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Abstract
Facial expression recognition (FER) in the wild is very challenging due to occlusion, posture, illumination, and other

uncontrolled factors. Learning discriminant features for FER using Convolutional Neural Networks is a momentous task

for the significant class imbalance, wrong labels, inter-class similarities, and intra-class variations. The traditional method

utilizes the Cross entropy loss function to optimize the convolutional network to obtain discriminative features for

classification. However, this loss function cannot effectively solve the above problems in practice and cannot contribute

to obtaining highly discriminant facial features for further analysis. Center loss improves the learning efficiency by

reducing the intra-class distance of similar expressions, while the improvement of inter-class similarity, class imbalance,

and generalization is insufficient. In this paper, we propose a lightweight Effective Attention Feature Reconstruction loss

(EAFR loss), which can further optimize the feature space and enhance the discriminability of expression. The loss model

is composed of the Focal Smoothing loss (FS loss) and the Aggregation-Separation loss (AS loss). Firstly, the FS loss can

improve the poor recognition performance caused by imbalanced classes and prevent paranoid knowledge learning

behaviors. Meanwhile, AS loss further accurately condenses the intra-class expression features and expands the inter-class

distance, which is achieved by using progressive stage max-pooling channel and position attention mechanism and

lightweight asymmetric autoencoder model for feature reconstruction. Finally, the EAFR loss joins the above two loss

functions to more comprehensively solve the above typical problems for FER in the wild. We validate the proposed loss

function on three most commonly used large-scale wild expression datasets (RAF-DB, FERPlus, and AffectNet), and the

results show that our model achieves superior performance to several state-of-the-art methods.
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1 Introduction

As the most direct and effective way of expressing human

emotions, facial expressions can be used to convey and

understand emotions more realistically in interpersonal

communication. With the continuous development of

computer vision, the automatic recognition and analysis of

facial expressions have more application value in health

assistance, automatic driving, mental analysis, public

safety, etc. It has become an important computer vision

research task. We call the research on the emotional state

of facial expressions (neutral, happy, angry, sad, fear,

disgust, surprise, contempt, etc.) as facial expression

recognition (FER).

In recent years, with the continuous research and in-

depth development of FER, the recognition of facial

expressions taken in the laboratory under controlled con-

ditions (correct posture, no occlusion, simple background,

etc.) has achieved high recognition accuracy. Such

expression datasets include JAFFE [23], CK ? [22], Oulu

CASIA [43], etc. However, with the continuous expansion

of application scenarios, FER in real scenes including

different occlusions, postures, lighting, and other factors is
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facing greater challenges, and the controlled expression

recognition in the laboratory environment has not been

well accommodate the application research of FER in the

wild. Along with the large-scale wild facial expression

datasets are constantly being presented, such as RAF-DB

[17], FERPlus [3], and AffectNet [25], more and more

scholars pay attention to this field and carry out continuous

research.

The early research on FER is based on the traditional

machine learning method, which aims to find effective clas-

sification features in the feature space. This kind of method

has achieved good results on the small-scale expression

datasets in the lab [27, 29, 41]. With the introduction of the

deep CNN method and its powerful feature extraction capa-

bility [14], many scholars have carried out researches on

large-scale uncontrolled facial expression datasets and

achieved certain results [1, 12, 30, 38, 40]. However, there are

still some problems: (1) Due to the influence of posture,

occlusion, illumination, scale, and other external factors,

some of the expressions show significant intra-class variation

and obvious inter-class similarity, which only have subtle

differences, such as surprise and fear, contempt and neutral

expressions, the recognition of these expression samples faces

greater challenges. Therefore, it is crucial to pay more

attention to the regions of interest and extract more discrim-

inative expression features. In the meanwhile, we need to

design a lightweight network to improve the overall efficiency

of the model and further reduce feature redundancy and

additional computational burden; (2) Due to the imbalance

between classes in most of the existing wild expression

datasets, the learning ability of minority classes is insufficient

with few samples. On the other hand, the paranoid learning

without any suspicion on the sample label of the dataset

further reduces the generalization performance of the model;

(3) As shown in Fig. 1 (left), the commonly used Cross

entropy loss function cannot effectively deal with the spatial

distribution of features of intra-class and inter-class, and the

discrimination of learned facial features is insufficient [21],

which is prone to misjudgment. Therefore, it cannot establish

an efficient punishment mechanism in the classifier to

improve the classification performance.

In response to the above problems, we propose a novel

lightweight end-to-end Effective Attention Feature Recon-

struction loss (EAFR loss) model for FER. In this model, the

key features are further focused on by the progressive stage

Max-pooling Coordinate Attention (MCA). Then the features

are reconstructed by lightweight two-stage Asymmetric

Autoencoder (AAE) to extract more discriminative expres-

sion space features, so it will pay more attention to the area of

interest and obtain more adaptive expression feature weights.

