPC).

3. Adaptive HPT-RFE classifier is based on one versus

one classification which leads to three binary classifi-

cation, namely AD versus NC, MCI versus NC and AD

versus MCI and compared with SVM, NB, KNN, and

ANN classifiers which makes model a robust and

stable one.

4. The performance of Adaptive HPT-RFE classifier has

been applied on 102 subjects which has been taken

from Alzheimer’s disease Neuroimaging Initiative

(ADNI) database and compared with other four state-

of-the-art techniques in each binary classification tasks

where simulation results indicate that model has a good

potential for generalisation.

The paper’s organization is as follows: Sect. 2 describes

the related works. Sect. 3 describes methods. Section 4

illustrates Image Processing. Classification methods are

discussed in Sect. 5. Simulation results and discussions are

presented in Sect. 6. Finally, the conclusion of the proposed

study is explained in Sect. 7.

2 Related works

There has been no concrete treatment for AD where

modern therapies are modified to degrade the progression

of the disease. The main criteria of conducting trials are to

measure cognitive functions by applying ADAS-cog [19]

and CDR Scale [20]. It has been observed that clinical

symptoms of patients vary according to the progression of

AD. This disease does not closely correlate with beta-

amyloid (Ab) proteins and tau deposition with losses [21].

Applying ADAS-Cog psychometric tests [22] and brain

cognitive reserve capacity [23], modification of clinical

symptoms is well presented. Therefore, biomarkers are
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used for assessing the effectiveness of the disease in con-

venient histopathological features of AD [24]. Biomarkers,

such as 11C- PiB, are applied in cerebrospinal fluid (CSF)

for predicting accumulation of Ab1–42 [21]. CSF p-tau and

tau PET are the two biomarkers used in tau pathology.

Biomarkers, such as PET, take uptake values for specific

regions in FDG, MRI for neuronal loss atrophy, and CSF in

elevated t-tau protein [21]. Most biomarkers are investi-

gated for clinical symptoms by calculating the following

parameters: specificity, validity, transition, and correlation

with other biomarkers [25]. For the same patient, rare

studies are conducted at many time intervals for more than

two biomarkers, and all biomarkers are not readily avail-

able for all subjects.

Amyloid or tau PET are popular imaging methods for

treating patients having dementia about complaints in

cognitive functions induced by changes in neurodegener-

ative. Interdependence between aspects of pathology and

physiology are investigated. Different studies are con-

ducted, which shows that experimental analysis of imaging

methods is becoming potential for evaluating pathophysi-

ologic changes. For observing the dynamic changes in the

brain, conventional imaging methods such as CT and MRI

are applied for cognitive impairment. In the neuropsychi-

atric field, PET/MRI hybrid brain imaging system has been

developed, which is beneficent to assess the changes in the

cerebral pathophysiological [26]. Hence, this hybrid brain

imaging system helps diagnose cerebrovascular diseases

and AD [27]. Several research works illustrate the rela-

tionships between functional or morphological MRI

information and change inflow of blood or metabolism. But

limited studies are conducted on integrated analysis of

functional MRI and amyloid/tau imaging.

3 Methods

In the proposed framework, there are two processing steps:

(1) Pre-processing of images: From the grey matter seg-

mentation of the brain, different sizes of patches are

obtained where each feature is extracted from MRI, FDG-

PET, and PiB-PET images (2) Classification: Train an

HPT-RFE classifier to learn the patterns and discriminate

AD, MCI, and NC individuals and applied for three binary

classifications.

3.1 Materials

3.1.1 Preparation of dataset

In 2003, the ADNI dataset [28] was created by M.W.

Weiner as a public–private partnership for researchers

worldwide. The critical ingredient of ADNI is to measure

the progression of MCI to early AD by biomarkers such as

MRI, PET, neuropsychological and clinical assessment.

In validating our proposed method, T1WI MRI scans,

PiB PET, FDG PET images, and cognitive assessments of

102 ADNI subjects have been used in the study. These

subjects have been divided into three cohorts at the time of

preparing the manuscript. (1) NC: 11 Male and 8 Female

subjects are diagnosed for all points (2) MCI: 44 Male and

21 Female subjects are evaluated for more than two years.

(3) AD: 18 subjects are considered with a clinical diag-

nosis. Here, cognitive assessments of all subjects such as

MMSE, GDSCALE, Global CDR, and FAQ scores are

displayed in Table 1. In the second row, the numbers in the

bracket mention the total number of male and female

subjects. In contrast, the rest five rows indicate the two

numbers, i.e., minimum and maximum values of parame-

ters used in cognitive assessment. In addition to that, over

4100 MRI images, more than 500 FDG-PET images, and

223 PiB-PET images are applied in categorizing into three

cohorts. Procedures of image processing protocols, post-

acquisition pre-processing, and comprehensive ADNI

cohort are described [29].

3.1.2 MRI protocol

All T1 Weighted 3D MRI (T1WI) Protocol are acquired

from SAGITTAL Acquisition Plane, 3D Acquisition Type,

8HRBRAIN Coil, 1.5 Tesla Magnetic Strength, 8̊ Flip

Angle, GE MEDICAL SYSTEMS Manufacturer, 256

pixels of Matrix X and Matrix Y, 166 Pixels of Matrix Z,

SIGNA HDx Manufacturer Model, 0.9 mm of Pixel

Spacing X and Y, RM Pulse Sequence, 1.2 mm of Slice

thickness, 3.8 TE ms, 1000 TI ms, 8.6 TR ms [30].

