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Abstract
Groundwater resources (GWR) play a crucial role in agricultural crop production, daily life, and economic progress.

Therefore, accurate prediction of groundwater (GW) level will aid in the sustainable management of GWR. A comparative

study was conducted to evaluate the performance of seven different ML models, such as random tree (RT), random forest

(RF), decision stump, M5P, support vector machine (SVM), locally weighted linear regression (LWLR), and reduce error

pruning tree (REP Tree) for GW level (GWL) prediction. The long-term prediction was conducted using historical GWL,

mean temperature, rainfall, and relative humidity datasets for the period 1981–2017 obtained from two wells in the

northwestern region of Bangladesh. The whole dataset was divided into training (1981–2008) and testing (2008–2017)

datasets. The output of the seven proposed models was evaluated using the root mean square error (RMSE), mean absolute

error (MAE), relative absolute error (RAE), root relative squared error (RRSE), correlation coefficient (CC), and Taylor

diagram. The results revealed that the Bagging-RT and Bagging-RF models outperformed other ML models. The Bagging-

RT models can effectively improve prediction precision as compared to other models with RMSE of 0.60 m, MAE of

0.45 m, RAE of 27.47%, RRSE of 30.79%, and CC of 0.96 for Rajshahi and RMSE of 0.26 m, MAE of 0.18 m, RAE of

19.87%, RRSE of 24.17%, and 0.97 for Rangpur during training, and RMSE of 0.60 m, MAE of 0.40 m, RAE of 24.25%,

RRSE of 29.99%, and CC of 0.96 for Rajshahi and RMSE of 0.38 m, MAE of 0.24 m, RAE of 23.55%, RRSE of 31.77%,

and CC of 0.95 for Rangpur during testing stages, respectively. Our study offers an effective and practical approach to the

forecast of GWL that could help to formulate policies for sustainable GWR management.
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1 Introduction

The fast-growing use of groundwater (GW), especially in

agrarian-based developing countries like Bangladesh, is

now a prime concern for decision-makers on the issue of

sustainable groundwater resources (GWR) management

[77, 82]. In recent decades, climatic variability (e.g.,

rainfall infiltration rate, surface runoff, evaporation, and

increase in temperature), fast population growth, and over-

exploitation have had adverse effects on this precious GW

resource in many regions across the globe [18, 50, 86, 104].

This is particularly true for Bangladesh, where high pop-

ulation density and increasing industrial development are

raising water demand [41, 42]. As a result, GW levels

(GWL) are decreasing, with a general increase in water

stress. GWL monitoring and modeling are essential activ-

ities for sustainable GWR management in the water-stres-

sed regions, especially in the northwestern drought-drone

area, Bangladesh.

The GWL datasets obtained by continuous monitoring

provide valuable information on the aquifer. The efficient

management of GW resources needs an accurate estimation

of current and predicted demand of GW and the net GW

resource of the basin at the regional and local scales [108].

The research on water table depth oscillations underneath

the ground surface level is essential to extract data asso-

ciated with the rate of recharge, discharge, and storage

capacity. GW management is solely feasible after
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obtaining relevant GW resource information followed by

an accurate analysis [72]. The applicability of conventional

groundwater simulation models in Bangladesh is limited

due to a lack of detailed knowledge of aquifer character-

istics. In such a case, soft computing machine learning

(ML) tools are an optimal alternative that shows higher

potential and efficacy than the conventional numerical or

physical process-based approaches.

In recent years, with the progress in soft computational data-

driven tools, several ML models have been developed and

employed for GWL forecasting [73]. For instance, Artificial

Neural Networks (ANN) [5, 24, 25, 32, 33, 41, 59, 61, 90],

Support Vector Machine (SVM) [35, 105, 109], Adaptive-

Network-based Fuzzy Inference System (ANFIS) (Fallah-

Mehdipour et al. [30, 51], Extreme learning machine (ELM)

[5, 40, 102], Fuzzy logic (Nadiri et al. 2018), and theM5model

[54] are some of the most popular and widely adopted ML

models in GWL prediction. Although some benefits of the

ANNs and ANFIS models are to estimate the unknown vari-

ables via simple training tools and identify the complex non-

linear association between the predictors and objective

parameters, they exhibit some shortcomings, including their

over-fitting problem and “black box” nature [28]. Besides,

SVM has various kernel functions and, for each performance

measure, all of them should be assessed and the optimal one

chosen, limiting its use [89]. Apart from these standalone

models, tree-based models such as Random Tree, Random

Forest, and REP Tree do not require preprocessing of datasets

and are simply mapped data features, but they have weak

predictability, notably inhibiting scientists from employing

them in robust scientific work [34, 91].