The self-adaptive Aggregation-Separation loss (AS loss)

function constructed on the above new feature space weights

can further condense intra-class features, maximize the

distance of inter-class, and reduce mutual interference.

Finally, combined with the designed Focal Smoothing loss

(FS loss) function with label smoothing, the imbalance and

paranoid learning problems caused by unbalanced category

and label errors will be further improved. As shown in Fig. 1

(right), the final joint loss model achieves better recognition

performance.

Our main contributions are summarized as follows:

(1) We present a novel loss function called Effective

Attention Feature Reconstruction loss (EAFR loss)

to effectively improve the poor recognition perfor-

mance caused by unbalanced categories, paranoid

learning for labels, and unreasonable intra-class and

intra-class distances. This loss function combines the

FS loss and the adaptive AS loss under the expres-

sion area of interest, which can efficiently solve the

problems mentioned above of FER.

(2) We propose an AS loss that combines the progres-

sive stage channel and position MCA and AAE

mechanisms to extract more discriminative facial

features from area of interest and better reconstruct

adaptive feature weights in expression space.

(3) We design an FS loss function with a label smooth-

ing mechanism to improve the low recognition rate

caused by class imbalance effectively. At the same

time, the smoothing mechanism can further improve

the paranoid learning behavior and make the model

have better generalization performance.

(4) Our EAFR loss model is evaluated and visualized on

three of the most popular large-scale wild datasets.

Experiments show that our method outperforms

several current state-of-the-art methods and achieves

89.80%, 89.57%, and 61.05% excellent performance

on RAF-DB, FERPlus, and AffectNet, respectively.

2 Related work

In this section, we will focus on two aspects of related work

done by predecessors: 1) FER in the wild. 2) Enhancing the

performance of FER through loss function.

Surprise
Neutral

Fear Disgust Class center

Surprise
Neutral

Fear Disgust Class center

Fig. 1 Cross entropy loss (left), EAFR loss (right). EAFR loss can

make the features of intra-class more condensed toward the center of

the class, while the distance of inter-class is more alienated
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2.1 FER in the wild

The early FER mainly focus on the facial expression in the

lab. However, as people attach great importance to the

application research of expression in the wild, the research

based on large-scale expression datasets in the real scene

gradually gets more and more attention, such as RAF-DB,

AffectNet, and FERPlus.

For focusing on regions of interest and extracting more

effective latent features, Li et al. [18] and Wang et al. [35]

respectively proposed global–local-based Attention CNN

(gACNN) and Region Attention Networks (RAN) attention

mechanisms to enhance robust recognition of wild expres-

sions. Albanie et al. [2] used Squeeze-and-Excitation Net-

work (SENet) to reconstruct the attention network to

improve the learning ability of network expressions.

Li et al. [15] developed a more robust Patch-Gated Convo-

lution Neural Network (PG-CNN) for partial occlusion of

real-world datasets and further improving the overall

recognition rate. Zeng et al. [39] proposed an end-to-end

training model called Inconsistent Pseudo Annotations to

Latent Truth (IPA2LT) for inconsistent labels in real data-

sets, which learns the potential association from inconsistent

labels and outputs the hidden real labels for recognition.

Barsoum et al. [3] further enhanced the network’s perfor-

mance by constructing a more realistic label distribution.

Georgescu et al. [7] improved recognition performance by

combining multiple CNN networks and manual bag-of-vi-

sual-words (BOVW) features. Wang et al. [34] proposed the

Self-Cure Network (SCN) to dynamically adjust labels

during the training process for the current large-scale facial

expression datasets in the wild with uncertain factors such as

low image quality and labeling errors. Siqueira et al. [31]

developed the ESR model, which integrates different net-

work structures according to the type of datasets (in the lab or

in the wild) to improve the recognition performance. For

better feature extraction, Vo et al. [33] proposed a pyramid

super-resolution (PSR) network structure to solve the FER

task in the wild and achieve certain results. Karnati et al. [13]

designed FER-net to extract relevant features accurately that

can capture changes in facial expressions with high fidelity.

Xia et al. [37] proposed an ADC-Net that combines attention

and redesigns the reconstruction module to learn more dis-

tinctive facial expression features from the critical local

subregions of scrambled facial expressions. Zhao

et al. [42] designed the EfficientFace method from the fea-

ture extraction and training strategy for more effective and

robust FER.