3.1.3 FDG-PET protocol

All glucose metabolism 3D FDG-PET are acquired from

0.096000 cm-1 Attenuation, Rectangle: 4.300000 mm Ax,

rectangle 6.500000 mm Rad Convolution Kernel, EMIS-

SION Counts Source, START Decay Correction, 6 Frames,

GE MEDICAL SYSTEMS Manufacturer, Discovery RX

Mfg Model, 128.0 pixels of number of rows and columns,

47 Slices, 2 mm of X and Y Pixel Spacing, F-18

Radioisotope, 18F-FDG Radiopharmaceutical, RTSUB

Randoms Correction, 3D Kinahan–Rogers Reconstruction,

Model-Based Scatter Correction, 3.3 mm Thickness [31].

3.1.4 PiB-PET protocol

All amyloid 3D 11C PiB-PET are acquired from ramp

Convolution Kernel, and Dynamic EMISSION Counts

Source, START Decay Correction, 27 frames, Siemens/

CTI Manufacturer, HR ? Manufacturer Model, 128.0
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pixels of the number of rows and columns, 63 Slices,

2.1 mm of X and Y Pixel Spacing, C-11 Radioisotope, 11C

PiB PET Radiopharmaceutical, CPU iterative Reconstruc-

tion, Simulated 3D Scatter Correction, 2.4 mm Thickness

[32].

3.1.5 FreeSurfer

Nowadays, the primarily used software in VolBM is

FreeSurfer (surfer.nmr.mgh.harvard.edu), where compli-

cated image processing operations are implemented [33].

Freesurfer calculates the corresponding volumes and a

massive number of anatomical structures from the seg-

mentation of incoming scans. Here, FreeSurfer version

6.0.1 has been applied in the hippocampus, total GM,

temporal GM, and ventricular volume output as an imaging

biomarker for the AD brain. Computational complexity is a

significant hindrance for FreeSurfer as compared to HPC

for limited application in clinical routines. Time taken for

the FreeSurfer pipeline for an up-to-date Single processor

PC takes 6 to 24 h to complete each scan. A clustering

network is used in HPC, composed of 2 Master and

Computer Node, 1 GPU Computer Node, and 1 Cloud

Node as explained in Fig. 2.

3.1.6 HPC

The HPC configurations [34] are as follows: 2 numbers of

Master node and Computer Node of E5-2630 v3 Intel Xeon

2.4 GHz processors with 8-core, Hard Disk Capacity of

500 GB; 1 GPU Compute Node of 2 numbers of Nvidia

K20 GPU and 64 GB memory; 1 Cloud node of E5-

2620 V3@2.4, 6 core processors E5-2620 and 64 GB

Memory, Hard Disk Drive of 1 TB. The overview of

cluster network is shown in Fig. 1.

4 Image processing

Due to parameters, such as similar pose, scale, and less

heterogeneity along with FDG-PET, PiB-PET, and T1WI

MRI images, a small database of images has been acquired

from the ADNI dataset. By applying machine learning

techniques, high classification accuracy has been achieved.

Hence, Voxel-Based Morphometry (VBM), Region of

Interest (ROI), Positron Emission Tomography Partial

Volume Correction (PET PVC), FDG and PiB features and

Standard Uptake Values (SUV) are shown in Fig. 2.

4.1 VBM

It is a neuroimaging analysis method for investigating

differences in the brain’s focal anatomy by applying sta-

tistical tools. To identify the difference in the brain struc-

ture and perform quantitative measurements, morphometry

analysis has to become a vital tool for research. The main

advantage of using the VBM method is to produce an

unbiased score that can represent differences created by the

brain’s anatomical structure [35]. For VBM, 3D volumetric

T1WI MRI images are provided. Using various statistical

tools, VBM tests all the voxel-based images in the brain.

For instance, t tests are performed on each image’s voxel

for recognizing the pattern differences between two subject

groups. In addition to that, measurements of MRI in brain

atrophy marked the tracking of AD’s progression. A large

number of literature reviews related to VBM are studied

[36] VBM is applied for studying the volumetric atrophy of

grey matter located in the brain’s neocortex. The criteria

for selecting brain structures are to classify volumes during

AD’s early or advanced stage [37]. In total, 22 volume

features are extracted from the 3D T1WI Global MRI

measure of Volume (called subject/stats/ aseg. stats). Four

best features are selected by normalization of brain features

and ventricular volumes. Figure 3 shows the volume and

Table 1 Demographic Cohorts,

cognitive assessments and

participants information: Except

the count written in the brackets

(Male/Female), Age (in years),

MMSE, GDSCALE, Global

CDR, FAQ scores are displayed

in Mean (Minimum–Maximum)

format

NC MCI AD

Count (M/F)

No. of subjects 19(11/8) 65(44/21) 18(11/7)

No. of MRI Images 922(580/342) 2795(1883/192) 465(289/176)

No. of FDG PET Images 106(65/41) 384(261/123) 59(36/23)

No. of PiB PET Images 49(28/21) 142(94/48) 32(19/13)

Mean (Min–Max)

Age (in years) 80.5(70.2–93.2) 76.8(55.2–92.6) 73.6(55.2–87.9)

MMSE 28.18(24–30) 25.6(13–30) 20.5(9–26)

GDSCALE 1.17(0–3.5) 2.12(0–11) 1.6(0–8)

Global CDR 0.03(-0.5–0.5) 0.18(0–3) 0.33(0.5–2)

FAQ 3.04(0–9.5) 6.9(0–30) 12.6(0–30)
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intensity structure-wise FS segmentation. Also, character-

istics of Volume are mentioned in Table 3.

