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Abstract
Caching popular files at the small base stations (SBSs) has proved to be an effective strategy to reduce the content delivery

delay in cellular networks and to alleviate the backhaul congestion. In the optimization of the placement of contents into

SBS caches (the so-called content placement problem), several key parameters play an important role, such as content

popularity, the mobile users’ (MUs’) channel state information (CSI), as well as the capacity of the backhaul links. These

parameters are random in general, and their instantaneous values over time give rise to a stochastic process. In this paper,

we propose a mathematical formulation for the distributed optimization of content placement with the objective of

minimizing the average content delivery latency. Our formulation is applicable to both conventional 4G small cell

networks (SCNs) as well as 5G-compatiable mmWave integrated access and backhaul (IAB) cellular communications. In

particular, the placement problem is modeled as a potential game among SBSs in which the objective of each SBS is to

minimize the average delay of the MUs within its coverage range. In order to compute the Nash equilibrium (NE) of the

game, we adopt the learning-theoretic approach that only relies on incomplete information (or implicit feedback) of the

system’s underlying stochastic processes; i.e., the content placement is optimized in run-time by gaining experience and

through the immediate noisy feedbacks of the actions actually taken in the operating environment. We propose an

algorithm based on multi-agent reinforcement learning (MARL) techniques for potential games. It operates in the inde-

pendent action space and can learn the optimal strategy profile of the SBSs in larger-scale scenarios, even when the actions

of its peers are not observable by each SBS. Simulation experiments are conducted to investigate the convergence of the

learning algorithm as well as to compare against some schemes using prior knowledge.

Keywords Content placement optimization � Edge caching � Implicit feedback � Small cell networks

1 Introduction

The idea of caching contents at the edge of the wireless

networks dates back to 3G and 4G cellular networks [1–5].

Authors in [2] have argued that with the data traffic growth

over cellular networks, the current network cannot support

this traffic surge, even after allocating new cellular spec-

trum. Thus, methods are needed to reuse the communica-

tion resources. One approach to address this problem is to

use the storage capacity of small base stations (SBS) to

cache contents that are requested multiple times by dif-

ferent users. Caching popular contents at SBSs can bring

requested contents closer to mobile users (MUs) instead of

repeatedly downloading the contents from remote servers

via backhaul links. Thus, by locally satisfying content

requests of the users, edge caching can effectively enhance
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network performance through alleviating the backhaul

burden and reducing content access delay [6–8]. There are

some sub-problems associated with edge caching opti-

mization: content placement, content delivery, and content

migration. The content placement problem deals with the

selection of contents in order to be cached in the limited

storage of the SBSs. Content delivery concerns with how to

convey content to a requesting user. Content migration

decides on how to update the cached content set when the

cache space is full and new content has to be added. In

other words, a content migration strategy specifies which

content is to be removed from the cache or migrated to

another SBS cache. In this paper, we focus on the content

placement problem in small cell networks (SCNs).

In the optimization of the placement of contents into

SBS caches, some parameters such as content popularity,

the mobile users’ (MUs’) channel state information (CSI),

as well as the capacity of the backhaul links play a key role.

These parameters are random in general, and their instan-

taneous values over time give rise to a stochastic process.

Many of the studies on content placement for caching in

base stations rely on the availability of the instantaneous

information about the channel and backhaul states (e.g.,

[9–17]), where it is unrealistically assumed that non-causal

information regarding the exact trace of system states (i.e.,

backhaul, content popularity, and channel) is available

beforehand. In addition, there exist some model-based

schemes assuming the availability of prior statistical

information. Albeit these schemes are more realistic, but

still, they require explicit knowledge of the statistics of the

system processes [18–23]. From another standpoint, many

of the previous studies have proposed centralized solutions

in which a centralized controller decides which SBS has to

cache which content. In this approach, the computational

burden of the controller increases with the size of the SCN.

Our work in this paper differs from these two categories of

schemes as we approach the content placement problem

from a distributed model-free perspective in which no

information about the environmental parameters is avail-

able a priori, and optimization can be performed only by

gaining experience and through the immediate feedbacks

of the actions actually taken in the operating environment.

Most existing distributed model-free schemes that

minimize the downloading delay of contents (e.g.,

[9, 13, 24, 32–35]), assume that only one of the three

factors affecting the delay, i.e., the content popularity is

unknown, while the availability of information on the

wireless channel qualities as well as the backhaul capaci-

ties are taken for granted. Also, the distributed computation

of the optimal caching policy in these schemes has been

performed using different variations of multi-armed bandit

(MAB) algorithms [25]. As a result, their applicability is

limited only to uncoupled or loosely coupled settings

where the underlying problem is amenable to straightfor-

ward decomposition. However, in more general settings

where there are tight interactions between the utility/cost

functions of the caching agents, an equilibrating multi-

agent learning algorithm with a game-theoretic foundation

is needed to be deployed for system optimization and sta-

bilization. Among the related work, the study in [11] has

proposed a distributed equilibrium learning scheme based

on a cooperative repeated game formulation; however, its

objective is maximizing the cache-hit ratio, and its sim-

plistic learning rule can result in miscoordinations between

the SBSs in cases where the definition of cost function

varies between the SBS agents.

In this paper, we aim to minimize the access delay of

contents for the users of a SCN. We consider two separate

4G and 5G SCNs which correspond to two distinct radio

access and backhaul technologies. In the conventional 4G

scenario, the network operates in regular Long-Term

Evolution (LTE) [26] frequency bands in the access side

with capacity-limited wired backhaul links. As for the 5G

setting, it is assumed that the user-SBS communications are

carried over mmWave frequencies which have extremely

wide available bandwidth and are able to provision multi-

gigabit peak data rates. Also, we consider the integrated

access and backhaul (IAB) technology [27] where the

operator utilizes a portion of the radio resources for wire-

less backhauling, and the MBS acts as a hub of in-band

wireless backhaul connections for small cells within its cell

coverage. IAB has recently attracted considerable interest

due to its lower cost and faster deployment. In both sce-

narios, we realistically consider the random content pop-

ularity, the time-varying nature of the wireless channels as

well as the stochastic capacity of the backhaul links. We

model the problem based on game theory and propose a

multi-agent reinforcement learning (MARL) algorithm for

the computation of the NE of the caching game.

More elaborately, our contributions in this paper can be

summarized as follows:

• We come up with three formulations for the problem of

content placement optimization in SBS caches. The first

two formulations are mainly to lay the groundwork for

how we relax informational assumptions in computing

the optimal content placement strategies of the SBSs

and what are the implications of these relaxations:

• Centralized offline formulation: Our first formulation

corresponds to a binary integer-programming (BIP)

problem to determine the optimal placement of content

groups in SBS caches with the objective of minimizing

the average delay of content delivery to the MUs. In this

formulation, a central entity (e.g., macro base station or

MBS) computes the placement strategies. Also, three

key pieces of information, including the instantaneous
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MU-SBS channel gains, the instantaneous capacity of

backhaul links, as well as the statistical knowledge of

content popularity, are assumed to be known in

advance. The BIP problem is NP-hard and needs global

non-causal system knowledge. As such, this formula-

tion has no practical worth, and its solution is only

interesting as a theoretical lower-bound on the perfor-

mance of the other schemes.

• Distributed model-based formulation: One significant

step toward a more practical solution is to come up with

a distributed computation scheme. In this second

formulation, we use game theory to delegate the

computation of content placement strategies to the

SBSs themselves. The game-theoretic concept of Nash

equilibrium [28], which describes a condition of global

coordination, is used as the target of optimization. Our

formulation is based on the notion of potential games

[29] in which the existence of pure strategy Nash

equilibrium is guaranteed, and equilibrium convergence

can be achieved by executing the well-established

algorithm of best-response dynamics. However, the

proposed formulation is model-based in the sense that

the statistical knowledge (i.e., the probabilistic model)

of the random processes associated with the channel

gains, backhaul capacity, and content popularity are

assumed to be known at design time. The SBSs use the

knowledge of these probability distributions to derive

their cost functions in the caching game. Then, prior to

actual network deployment, the equilibrating algorithm

is executed by all SBSs to obtain an NE configuration.

Actual content caching in a real-life deployment is

subsequently performed based on the calculated equi-

librium strategies.

• Distributed model-free formulation: Our novelty lies in

this third formulation, where we relax the statistical

knowledge assumption in the previous game-theoretic

scheme to only work with implicit feedbacks of the

SBS decisions. In particular, the problem of distributed

content placement is modeled as a noisy potential game

in which each SBS as a player does not know its cost

function beforehand and receives only a noisy sample

of cost for each content placement action it actually

takes in every decision epoch. This formulation is

nearest to what we encounter in practical cases.

Through experiencing these noisy costs over time, the

SBSs need to be equipped with a reinforcement learning

scheme to shape and adapt their content placement

strategies in response to the actions of other SBSs.

• We propose two multi-agent reinforcement learning

algorithms which are provably convergent to the Nash

equilibrium of the caching game with unknown noisy

costs:

• Joint action learning (JAL): In JAL, we equip each

SBS with an action selection rule along with a payoff

estimation procedure. The SBS agents update their

estimates of the expected costs for joint-actions using

Q-learning and choose actions exploiting an appropriate

e-greedy-based action selection policy [30]. However,

the learning is performed in the product space of the

action sets of all the SBS agents, which requires that

each SBS observe the actions of its peers in every

round. This needs the exchange of content placement

decisions between the SBSs through the backhaul links.

Also, learning in the joint action space leads to an

exceptionally huge memory footprint which makes the

JAL algorithm impractical even in fairly small-scale

setups.

• Independent action learning (IAL): In IAL, however,

we no longer require that each SBS observe the other

SBSs’ actions. The estimation of the cost function is

done independently, and this reduced complexity makes

the IAL algorithm scalable for large networks consist-

ing of a higher number of SBSs and richer content

library. The algorithm is still convergent to equilibrium

but with reduced accuracy compared to JAL.