2.2 Enhancing the performance of FER through
loss functions

The loss function is usually an important approach for

enhancing the discriminant ability of FER. To optimize the

problems existing in FER in essence, some scholars make

further improvements to the traditional cross entropy loss

function. Wen proposed Center loss [36] to show good per-

formance in face recognition by minimizing the distance

between facial features and their corresponding class cen-

ters. Inspired by Center loss, Li et al. [17] introduced

Locality-Preserving loss (LP loss) by condensing class fea-

tures through the K-nearest neighbor algorithm for further

reducing the distance within the class. Cai et al. [4] proposed

isLand loss to further improve the inter-class distance. The

Separate loss [16] uses normalized cosine similarity to adjust

intra-class and inter-class distances to increase feature dif-

ferentiation. Farzaneh et al. [6] further increased the penalty

for the imbalance between classes to enhance the separability

of each class. Fan et al. [5] proposed RW loss to learn dis-

criminative features by enhancing the rationality of distance

for intra-class and inter-class samples and suppressing

uncertainties through a sample weighting scheme. Li et al.

[19] built a knowledgeable teacher network (KTN) model

based on adaptive regular loss (AdaReg loss), which can

effectively enhance the discriminant ability by maximizing

the distance between different facial expressions.

The above method enhances the discriminative ability of

facial features by designing different loss functions.

However, these methods do not pay special attention to the

area of interest in expressions and the construction of

adaptive feature weights. In contrast, our method combines

the loss of feature weight reconstruction through the fea-

tures of the area of interest extracted by attention with the

loss function that improves the class imbalance problem

and generalization performance, and the obtained features

are more adaptable. It is conducive to learning the subtle

differences between facial expressions, better handling the

relationships of intra-classes and inter-classes, enhancing

generalization performance, and ultimately improving the

overall performance of facial expression recognition.

3 Proposed method

Overview: our proposed EAFR loss method includes a

backbone network with the progressive stage Maxpooling

Coordinate Attention (MCA), an Asymmetric Autoencoder

(AAE), and a joint loss function L. The overview of the

proposed model is shown in Fig. 2.

Firstly, we use the lightweight ResNet18 as the back-

bone network to extract features. This network has a small
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number of layers and parameters, and the residual network

structure can effectively solve the gradient dispersion and

explosion and perform better function fitting and feature

extraction. To reduce the influence of non-expression

regions and extract more expressive features in the area of

interest without increasing excessive network burden, we

gradually introduce a lightweight max-pooling space and

location attention MCA in the backbone network in stages.

Then the high-dimensional features of the expressions that

pass through the last layer of the backbone network are sent

to the lightweight two-stage AAE for feature weight

reconstruction. The obtained latent feature weights with

more adaptive capabilities participate in constructing the

AS loss function proposed in this paper, which further

promotes the cohesion for intra-class features and increases

the distance on inter-class features. In the meantime, we

send the final output of the backbone network to the

designed FS loss function to solve the problems of class

imbalance and overconfidence caused by mislabeling for

improving the overall performance and generalization of

the network. Finally, our proposed EAFR loss model

combines the above two types of losses for learning and

verifies the performance on three expression datasets in the

wild.

3.1 Max-pooling coordinate attention (MCA)

Inspired by Coordinate Attention [10] and to capture fea-

tures more sensitive for subtle expression changes, we

propose MCA to embed the position information into the

channel information for enhancing the orientation and

position perception capabilities of the feature map, while

the general attention only focuses on the channel rela-

tionship to measure the importance of each channel. First,

global max-pooling is used to decompose the channel

attention into two spatial directions of aggregation features.

The attention module can capture long-term dependencies

along one spatial direction and retain accurate position

information along the other spatial direction, which helps

the network locate the target of interest more accurately.

Then the generated feature maps of the two directions are

respectively encoded into a pair of direction-aware and

position-sensitive maps and finally merged with the input

feature maps to further enhance the focus on the area of

interest. The detailed structure of the MCA is shown in

Fig. 3.

MCA encodes channel relationships and long-term

dependencies through precise location information, and it

is divided into two steps: information embedding and

attention generation.

(1) To enable the attention module to capture long-term

spatial interaction with accurate location information, we

use adaptive max-pooling in two directions and convert it

into a pair of one-dimensional feature encoding operations:

The output of channel c with a height of h can be rep-

resented as:

zhcðhÞ ¼ maxi2Wxcðh; iÞ ð1Þ

The output of channel c with a width of w can be shown

as:

zwc ðwÞ ¼ maxj2Hxcðj;wÞ ð2Þ

Fig. 2 Overview of proposed EAFR loss model. The input expression

Xi is sent to the backbone network (ResNet18) that joins the

lightweight progressive stage attention MCA, and the attention

features of the area of interest are sent to the two-stage lightweight

AAE for feature encoding and reconstruction, reconstructed feature

weights and original features are reweighted to construct AS Loss.