4.2 Region of interest (ROI)

3D grey level volume for various brain structures is

extracted from 102 subjects [38, 39]. 1 mm3 resolution is

required in high-quality T1WI MRI images for pre-pro-

cessing using FreeSurfer Software. By entering the com-

mand ‘‘recon-all–I file-name. nii–all’’, FreeSurfer Software

is executed without the intervention of anyone. This soft-

ware is used as a process mode for pipelining the prepro-

gramed processing of the patient’s data. By applying the

default parameters, a total of 110 features of Cortical and

subcortical volume (Fig. 3) are computed. During the

process, Bilateral ROIs are obtained. Between WM, cor-

tical WM, and pial surfaces, FreeSurfer develops a model

in the cortical surface stream (Fig. 3). An array of

anatomical features such as CTH, curvature, folding, sur-

face normal and area calculations are computed for every

cortex part. Desikan-Killiany atlas is adopted for our study,

which is applied to 68 labelled regions of the cortex area.

In segmenting the automated subcortical regions of the

brain, 40 labels are assigned for representing 40 subcortical

regions. For each subject, approximately 12 h are required

for completing the segmentation of subcortical vol-

ume. Table 2 lists the features extracted from T1WI MRI

images.

4.3 PET partial volume correction (PVC)

A comprehensive automatic pipelining PET data analysis is

executed on the brain’s cortical surface in this study. For

PVC, PET Surfer software provides a required number of

tools. Applying the spmregister tool from FreeSurfer 6.0.1,

the registration of PET images to T1 images is the primary

step of executing the pipeline. The intensities of PET

images are normalized for comparing inter subjects. The

MNI space pick atlas generated values of SUVs by divid-

ing PET images considering mean uptake values from the

reference region [40]. Here, the reference region is taken to

be Pons for FDG-PET images [41]. By applying SPM 12,

MNI space registration is performed. At first, estimating

the transformation to MNI template from T1 and applying

inverse deformation in the reference region. 6-mm sphere

is eroded for masking of pons so that voxels are considered

only within the pons while computing mean uptake. For

restricting the outside cortex’s spill-out activity, PVC is

performed. In calculating the better computational effi-

ciency, the iterative Yang algorithm [42] has been applied

to PET-PVC [43]. In this algorithm, the VOI method is

used in which uniform activity within the region is

assumed, and parcellated T1 image is obtained. From

Freesurfer, the gtmseg tool has been applied to parcellated

the T1 image of the subject into 112 areas. Suggestions

made by the developer of PET-PVC, the fusion of certain

regions, are fused to decrease the number to 50. Applying

the mris_preproc tool, the standard template is constructed

for each subjects’ cortical surface, where spherical regis-

tration is performed [44]. SUVR values are measured, and

images are normalized using a template and atlas.

SUVR is defined as the ratio of the concentration of

radioactivity CPET(T) (kBq/mL) to injection dose admin-

istered (MBq) at the same time by the weight of the body

(Kg), which is given by formula

SUVBW ¼ CPET Tð Þ
Dose

Weight

ð1Þ

The Pipeline process of PET-PVC is shown in Fig. 4.

Fig. 1 Overview of cluster

network
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Fig. 2 Workflow of proposed

methodology in three binary

classifications for extracting

features from MRI, FDG-PET

and PiB-PET images
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4.4 Feature selection

In this paper, 109 ROIs have been extracted from FDG-

PET, PiB-PET, and MRI images to apply automatic feature

extraction. Here, some features do not have any correlation

with the output. These features take considerable compu-

tational time and space, making the performance degrades.

The problems caused by extra features are referred to as the

‘‘curse of dimensionality’’. Hence, overfitting occurs as a

challenging task since the computation of features takes

longer. By selecting the right parts, the dimensionality of

features can be reduced. As a result, the classification

process is faster, which decreases the computational time in

training and testing datasets, thereby facilitating classifi-

cation accuracy. Firstly, the normalization of features is

executed by Standard Scalar Function from 0.23.1 version

of the Scikit-learn library [45]. After that, this dataset is

transformed in such a way that data redundancy and

dependency are reduced. Next, random tree embedding

[46] is employed for high-dimensional data acquired from

the Scikit-learn library (0.23.1) [45]. By using SelectKBest

Fig. 3 ROI Segmentation of cortical and subcortical regions with VBM of White and Grey Matter in Brain
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Table 2 ROI Segmentation of Cortical and sub-cortical Regions of Brain