A good number of studies have employed hybrid

ensemble ML and genetic models for different hydro-me-

teorological applications [9, 52, 64, 92], Nourani and

Mousavi [68, 77, 88, 103, 107]. For example, Moosavi

et al. [64] compared the performance of hybrid ensemble

Wavelet-ANFIS and Wavelet-ANN models for predicting

GWL in Iran and found that Wavelet-ANFIS was the

optimal model. Similarly, Suryanarayana et al. [92] com-

pared standalone models such as ANN, SVM, and autore-

gressive integrated moving average (ARIMA) models with

hybrid ML models such as Wavelet-SVM and found that

wavelet-SVM provided better precision. Khalil et al. [52]

revealed that the Wavelet-ANN ensemble models outper-

formed single models such as MLR, ANN, in predicting

short-term GWL in Iran. Nourani and Mousavi [68] pre-

dicted the GWL using a hybrid ensemble of ANN-RBF and

ANFIS-RBF models combined with a threshold-based

wavelet-denoising model and found that ANFIS-RBF

performed better than ANN-RBF owing to the modeling

effect being denoised. Yu et al. [107] compared the hybrid

wavelet-ANN and wavelet-SVM to the ANN and SVM

benchmark models for monthly GWL forecasting in

northwest China to show that wavelet-SVM yielded better

outcomes. Rezaie-balf et al. [77] assessed the performance

of wavelet coupled multivariate adaptive regression splines

(wavelet-MARS) and M5 model tree (wavelet-MT) to

MARS and MT standalone models for GWL forecasting

and found that the forecast precision of wavelet-MARS

was superior to other models in one, three, and six months

ahead prediction. Yadav et al. [103] developed an ensem-

ble model to forecast the monthly GWL in the municipal

region of Bengaluru, India, and found that the hybrid

ensemble SVM-HSVM yielded better performance than the

single ANN and SVM models. Sharafati et al. [88] pro-

posed a novel ML model for predicting GWL in Rafsanjan

aquifer, Iran and showed that the ensemble Gradient

Boosting Regression (GBR) has high accuracy. According

to the literature review, all of these hybrid ensemble ML

models outperformed the standalone model in terms of

prediction. The major benefit of hybrid models is that they

often uncover complicated mathematical nonlinear rela-

tionships between the objective and predictive parameters.

The promising results of these hybrid ML models

offered inspiration for assessment of various model-tool

couplings in different hydrological issues [64, 90, 100,

105–107]. However, this study demonstrates the ability of

some ensemble ML models, such as Bagging, decision

stump, random tree, and REP Tree, to predict GW levels.

The use of meta-based ensemble classifiers (Bagging) and

tree-based ensemble classifiers (random tree, REP Tree,

decision stump) to improve the prediction accuracy of a

single classifier is relatively new in hydrological studies.

The Bagging model is a common hybrid model used in

various hydro-meteorological modeling tasks, such as

landslide susceptibility mapping [69], GW potential pre-

diction [67], flood susceptibility mapping [43], suspended

sediment load prediction [83], and evapotranspiration

studies [37, 81]. The key benefit of the Bagging algorithm

is that it can solve nonlinear complex problems better than

other algorithms [53]. The Bagging uses bootstrap aggre-

gation, in which classifiers are trained in parallel as the

bags from each training input data set. Random tree and

decision stump, like Bagging, can assist with over-fitting

problems and have high accuracy. Based on the previous

literature, the two objectives have been set to tackle the

research gaps. The objectives are to (1) improve the

groundwater predictionability by developing bagging based

seven hybrid machine learning algorithms, and (2) validate

the the predicted models at training and testing periods.

However, based on above discussion, followings could be

the most significant novelties of the present study:

● General The work contributes to the robustness of

knowledge by designing and using methodologies for

10752 Neural Computing and Applications (2022) 34:10751–10773

123



groundwater level prediction in an unstudied area of

Bangladesh with greater GW consumption.