• We conduct simulation experiments to evaluate our

proposed IAL algorithm in both 4G and 5G use cases in

terms of its average MU delay performance. We

investigate the impact of different settings, including

varying intensities for the popularity of cached con-

tents, the number of MUs and SBSs, the MUs’

transmission power, backhaul capacity, the beamwidth

of the mmWave SBSs and the MUs as well as the

number of content groups. The IAL algorithm is also

compared against the proposed centralized offline,

distributed model-based, JAL, single-agent learning as

well as the DQ-based caching scheme in [11].

The remainder of the paper is organized as follows: In

Sect. 2, we review the literature. In Sect. 3, the model of

the system and the assumptions are presented. In Sect. 4,

we present the problem formulation in terms of a potential

game. Section 5 proposes two multi-agent reinforcement

learning algorithms to reach an NE point. In Sect. 6, we

evaluate the performance of the proposed scheme. Finally,

the paper concludes in Sect. 7. Table 1 lists the acronyms

used throughout the paper.

2 Related works

The body of literature on caching contents at the edge of

SCNs can generally be categorized based on two aspects:

(1) centralization/decentralization of the solution and (2)

informational assumption.
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In a centralized algorithm, the MBS acts as a central

controller to determine what to cache in each SBS. It has

access to global network information, such as the distances

between MUs and SBSs, the channel gain profiles, the

backhaul capacity, and users’ content preferences. In a

centralized setup, we may formulate the content placement

as an optimization problem. However, since this problem

is, in general, an instance of NP-hard integer-programming,

researchers have been motivated to propose distributed

methods (e.g., game-theoretic approaches) to reach near-

optimal solutions [9–11]. Distributed algorithms avoid the

computational overhead of the MBS when the number of

users and SBSs increases. Additionally, to circumvent the

need for global network information collection, distributed

algorithms constitute a better choice. These algorithms are

more scalable because they allow SBSs to determine what

to cache independently of each other and by just relying on

locally available information.

As for the second aspect, we consider three kinds of

informational assumptions: (1) Availability of perfect

(non-causal) instantaneous network information such as

the channel gains and the backhaul capacity (2) Avail-

ability of only statistical knowledge of the network, i.e.,

just the probability distribution of the network state infor-

mation is available at design time. (3) The model-free

assumption under which neither instantaneous nor statisti-

cal knowledge about the network is available for decision-

making. Model-free optimization is the most realistic

approach to solve the content placement problem. How-

ever, the existing model-free approaches only address the

unavailability of content popularity information while

taking for granted the availability of the knowledge on

MUs’ CSI and backhaul capacity. These model-free

approaches are themselves further sub-categorized into two

schemes: the popularity-prediction-based schemes

[10, 12, 13] and the reinforcement-learning-based schemes

[11, 14, 15]. In a popularity prediction-based scheme, the

existing studies first predict the popularity of contents and

then exploit the estimations to contrive caching policies.

On the other hand, in a reinforcement-learning-based

scheme, the caching policy is trained with observations,

only based on a reward from the actions, rather than

tackling every single factor that affects the performance of

caching. This reward can be the offloaded traffic or QoE,

which covers a wide range of factors that can affect the

performance [16].

In what follows, we review the most relevant content

caching schemes according to the above-mentioned

categorization:

• Centralized schemes assuming the availability of

perfect instantaneous information: Yang et al. [32]

have investigated the random caching optimization in

k-tier mmWave heterogeneous networks. They have

formulated the problem of determining the cache

probability to maximize the number of successful

transmissions. Gu et al. [33] address both the user

association and cache placement problems in a cache-

enabled and relay-assisted downlink mmWave network

to maximize successful backhaul offloading probability.

In [34], Zheng et al. have investigated the secure

content delivery for a two-tier cache-enabled mmWave

heterogeneous network to achieve the maximum overall

secrecy throughput. They have derived analytical

expressions of connection and secrecy outage probabil-

ity for the distributed beamforming and direct trans-

mission schemes with and without artificial noise

injection, respectively. Zhang et al. [35] have presented

a 3GPP-inspired analytical framework for a two-tier

mmWave heterogeneous network involving integrated

access and backhaul architecture, and have investigated

the performance of uniform caching of the most popular

files with respect to the latency of file delivery, average

rate, and success probability.

• Distributed schemes assuming the availability of

perfect instantaneous information: Li et al. in [36]

have separated the content placement into independent

single knapsack problems and solve the sub-problems

in a distributed way with a greedy method to minimize

the average load of traffic for the requests of contents.

Authors in [37] have investigated the problem in a

cooperative scenario in the sense that each SBS can

access files from the caches of other SBSs. They have

proposed a method in which the files are placed in

cooperative SBSs such that the maximum number of

Table 1 Used main acronyms

Acronym Explanation

BIP Binary Integer-Programming

CSI Channel State Information

IAB Integrated Access and Backhaul

IAL Independent Action Learning

JAL Joint Action Learning

LOS Line of Sight

MARL Multi-Agent Reinforcement Learning

MBS Macro Base Station

MU Mobile User

NE Nash Equilibrium

NLOS Non-Line of Sight

SBS Small Base Station

SCN Small Cell Network

SINR Signal to Interference plus Noise Ratio
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files can be accessed from the SBSs, thereby reducing

power consumption of the backhaul. The studies [9, 31]

have resorted to game theory to propose distributed

methods. Guo et al. in [31] aim at minimizing the

energy consumption in the cell network. They have

modeled the content placement problem as an exact

potential game (with guaranteed existence of pure Nash

equilibrium (NE)) among the SBSs, and have proposed

an iterative algorithm to solve the game. A closely

related work to ours is [9], where Yang et al. have

formulated the problem as a potential game and

presented a distributed algorithm based on best-

response dynamics (BRD) to minimize the download-

ing delay of contents.

• Centralized schemes assuming the availability of

statistical information: Chen et al. in [18] have

considered statistical information on the contact dura-

tion of small cells and mobile devices such that the

contact process between SBSs and MUs follows

independent Poisson processes. The other factors

affecting the system performance are previously known

in the form of exact values. Then, a submodular

optimization technique is adopted to solve the problem.

In [19], statistical information is assumed only on the

popularity of content, which is modeled by Zipf

distribution. The authors have exploited a fuzzy soft-

set approach to find the relationship between the

content popularity with the currently connected users.

This relationship is then for content placement to

minimize the downloading delay. Zhou et al. in [20],

under the assumption of statistical knowledge for

channel fading coefficients, have formulated a problem

to minimize the outage probability (defined as the

probability that SINR is smaller than a threshold). They

have modeled the small-scale fading coefficients among

the MBS and SBSs by Gaussian distribution with zero

mean and unit variance and analytically obtain the

optimal solution.

• Distributed schemes assuming the availability of

statistical information: Liao et al. in [21] have relied

on the statistical information of content popularity to

estimate all possible joint user requests in different

SBSs. Building on the advantages of maximum distance

separable (MDS) codes, they have reformulated the

original problem into a convex form to minimize the

long-term average user attrition cost. The problem has

then been decomposed into a number of sub-problems

to be solved in a distributed way. Under similar

assumptions, the same authors have extended their

study in [22] by proposing a greedy approach for small-

scale networks along with a multicast-aware coopera-

tive approach for small-scale setups. Keshavarzian et al.

in [23] have modeled the cache placement problem as a

discrete Markov chain and assume statistical informa-

tion on the state transitions. They have formulated the

problem to maximize the number of served files and

derive a lower bound on the optimal caching. Using the

lower bound, they have replaced the problem with

independent Boolean knapsack sub-problems, which

are independently solved in a distributed manner.

• Centralized model-free schemes: The authors in [38]

and [39] have come up with schemes assuming that the

popularity of contents is unknown. They have proposed

algorithms based on MAB optimization in which the

popularity model of content is learned and used for

content placement. Mishra et al. in [12] have shown that

the prediction of content popularity is a dual sparse

matrix completion problem. They have then proposed a

novel Bayesian learning algorithm for popularity pre-

diction. The authors in [40] have presented a method

based on Bayesian inference, which extracts the key

factors of the traffic (including content popularity and

content size) and then use a Bayesian ranking model to

combine the features and form a content list. Nie et al.

in [13] have investigated the caching problem to

minimize the average transmission delay. Among the

different factors affecting the downloading delay, they

have assumed that the popularity of contents is

unknown and have applied a Bayesian learning algo-

rithm for estimation.

• Distributed model-free schemes: Haw et al. in [10]

have exploited an autoregressive integrated moving

average (ARIMA) scheme to learn and predict the

popularity of content. They have defined the system

utility function in a way that it is decomposable into

independent sub-problems, which can be solved by

SBSs in a distributed way. Jiang et al. in [14] have

modeled the content placement as a multi-agent MAB

problem to minimize the downloading delay of contents

without knowing the system parameters. Due to the

service differentiation, they have used the weighted

reduction in delays as the reward of caching for content

providers. Xu et al. in [24] have also used a multi-agent

MAB algorithm to directly learn the caching strategy

without the knowledge of the factors affecting the

downloading delay. They have extended their work in

[15] to directly learn the caching strategy in a non-

stationary environment. The multi-agent MAB-based

algorithm has been modified by designing new per-

turbed terms for superior adaptation to the dynamic

environment. A closely related work to ours is [11],

where Lin et al. have modeled the distributed content

placement problem as a fully cooperative repeated

game among the SBSs with the objective of maximiz-

ing the average cache hit probability and with no

knowledge about content popularities. They have
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proposed a distributed Q-learning algorithm to ensure

the cooperation among SBSs to reach the optimal Nash

equilibrium point.

Our proposed solution in Sect. 5 is also within the cat-

egory of distributed model-free schemes. However, it dif-

fers from all the reviewed work in that we address the

content placement problem in the absence of CSI, backhaul

capacity as well as the content popularity information.

Also, our proposed solution is equally applicable to both

4G and 5G use case scenarios. Table 2 summarizes the

most relevant schemes from prior work.

3 System model and assumptions

In this section, the model of the system for a SCN is

introduced. Then, we elaborate on the assumptions made

about the dynamics of the wireless channel, backhaul

capacity, and popularity distribution of contents.

3.1 Network model

We consider a small cell network (shown in Fig. 1) in

which an MBS and N SBSs, deployed in the coverage area

of the MBS to act as relays, serve the requests of M MUs.

The sets of MUs and SBSs are denoted by M ¼
f1; 2; 3; . . .;Mg and N ¼ f1; 2; 3; . . .;Ng, respectively.