Finally, The EAFR loss is constructed as a joint loss through the

combination of AS loss and FS loss
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The above transformations perform feature aggregation

separately along two spatial directions and obtain corre-

sponding feature maps that can perceive direction. So it can

make the attention module capture long-term dependencies

along one spatial direction and save accurate position

information along another spatial direction, which will

favor the model to more exactly locate the expression area

of interest.

(2) To effectively capture the relationship between

channels and make full use of the location information of

the area of interest, we perform concatenate operation on

the above transformations after embedding the above

information, and then take transformation by using the

1 9 1 convolution function F:

f ¼ dðFð½zh; zw�ÞÞ ð3Þ

where ½zh; zw� represents the concatenate operation along

the spatial dimension, d denotes the non-linear activation

function,f 2 RC=r�ðWþHÞ donates feature mapping for

encoding spatial information in two directions, r is used to

control the reduction rate of the block size, here is 32.

Next, f is decomposed into two independent tensors of

f h 2 RC=r�H and f w 2 RC=r�W along the spatial direction.

Then using two 1 9 1 convolutional transforms Fh and Fw

to perform channel transformations with f h and f w

respectively to obtain a tensor with the same number of

channels, the formula is shown as follows:

ah ¼ rðFhðf hÞÞ ð4Þ
aw ¼ rðFwðf wÞÞ ð5Þ

where r is the sigmoid activation function, and ah and aw

are attention weights respectively.

The output feature of the final MCA attention is as

follows:

ycði; jÞ ¼ xcði; jÞ � ahcðiÞ � awc ðjÞ ð6Þ

3.2 Asymmetric autoencoder (AAE)

To extract the most representative features of facial

expressions and reduce redundant information, we design a

concise and effective AAE network that can greatly reduce

redundant information while constructing optimal feature

weights to enhance the discriminant ability of the network.

Different from previous autoencoders, AAE uses a two-

stage asymmetric encoding and decoding method to

reconstruct key features. As shown in Fig. 2, First, the

original high-dimensional information output from the

backbone network is embedded into a 128-dimensional

feature space. Then these low-dimensional features are

reconstructed into a 1024-dimensional of sub-high dimen-

sional feature space. Next, the 1024-dimensional feature

space is reduced to a 512-dimensional feature space again,

and the feature reconstruction is finally completed. After

this two-stage asymmetric codec transformation, recon-

structed features can fully focus on the latent expression

feature space while avoiding excessive parameters and

training costs, making the model easier to train. The finally

obtained reconstructed latent features are activated using

the Mish [24] activation function, which has good

smoothness and allows better information to go deep into

the neural network for obtaining better accuracy and gen-

eralization. Finally, the softmax function is utilized to

obtain the final reconstruction feature weight. The specific

process is as follows:

f1 ¼ WT
2 ReLUðBNðWT

1 xi þ b1ÞÞ þ b2 ð7Þ

f2 ¼ WT
3 ReLUðBNðf1ÞÞ þ b3 ð8Þ

f3 ¼ MishðBNðf2ÞÞ ð9Þ
ai ¼ Softmaxðf3Þ ð10Þ

where xi denotes the network features of the last layer after

the backbone network, Wi and bi represent the weight and

bias of the ith linear network, where the bias is initialized

to 0. The feature weight ai obtained through the network

gains more critical and adaptable depth latent feature

information with a lower dimension, which lays a good

foundation for further analysis of facial expressions.

Sigmoid

Conv2d

BatchNorm & Non-linear

Concat & Conv2d

X MaxPool Y MaxPool

Outputs 

Residual C × H × W

Re-weight

Sigmoid

Conv2d

split 

Inputs

C × H × 1

C × H × 1

C × H × 1

C × H × W

C × 1 × W

C × 1 × W

C × 1 × W

C/r × 1 × (W+H)

C/r × 1 × (W+H)

Fig. 3 The structure of MCA
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3.3 Effective attention feature reconstruction
loss (EAFR Loss)

3.3.1 Focal smoothing loss

Since the Cross entropy loss cannot solve the problem of

class imbalance and the optimization ability is insufficient,

the model’s performance cannot be effectively improved.