● Regional Enhanced understanding of groundwater fore-

cast in Bangladesh’s northwestern drought-prone

region. This effort would provide a significant founda-

tion for earth scientists, government officials, and

stakeholders to enhance water resource management

and sustainable agriculture management.

● Methodical Proposed seven hybrid ML models for

GWL prediction that combine Bagging as the base

classifier with locally weighted linear regression

(LWLR), SVM, M5P, REP Tree, RT, RF, and decision

stump. To the best of our experience, these hybrid ML

models have never been used in previous research on

GWL forecasting.

2 Study area and datasets

The northwestern region of Bangladesh is geographically

located between 24°N–26°N latitude and 88°E–89°E lon-

gitude [47], covering an area of 34,600 km2 (Fig. 1). The

study area shares its border with India on the north and

west part, while it is bordered by the Brahmaputra-Jamuna

River to the east and the Ganges River to the south. The

northern portion of the study area is situated in the

Himalayan piedmont fans having an average height higher

than 90 m. The southern portion of the study area is

characterized by a swamp having an average height of less

than 10 m. The study area is dominated by the subtropical

monsoon climate and has three distinct seasons, such as

winter (November–February with cool-dry weather and no

rainfall; pre-monsoon (March–May with hot and dry; and

monsoon (June–October with heavy rainfall [47]. In the

study area, monthly average temperature, evapotranspira-

tion, and rainfall, respectively, are 10–22 °C, 4 mm, and

125 mm. The study area comprises two divisions: Rangpur

division and Rajshahi division. The meteorological stations

are distributed in the mentioned division. For the present

study, the meteorological data for two stations were

available: one station from Rangpur division, and another

from Rajshahi division (Fig. 1).

The physiography of the study area is characterized by

alluvial plain with slightly elevated Pleistocene terraces,

and the slope is facing toward the south and southeast [75].

The study area is dominated by the Rangpur Saddle under

the Indian platform in the sub-section of Bengal basin,

Bangladesh (Akhter et al. 2019). About 80% of the study

area is composed of alluvial soil, while the rest of the area

is composed of Barind clay. The study area is mostly

dominated by agricultural land because of the presence of

fertile soil [45]. The groundwater has mainly been

extracted for domestic and agricultural purposes, and a

little amount is used for drinking uses [44, 62].

The daily rainfall, relative humidity, and temperature

data of Rajshahi and Rangpur stations were collected from

Bangladesh Meteorological Department, Dhaka (BMD

2018) (www.bmd.gov.bd). The ground water level data of

Rangpur and Rajshahi (Fig. 2) were measured from the

Bangladesh Water Development Board (BWDB), Dhaka

(www.bwdb.gov.bd). Overall, the dataset covers a period

from January 1981 to December 2017.

In general, the fluctuation of groundwater levels relies

mainly on the hydro-geological and meteorological vari-

ables such as the amount of rainfall, temperature, humidity,

the lithological composition of rocks, the level of the

drainage capacity of the region, and aquifer characteristics

[82, 108]. For that reason, this study has chosen the three

meteorological variables, e.g., rainfall, temperature, and

humidity for investigating the fluctuation of GWL in the

study area.

Furthermore, Tables 1 and 2 provide a descriptive

statistic, for both the training and testing stages, of the

collected data for Rajshahi and Rangpur stations respec-

tively, where SEM indicates the Standard Error of the

Mean, σ the standard deviation and Q1 and Q3, respec-

tively, the first and third quartile. The standard deviation of

rainfall is large, as seen in Tables 1 and 2. High standard

deviation numbers indicate greater uncertainty than low

standard deviation values, implying that deviations from

the normal distribution should not be overlooked. The fact

that the standard deviation values are so large indicates that

the rainfall is very unpredictable, changeable, and irregu-

lar, or it may be attributed to the length of datasets used or

the dataset quality.

3 Methods

3.1 Bagging model

The Bagging is (short form for “Bootstrap Aggregating”)

method consists of two main stages [11, 15]. The first step

consists of bootstrapping the samples gained from the raw

data, in order to get different sets of training data. Then,

multiple models are generated from these training datasets.

Final predictions are obtained combining the outcomes of

multiple models (Fig. 3).