The SBSs are connected to the MBS with non-ideal

backhaul links having limited capacity. The coverage areas

of the SBSs are in general overlapping, and thus mobile

users can be served by one of many potential SBSs. Our

model-free solution to content caching in Sect. 5 is appli-

cable to both conventional as well as emerging wireless

communication technologies. Hence, in the sequel, we

concretize the network model by characterizing the SBS-

to-UE and MBS-to-SBS connections according to both 4G

and 5G use cases.

3.2 Conventional 4G scenario

3.2.1 Wireless link capacity and channel model

In the 4G scenario, the description of the link capacity is

straightforward. In particular, following the standard

Shannon formula, the wireless capacity between MU m and

SBS n at time t can be calculated as:

r 4Gð Þ;t
n;m ¼ W 4Gð Þ

Mn
log2 1þ

p 4Gð Þ
n gtn;md

t
n;m

�a

P
i2N ;i 6¼n pig

t
i;md

t
i;m

�a þ r2
4Gð Þ

 !

ð1Þ

in which W 4Gð Þ is the spectrum bandwidth and p 4Gð Þ
n is

the transmit power of SBS n. Here Mn is the number of

MUs associated with SBS n (c.f., Sect. 3.5 on user asso-

ciation criteria) and the access bandwidth is equally shared

among the connected MUs according to a round robin

schedule. The symbol a is the path-loss exponent and r24Gð Þ
is the power of noise at each MU. dtn;m and gtn;m are

respectively the distance and channel gain between SBS n

and MU m at time t.

3.2.2 Backhaul capacity model

In the 4G case, traditional non-ideal wired backhaul links

(with limited capacity) are assumed between the MBS and

any SBS n. Depending on the background load conditions,

the available capacity btn on each link may vary randomly

with time.

3.2.3 Informational assumptions

In the content placement problem, we may distinguish

between three forms of knowledge of the channel gain and

backhaul capacity:

(1) Perfect instantaneous information: In this form of

knowledge, the exact value of gtn;m for each pair of

SBS n and MU m as well as the exact value of btn for

each SBS n at each time t are known non-causally

(prior action selection).

(2) Statistical information: Only the probability distri-

bution f Gðgn;mÞ of the channel gain as well as the

distribution model f BðbnÞ of the backhaul capacity

are known beforehand, and neither the exact values

of gtn;m nor the values of btn are known a priori.

(3) Implicit feedback: Actually, no information about the

channel gain nor the backhaul capacity is available at

the time of decision-making. SBS n at time t replies

to the request of MU m and gains feedback

concerning the downloading delay MU m has

experienced, which is affected partly by channel

gain gtn;m as well as by the backhaul capacity btn.

Assumption 1 (Channel and Backhaul Statistics). It is

assumed that the channel gains for all pairs of SBS-MUs as

well as the backhaul capacities for all SBSs are i.i.d.

random processes. j
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3.3 Emerging 5G scenario

In the emerging 5G small cell networks, mmWave fre-

quencies are being envisaged to replace the currently

operational lWave networks. This is partly due to the

limited range of propagation in mmWave transmissions

which makes it more suitable for high density small cells.

Another appealing feature is the extremely wide available

bandwidth in mmWave communications so that small cell

networks armed with this technology are expected to pro-

vision multi-gigabit peak data rate to meet the ever-in-

creasing demand on mobile user traffic. Yet another

evolution in 5G small cells is that the backhaul links are

most preferably wireless due to several reasons such as fast

deployment, cost saving and self-configuration. In partic-

ular, the IAB networks [27], where the operator utilizes a

portion of the radio resources for wireless backhauling, has

recently attracted considerable interest. In IAB, the MBS

acts as a hub of in-band wireless backhaul connections for

small cells within its cell coverage. In what follows, we

express the details of the mmWave IAB communication

model which is in line with the emerging 5G SCNs.

3.3.1 mmWave propagation model

While we can safely assume that no considerable blockage

occurs in mmWave MBS to mm-SBS1 backhaul links (e.g.,

[41, 42]), transmission over the access links can be sensi-

tive to blockage by surrounding obstacles at the MU, e.g.,

human body and vehicles. Following the 3GPP Standard

[43], we assume that the mm-SBS to MU channel behaves

probabilistically according to a two-state blockage model.

In particular, the mmWave signals are prone to blockages

(e.g., due to stationary obstacles), and the channel condi-

tion between an MU and its associated mm-SBS can

alternate between the two states: Line-of-Sight (LOS) and

Non-Line-of-Sight (NLOS). Being in LOS state would

mean that a direct propagation path exists between the MU

and mm-SBS. On the other hand, NLOS happens whenever

the direct path is blocked and the receiving terminal

receives the signal via reflection from a blockage. Let the

LOS link be of length d and b denote the blockage density,

then the LOS and NLOS states will occur with probabilities

PLð:Þ and PN ð:Þ, respectively (defined below) [44]:

Fig. 1 A Small-Cell Network (SCN) with cache-enabled SBSs; the left-hand side depicts 5G mmWave IAB communications and the right-hand

side is a conventional 4G SCN with wired backhaul

1 The prefix mm in mm-SBS is used on several occasions to

emphasize the 5G-compatibility of an SBS. To improve readability,

however, we may use SBS to refer to both 4G/5G small base stations.

The exact type of SBS in each case should be clear from context.
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PL dð Þ ¼ e�bd;PN rð Þ ¼ 1� e�bd ð2Þ

3.3.2 Beamforming model

Given the small wavelengths of mmWaves, transmitters

and receivers perform directional beamforming to make up

for path loss and extra noise. The actual antenna patterns

can be approximated by a sectored antenna model [45]

commonly used in prior work (e.g., [46, 47]). According to

this model, in the main lobe, the gains are constant for all

angles. In the side lobe, however, the gains are equal to

another smaller constant (denoted by z). Let hsn;m and hun;m
be the angles between mm-SBS n and MU m with respect

to their corresponding boresight directions. Furthermore,

let us
n;m and uu

n;m denote the operation beamwidths of mm-

SBS n and MU m for the link in between these two. The

transmission and reception gains of mm-SBS n and MU m

(towards each other) can be given by:

gsn;m hsn;m;u
s
n;m

� �
¼

2p� 2p� us
n;m

� �
z

us
n;m

; hsn;m

�
�
�

�
�
��

us
n;m

2

z; otherwise

8
>><

>>:

gun;m hun;m;u
u
n;m

� �
¼

2p� 2p� uu
n;m

� �
z

uu
n;m

; hun;m

�
�
�

�
�
��

uu
n;m

2

z; otherwise

8
>><

>>:

ð3Þ

where 0� z\1 represents the side-lobe gain (z � 1 for

narrow beams). Likewise, we may compute the reception

and transmission directivity gains between the beam of

MBS towards mm-SBS n and the beam of mm-SBS n

towards MBS, which we denote by gB0;n and gs0;n,

respectively.

3.3.3 Backhaul and access transmission rates

Given that the transmitting power of the MBS is much

higher than that of mm-SBSs, there would be severe cross-

tier interference between the backhaul and access links if

the MBS and mm-SBSs transmit over the same spectrum

band simultaneously. Hence, similar to [48], we assume

that the backhaul and access links utilize orthogonal fre-

quencies. Moreover, the spectrum resource dedicated to

different backhaul connections are orthogonal. Denote by

wn the bandwidth dedicated to the backhaul link of mm-

SBS n. The following equation gives the MBS-to-mmSBS

transmission rate over the backhaul link associated with

mm-SBS n:

r
5Gð Þ;t
0;n ¼ w

n
log2 1þ

p0g
B
0;ng

s
0;nh

t
0;n

r2
5Gð Þ

 !

ð4Þ

where p0 is the transmitting power of MBS, ht0;n is the

instantaneous channel gain from MBS to mm-SBS n, and

r25Gð Þ is the noise power for the mmWave communication.

Similarly, the transmission rate over the access link

between mm-SBS n and MU m can be computed as:

r 5Gð Þ;t
n;m ¼ W 5Gð Þ

Mn
log2 1þ

p 5Gð Þ
n gsn;mg

u
n;mh

t
n;md

t
n;m

�aj

P
i2N ;i6¼n p

5Gð Þ
i gsi;mg

u
i;mh

t
i;m
dti;m

�aj þ r2
5Gð Þ

0

@

1

A

ð5Þ

where p 5Gð Þ
n is the transmitting power of mm-SBS n, htn;m is

the instantaneous channel gain from mm-SBS n to MU m,

dtn;m is the distance between the typical MU and its serving

mm-SBS and aj is the path loss exponent with j 2 fL;N }.

3.3.4 Informational assumptions

The three forms of knowledge corresponding to the 5G

backhaul and access transmission rates are as follow:

(1) Perfect instantaneous information: In this form of

knowledge, the exact values of ht0;n and h
t
n;m for every

MBS-to-mmSBS link and every mm-SBS-to-MU

link at each time t is known non-causally (prior

action selection).

(2) Statistical information: Only the probability distri-

butions of the channel gains as well as the LOS-

NLOS state probabilities are known beforehand.

(3) Implicit feedback: No information about the channel

gain is available at the time of decision-making, and

the mm-SBSs have to rely on implicit feedbacks

from their associated MUs to update their caching

strategies. Also, it is realistically assumed that the

LOS-NLOS state probabilities are related to the

environment, and these probabilities are typically

unknown [49].

Assumption 2 (Channel Gain Statistics). It is assumed

that the channel gains for all pairs of communicating

entities are i.i.d. random processes.

3.4 Content and popularity model

The set of contents is denoted by F ¼ f1; . . .; f ; . . .;Fg
where F is the size of the content library. Each content is

split into chunks of the same size. Also, we assume that the

contents in F are divided into groups of size H contents.