T1MRI biomarkers ROI Selected ROI Features Label

Cortical Parcellation White surface total area WSTA

mean thickness MT

Enorhinal (left ? right) surface area ESA

Thickness average ETA

thickness standard deviation ETSD

Mean curvature EMC

Folding index EFI

Curvature index ECI

Parahippocampal (Left ? Right) Surface area PSA

Thickness average PTA

thickness standard deviation PTSD

Mean curvature PMC

Folding index PFI

Curvature index PCI

Middle Temporal (Left ? Right) Surface area MTSA

Thickness average MTTA

Thickness standard deviation MTTS

Mean curvature MTMC

Folding index MTFI

Curvature index MTCI

Inferior Temporal (Left ? Right) Surface area ITSA

Thickness average ITTA

Thickness standard deviation ITTS

Mean curvature ITMC

Folding index ITFI

Curvature index ITCI

Subcortical Volume Features RG/ LF Cerebellum White Matter RGCWM/LFCWM

LF/ RG Thalamus Proper LFTP/RGTP

RG/LF Cerebellum Cortex RGCC/LFCC

LF/RG Putamen LFP/RGP

RG/LF Caudate RGC/LFC

LF/RG Pallidium LFP/RGP

LF /RG Amlygada LFA/RGA

LF/ RG Hippocampus LFH/RGH

RG/ LF Accumbens Area RGAA/LFAA

LF / RG Choroid Plexus LFCP/RGCP

LF /RG Ventral DC LFVDC/RGVDC

CSF CSF

T1WI MRI biomarkers Selected ROI Features Label

Global measure of brain

VBM (volume and intensity structure) Brain segmentation volume BSM

Volume of ventricles and choroid plexus VVCP

Total cortical grey matter volume TCGMV

Total cerebral white matter volume TCWMV
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features from the Scikit learn library, we have selected the

best features among them.

5 Classification methods

In this work, five different popular classifiers are used for

evaluating performance based on single as well as com-

bined features.

5.1 Adaptive HPT-RFE classifier

Random Forest is regarded as an ensemble machine

learning algorithm where many decision trees are

agglomerated for classification and regression tasks [47].

To overcome overfitting problems, different subsets of data

are trained individual and then averaged value is taken.

In this work, Adaptive HPT-RFE classifier has been

proposed and applied to the three binary classifications.

The parameters adjusted in this method are n_estimators

and max_features. The former parameter is defined as the

number of trees. The time of computation is more for

complicated trees. Beyond the critical trees, the results

obtained are not significantly changing. The latter param-

eter is defined as the generation of random subsets when

every node is being splatted. The default values of

max_features = ‘Sqrt’ for the problems regarding classifi-

cation. For achieving good results, max_depth = None

along with min_samples_split = 2. Moreover, another

parameter, bootstrap = True, is set as default, and boot-

strap = False means extra trees are added. By setting

oob_score = True, the generalization accuracy can be

achieved by applying bootstrap sampling. For deciding the

number of nodes in a particular branch of a decision tree,

Gini Index plays important role for performance in

Random forests. To determine the value of Gini for a

particular branch, a formula is framed which uses each

class and probability that is most likely to occur.

Gini ¼ 1 �
XN

j¼1

ðpjÞ2
� �

ð2Þ

here in this equation, N represents the number of classes in

the dataset, pj indicates the relative frequency of a partic-

ular class in the dataset. Importance of nodes is calculated

for two child nodes which is given in equation.

Nk ¼ wskIk þ wLðkÞILðkÞ þ wRðkÞIRðkÞ ð3Þ

here Nk = node importance at k, wsk = weighted samples at

node k, Ik = value of impurity at node k, L(k) = left split at

node k, R(k) = right split at node k.

The calculation of each feature in random forest is given

by:

FI ¼
P

k:node k splits the featuref NkP
m2nodes Nm

ð4Þ

here FI = Feature Importance, NK = Node Importance at k.

Then, features are normalised to value 0 and 1 by

dividing all the features importance are

normFI ¼ FIP
k2 all featuresf FIk

ð5Þ

The importance of all final features, at a level of Ran-

dom Forest with Hyperparameter Tunning, is the sum total

of average of decision trees. The resultant feature impor-

tance is given by the ratio of the sum of all feature

importance to the total number of trees (T).

RFECk ¼
P

k2 all featuresf FIfk

T
ð6Þ

Fig. 4 Details of PET pipeline

process of PVC
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5.2 SVM

For separating the two data groups, SVM is commonly

used as a supervised machine learning algorithm for mul-

tivariate classification [48]. A hyperplane is required for

classifying the data into various classes. Mathematically, it

can be represented as

W � X þ b ¼ 0 ð7Þ

where W represents as weight vectors, namely W = {P1, P2,

P3,…, PN}; N indicates the number of features and b as the

bias. As the bias term is influenced by the hyperplane,

additional weight P0 has been taken into consideration.

Therefore, the above equation can be written as

P0 þ P1X1 þ P2X2 þ P3X3 þ � � � þ PNX3 ¼ 0 ð8Þ

If any point lies above the hyperplane, the equation is

rewritten as

P0 þ P1X1 þ P2X2 þ P3X3 þ � � � þ PNX3 [ 0 ð9Þ

If any point lies below the hyperplane, the equation is

rewritten as

P0 þ P1X1 þ P2X2 þ P3X3 þ � � � þ PNX3\ 0 ð10Þ

For the above two equations, it can be understood that

the ‘‘sides’’ of the SVM margin are written as

H1:P0 þ P1X1 þ P2X2 þ P3X3 þ � � � þ PNX3 � 1 for Yi
¼ þ1

ð11Þ

H2:P0 þ P1X1 þ P2X2 þ P3X3 þ � � � þ PNX3 �
� 1 for Yi
¼ �1 ð12Þ

Combining the two inequalities of Eq. (11) and (12), we

get

Yi P0 þ P1X1 þ P2X2 þ P3X3 þ � � � þ PNX3ð Þ� 1; 8I
ð13Þ

Training phase

Input: Training Dataset Tr (X, y) where X= Number of subjects, y= Classification Labels, number of            
estimators n_e, random state r_s, Class Number CN, Testing Dataset Ttest (X,y)