Inspired by the idea of FocalLoss [20], our proposed Focal

Smoothing loss (FS loss) model first effectively improves

the problem of low accuracy of minority classification in

multi-classification. By increasing the weight of minority

samples, the loss function treats each category more fairly,

prevents overlearning of the majority samples and ignores

the minority samples, and lastly improves the overall per-

formance of the model; At the same time, in order to

reduce overfitting and enhance generalization, we embed a

label smoothing regularization technique [26] for FS loss to

soften the label and improve the classification performance,

which will prevent paranoid learning and prediction of

facial expressions due to overconfidence. Because many

large-scale datasets, including the expression datasets we

use, usually contain incorrectly labeled data, which means

that our network model should be skeptical of the ‘‘correct

answer’’ in essence. Adding label smoothing can reduce the

modeling in extreme cases around wrong answers to a

certain extent, perform network correction and enhance

robustness, and produce more accurate predictions on

invisible production data. Therefore, FS loss not only

effectively improves the class imbalance problem but also

enhances the generalization, and the overall recognition

performance is further improved. The designed FS loss can

be defined as follows:

ys ¼ plogits � ½ð1� sÞ � yþ s � U� ð11Þ

LFS ¼ �ð1� ysÞc log ys ð12Þ

where c is a factor that adjusts the weight according to the

probability of different samples and is set to 2. ys is the

sample probability output after label smoothing, where

plogits represents the output probability of the last layer after

softmax, s is the smoothing factor with a value of 0.1, U is

the introduced fixed distribution matrix, which is a matrix

of all 1 s.

3.3.2 Aggregation—separation loss

Inspired by the Center loss function [36], to make full use

of potential deep information, enhance the expressive

ability of features, and further strengthen the aggregation of

intra-class expressions and the separation of inter-class

expressions, we designed the Aggregation-Separation loss

(AS loss) model. Firstly, the adaptive reconstructed feature

weights ai obtained after MCA and AAE are combined

with the feature xij got after pooling of the backbone net-

work and to be re-weighted as the input,

xi ¼ xi1; xi2. . .; xij
� �T2 RD. Then using this input to com-

bine with the class center for evaluation. In this way, we

can use the features with stronger correlation and dis-

crimination to construct our loss function to make the intra-

class features more cohesive and is shown as follows:

LA ¼ 1

2N

XN

i¼1

XD

j¼1

aij � xij � cj
�� ��2

2
ð13Þ

where aij denotes the weight after adaptive feature recon-

struction, � represents the element dot product, cj repre-

sents the feature center of the jth feature space,j 2 RD, N is

the number of images in each mini-banch, and �k k2 rep-

resents L2 norm.

To further increase the distance of inter-class and pro-

mote the separation of different types of expressions, we

introduce the cosine distance for loss fusion, and the final

Aggregation-Separation loss function LAS is as follows:

LAS ¼ LA þ k1
X

cj2M

X

ck2M
cj 6¼ck

1þ cj � ck
cj
�� ��

2
ckk k2

 !

ð14Þ

where k1 represents the control factor of the contribution of
the cosine distance loss to the LAS loss function, M repre-

sents the set of expression tags, and cj and ck denote the kth

and jth expression category centers with L2 norm, respec-

tively. The former loss function can more accurately con-

strain intra-class differences, while the latter penalizes the

expression similarity between inter-classes by increasing

the distance between classes.

Our LAS also performs parameter optimization updates

based on the SGD optimizer, and the class center of the jth

class is updated according to the following formula:

Dcj ¼
PN

i¼1 ðcj � ai � xiÞ dðyi; jÞ
PN

i¼1 dðyi; jÞ þ 1

þ k1
Mj j � 1

X

ck2M
cj 6¼ck

ck

ckk k2 cj
�� ��

2

� cj
ck � cj

ckk k2 cj
�� ��3

2

 !

ð15Þ

where dðyi; jÞ ¼
1; yi ¼ j
0; yi 6¼ j

�
, |M| denotes the number of all

expressions. For each mini-batch, cj is updated with the

learning rate q, which is set to 0.6, then:

ctj ¼ ct�1
j � qDct�1

j ð16Þ
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3.3.3 The joint loss

Our EAFR loss combines AS loss and FS loss as a total

joint loss model and is trained in an end-to-end manner for

model optimization and final evaluation as follows:

L ¼ LFS þ kLAS ð17Þ

where LFS and LAS denote Focal Smoothing loss and

Aggregation and Separation loss respectively, and the

hyperparameter k represents the contribution of LAS loss,

which is used to adjust the contribution degree of Aggre-

gation-Separation loss in the total loss function.

4 Experiments

4.1 Datasets

We conduct experimental evaluations on the following

three wild FER datasets, including RAF-DB, FERPlus, and

AffectNet. These datasets are currently widely used wild

expression datasets that fully reflect real scene emotions.

RAF-DB [17] is a dataset containing 29,672 facial

expression images in the real world from the Internet

annotated with basic or compound emotion datasets. We

perform experiments on the basic dataset containing seven

basic expressions (anger, disgust, fear, happiness, neutral,

sadness, surprise), including 12,271 training samples and

3,068 test samples.

FERPlus [3] is an expression dataset in real scenes

obtained by relabeling on the FER2013 [8] dataset. It

contains 28,709 training images, 3,589 verification images,

and 3,589 test images with a size of 48 9 48 pixels, which

have been relabeled as ten classes of extremely unbalanced

expressions. For a more comprehensive assessment, we add

contempt to the basic seven expressions (neutral, happi-

ness, surprise, sadness, anger, disgust, fear) and conduct

accuracy measurement on the test set containing eight basic

expressions.