SBSs cache contents based on these groups, and each SBS

can cache just one content-group (i.e., for simplicity, it is

assumed that the cache capacity for each SBS is limited to
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H contents). Furthermore, the total number of content

groups K ¼ F=H is taken to be an integer without a loss of

generality, and the collection of content groups is denoted

by K ¼ 1; . . .; k; . . .;Kf g.
The MUs request for contents independently based on

their popularity. In decision-making for content placement,

the content popularity knowledge is in one of two ways:

(1) Statistical information: There is only a probability

distribution model of the content popularity. For

example, if content popularity follows the standard

Zipf’s law with parameter c, then:

pf ¼
1
f c

P
f2F

1
fc
; 8f 2 F ð6Þ

pf describes content popularity according to the

well-known Zipfian rank-frequency distribution. In

other terms, pf measures the fraction of the time the

f-th most popular file is requested. Hence, files which

have larger popularity, are ranked with lower indices

in the content library. As an additional remark, the

simplest case of Zipf’s law is a 1/f function. In fact,

given a set of Zipfian distributed frequencies, sorted

from most popular to least popular, the second most

popular file will occur half as often as the first, the

third most common frequency will occur 1/3 as often

as the first, and the f-th most common frequency will

occur 1/f as often as the first. As for the role of the

exponent c, larger values of c leads to a steeper

distribution in the sense that the requests issued by

consumers are concentrated on a smaller set of

contents (i.e., more queries are focused on a set of

hot contents). Hence, by only caching these hot

contents in their limited memory, the SBSs can

reduce their miss ratio, thereby decreasing the MUs’

total delay.

Accordingly, the popularity of content-group k

can be expressed by summing the popularities of files

in listed in this group:

Pk ¼
Xf¼kH

f¼ k�1ð ÞHþ1

f ; 8k 2 K ð7Þ

The larger the Pk, the more popular would be the

content group k.

(2) Popularity with unknown distribution: No informa-

tion about the content popularity is available. Each

SBS at time t serves contents to its associated MUs

and observes only their downloading delay (as an

implicit feedback), whose expected value is affected

by the content popularity.

3.5 User association criteria and effective data
rate

Denote the SBS-content placement configuration at time t

by a N � K matrix It in which Itn;k is the element at the n-th

row and k-th column taking values from f0; 1g. Itn;k ¼ 1 if

SBS n at time t has the content-group k in its cache, and 0

otherwise. Each SBS can cache just one content group, so

there is only one non-zero number in each row of It. Rt
n;m;k

is the maximum data rate of MU m at time t when receiving

a file in group k from SBS n. If the content is in the cache

of SBS n, it is equal to the wireless capacity between them.

Otherwise, the rate is also limited by the backhaul capacity

of SBS n. Overall, the effective data rate Rt
n;m;k can be

calculated as:

Given SINR thresholds d 4Gð Þ and d 5Gð Þ, SBSs/mm-SBSs

that can offer an SINR above these thresholds to an MU

can serve its request. The neighbor set of an MU consists of

those SBSs that can provide an SINR above the afore-

mentioned threshold for serving its requests. In this case,

this MU is also a neighbor of those SBSs. The neighboring

SBSs of MU m and the neighboring MUs of SBS n are

denoted by N ðmÞ and MðnÞ, respectively. Whenever MU

m has a request from content-group k, it associates with the

SBS providing the highest rate to it. Therefore, the user

association criterion is expressed by:

n� ¼ argmax
n2N ðmÞ

Rt
n;m;k ð9Þ

3.6 Delay model

The downloading delay for MU m when requesting content

from group k at time t is given as:

Rt
n;m;k ¼

r 4Gð Þ;t
n;m Itn;k þmin r 4Gð Þ;t

n;m ; btn

n o
1� Itn;k

� �
; 4Gcommunicationmodel

r 5Gð Þ;t
n;m Itn;k þmin r 5Gð Þ;t

n;m ; r
5Gð Þ;t
0;n

n o
ð1� Itn;kÞ; 5Gcommunicationmodel

8
<

:
ð8Þ
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Dt
m;k ¼ L=Rt

n�;m;k ð10Þ

where L is the size of a content. Hence, the expected

value of Dt
m;k (w.r.t. content popularity distribution) is

given by:

Dt
m ¼ E

k
½Dt

m;k� ¼
X

k2K
Pk � Dt

m;k ð11Þ

Table 3 summarizes the notations used in the system

model.

4 Problem formulation

In this section, we present three formulations for the con-

tent placement problem. Each formulation corresponds to

one of the informational assumptions on the stochastic

processes of the wireless channel gains, backhaul capacity,

and content popularity. In particular, in Sect. 4.1, we give a

centralized offline scheme. Next, in Sect. 4.2, we present a

distributed model-based approach, and finally, in Sect. 4.3,

we present our main contribution, which is a distributed

model-free scheme. The former two formulations serve for

smoothing the discussion of our main scheme in the sequel.

We also use their corresponding outcome for cache content

placement as baselines for comparison in our numerical

results.

4.1 Centralized offline formulation

In this section, we consider the problem setting in Sect. 3

and assume that the perfect non-causal information of the

channel gains, as well as backhaul capacity, is available.

We also assume full statistical knowledge of the content

popularity. The offline approach seeks to determine the

values of the matrix It whose entries indicate which content

group is to be cached at each SBS. Our aim is to minimize

the sum of MUs’ expected delay. Therefore, the opti-

mization problem can be formulated as follows:

minimize
It

X

m2M
Dt

m

subject to Itn;k 2 0; 1f g; 8n 2 N ; 8k 2 K;
X

k2K
Itn;k � 1; 8n 2 N

ð12Þ

This problem is a 0–1 integer programming, which is

NP-hard. Also, another disadvantage here is that the global

system knowledge and perfect instantaneous information

are needed to provide optimal action for each SBS and

minimize the expected delay for serving content requests.

The optimization problem can be solved by using a binary

integer programming (BIP) solver. In general, the solution

of the corresponding offline optimization problem can be

considered as a theoretical lower-bound on the perfor-

mance of the other algorithms.

4.2 Distributed model-based formulation

In this approach, it is assumed that the perfect instanta-

neous information of the system is not accessible, and only

its statistical model is known. In this case, the exact value

of Rt
n;m;k is not accessible, and only its expected value is

computable as:

�Rn;m;k ¼
In;k � E

gn;m
r 4Gð Þ
n;m

h i
þ ð1� In;kÞ � E

gn;m;bn
min r 4Gð Þ

n;m ; bn

n oh i
; 4G

In;k � E
hn;m

r 5Gð Þ
n;m

h i
þ ð1� In;kÞ � E

hn;m;h0;n
min r 5Gð Þ

n;m ; r
5Gð Þ
0;n

n oh i
; 5G

8
>><

>>:

ð13Þ

Hence, the relations (9), (10), and (11) are rewritten as

follows:

n� ¼ argmax
n2N ðmÞ

Rn;m;k ð14Þ

Dm;k ¼ L=Rn�;m;k

Dm ¼ E
k
½Dm;k�

Now, aside from departing from the unrealistic offline

informational assumptions, here we carry our solution one

step further toward practice by coming up with a dis-

tributed game-theoretic approach to determine the entries

of the solution matrix In;k. For a decentralized approach,

the optimization problem is modeled as a game in which

each SBS is a player who aims to minimize the delay of its

neighboring MUs by caching the best content group.

We develop a distributed algorithm based on a game

G ¼ fN ;A; Cn

� �
n2N g where N is the set of players

(SBSs) and Cn : �n2NA ! R is the cost of player n. Also,

A is the joint (pure) strategy space. In fact, following

standard game-theoretic notations, A ¼ �n2NAn and a ¼
ðan; a�nÞ 2 A is a strategy (or action) profile in which an is

the strategy chosen by player n, and a�n is the strategy

profile of all players other than n. In our content placement

game, an represents the choice of SBS n for caching one

content group from the set K.

Let Cn denote the cost of player n defined as the sum of

the expected delay of its neighboring MUs, according to:

Cn ¼
X

m2MðnÞ
Dm ð15Þ

In this game, we aim at obtaining a strategy profile a� 2
A for the cache content placement of SBSs, which con-

stitutes a Nash equilibrium.

Definition 1 (Nash Equilibrium) [28]. A strategy profile

a� 2 A is an NE if it satisfies:
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Table 3 Summary of notations in the system model

Description Notation

Common Notations Set of mobile users (MUs) M

Number of MUs M

Set of small base stations (SBSs) N

Number of small base stations N

Cache capacity in each SBS H

Distance between SBS n and MU m at time t dtn;m

Set of contents F

Number of contents F

Set of content-groups K

Number of content-groups K

Popularity of file f f

Popularity of content-group k Pk

Matrix of SBS-content placement at time t It

Maximum data rate of MU m at time t for requesting from group k and served by SBS n Rt
n;m;k

The SBS that a typical MU associates to it when requests for a content n�

Delay for MU m at time t when requesting a content in group k Dt
m;k

Content size L

Expected delay for MU m at time t Dt
m

4G Notations Wireless link capacity between SBS n and MU m at time t r 4Gð Þ;t
n;m

Bandwidth W ð4GÞ

Transmit power of SBS n p 4Gð Þ
n

Channel gain between SBS n and MU m at time t gtn;m

Path-loss exponent a

Noise power r24Gð Þ

SINR threshold d 4Gð Þ

5G Notations LOS link length d

Blockage density b

LOS occurrence probability PL

NLOS occurrence probability PN

Angle between mm-SBS n and MU m hsn;m

Angle between mm-SBS n and MU m hun;m

Operation beamwidth of mm-SBS n on its link with MU m us
n;m

Operation beamwidth of MU m on its link with mm-SBS n uu
n;m

Transmission gain of mm-SBS n and MU m gsn;m

Reception gain of mm-SBS n and MU m gun;m

Reception directivity gain between the beam of MBS towards mm-SBS n and the beam of mm-SBS n towards MBS gB0;n

Transmission directivity gain between the beam of MBS towards mm-SBS n and the beam of mm-SBS n towards MBS gs0;n

Side-lobe gain z

MBS-to-mmSBS transmission rate over the backhaul link associated with mm-SBS n r
5Gð Þ;t
0;n

Bandwidth dedicated to the backhaul link of mm-SBS n wn

Transmitting power of MBS p0

Instantaneous channel gain from MBS to mm-SBS n ht0;n

Noise power for the mmwave communication r25Gð Þ

Bandwidth W 5Gð Þ

Transmitting power of mm-SBS n p 5Gð Þ
n

Instantaneous channel gain from mm-SBS n to MU m htn;m

Path loss exponent with j 2 fL;N } aj

SINR threshold d 5Gð Þ
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Cn a�ð Þ�Cn an; a
�
�n