In this study, different regression trees were combined to

obtain a single output by using weighted average. In the

model development stage, various exercise datasets with

similar size have been chosen randomly from an issue

domain.Then, a regression tree model has been developed

for each input dataset. Each tree is different and leads to a
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different prediction based on the alteration provided in the

training dataset. One of the important befitted of the bag-

ging procedure is that removes the existing instability

present in the regression tree growth. This was done by

removing the initial training datasets rather than novel

training dataset sampling for each time step. Finally, all the

forecasts of the regression tree have been weighted aver-

age. The description of the parameters selected in this

method are Batch size-100, bag Size percent=80, classifier

=REPTree, max depth=0, numbers of executions slots=1,

number of iteration=100, and random seed=1.

Fig. 1 Location of the study area and two groundwater station
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Fig. 2 The time-series plot of

groundwater level for Rajshahi

and Rangpur stations

Table 1 Descriptive statistics

for Rajshahi station
Stage Variable Mean SEM σ Minimum Q1 Median Q3 Maximum

Training T (°C) 25.72 0.24 4.40 15.00 22.46 27.90 29.18 31.67

R (mm) 124.90 7.67 140.68 0.00 7.00 72.00 220.70 763.00

H (%) 77.98 0.47 8.66 50.80 72.88 79.15 85.34 90.25

GWL (m) 6.36 0.11 1.97 2.58 4.82 6.24 7.73 11.47

Testing T (°C) 26.10 0.46 4.76 15.55 22.35 28.22 29.89 31.61

R (mm) 103.50 10.60 109.90 0.00 5.30 77.50 178.00 454.00

H (%) 79.10 0.70 7.37 58.96 76.40 81.21 84.60 88.83

GWL (m) 9.53 0.19 2.01 4.83 8.07 9.54 11.20 15.13
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3.2 Locally weighted linear regression (LWLR)
method

Locally weighted regression (LWR) is motivated by the

classification of the instance-based methods [7]. In this

method, the regression model is processed until the output

value of the new vector is presented. This is done to

perform all learning accurately at the prediction time. LWR

is an advanced form of M5 models in a way that it fits

linear as well as nonlinear regression for the particular

areas of instance in space. Distances according to the query

are used to allocate the weights to the training datasets, and

regression equations are generated based on the weighted

data. There are a wide variety of distance-based weighting

Table 2 Descriptive statistics

for Rangpur station
Stage Variable Mean SEM σ Minimum Q1 Median Q3 Maximum

Training T (°C) 26.05 0.24 4.40 15.58 22.61 28.21 29.54 32.23

R (mm) 197.10 12.20 223.70 0.00 7.30 107.50 346.80 1314.00

H (%) 80.69 0.35 6.56 55.64 77.51 82.29 85.54 90.90

GWL (m) 3.34 0.06 1.07 1.55 2.38 3.24 4.17 7.01

Testing T (°C) 26.24 0.46 4.74 15.66 22.38 28.39 29.92 31.86

R (mm) 168.10 18.70 194.70 0.00 2.00 112.50 297.50 832.00

H (%) 79.52 0.52 5.48 63.20 76.79 80.74 83.71 89.29

GWL (m) 3.82 0.11 1.21 1.74 2.83 3.80 4.84 6.15

Fig. 3 Typical architecture of

Bagging algorithm. The

algorithms are different for the

way regression trees are built

[38]

Fig. 4 A schematic diagram of

the SVM algorithm [85]
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methods which can be used in LWR based on the choice of

the problem. In this study, the parameters used in this

method are as follows: Batch size-100, KNN=0, nearest

neighbor search algorithm=linear NN.

3.3 SMO-SVM algorithm

Support Vector Machine (SVM) algorithms are basically

structured on statistical learning theories and developed

from the conceptual optimization hypothesis

[94, 95] (Fig. 4). It is generally used in order to achieve the

best generalization capability for both the empirical rela-

tions and confidence intervals of machine learning. These

SVMs have always been shown to perform extremely well

and efficiently for optimization and regression studies [96],

Collobert et al. [20]). These proved to be highly robust in

nature for extremely noise mixed data in comparison to the

other local models and algorithms which use traditional

chaotic methods. The SVM estimation function (F) in any

given regression scenario can be defined as:

F xð Þ ¼ W :Tf xð Þ þ b ð1Þ
where, W is the weight age vector; Tf represents the non-

linear transfer function, which projects the input vectors

toward a very high dimension feature space; and b is the

constant variable.

A convex dual optimization problem was introduced by

Vapnik [94] that created an insensitivity loss function.