AffectNet [25] is the largest facial expression dataset to

date, including 450 K labeled facial expression images

with manual annotations. The dataset is very challenging

that includes people of different races, background chan-

ges, lighting, posture, occlusion, etc., and the class data is

very uneven. For a more comprehensive model evaluation,

we choose eight basic facial expressions as FERPlus to

evaluate the accuracy, including 287,651 images as train-

ing sets with imbalanced classes and 500 images as veri-

fication sets in each class with 4 K expressions in total.

4.2 Implementation details

Our EAFR loss model uses ResNet18 as a lightweight

backbone network, which is pre-trained based on MS-

Celeb-1 M [9] face dataset. To prevent overfitting and

enhance generalization, we augment the input images on

the fly before training the model, including resizing the

original image to 236 9 236, crop to 224 9 224 images by

random five crops, random horizontal flip, random erasing,

and final normalization. In addition, we crop 236 9 236

images to 224 9 224 by center crop and normalize it as

input before the test. In the model training process, the

SGD with momentum optimizer is used for optimization,

where the momentum parameter is 0.9, the batch size is 64,

and the weight decay is set to 5e-4. We take model training

on the RAF-DB and FERPlus datasets for 80 epochs with

the initial learning rate of 0.04 decayed ten times every 20

epochs. For the AffectNet, we set the model training for 30

epochs with the initial learning rate of 0.035 decayed five

times every 5 epochs. The hyperparameters k and k1 are

both set to 0.01, and q is 0.6. The total parameter of our

EAFR loss model is 15.09 M, and GFLOPs is 1.33. The

training time of the model on the RAF-DB, FERPlus, and

AffectNet datasets are 30.83, 52.11, and 191.47 min,

respectively, and the test time is 2.94 ms per image. All the

experiments in this article are programmed and imple-

mented by using Python under the PyTorch framework on

the NVIDIA RTX 2080Ti GPU with 11 GB RAM.

4.3 Ablation studies

To demonstrate the effectiveness of our proposed method

in real scenes, we conducted ablation studies on three wild

datasets to evaluate the influence of critical modules and

parameters for our model.

1) The influence of MCA and LAS on the model: To verify

the effect of each module, we perform ablation studies on

the MCA and LAS modules in the EAFR loss model under

the premise that the FS loss is used as the basic loss. As we

can see from Table 1, when only using LAS with the

combination of the basic loss function, the module

improves by 0.59%, 0.67%, and 0.55% in the three data-

sets. We think that the LAS module plays a crucial role in

promoting intra-class cohesion and increasing inter-class

distance. When only the MAC attention module is added,

the accuracy rates increase by 0.46%, 0.54%, and 0.32%,

respectively, which indicates that the progressive stage

lightweight attention can further focus the expression

region and pay more attention to the area of interest. When

we add both modules to form a complete algorithm model,

we can see that the model achieves better performance and

increased by 0.95%, 1.02%, and 0.97%, respectively.
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Therefore, we believe that after MCA attention and two-

stage feature reconstruction of lightweight AAE, our model

can further reconstruct the more discriminative feature

distribution in the area of interest and finally achieve the

best results.

2) The influence of hyperparameters k, k1 on the network:

As shown in Table 2, we evaluate the performance of the

hyperparameter in the final recognition. We first fix

k1 = 0.01 and set k from 0.005 to 0.03. The results show

that when k = 0.01, our method achieves top performance

in all three datasets and shows a downward trend as the

parameter value increases. Then we fix k = 0.01, the value

of k1 is from 0.001 to 1, the model obtains the best per-

formance in the datasets when k1 = 0.01, and the accuracy

decreases further as the value increases. Therefore, we

finally set the value of k = 0.01, and k1 is also 0.01.

4.4 Visualization

4.4.1 Visualization of attention

To demonstrate the superiority of this MCA attention

method that focuses on both channel direction and location

information, we use GradCAM on some wild expressions

to visualize the features after the fourth layer of ResNet18

residual network, as shown in Fig. 4. It is easy to see that

the feature maps without MCA attention only focus on few

areas of interest, and the feature energy distribution is not

concentrated. The feature maps with progressive stage

MCA attention can more accurately focus on areas of

interest, such as eyes, nose, and mouth. Therefore, the

features of the area of interest will be more discriminative

when attention is added.

4.4.2 Visualization of loss function

To verify the effectiveness of our proposed EAFR loss

method, we use t-SNE [32] to present the two-dimensional

feature distribution on baseline (Cross entropy loss), Center

loss, FS loss, and EAFR loss, respectively.