� �
8an 2 K; 8n 2 N ð16Þ

Definition 2 (Potential Game) [29]. A hypothetical game

with player set N ; action set A; and cost functions

Cnf gn2N is called a potential game if there exists a

potential function U : A ! R such that for all a 2 A, it

holds that 8n 2 N

Cn a
0

n; a�n

� �
� Cn an; a�nð Þ ¼ U a

0

n; a�n

� �
� U an; a�nð Þ

ð17Þ

Theorem 1 Game G, with cost function (15) and potential

function (18) (below), is a potential game:

U ¼
X

m2M
Dm ð18Þ

Proof For game G, relation (17) can be verified as follows:

U a
0

n; a�n

� �
� U an; a�nð Þ

¼
X

m2M
Dm a

0

n; a�n

� �
�
X

m2M
Dm an; a�nð Þ

¼
X

m2M nð Þ
Dm a

0

n; a�n

� �
þ

X

m2M�M nð Þ
Dm a

0

n; a�n

� �
2

4

3

5

�
X

m2M nð Þ
Dm an; a�nð Þ þ

X

m2M�M nð Þ
Dm an; a�nð Þ

2

4

3

5

¼
X

m2M nð Þ
Dm a

0

n; a�n

� �
�

X

m2M nð Þ
Dm an; a�nð Þ

¼ Cn a
0

n; a�n

� �
� Cn an; a�nð Þ:�

ð19Þ

Now, the main property of potential games is the exis-

tence of at least one equilibrium (in pure strategy form),

and that the computation of one such equilibrium can be

done by distributed sequential play based on a process

called Best-Response Dynamics (BRD) [52]. BRD is an

iterative process in which, at each iteration, one player is

chosen to optimize its own strategy, called best-response

(i.e., the acting player selects the strategy so that its cost is

minimized given the most recent strategies of other play-

ers). This procedure is repeated until the strategy profile

does not change anymore. The pseudo-code of BRD is

demonstrated in Algorithm 1, which is guaranteed to

converge to an NE of game G. In practice, the initial

strategy for all SBSs can be chosen arbitrarily. At each

step, only one player can act. The player selection can be

performed by a scheduler daemon and through a shared

control channel among neighboring SBSs.

A main drawback with BRD is that in order to compute

the best-responses, each player has to explicitly observe the

other players’ recently chosen strategies. Additionally,

optimizing the expected value of the cost function needs

the statistical information of the channel gain, the backhaul

capacity, and content popularity. In the model-based

scheme discussed in this section, we have assumed that this

information is available for all SBSs.

4.3 Distributed model-free formulation

In practical scenarios, it is often difficult or even impos-

sible to attain reliable information about the stochastic

processes underlying the cellular network evolution, e.g.,

channel gain, the backhaul capacity, and content popular-

ity. In these conditions, we cannot adopt a model-based

approach. Alternatively, in this section, we restate the

problem of content placement in a distributed (game-the-

oretic) model-free form. This formulation is nearest to what

we encounter in practical cases. The main challenge here is

to compute the optimal placement action in the absence of

the instantaneous and statistical knowledge of the system,

and instead, by relying only on the immediate feedback (in

the form of instantaneous values of cost) acquired through

real-time interactions with the operating environment.
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In a model-free scheme, SBSs, as learning agents, try to

select the best action just based on the observed per-stage

(also called sample) costs. These samples are noisy and are

in fact composed of an expected value (equal to the

unknown underlying cost function Cn) and a noise etn
arising from randomness in the parameters of the cost

function (i.e., channel gain, backhaul capacity, and content

popularity). Actually, randomness in these parameters

causes variations in the delay experienced by MUs, and

thus, the costs of SBSs are random and time-variant as

well. Through experiencing these noisy costs over time, the

SBSs need to shape and adapt their content placement

strategies in response to the actions of other SBSs. More

specifically, in a game with noisy costs, when joint-action

a 2 A is played, SBS n perceives the sample cost:

CnðtÞ ¼ Cn þ etn ð20Þ

where Cn is the expected cost to SBS n (which is

unknown), and etn is the noise associated with the sample

cost for SBS n at time t. It is noted that a game with noisy

costs is a generalization of the bandit problem discussed by

Sutton and Barto [30] to a multi-agent setting. In the next

section, we shall use extensions of reinforcement learning

strategies to converge to an equilibrium of the caching

game.

5 Multi-agent learning for distributed
model-free content placement

In this section, we propose two multi-agent learning-based

algorithms for our third formulation of the caching problem

(c.f., Sect. 4.3) in which no information is known about the

environment. In both algorithms, we equip each SBS with

an action selection rule along with a payoff estimation

procedure. However, our first algorithm in Sect. 5.1 is an

instance of joint action learning (JAL), while our second

algorithm in Sect. 5.2 is of type independent action

learning (IAL). In the sequel, we discuss these two algo-

rithms and highlight their pros and cons.

5.1 Multi-agent joint action learning (JAL)

In this section, we consider the formulation of a caching

game with unknown noisy costs (c.f., Sect. 4.3), in which

the SBSs can form estimates of the true cost functions that

are accurate enough to ensure that an NE (or an approxi-

mation thereof) can be found. In noisy environments,

reinforcement learning is often exploited to estimate the

mean value of a perturbed cost function [30], and this is the

method we adopt here. In particular, if the agents update

their estimates of the expected costs for joint-actions using

Q-learning and select actions using an appropriate e-greedy
action selection policy, then with probability one (w.p.1),

the cost function estimates will converge to their true mean

values. In JAL, each agent keeps track of the frequency of

other agents’ actions while updating the cost estimate for

the joint-action played. Joint action learners learn the value

of their actions in conjunction with those of the other

agents. In this approach, learning happens in the product

space of action sets of the different agents, and as such, the

JAL algorithm requires the knowledge of other agents’

chosen actions. In other words, a joint action learner should

be able to observe the actions of the other agents. In our

problem setting, this requires the exchange of content

placement decisions between the SBSs through the back-

haul links.

Many authors have previously addressed the problem of

joint action learning of Nash equilibria in games with

unknown noisy rewards by applying reinforcement learn-

ing-based approaches. In [53], the authors have proposed a

JAL algorithm in which each agent keeps track of the

frequency of other agents’ actions, as in fictitious play

([54, 55]), while updating the reward estimate for the joint

action played. However, the authors do not provide con-

vergence conditions for their algorithms. The authors in

[56] consider a continuous-time evolutionary learning

procedure in a noisy game and demonstrate that under this

process, the game’s strict NE is asymptotically stable.

Similarly, Hofbauer and Sandholm [57] consider evolu-

tionary better-reply learning in population games with

noisy payoffs and derive a process that converges to

approximate NE. The only algorithms proven to converge

to a NE in all games are the regret-testing algorithms of
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[58] and the algorithms of [50], which will stay near an NE

for a long time once it has been reached. Here, we deploy a

JAL algorithm based on the work of Chapman et al. in [50],

given that is specifically tailored for a potential game with

unknown noisy costs and has improved convergence rate.

As with any game-theoretic learning algorithm, the oper-

ation of JAL consists of two main processes: cost estima-

tion and action selection.

5.1.1 Cost estimation

In the JAL algorithm of [50], in each step of the game, each

agent chooses an action, receives a numerical sample cost,

and observes the actions chosen by the other agents. This

algorithm operates by each agent recursively updating an

estimate of its value of a joint-action a 2 A. Specifically,

after playing action anðtÞ, observing the others’ actions

a�nðtÞ, and receiving cost CnðaðtÞÞ, each agent n updates

estimate Qn;aðtÞ for a ¼ aðtÞ using equation:

Qn;a t þ 1ð Þ ¼ ð1� kðtÞÞQn;a tð Þ þ kðtÞCnðaðtÞÞ ð21Þ

where kðtÞ 2 ð0; 1Þ is a learning parameter. In general,

Qn;a tð Þ ! E Cn a tð Þð Þ½ ja tð Þ ¼ a� with probability one

(w.p.1) if the conditions:

X1

t¼1

kðtÞ ¼ 1 and
X1

t¼1

k tð Þð Þ2\1 ð22Þ

hold [59]. This can be obtained under the condition that

all Qn;a are updated infinitely often if:

k tð Þ ¼ ðCk þ#tðaÞÞ�qk ð23Þ

where Ck 	 0 is an arbitrary constant, qk 2 ð1
2
; 1� is a

learning rate parameter, and #tðaÞ is the number of times

the joint-action a has been chosen up to time t [50].

5.1.2 Action selection

As argued in [50], to guarantee convergence to NE, action

selection needs to be performed along the lines of a generic

process in strategic learning known as better-reply with

inertia [60]. Under this process, at each step, with proba-

bility h tð Þ an agent repeats its previous action, i.e.,

an tð Þ ¼ anðt � 1Þ, while with probability 1� h tð Þ the agent
chooses an action according to a distribution, putting

positive probability only on actions that are better-replies

to its full memory of length than anðt � 1Þ. In this paper,

we specifically use Q-learning better-replies with inertia

proposed in [50] where if an SBS agent happens to migrate

from the current action, it chooses a better-reply with

probability 1� e, or uniformly samples from its action set

An with probability e.
However, better-replies with inertia is a generic process,

and the authors in [50] have not specified a particular

instance. In fact, any algorithm that chooses from the set of

better-replies according to a memory falls into this class of

algorithms. Hence, it is a large class of algorithms that

includes those that select actions based on either an

improvement in expected cost over the current action or

based on regrets computed from a finite memory, as in

[60]. In this paper, the latter way is applied, and hence,

each agent possesses a finite memory of length , called the

history of the previous actions taken by all agents. Let

hðt; Þ be a sample joint history of length , i.e.,

hðt; Þ ¼ ðaðt � Þ; . . .; aðt � 1ÞÞ. After observing a joint-ac-

tion aðtÞ, the joint history configuration changes by elim-

inating the leftmost element of h and adjoining aðtÞ as the
rightmost element. At each step, each agent computes

regrets of all joint-actions in h and then selects one of them

having negative regret (with equal probability). The regret

associated with each joint-action is measured as a cost

difference between the average cost of that particular joint-

action and the overall average cost over h. Table 4 sum-

marizes the notations exploited in the joint-action learning

algorithm. According to these understandings, the pseudo-

code of the learning algorithm to select the optimal action

for each agent is presented in Algorithm 2.
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Theorem 2 (Convergence of Algorithm 2). In the caching

game G with unknown noisy cost, by considering Q-

learning better-reply process with inertia and e tð Þ ¼ t�1=mN ,

h tð Þ ¼ 1� log tð Þ�2
(such that if t[ 10, then

0\1� log tð Þ�2\1),

limT!1 P a Tð Þis a Nash equilibriumð Þ ¼ 1.