Several algorithms have been developed and suggested for

solving these dual optimization problems in the SVM

(Adamala and Srivastava [2]). In this current study, the

Sequential Minimal Optimization (SMO) algorithm is used

[70]. The programming codes from the Library for Support

Vector Machines (LIBSVM) are used for the calibration

and validation of all the datasets [17]. In this work, the

Batch size-100, C=0.1, kernel used=poly kernel were used

in prediction model.

3.4 Random forest (RF)

The Random Forest model was proposed by Breiman

[11, 15]. Nowadays, this method is a very effectively

applied on the various fields such as hydrology, land use

classification, irrigation scheduler, evaporation measure-

ment, forest and crops classification [29]. It is an ensemble

of different regression tree models, built from different

subsets obtained using bootstrap resampling technique. The

original information’s concealed outcomes are based on

number choices made by categorization of tree divisions,

and the decision trees’ overall average forecast is consid-

ered as the regression model’s final predictions (Dietterich

et al. [26]). A basic regression tree has the disadvantage of

being sensitive to the training data used to build the tree,

especially if the training data are minimal [21]. There may

be slight differences in exercise data between trees and

predictions [14]. These disadvantages can be solved by

advancing random forest technique.

Rodriguez et al. [78] proposed cluster methods based on

the alternate forest methodology, which used features

derived from the alternate sub-spaces of a large dataset to

improve the accuracy of inadequate regression and classi-

fication models [12]. By randomly splitting the input dis-

tinguishing usual into P distinguishing subsets (one factor

has been specified by handler), the method operates simi-

larly to the pseudo-random approach, and then applies a

key factor analysis to these sub-section’s characteristics.

Every regression technique in the group has generated a

different set of data. An important module remains in the

information directive to maintain the diversity of data in

the information. The parameters selected in this method are

Batch size-100, bag Size percent=100, max depth=0,

numbers of executions slots=1, number of iteration=100,

and random seed=1.

3.5 REPTree

The REPTree decision algorithm is a very rapid method of

learning with reduced error pruning tree. It generates a

decision/regression tree, which is pruned using back-fitting

with decreased error [49]. The inaccuracy of the decision

tree model is reduced with the help of the “reduce error

pruning method,” so the mistake rising from alteration is

decreased. For numeric characteristics, the algorithm only

examines values once. It is primarily the method of con-

structing a common set of instructions for decision making

using a forecaster variable quantity [12], Birendra [10].

The REPTree process is a basic decision tree beginning

method that designs and utilizes condensed error trimming

to create a tree of regression using variance data [84]. The

numerical ranges in the model have been established [22].

In this case, the execution of several knowledge algorithms

in the WEKA environment [98] was employed. The

REPTree model is commonly used for hydrological system

processes, surface runoff, and other disciplines. REPTree

model provides accurate information in a variety of fields

such as ecological planning, flood susceptibility, soil ero-

sion, climate and hydrological processes, and it is very

effectively applied in a variety of aspects such as irrigation

planning, flood analysis, rainfall prediction, and evapora-

tion, among others. This model has recently been employed

by machine learning programming, and it is efficiently used

by researchers and data scientists in python programming.

S ¼
X

Eeleaves

qcUc ð2Þ
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where qc is well-described as the class forecast and Uc is

the leaf-inside variance. The description of parameters

selected in this study for implementing this model was:

Batch size-100, Initial count=0, number of folds=3, ran-

dom seed=1, minimum proportion of the variance=0.001,

minimum number=2, and max depth=1.

3.5.1 Random tree (RT)

The RT algorithm was constructed using a conventional

technique and then refined using decision tree on an arbi-

trary column subdivision. This model was created using an

approach similar to traditional trees and a single significant

exclusion [97]. The model is highly fast and adaptable for a

tree novice, and it may be used to teach a wide range of

challenges [16, 66]. Supervised classifier is a collaborative

learning model that is used to build more distinct begin-

nings. It provides a bagging impression to conceptualize an

arbitrary standard of information for creating decision tree

models. Each node in a typical tree is separated using the

finest fragmented in entire variables. All nodes are sepa-

rated by the finest between a subset of forecasters that was

arbitrarily chosen at node.