As shown in Fig. 5, we can clearly observe that the

model based on Cross entropy loss cannot distinguish

expressions accurately. The model based on Center loss has

been improved, especially for the further condensation of

intra-class expressions, but the adjustment of inter-class

distance is not obvious. The FS loss further improves the

classification performance for the problem of class imbal-

ance and some wrong labels. Based on FS loss, our EAFR

loss not only improves the imbalance between classes and

increases generalization but also has a better constraint

ability in high-dimensional space to construct more rea-

sonable intra-class and inter-class distribution. The most

impressive performance is that our EAFR loss model is

clearer for different class boundaries and includes many

blanks inside.

4.5 Comparison with state-of-the-art methods

Table 3 shows the comparison results of our method with

several SOTA methods on facial expression datasets in the

wild. We use ResNet18 with a pre-trained model as the

backbone, and the Cross entropy loss (CE loss) is used as

the baseline and Center loss as the basic comparison

model. Our FS loss and EAFR loss function models are

further compared with the above models to illustrate the

effectiveness of the model we finally proposed.

Among the contrast methods, RAN and gACNN

respectively propose an attention network that enhances the

robustness of regional occlusion. SCN and IPA2LT are

aiming to solve the problem of label noise. PLD is to

construct a more realistic label distribution. PSR handles

the input problem of images with different resolutions

through a pyramid structure. KTN enhances learning

ability by building a progressive teacher knowledge

Table 1 Ablation studies for MCA and LAS modules of our EAFR

loss on RAF-DB, FERPlus, and AffectNet datasets. The overall

accuracy (%) is used for experimental evaluation

MCA LAS RAF-DB FERPlus AffectNet

9 3 88.85 88.55 60.08

9 H 89.44 89.22 60.63

H 3 89.31 89.09 60.40

H H 89.80 89.57 61.05

Table 2 Ablation studies for the different values of k and k1 (k
represents the impact factor of the LAS loss module, and k1 represents
the impact factor of class separation cosine loss), the overall accuracy

(%) is used for experimental evaluation

k RAF-DB FERPlus AffectNet

0.005 88.85 89.06 60.38

0.01 89.80 89.57 61.05

0.015 89.34 89.12 60.65

0.03 88.75 88.74 60.50

k1 RAF-DB FERPlus AffectNet

0.001 89.34 89.18 60.00

0.01 89.80 89.57 61.05

0.1 89.60 88.96 60.65

1 89.44 88.77 60.45
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network. DDA further solves the problem of class learning

accuracy caused by the imbalance of inter-class from the

perspective of the loss function. EfficientFace uses a local-

feature extractor and a channel-spatial modulator for

O
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A
w
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Fig. 4 Visualization of feature maps produced by models with MCA

methods after the last layer of backbone by using GradCAM [28] tool.

Both feature maps without MCA and with MCA attention block are

visualized. It is obvious that our MCA can more precisely locate the

expression area of interest

Fig. 5 Visualization of features distribution based on t-SNE from RAF-DB dataset using four different losses
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feature extraction and uses label distribution learning as a

training strategy for more effective and robust recognition.

ADC-Net is constructed by reconstructing the semantic

association between the subregions in the module. ESR-9

uses feature integration methods to reduce redundancy and

computational load and enhance generalization capabili-

ties. Separate loss and RW loss establish more reasonable

intra-class and inter-class distances for identification. PG-

CNN and SENet mainly increase the focus on the area of

interest by re-weighting to improve network capabilities.

ResNet ? VGG and CNN ? BOVW mainly increase the

feature extraction performance of the network through the

design of the network structure. The above methods have

improved the performance of facial expression recognition

from different perspectives to a certain extent. However,

they do not pay too much attention to the variation and

similarity of real scene expressions, and the effect of

improving expression recognition rate from a certain aspect

is limited. Our model builds a lightweight and effective

network model from the comprehensive perspective of

focusing on the area of interest, improving the problem of

class imbalance, enhancing the generalization performance

of tags, and aggregating the intra-class distance and sepa-

rating the inter-class distance more reasonably, and finally

reaches the level of SOTA.

The performance of our EAFR loss method in the RAF-

DB, FERPlus, and AffectNet expression datasets outper-

forms other current SOTA methods and achieves excellent

levels of 89.80%, 89.57%, and 61.05%, respectively. The

above experimental results finally prove the effectiveness

of our proposed method.