Proof (outline). Let z tð Þ ¼def a t � 1ð Þ; a tð Þð Þ be the joint

history of play at times t and t � 1. Also, denote by

Table 4 Notations exploited in

the JAL algorithm
Notation Description

anðtÞ Action of SBS n (the content-group chosen by SBS n) at time t

a�nðtÞ Joint-action of SBSs other than SBS n at time t

aðtÞ ¼ ðanðtÞ; a�nðtÞÞ Joint-action of all SBSs at time t

A Set of joint-actions of all SBSs

Cn a tð Þð Þ Cost of SBS n when joint-action aðtÞ is taken by SBSs

QnðtÞ Vector of estimated costs by SBS n for all joint-actions up to time t

kðtÞ Learning parameter at time t

Ck Learning parameter used in k tð Þ
qk Learning parameter used in k tð Þ
#tðaÞ Number of times the joint-action a has been chosen, up to time t

h tð Þ Probability with which an SBS repeats its previous action at time t

e Probability of taking a random action

h History of previous joint-actions

Length of history of previous joint-actions
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B ¼def a; a0ð Þ 2 A�Af g the collection of all possible joint

histories. Once an action profile a tð Þ is played at time t, the

joint history transitions from z tð Þ to its successor z t þ 1ð Þ.
To express the transition probabilities, consider an arbitrary

move z tð Þ ! z t þ 1ð Þ. We partition the set of players N

into two disjoint subsets: K z tð Þ ! z t þ 1ð Þð Þ and

X z tð Þ ! z t þ 1ð Þð Þ. Partition K entails those SBS players

which have chosen their next move to be their previous

action, i.e., K z tð Þ ! z t þ 1ð Þð Þ ¼def n 2 N jan t þ 1ð Þ ¼f
an tð Þg: . Partition X denotes the subset of SBSs that make

their choice in the better-reply regret-based manner. Let the

transition matrix of join plays at time t with exploration

factor e tð Þ and inertia h tð Þ be Pe. Then, Pe tð Þ z tð Þ; z t þ 1ð Þð Þ
is given by:

Pe tð Þ z tð Þ; z t þ 1ð Þð Þ
¼ h tð Þð Þn

Y

n2N
I an t þ 1ð Þ ¼ an tð Þð Þ þ 1� h tð Þð Þ X z tð Þ!z tþ1ð Þð Þj j

�
Y

n2X z tð Þ!z tþ1ð Þð Þ
e tð Þ � 1

Anj j

	

þ 1� e tð Þð Þ � P an tð Þ; an t þ 1ð Þð Þ�

ð24Þ

where P an tð Þ; anðt þ 1Þð Þ is the probability of taking action

anðt þ 1Þ by SBS n given its current regret measure. The

key idea underlying the convergence analysis in [50] is to

show the stochastic stability of the Markov chain zðtÞf g
with transition probability matrix Pe. In fact, it has been

proved in [50] that that the stochastically stable states of

the potential game’s underlying Markov chain are the

histories composed entirely by a single strict Nash equi-

librium. In particular, the convergence of Algorithm 2 is

established by invoking [50, Theorems 5.17 and 5.18].

According to these theorems, in any generic potential game

with unknown noisy costs, the Q-learning better-reply

process with inertia e tð Þ ¼ ct�1=mN and 0\h tð Þ\1 leads to

the stochastic stability of the joint play’s underlying Mar-

kov chain zðtÞf g. Accordingly, the sequence of joint plays

aðtÞ would be almost surely convergent to an NE config-

uration. Our chosen inertia and learning rate parameters

satisfy the conditions stated by [50, Theorem 5.18].

Therefore, for a sufficiently large number of iterations, we

conclude the probability that Algorithm 2 directs the sys-

tem to an NE a� is one, i.e., we have:

lim
T!1

Qn;a� t þ Tð Þ ¼ �Cn a�ð Þ;w:p:1:

lim
T!1

a t þ Tð Þ ¼ a�;w:p:1:�
ð25Þ

Although joint action learning has good performance, it

requires that each agent observe the actions chosen by the

other agents since a Q-value needs to be assigned to each

joint action. Additionally, the size of the

Q-table exponentially grows with the number of SBSs and

content groups, thereby increasing space and time com-

plexity as well as reducing the usefulness in large networks

with a large number of content groups in the content

library. Hence, in the next section, we propose an inde-

pendent-action learning algorithm that has less complexity

and is applicable to practical caching games.

5.2 Multi-agent independent action learning
(IAL)

Under the IAL process, the SBS agents are equipped with a

specialized reinforcement learning procedure that lets them

update their cost estimates without observing the others’

actions. This way, each SBS shapes its strategy of play in

the caching game with minimal information consisting

only of their own history of actions and their own realized

sample costs.

In games with unobserved opponent actions and

unknown utilities, some equilibrating algorithms have been

presented in the literature on game-theoretic learning

[52, 61, 62]. In all these algorithms, the agents update their

utility/cost estimates for their actions, independent of the

other agents, using Q-learning. Also, different flavors of

Boltzmann distribution have been used for action selection;

for instance, in [52], an annealing schedule is used for the

temperature coefficient, while [61, 62] use a constant

temperature. However, none of these works is provably

convergent to NE. Another IAL procedure is the work by

Marden et al. in [63], which presents payoff-based

dynamics that converge to NE in potential games. This

algorithm alternates between two phases—exploration and

exploitation. However, it needs many parameters to be set

in advance to control the exploration rates, exploration

phase length, and switching rates of changing strategies.

These parameters depend on the problem at hand, and the

algorithm may fail to converge if the parameters are

incorrectly set. This means that one must have sufficient

prior knowledge of the problem at hand or sets these

parameters in a conservative manner, which slows the rate

of convergence.

In this paper, we adopt the approach of Wang and Pavel

[51], who present an algorithm that combines the strengths

of Q-learning in terms of minimal information require-

ments while at the same time achieving faster convergence

to NE. They assume that players do not have information

about the other players’ actions and do not have complete

information about their own payoff structure. They con-

sider a modified Q-learning (MQL) algorithm to achieve

faster convergence and approach NE via a slightly modi-

fied perturbation function. In the sequel, we discuss the

cost estimation as well as the action selection procedures in

the MQL algorithm.
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5.2.1 Cost estimation

The Q-value Qn;kðtÞ for each player n acts as the estimation

of CnðkÞ (i.e., the expected cost of player n for taking

action an tð Þ ¼ k). Now, we use the symbol Qn tð Þ as a K-

dimensional vector with components Qn;k tð Þ; k 2 K. Each

of its components is updated according to (26) as follows:

Qn;k t þ 1ð Þ ¼ ð1� ln;kðtÞÞQn;k tð Þ þ ln;kðtÞCnðanðtÞÞ ð26Þ

where CnðanðtÞÞ is the numerical sample delay cost actu-

ally experienced by the associated users of the n-the SBS at

time slot n. The parameter 0\ln;kðtÞ\1 is the learning

rate. As for the other actions k
0 2 K; k

0 6¼ k, not played at

time-step t, Q
n;k

0 tð Þ will not change.

5.2.2 Action selection

According to the IAL algorithm of [51], at each time-step

t[ 0, each agent n 2 N updates its mixed-strategy

xnðtÞ 2 DðAnÞ. More specifically, the element xn;k of the

vector xn represents the probability weight that SBS agent

n assigns to action (i.e., content group) k 2 K. Then xn ¼
ðxn;1; xn;2; xn;3; . . .; xn;KÞ is a probability distribution on the

action set or a mixed-strategy for agent n 2 N . Mixed-

strategy xnðtÞ is updated according to the recursion:

xn t þ 1ð Þ ¼ 1� bð Þxn tð Þ þ bBn Qn t þ 1ð Þð Þ ð27Þ

where for any agent n and time t, Qn tð Þ is the Q-value

vector and Bn is an estimated best-response defined as:

Bn Qn tð Þð Þ ¼ uk� ; k
� ¼ argmin

k2K
Qn;k tð Þ ð28Þ

which minimizes the Q-value. The symbol b 2 ð0; 1Þ is the
player’s step-size, and uk� is a K-dimensional unit vector

with a one for the k�-th component and zeros elsewhere.