Output: Classification Labels

for j in range (length of Tr):
def get_x_y (Tr (X, y)):
return [Tr (X, y)]
if data [CN] == -1/0:

CN. append
def model. Tree (X, y):

Xnew: SelectKBest(chi2) features from Tr(X,y)
clf: Create Random Forest Tree from n_e, r_s

return Xnew, clf
end

end

Testing/Prediction Phase

for j in range (length of Tr):
def get_x_y (Tr (X, y)):
return [Tr (X, y)]
if data [CN] == -1/0:

CN. append
def model. Tree (X, y):

Xnew: SelectKBest(chi2) features from Tr (X, y)
clf: Create Random Forest Tree from n_e, r_s

return Xnew, clf
end

end

Pseudo code of Adaptive HPT-RFE classifier
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5.3 NBC

NBC [49] is a vital integrant in machine learning algorithm

while considering calculation of the different set of prob-

abilities with frequency counts. An assumption is made

where all variables are mutually independent in classifi-

cation problem [9]. The main idea behind NBC is on the

basis of theorem of Bayes and total probabilities which is

given by (11).

P hp1j xið Þ ¼ P xijhp1ð ÞP hp1ð Þ
P xijhp1ð ÞP hp1ð Þð Þ þ P xijhp2ð ÞP hp2ð Þð Þ

ð14Þ

where P(hp1|xi) is posterior probability for hypothesis hp1.

Prior probability for hypothesis hp1 and hp2 is given by

P hp1ð Þ and P hp2ð Þ, whereas P xijhp1ð Þ and P xijhp2ð Þ
represent the likelihood of hp1 and hp2 hypothesis.

5.4 KNN

KNN is one of the nonparametric algorithms for machine

learning. Here, instance data of training are stored by this

classifier as Generalised Internal model is difficult to

construct. At every point, classification values are com-

puted by using majority vote. For every data class, assigned

query point represents the most valued within k-NN [50]. A

linear transformation matrix of size n_features 9 n_com-

ponents maximizes the sum over the samples s with a

probability PS that are correctly classified as given in

Eq. (15).

arg max
x

XN�1

s¼0

PS ð15Þ

In the learned embedded space, probability PS is given

as

Ps ¼
X

k2DS

Psk ð16Þ

where Psk is defined as the softmax over Euclidean Dis-

tance and Ds are the set of points that belong to same class

for each sample.

5.5 ANN

ANN is a computational scheme which as a representation

of biological neural networks existed in human brains

which is expressed through connected nodes [51]. In the

architecture of ANN, nonlinear activation function is used

in a feedforward structure. Biases are added in each layer

for finding outputs in the layer (Zk) using mathematical

expressions.

Nj ¼
Xd

i¼1

xiwij þ B ð17Þ

Nk ¼
XnH

j¼1

yjwkj þ B ð18Þ

Zk ¼ f
XnH

j¼1

yjwkjf
Xd

i¼1

xiwij þ B

 !
þ B

 !
ð19Þ

Training Phase:

Input:
Tr: Training set with f features and target variable
N: number of classes in target variable
Cl: Number of Classifiers

Procedure: 

For b=1 to Cl // Cl=5
1. Generate bootstrap Sample S* from the training set Tr
2. Append random forest tree (RFT) from S*, by repeating all the steps for terminal node. 
For a particular node (pn),

i. Select (K pn/5) best features 
ii. Pick the Kth feature from chi2 test

iii. Split the nodes for Kth feature 
Repeat (i) to (iii) till the minimum nodes nmin is reached
3. Construct the trained classifiers Cl // Cl=5

Testing Phase:

Aggregate all Cl trained classifiers using majority vote for predicting the class label CL.

CL.= arg max∑ ( ( ) = )=5
=1 , for k=1,….., M testing datapoints

Descrip�on of Adap�ve HPT-RFE Algorithm 
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Fig. 5 Flow chart of adaptive

HPT-RFE algorithm for training

and testing data
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6 Results and discussion

6.1 Experimental evaluation

For addressing the K-best features, i.e., one versus one

binary classification tasks such as AD versus NC, MCI

versus NC, AD versus MCI, five classifiers have been

applied on sagittal, axial and coronal orientations of T1WI

MRI images. Here, 102 subjects are acquired from the

ADNI database which has been considered in our study.

The samples are randomized so that 70% of the samples are

trained, and 30% are used for testing. Random forest tree is

generated by calculating Gini Index and tunning hyperpa-

rameters such as Random state and number of estimators

trained by five Classifiers. Hence, Accuracy, Precision,

Sensitivity, and Specificity are calculated from the Con-

fusion Matrix of testing samples. By using the majority

voting of the classifier, classification labels are identified.

The detailed procedure of experimentation is given in

Fig. 5.

6.2 Performance evaluation metrics

For evaluating performance metrics, diagonal elements of

the Confusion matrix represent rightly predicted by the

classifier. These elements are further divided into True

Positive (TP) and True Negative (TN) correctly labelled.