4.6 Discussion

We first show the training and validation accuracy curves

of the three datasets of RAF-DB, FERPlus, and AffectNet,

as shown in Fig. 6. It can be seen that our model finally

reaches a stable state and achieves a competitive accuracy

after relatively short learning epochs. Then we evaluate the

confusion matrix of the CE loss, FS loss, and EAFR loss

models in the above three different expression datasets. It

can be seen from Fig. 7 that the model based on CE loss

has a great deviation in class learning and recognition

performance is not ideal. After adopting our optimization

loss of FS loss, the comprehensive performance of the

model has been improved to a certain extent. In particular,

the learning ability of unbalanced category recognition and

generalization is improved obviously. And finally, our

EAFR loss model further enhances the intra-class expres-

sion cohesion and reasonably expands the inter-class dis-

tance, making the model have a better performance in the

uncontrolled expressions.

In RAF-DB, since the distinction between fear and

surprise, neutral and disgust expressions is not obvious, and

fear, surprise, and disgust belong to the minority classes,

Table 3 Accuracy comparison with state-of-the-art methods on dif-

ferent wild FER datasets

Method RAF-DB (%)

gACNN [17] 85.07

IPA2LT [21] 86.77

Separate loss [31] 86.38

RAN [18] 86.90

SCN [23] 87.03

DDA [32] 86.90

PSR [25] 88.98

KTN [34] 88.07

EfficientFace [28] 88.36

Baseline 88.17

Center loss 88.59

FS loss (ours) 89.31

EAFR loss (ours) 89.80

Method FERPlus (%)

PLD [5] 85.35

ResNet ? VGG [43] 87.40

SENet [19] 88.80

CNN ? BOVW [22] 87.76

RAN [18] 88.55

ESR-9 [24] 87.25

SCN [23] 88.01

RW loss [33] 87.60

ADC-Net [27] 88.90

Baseline 87.95

Center loss 88.39

FS loss (ours) 89.09

EAFR loss (ours) 89.57

Method AffectNet (%)

DownSampling [6] 50.00

IPA2LT [21] 57.31

PG-CNN [20] 55.33

gACNN [17] 58.78

RAN [18] 59.50

ESR-9 [24] 59.30

SCN [23] 60.23

PSR [25] 60.68

EfficientFace [28] 59.89

Baseline 59.63

Center loss 59.95

FS loss (ours) 60.40

EAFR loss (ours) 61.05
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(a) (b) (c)

Fig. 6 Training and validation accuracy curves of RAF-DB (a), FERPlus (b), AffectNet (c) datasets

Fig. 7 Confusion matrix of CE loss (left), FS loss (middle), and EAFR loss models (right) on RAF-DB, FERPlus, and AffectNet expression

datasets
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we can clearly see the large difference in class recognition

performance and poor recognition rate from the confusion

matrix of the original CE loss. After applying the proposed

FS loss, there have been significant improvements in class

imbalance and paranoid learning. When the final EAFR

loss is used, the model improves the recognition perfor-

mance by further promoting intra-class condensation and

expanding inter-class distance based on FS loss, which can

better deal with subtle expression changes and show better

comprehensive recognition performance.

In the confusion matrix of FERPlus, we can see that CE

loss is still not very good at handling unbalanced classes,

such as minority classes like contempt and disgust, and the

performance of class recognition varies greatly. FS loss

improves the problems of CE loss and enhances general-

ization. EAFR loss is more reasonable based on FS loss

because it can better handle relationships of intra-class and

inter-class, so the overall performance is significantly

improved compared with the previous two methods.

For AffectNet, in addition to the class imbalance, there

are also different classes of expressions with small ampli-

tude and high similarity, such as neutral and anger, surprise

and fear; Simultaneously, the dataset has the problem of

low annotation accuracy. We observe that CE loss has

insufficient processing capacity to deal with the above

problems, FS loss improves the problem of category

imbalance and paranoid learning caused by label errors,

EAFR loss further optimizes the spatial distribution of

features by adjusting the distance of intra-class and inter-

class to maintain or improve the recognition rate of classes.

5 Conclusion

This paper proposes an Effective Attention Feature

Reconstruction loss (EAFR loss) model for FER in

real scene. First, the progressive stage attention MCA fully

focuses on the area of interest. Then the FS loss effectively

improves the problem of class imbalance, while the

embedded smoothing mechanism further prevents paranoid

learning and enhances generalization. At the same time, the

AS loss model designed by lightweight AAE is used to

reconstruct the more discriminant feature distribution

space, strengthening the aggregate of intra-class distances

and the separation of inter-class distances. Finally, we

build the joint EAFR loss based on the above loss models,

which effectively improves the ultimate expression recog-

nition effect. The experiments are validated on three large-

scale wild expression datasets and results indicate that our

proposed model outperforms the baseline and Center loss

models and shows superior performance on several state-

of-the-art methods. However, our current research mainly

focuses on recognizing discrete expressions. To better

reflect people’s real feelings, we will pay more attention to

recognizing continuous expressions in the following

research.
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