Now, in the algorithm we consider, at each time step

t[ 0, each SBS selects an action an tð Þ ¼ k with a so-called

perturbed version of its mixed strategy xn;kðtÞ. Specifically,
inspired by the perturbation scheme discussed in [64], we

assume that each player n chooses the k th action, k 2 K

according to a modified strategy with probability:

X n;kðtÞ ¼ 1� qn xnðtÞ; nð Þð Þxn;kðtÞ þ qn xnðtÞ; nð Þ 1=Kð Þ
ð29Þ

in which qn xn; nð Þ is a perturbation function [51]. This

perturbation (also called tremble) is slightly modified from

the one in Chasparis et al. [64] and ensures mutation and

exploration of all actions. This is very much similar to

well-known e-greedy exploration [30]. In particular, it

chooses a random action with small probability qn and the

best action, i.e., the one that has the minimum Q-value at

the moment, with probability (1� qn). The perturbation

function qn : D Kð Þ � 0; 1½ � ! ½0; 1� is chosen to be con-

tinuously differentiable. Furthermore, for some f 2 ð0; 1Þ
sufficiently close to one, qn satisfies the following

properties:

qn xn; nð Þ ¼ 0; 8xn such that xnj j1f; 8n	 0

lim
xnj j1!1

qn xn; nð Þ ¼ n

lim
xnj j1!1

oqn xn; nð Þ
on

¼ c; 9c[ 0

lim
xnj j1!1

oqn xn; nð Þ
oxn;k

¼ 0; 8k 2 K

ð30Þ

In this paper, this perturbation function is defined as (31)

[65]:

Table 5 Notations used in the

IAL algorithm
Notation Description

xnðtÞ Mixed-strategy of SBS n at time t

b Player step-size

Qn tð Þ Vector of estimated costs by SBS n for all actions up to time t

Bn Best-response of SBS n

uk k-th unit vector of size K

CnðanðtÞÞ Experienced sample cost of SBS n for taking action anðtÞ
ln;kðtÞ Learning rate of SBS n for action k at time t

qn Perturbation function for SBS n

n Parameter of perturbation function qn
f Parameter of perturbation function qn
XnðtÞ Perturbed mixed-strategy for SBS n at time t
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qn xn; nð Þ ¼
0; xnj j1\f

n

1� fð Þ2
ð xnj j1�fÞ2; xnj j1 	 f

8
<

:
ð31Þ

Table 5 summarizes the notations used in the IAL

algorithm. According to these understandings, the pseudo-

code of the IAL algorithm to shape the caching strategy for

each SBS agent is presented in Algorithm 3.

Theorem 3 (Convergence of Algorithm 3). In the caching

game G with unknown noisy costs, by considering the

modified Q-learning process with SBS learning rate

ln;k tð Þ ¼ 1� X n;kðtÞ, f ¼ 0:9999, n ¼ 0:01, we have:

lim
T!1

xn t þ Tð Þ ¼ ua�nðtÞ; 8n 2 N (i.e., Algorithm 3 is con-

vergent to NE w.p.1.).

Proof (outline). The convergence of Algorithm 3 is

established by invoking [51, Theorem 7]. According to this

theorem, three assumptions need to be satisfied: 1) For all

players n 2 N and actions k 2 K, ln;k tð Þ ¼ 1� X n;kðtÞ, 2)
For all players n 2 N and actions k; k

0 2 K; k 6¼ k
0
,

CnðkÞ 6¼ Cnðk
0 Þ, and 3) After xnj j1\f, for all n 2 N , i.e.,

when every player has entered the perturbation zone, no

more than one player selects an action other than the action

of the Nash equilibrium at each iteration. Now, the first

assumption is clearly satisfied in our case. For the second

assumption, in our problem setting, if SBS n caches con-

tent-group k, it can only satisfy the neighbor MUs

requesting for contents in k and the requests of the other

neighbor MUs have to been responded by other SBSs or

downloaded from the remote server. Similarly, if SBS n

caches another content-group, e.g., k
0
, it cannot respond to

all the neighboring MUs’ requests. Therefore, different

MUs are serviced with different cached content-groups,

and as these MUs are not within the same distances to SBS

n, they experience different delivery delays and hence the

cost of caching content-group k by SBS n is different from

caching content-group k
0
by this SBS. For the third

assumption, as mentioned in [51, Theorem 7], we can

choose f in to be large enough and n to be sufficiently

small, so that ð1� fð1� nÞÞ2 is sufficiently close to 0. In

this paper, it is assumed that f ¼ 0:9999 and n ¼ 0:01, so

this assumption also holds. Therefore, we conclude the

probability that the process converges to a Nash equilib-

rium a�ðtÞ is one, i.e., we have:

lim
T!1

Qn;a�nðtÞðt þ TÞ ¼ Cn a�n tð Þ
� �

;w:p:1:; lim
T!1

xn t þ Tð Þ
¼ ua�nðtÞ;w:p:1:

ð32Þ

5.2.3 A note on computational complexity

In terms of computational complexity, the proposed IAL

algorithm needs to update the Q-values and the mixed-

strategy of SBS n. In each time-step, Qn;kðt þ 1Þ is calcu-
lated for the taken action k, argument of the minimum of

Qn;kðt þ 1Þ is computed and then xn;kðt þ 1Þ is calculated

over 8k 2 K. Hence, the computational complexity is

OðKÞ. This low computational complexity, as well as the

low informational assumptions, are the most important

advantage of the IAL algorithm in comparison to the pro-

posed JAL algorithm. In the JAL algorithm, the Q-values

Qn;aðt þ 1Þ are calculated in each time-step for the joint-

action a, which is taken by all SBSs, so each SBS keeps

track of the actions of 8n 2 N , and for each SBS, the
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Table 6 Simulation parameters

Parameter Value Description

Network settings Content library and

popularity

F 100 (default, varies in some

experiments)

Number of contents

H 20 contents Cache size

K 5 (default, varies in some

experiments)

Number of content-groups

L 109 bits File size

c 0.5 (default, varies in some

experiments)

Zipf parameter

4G Scenario N 5 (default, varies in some

experiments)

Number of SBSs

M 20 (default, varies in some

experiments)

Number of users

W 25 9 107 Hz Wireless channel bandwidth

p 4Gð Þ
n

1 dBm (default, varies in some

experiments)

Transmission power of SBS n

a 2.7 Path-loss exponent

r24Gð Þ 10–10 W Noise power

d 4Gð Þ 0.0025 SINR threshold

x 0.4 (default, varies in some

experiments)

coefficient of backhaul capacity

5G Scenario W 5Gð Þ 28 GHz/200 MHz Carrier frequency/bandwidth

– 500 m Radius of macro cell

– 20 m Radius of small cell

aj 2/4 Path loss exponent of LoS and NLoS

d 5Gð Þ 54 (dB) 5G SINR threshold

u0
0;n 2



; 5


� �
MBS operating beamwidth on its link with

mm-SBS n

us
n;m 5


 � 60



mm-SBS operating beamwidth

p0 5 Watts Power of MBS

p 5Gð Þ
n

30dBm Power of mm-SBSs

z {MBS, mm-SBS, UE} = (- 2, -

2, 0) dBi

Side lobe antenna gains

r25Gð Þ - 77 dBm Noise power for mmWave band

N 5 (default, varies in some

experiments)

Number of mm-SBSs

M 20 (default, varies in some

experiments)

Number of MUs

b 0.008 Blockage density

Algorithmic hyper-

parameters

Joint-action learning 3 History length in JAL

Ck 0 Parameter of k tð Þ
qk 1 Parameter of k tð Þ

Independent-action

learning

n 0.01 Parameter of qn
f 0.9999 Parameter of qn
s 0.5 Player step-size in IAL
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action space is K. Hence, the space complexity of the JAL

algorithm is OðKNÞ.

6 Performance measurement

In this section, we implement our proposed IAL and JAL

algorithms for both 4G and 5G use cases in a simulation

environment corresponding to the scenario depicted in

Fig. 1. First, we explain the simulation setup, including the

simulation parameters and experiment settings in Sect. 6.1.

In Sect. 6.2, we introduce the baseline schemes used for

comparison. Next, in Sect. 6.3, we report on the simulation

results. In particular, we demonstrate how the average

delay varies under different regimes of cached content

popularity. Furthermore, we investigate the impact of the

number of MUs and SBSs on the average downloading

delay. We also present simulation results to compare the

performance of the proposed algorithm against the schemes

which utilize different prior information. Finally, in

Sect. 6.4, we study the impact of the network settings on

the performance of the proposed IAL algorithm.

6.1 Simulation parameters

In both 4G and 5G use cases, we consider a scenario that

SBSs and MUs are uniformly distributed in a

500 m 9 500 m area. The channel power gains in our 4G

setup are set as independently and identically distributed

exponential variables with mean 1. As for 5G channel

gains, the fading is modeled as a normalized Rayleigh

random variable [66, 67]. The minimum capacity of a 4G

wireless link is shown by rmin ¼ ðW=NÞlogð1þ dÞ.
Accordingly, we set the 4G backhaul capacity as a random

variable uniformly distributed in ½x� rmin; rmin� in which x
is a coefficient introduced to play with the range of the

backhaul capacity. The content popularity follows Zipf

distribution with parameter c ¼ 0:5. In the simulation, the

random parameters (i.e., 4G/5G channel gain, 4G backhaul

capacity, and user requests) are sampled from the men-

tioned distributions, but the (mm)SBSs as learning agents

have no knowledge of these distributions nor of these

sampled values. The JAL and IAL algorithms have only the

implicit feedbacks in terms of the round-by-round actual

downloading delay experienced by the MUs. Other

important simulation parameters are given in Table 6.

6.2 Comparison with baseline schemes

In this section, we show the performance of the proposed

IAL algorithm by comparing its results against the JAL

algorithm as well as other baseline approaches. In all the

following experiments, the comparisons are made in terms

of the moving average of the downloading delay. We have

implemented six algorithms with different informational

assumptions for the purpose of comparison and executed

all six algorithms with identical configurations to evaluate

their performance. Apart from the proposed JAL, the other

baseline methods are as follows:

• Optimization with perfect non-causal information

(optimal and centralized): In this case, the delay

optimization is solved in an offline and centralized

fashion by the MBS assuming perfect (non-causal)

instantaneous values of all random parameters. In the

simulation, random parameters are sampled from the

distributions determined in Sect. 6.1. The minimization

problem (12) is solved by optimization tools, and the

result serves as a lower bound for the solution obtained

by other approaches.

• Distributed optimization with perfect statistical

information (equilibrium, decentralized): In this

approach, known as model-based optimization, only

the statistical knowledge (i.e., the probabilistic model)

of the random processes is assumed to be known at

design time. The SBSs use the knowledge of the

distributions in Sect. 6.1 to derive their cost functions in

the caching game discussed in Sect. 4.2. Prior to actual

network deployment, Algorithm 1 is executed by all

SBSs to obtain an NE configuration (c.f., Definition 1).

Actual content caching in a real-life deployment is then

performed based on the calculated equilibrium

strategies.