False Negative (FN) and False Positive (FP) are non-di-

agonal elements for incorrectly labelled classes. Accuracy

(ACC), Sensitivity (SEN), Specificity (SPEC), F1 Score

(F1SC), and Precision (PREC) are defined as follows [52]:

ACC ¼ TP þ TN

TP þ TN þ FP þ FNð Þ ð20Þ

PREC ¼ TP

TP þ FN
ð21Þ

SPEC ¼ TN

TN þ FA
ð22Þ

SENS ¼ TP

TP þ FP
ð23Þ

F1SC ¼ 2 TP

2 TP þ FP þ FN
ð24Þ

Features are extracted from different modalities and

converted into a vector consisting of a single feature where

classifiers are trained on a particular feature vector. Func-

tions are called for importing libraries from Sckit Learn

0.23.1 in tunning the hyperparameters executed on Python

IDE 3.6 environment. Hence, each optimized hyperpa-

rameter is trained in five different classifiers for the training

dataset and then evaluating the model’s performance using

the test dataset. The given experiments are run on the

system having the configuration of OS Windows 10, Intel�
CoreTM i7-9750U CPU @ 2.60 GHz processor, six-core,

12 Logical Processors, and 16 GB RAM with Ubunutu

20.04.2. Summarisation of classification report of three

binary classification is shown in Table 3.

For evaluating various diagnostic tests in biomedical

research for testing the performance in classification

problems and different prediction models, Accuracy of

ROC Curve (ROC-AUC) is used as a fundamental graph.

Therefore, the ROC-AUC plot has True positive rate (TPR)

and False Positive Rate (FPR) parameters which are per-

formance measure in positive and negative part of the

dataset. ROC curves have been drawn for each classifier

model for three binary classifications such as AD versus

NC, AD versus MCI and MCI versus NC which is given in

Fig. 6.

Table 3 Results on three binary classifications

Classifier ACC SENS SPEC PREC F1SC

AD verss NC

HPT-RFE 100 100 100 100 100

K Nearest Neighbour 77 80 75 66 72

Naı̈ve Bayes 62 100 37.5 50 66.67

Artificial neural Network 85 80 75 80 80

SVM 77 80 75 66.67 72.72

MCI versus AD

HPT-RFE 95 80 100 100 88.88

K Nearest Neighbour 73 20 88 33 25

Naı̈ve Bayes 77 Versus 100 Versus Versus

Artificial neural Network 91 60 100 100 75

SVM 77 Versus 100 Versus Versus

Classifier ACC SENS SPEC PREC F1SC

HPT-RFE 91 60 100 100 75

K Nearest Neighbour 77 80 75 66 72

Naı̈ve Bayes 77 Versus 100 Versus Versus

Artificial neural Network 59 40 64 25 30

SVM 77 Versus 100 Versus Versus

MCI versus NC

HPT-RFE 91 60 100 100 75

K Nearest Neighbour 77 80 75 66 72

Naı̈ve Bayes 77 – 100 – –

Artificial neural Network 59 40 64 25 30

SVM 77 – 100 – –
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6.3 Comparison with other state-of-the-art
techniques

Detecting AD right its onset has been a significant problem

in the process of AD diagnosis. Most of the past work has

achieved sufficient accuracy in classifying whether a sub-

ject has AD or normal [51]. However, the binary classifi-

cation of AD versus MCI and MCI versus NC is still an

open problem for the community of researchers. The result

obtained from the proposed work for three binary classi-

fications of AD versus MCI, MCI versus NC, and NC

versus AD is reported in Tables 4, 5 and 6. The modalities

of the proposed work given in Tables 4, 5 and 6 only

mention the image-based biomarkers however the work

also includes the quantitative values of cognitive assess-

ments. It is instinctive that differentiating between NC and

AD should be more accessible, which is also evident in our

results as the binary classification of AD versus NC has

been achieved 100% accuracy. The accuracy of the other

two binary classifications: AD versus MCI and NC versus

MCI, has achieved 95% and 91%, respectively. Compared

to the classification of AD versus NC, this reduction

inaccuracy is because the features obtained after segmen-

tation of cortical and subcortical regions and the SUVR are

not as distinct for MCI and AD subjects.

The results obtained also justify the use of the quadruple

biomarkers. The accuracy, specificity and sensitivity values

generated by the proposed work have been compared with

the state-of-the-art techniques and given in Tables 4, 5 and

6. Table 4 shows a comparison with previous researches

which have used a single biomarker, Table 5 shows a

comparison of previous works using a combination of two

biomarkers and Table 6 shows a comparison with tech-

niques using triple biomarkers. Most of the works men-

tioned in Tables 4, 5 and 6 have worked on ADNI or a

dataset that is similar to the ADNI dataset. It can be seen

that the accuracies reported by previous works which have

used either single, double, and triple biomarkers are less

compared to the proposed work. Therefore, it can infer that

the quadruple biomarkers are more efficient in early diag-

nosing of AD. Another observation from the obtained

result is that the system’s sensitivity is lesser than the

specificity for all three binary classifications. This would

mean that the system can prevent a more significant

number of misdiagnoses which is also seen in most pre-

vious works. The author would analyse the effect of con-

sidering multiple biomarkers on specificity and improve it

in future work.