• Distributed Q-learning (DQ-based caching) [11]: For

our 5G use case, we also experiment with another state-

of-the-art learning algorithm proposed by Lin et al. for

distributed cache content placement. Similar to our

multi-agent learning algorithms, DQ-based caching is a

zero-knowledge model-free scheme applicable to both

4G and 5G use cases. However, there are two differ-

ences between the DQ-based caching and our proposed

algorithms: first, in [11], a fully cooperative repeated

game is assumed among the SBSs in the sense that all

SBSs as learning agents have a common goal of

cooperating with each other to improve a given social

utility. The authors have proposed a distributed

Q-learning algorithm to ensure the cooperation among

SBSs to reach the optimal NE point. In our case, the

definition of cost function varies between the SBS

agents and there is a high chance that the simplistic

update rule governing DQ-based caching result in

miscoordinations between the SBSs. Our proposed JAL

and IAL algorithms feature sophisticated update rules

which guarantee convergence and equilibration in more

complex setups than the one discussed in [11]. The
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second difference is that unlike our delay-centric cost

function, the SBS agents in [11] work toward maxi-

mizing the system-wide average cache hit probability.

However, in our implementation, we have simply

changed the algorithm to optimize delay (rather than

cache hit) without tampering with anything else.

• Single-agent learning: In single-agent learning, each

SBS runs a standard multi-armed bandit (MAB) algo-

rithm from the single-person decision theory [30]. Here,

the multi-person game-theoretic aspect of the environ-

ment is completely ignored by the SBSs as they naively

mishandle the non-stationary dynamics arisen by other

SBS agents as simple stationary uncertainty. Similar to

the case of our proposed JAL and IAL algorithms, the

single-agent learning algorithm receives only implicit

feedback in terms of the delay experienced by MUs.

The pseudo-code is presented in Algorithm 4, in which

the parameters g1 tð Þ; g2 tð Þ 2 ½0; 1� are the learning rate

and the exploration factor, respectively. For the sake of

experiments, we set g1 tð Þ ¼ 0:03 and g2 tð Þ ¼ ðlog tÞ�2
.

6.3 Results

6.3.1 Moving average delay performance

Figure 2 plots the moving average sum of MUs’ down-

loading delay obtained from the proposed JAL and IAL

algorithms as well as the offline centralized, model-based

decentralized, single-agent learning and the DQ-based

caching scheme [11]. Figure 2a depicts the results for the

4G scenario and Fig. 2b corresponds to the 5G case. The

users’ sum delay in 5G is significantly lower compared to

the 4G case (nearly 500 times), which is primarily due to

the ultra-high data rate achievable by mmWave

communications.

As seen in both figures, the centralized algorithm using

the perfect instantaneous information has the least sum of

downloading delay, while single-agent learning in which

the SBSs mishandle the environment dynamics incurs the

worst delay. In the model-based decentralized scheme,

which operates in a Nash configuration, the sum of delay is

higher than the centralized case. This is partly due to the

sub-optimality inherent in the notion of equilibrium but,

more importantly, due to the agents’ having only the sta-

tistical (as opposed to exact) information about the envi-

ronment. Multi-agent IAL algorithm is a zero-knowledge

equilibrium learning algorithm and can thus be considered

as an approximate version of the model-based decentral-

ized scheme. Naturally, its delay performance is higher

compared to the offline and model-based variants. How-

ever, as can be seen in Fig. 2b, IAL outperforms the DQ-

based caching due to its guaranteed convergence to equi-

librium. This is while DQ-based caching is prone to mis-

coordination and out-of-equilibrium behavior. As for our

multi-agent JAL algorithm, the SBS agents have the

advantage of observing their peers’ actions, and since the

cost estimation process is performed in the joint action

space with much more accuracy compared to IAL, the JAL

algorithm mimics the behavior of the model-based

scheme but with injected randomness. In particular, in the

experiment shown in Fig. 2, the limiting performance of

the SBSs running JAL has even superseded the perfor-

mance of the model-based algorithm. In fact, the NE

computation in JAL is performed by a stochastic search

process with lots of explorations that may luckily lead to

escapes from inefficient equilibria. That being said, how-

ever, the convergence speed of JAL is significantly lower

than the proposed IAL algorithm. More importantly, the
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JAL algorithm has an exceptionally huge memory footprint

which makes it impractical even in fairly small-scale set-

ups. In fact, due to this memory bottleneck, we were no

longer able to simulate the JAL algorithm in the subsequent

experiments where the network size increases.

6.3.2 The impact of content popularity

Figure 3 displays the sum of downloading delay for both

4G and 5G use cases under different values for the Zipf

parameter used in content popularity distribution. In gen-

eral, larger values of the Zipf parameter corresponds to a

steeper distribution such that requests issued by consumers

are concentrated on a smaller set of contents (i.e., more

queries are focused on a set of hot contents). Therefore, by

only caching these hot contents in their limited memory,

the SBSs can reduce their miss ratio, thereby decreasing

the MUs’ sum delay. As expected, the centralized algo-

rithm with perfect instantaneous information has the lowest

delay performance, followed by the decentralized algo-

rithm with perfect statistical information. As shown in

Fig. 3a, in the proposed multi-agent IAL and single-agent

learning algorithms, we see more delay because these

methods use no prior information about the environment.

However, the IAL algorithm operates more closely to the

model-based scheme due to its consideration of the cross-

interaction between the SBSs. Also, according to the plot in

Fig. 3b for the 5G use case, we observe that IAL maintains

its superiority over the DQ-based caching for all values of

the skewness of the content popularity.

6.3.3 The impact of the number of SBSs and MUs

Figures 4 and 5 show the sum of downloading delay versus

the number of MUs and SBSs, respectively. In Fig. 4, it is

observed that there is an upward trend in the users’ sum

delay as the number of MUs associated with the SBSs is

increasing. This is mainly because it is difficult to satisfy

the minimum rate requirements for all the MUs using the

limited resources. However, the sum delay does not grow

linearly with the number of MUs because the impact of

bandwidth portioning among the users is partly offset via

the multi-user diversity. Furthermore, with a higher popu-

lation of MUs, more contents are requested, which

increases the chance of cache miss and backhaul conges-

tion. Congestion of the system gradually increases the
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backhaul traffic load which deteriorates the achievable

effective data rate (as can be noticed for the number of

MUs more than 20). Also, under the single-agent and DQ-

based caching, the system gets congested more quickly.

Compared to these two, our IAL algorithm can allow more

MUs to be accommodated without premature capacity

partitioning.

On the other hand, when there are more SBSs, each SBS

responds to fewer requests. Also, more contents can be

stored across all the SBSs, decreasing the chance of cache

miss. Accordingly, in Fig. 5, the sum of delay decreases

when using a higher number of SBSs. As before, the per-

formance of our proposed multi-agent IAL algorithm lies

in between single-agent learning and the schemes using

prior information of the environment. In Fig. 5b for the 5G

case, we notice that DQ-based caching consistently

underperforms our IAL algorithm, but the gap between the

two is narrower for a smaller number of SBSs. However, as

the computational complexity increases due to the growth

of the strategy space, the superiority of IAL over DQ-based

caching would be more noticeable.

6.4 The impact of the network settings
on the performance of the IAL algorithm

In this section, we investigate the impact of important

network settings on the performance of the proposed IAL

algorithm. In particular, in the 4G case, we study the

impact of backhaul capacity, the transmission power of the

SBSs, and the number of contents on the delay experienced
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by the MUs. In Fig. 6, we vary the parameter of backhaul

capacity from x ¼ 0:2 to x ¼ 1, while other simulation

settings are the same as those given in Table 6. As shown

in Fig. 6, with the increase in x, the sum of downloading

delay of contents is reduced. To investigate the impact of

transmission power on the downloading delay, we vary pn
for all SBSs from 0.1 to 100 dbm, as shown in Fig. 7. As

expected, when the transmission power increases, the sum

of the delays decreases. In Fig. 8, we change the number of

contents from 100 to 220 files in order to study its impact

on the downloading delay for MUs. With the increase in

the number of files, the number of content groups also

increases, but as the cache capacity at each SBS is limited,

it leads to smaller cache hit ratio and hence more delay for

accessing contents by MUs.

As for the 5G scenario, we compare the performance of

IAL and DQ-based caching for different values of the

power of the backhaul links as well as the beamwidth of

mm-SBSs and MUs. Figure 9 shows how the MUs’ sum

delay decreases as the power levels of backhaul links

increases (it is assumed that all backhaul links utilize the

same power level). For this experiment, the maximum

backhaul power is set to 50Watts according to [68]. In

Fig. 10, we show how the MUs’ sum delay varies with the

operating beamwidth of mm-SBSs and MUs (For sim-

plicity, it is assumed that all mm-SBSs and MUs use

similar beamwidth and that the MBS operates at 5�). As
can be seen, increasing the beamwidth (by reducing the

achievable rates) results in a gradual increase in the sum of

MUs’ downloading delay. It is also noticeable that the gap

between IAL and DQ-based caching narrows as the

beamwidth keeps increasing. This is because a larger

beamwidth leads to higher cross-link interference which

will eventually play as the dominating performance factor.

7 Conclusion

In this paper, the problem of selecting contents to be

cached was studied for small base stations deployed in the

coverage area of a macro base station. Given the uncer-

tainties posed by the randomness of the requests for con-

tents, as well as the variations in backhaul capacity and

channel qualities, the problem was formulated as a poten-

tial game among SBSs with the objective of minimizing the

long-term average of downloading delay. To solve the

optimization problem, we proposed a model-free rein-

forcement learning algorithm that computes optimal action
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for each SBS in adaptation to the environment dynamics.

Our algorithm operates in a model-free fashion in that it

does not need prior statistical knowledge of the random

processes in the environment. Simulation results demon-

strate that our proposed IAL algorithm converges properly

and has better performance compared to the single-agent

learning algorithm mishandling the environment dynamics,

in addition, it has an acceptable performance in comparison

with the cases using prior knowledge. The results also

show that the JAL algorithm converges and has better

performance compared to the other decentralized algo-

rithms, at the expense of huge memory usage and low

convergence speed. We may extend the unavailability of

network information to users’ nature to consider scenarios

where there are malicious users in the control of a jammer,

aiming to make congestion in the network. A malicious

user, who is unknown to the SBSs, tries to request for

contents not cached in its associated SBS, therefore, the

SBS downloads it from remote server via backhaul link.

Repeating this process by malicious users cause to make

congestion in backhaul links so that the system cannot

respond to the ordinary users’ requests.
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