AD vs NC

HPT-RFE KNN NB ANN SVM
AD vs MCI

HPT-RFE KNN NB ANN SVM

MCI vs NC

HPT-RFE KNN NB ANN SVM

Fig. 6 ROC Curves for adaptive HPT-RFE, KNN, NB, ANN and SVM classifiers in each binary classification
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Table 4 Comparison of results obtained using the proposed model with other state-of-the-art methods using single biomarkers

Categories Model Classifier Modalities Accuracy Specificity Sensitivity

AD versus
NC

Beheshti and Demirel
[53]

SVM MRI 92.48 93.89 91.07

Jha et al. [54] ELM MRI 90.26 91.07 90.26

Gupta et al. [55] SVM MRI 96.42 100 93.8

Mehmood et al. [56] VGG Architecture MRI 98.73 – –

Furst et al. [57] T-test FDG-PET – 85 75

Veen et al. [58] LGMLVQ FDG-PET – 91.45 91.47

Gupta et al. [59] Kernel-A SVM FDG-PET 92.5 90 89.74

Martino et al. [58] GMLVQ and SVM FDG-PET – 84 80

Furst et al. [57] T test PiB-PET – 82 90

Orit H et al. [60] SVM PiB-PET – 86 96

Yi et al. [61] GLM univariate analysis PiB-PET 88 71 94

Giacomucci et al.
[62]

Kolmogorov smirnov
test

PiB-PET 86.21 78.95 89.74

Proposed model HPT-RFE MRI ? FDG-PET ? PiB-PET ? Cognitive
assessments

100 100 100

NC versus
MCI

Gupta et al. [55] KNN MRI 81.48 92.3 71.42

Salvatore et al. [63] Linear SVM MRI 72 69 75

Mehmood et al. [56] VGG Architecture MRI 80 – –

Liu et al. [64] Cox and Decision Tree MRI 68.8 74.07 64.29

Liu et al. [64] Cox and Decision Tree FDG-PET 68.8 82.41 57.14

Zhu et al. [65] Support Vector
Regression

FDG-PET 71.2 93 47.14

Lu et al. [66] Deep Neural Network FDG-PET 81.53 82.47 78.2

Gupta et al. [59] SVM FDG-PET 91.07 100 88.46

Wei-Wei Li et al.
[67]

ANOVA test PiB-PET 77 82 64

Vandenberghe et al.
[68]

Probabilistic Analysis PiB-PET – 100 92

Lowe et al. [69] Fischer Test PiB-PET 90 – –

Daoqiang et al. [70] SVM PiB-PET 76.4 66 81.8

Proposed model HPT-RFE MRI ? FDG-PET ? PiB-PET ? Cognitive
assessments

91 100 60

AD versus
MCI

Rallabandi et al. [71] Nonlinear SVM MRI 75 77 75

Gupta et al. [55] KNN MRI 65.21 75 60

Mehmood et al. [56] VGG Architecture MRI 83.72 – –

Kitajima et al. [72] Mc Nemar Test MRI 73.1 80 68.8

Martinez et al. [73] ANOVA Test FDG-PET – 69 64

Ding et al. [74] Deep Neural Network FDG-PET 73 73 59

Gupta et al. [59] Kernel-Based Multiclass
SVM

FDG-PET 84.03 88.24 66.67

Zhang et al. [75] Moses Shapiro
Littenverg

FDG-PET – 74 78.7

Zhang et al. [75] Moses Shapiro
Littenverg

PiB-PET – 56.2 93.5

Yan Ma [76] Spearman Test PiB-PET – 41.1 83.3

Li et al. [61] Automated ROI PiB-PET 67 69 65

Kitajima et al. [72] Mc Nemar Test PiB-PET 66.7 83.3 73.3

Proposed model HPT-RFE MRI ? FDG-PET ? PiB-PET ? Cognitive
assessments

95 100 80
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7 Conclusion and future work

In this study, Adaptive HPT-RFE Classifier has been pro-

posed for one versus one three binary classifications using

single modality features (MRI, FDG-PET, PiB-PET) or

multi-modality features (MRI and FDG-PET, FDG-PET

and PiB-PET, MRI, FDG-PET and PiB-PET). Here, Free-

Surfer Software is used in HPC to extract features of MRI,

FDG-PET, PiB-PET Images from 102 subjects. Best clas-

sification accuracy, sensitivity, and specificity results are

Table 5 Comparison of results obtained using the proposed model with other state-of-the-art methods using two biomarkers

Categories Model Classifier Modalities Accuracy Specificity Sensitivity

AD vs NC Peng et al. [77] Descent algorithm MRI ? FDG-PET 96.1 94.9 97.3

Suk et al. [78] Stacked autoenconder MRI ? FDG-PET 95.09 98 92

Zheng et al.

[79]

Particle swarm optimisation (PSO) MRI ? FDG-PET 88.52 92.2 84.6

Kim et al. [80] Multimodal sparse hierarchical extreme

learning machine (MSH-ELM)

MRI ? FDG-PET 97.2 94.12 98.08

Chételat et al.

[81]

Diagnostic algorithm PiB-PET ? FDG-PET – 100 96

Orit H et al.

[60]

SVM PiB-PET ? FDG-PET – 98 97

Suppiah et al.

[82]

Pearson chi square correlation test PiB-PET ? FDG-PET – 77.4 62.5

Proposed

model

HPT-RFE MRI ? FDG-PET ? PiB-

PET ? Cognitive

assessments

100 100 100

NC vs

MCI

Zhang et al.

[83]

Linear regression MRI ? FDG-PET 76.8 68 79

Suk et al. [84] Deep Boltzmann Machine MRI ? FDG-PET 74.66 95.23 48.04

Lui et al. [64] cox model MRI ? FDG-PET 80.8 70.37 76.19

Wang et al.

[85]

Random forest MRI ? FDG-PET 73.64 – –

Devanand

et al. [86]

ANOVA test PiB-PET ? FDG-PET – 71 81

Yang et al.

[87]

Deep learning PiB-PET ? FDG-PET – 77.63 91.02

Ortiz et al. [88] Deep belief network PiB-PET ? FDG-PET 84 89 79

Vandenberghe

et al. [89]

SVM PiB-PET ? FDG-PET 100 92 85.2

Proposed

model

HPT-RFE MRI ? FDG-PET ? PiB-

PET ? Cognitive

assessments

91 100 60

AD vs

MCI

Sivapriya et al.

[90]

Random forest MRI ? FDG-PET 96.3 – –

Peng et al. [77] Coordinate descent algorithm MRI ? FDG-PET 76.9 82.7 65.9

Cheng et al.

[91]

Domain transfer support vector machine MRI ? FDG-PET 80.1 73.3 85.3

Suk et al. [78] Stacked autoencoder MRI ? FDG-PET 74.15 92.67 50.5

Mosconi et al.

[92]

Diagnostic test PiB-PET ? FDG-PET 80 50 50

Li wei wei

et al. [67]

ANOVA TEST PiB-PET ? FDG-PET 77 64 82

Rabinovici

et al. [93]

Student t test PiB-PET ? FDG-PET – 83 89

Proposed

model

HPT-RFE MRI ? FDG-PET ? PiB-

PET ? Cognitive

assessments

95 100 80
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produced while comparing four different classifiers for

each binary classification problem. Also, this technique

performs best for comparison with other state-of-the-art

methods. Therefore, these results indicate that it may be

beneficial as a potential tool for diagnosing the different

Alzheimer’s disease classes.

Meanwhile, there are other learning techniques such as

deep learning algorithms such as hybrid architectures of

Convolutional Neural Networks (CNNs) [70], Long Short-

Term Memory (LSTM), Deep Autoencoders (DAE), and

more variants of Artificial Neural Networks (ANN) could

be used in future works for getting much-improved clas-

sification accuracy for all various classes of AD. Moreover,

an amalgamation of feature selection techniques and deep

learning models would be applied on single modality and

multi modalities, which can be addressed as a future

problem mainly focussing on the interpretability of clinical

diagnosis. Also, researchers are primarily concentrating on

the methods based on feature selection but not in the

classification of AD from NC.

In the future, the colossal size of the dataset can be

applied for classification purposes. In addition to that, other

machine learning tools can be used. Hence, these models

can also be learned to diagnose other diseases such as

Parkinson’s disease, Brain Cancer, Eplisey, asthma, and

blood cancer. Based on this idea, different ensemble

models can be generated for increasing the performance in

the classification of other datasets, such as text mining, text

classification, which is written in various languages and

formats.
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Table 6 Comparison of results obtained using the proposed model with other state-of-the-art methods using three biomarkers

Categories Model Classifier Modalities Accuracy Specificity Sensitivity

AD versus

NC

Ortiz et al.

[88]

Deep belief network MRI ? FDG-PET ? PiB-PET 92 86 96

Gupta et al.

[59]

Kernel-based multiclass SVM MRI ? FDG-PET ? PiB-PET 98.33 96.47 100

Tong et al.

[94]

SVM MRI ? FDG-PET ? PiB-PET 91.8 94.7 88.9

Zhang et al.

[70]

Linear SVM MRI ? FDG-PET ? PiB-PET 93.2 93.3 93

Proposed

Model

HPT-RFE MRI ? FDG-PET ? PiB-

PET ? cognitive assessments

100 100 100

NC versus

MCI

Young et al.

[95]

Bayesian MRI ? FDG-PET ? PiB-PET 79.5 65.6 78.7

Cheng et al.

[91]

Domain transfer support

vector machine

MRI ? FDG-PET ? PiB-PET 84.8 72.7 84.5

Gupta et al.

[59]

Kernel-based multiclass SVM MRI ? FDG-PET ? PiB-PET 98.33 96.47 100

Moradi et al.

[96]

Semi supervised learning

method

MRI ? FDG-PET ? PiB-PET 90.2 73.64 86.65

Proposed

Model

HPT-RFE MRI ? FDG-PET ? PiB-

PET ? cognitive assessments

91 100 60

AD versus

MCI

Teng et al.

[97]

RBF-SVM MRI ? FDG-PET ? PiB-PET 88.61 93.48 81.82

Ortiz et al.

[88]

Deep belief network MRI ? FDG-PET ? PiB-PET 84 81 87

Tong et al.

[94]

SVM MRI ? FDG-PET ? PiB-PET 60.26 – –

Gupta et al.

[59]

Kernel-based multiclass SVM MRI ? FDG-PET ? PiB-PET 94.64 92.86 91.67

Proposed

model

HPT-RFE MRI ? FDG-PET ? PiB-

PET ? cognitive assessments

95 100 80

Neural Computing and Applications (2022) 34:11865–11884 11881

123



studies with human or animal subjects performed by the any of the

authors.
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