Decision-making tree which each of the leaves acquires

an optimized linear model to local subspace, which leaf has

an explained. The recital of only decision trees has pre-

sented Random Forests to advance significantly: tree

variety is created by two make random directions (Amit

et al. [6]). The description of the parameters selected in this

model are Batch size-100, max depth=0, Min Number=1,

Min variance proportion=0.001, and random seed=1.

3.6 M5P

The model tree approach creates a physical representation

of data and divides it into linear classes [71]. M5, like most

result tree learners, creates a tree by splitting data into

predicted values. M5 utilizes attributes to minimize the

variation of intra-subset class values of instances lying

inside each subdivision, rather than utilizing information-

theoretical metrics to choose characteristics. When each

characteristic of this knot has been evaluated to establish

the expected error reduction, the inconsistency is deter-

mined by the standard deviation of the standards that the

root-to-branch node achieves [93]. The property that

maximizes the projected mistake reduction is designated. If

the standards of all instances entering a node differ slightly,

the division fails, and a rare occurrence continues (Goyal

et al. [36], Ajmera et al. [4]. Decision Tree regression

models have been thoroughly investigated in the field of

machine learning. Quinlan [71] pioneered the use of

algorithm trees and the M5 algorithm to solve issues

involving constant knowledge. The leaves follow the usual

decision tree form, but instead of discrete class names, they

use linear functions. During model forecasting, a soft

process can be utilized to compensate for gaps between

end-to-end linear models. The technique measures the

forecast value and sieves it on the routine route, smoothing

it at each node in accordance with the linear node value

anticipated for that node using the Leaf Model. Quinlan

explains the procedure (1992). The SDE is an estimated as:

SDR ¼ sd Tð Þ
X Ti

T

����
����� sd Tið Þ ð3Þ

where, T are sets of examples that reach the node, “SD”

denotes standard deviation and Ti are the sets subsequent

from splitting the node as per a provided attribute and split

value. The Batch size and Minimum number of instances

were 100 and 4 for implementing this model in this study.

3.7 Decision stump

This forest algorithm aims to combine several classifiers of

oblique decision stumps into a single collaborative

approach. Each essential estimate meanings such as bias

and variance have dissolved in the display of collabora-

tively developed research models (Dietterich et al. [27]).

Bias is the regular error stated, while variance is the error

derived from model variability using sample arbitrariness

information. The success of collaborative classifiers is then

reflected in the reduction oinvariance in the research

algorithm. Bagging and Random forest [11, 14, 15] were

used to reduce the variance of a learning model without

introducing too much aggregate in bias. Boosting [31] and

Arcx4 [13] both attempted to reduce bias at the same time.

These are simple classifiers in which just one theory or

element is responsible for the final choice. While most

general intelligence is assigned to an individual occurrence

of this specified for trial information by popular classifier, a

model of DS is a single point decision tree reliant on the

coexistence function. This technique generates simple

binary decision stumps for problems with a large number

of variables and insignificant organization [99]. The batch

size in this model was 100 in this investigation. Table 3

shows the parameters utilized in this investigation for each

method.

3.8 Statistical analysis

Actual data of discharge (D) and modeled values were

compared through the period of this study. To evaluate the

accuracy of models, the following statistical indicators

have been selected: Root Mean Square Error, Mean

Absolute Error, Relative Absolute Error, Root Relative

Squared Error, and Correlation Coefficient [57]. All
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parameters are defined as follows: Di
A is an observed or

actual value Di
P is simulated or foreseen value,D� is the

mean value of reference samples, and N is the total number

of data points.

3.8.1 Root mean square error

RMSE refers to the sample standard deviation of the

variations between expected and real values. It comes from

the following formula:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðDi
A � Di

PÞ2
vuut ð4Þ

3.8.2 Mean absolute error (MAE)

The MAE assesses the extent of errors in a series of pre-

dictions without taking their sign into account. It’s an

estimate of the absolute differences between expected and

observed values over the test sample. It is defined as

follows:

MAE ¼ 1

N

XN
i¼1

jDi
P � Di

Aj ð5Þ

3.8.3 Relative absolute error (RAE)

The total absolute error is normalized by dividing it by the

total absolute error of the basic indicator in the RAE.

RAE ¼ Di
A � Di

P

Di
P

����
����� 100 ð6Þ

3.8.4 Root relative squared error (RRSE)

The total squared error is normalized by dividing it by the

total squared error of the basic indicator in the RSE. The

error is reduced to the same dimensions as the quantity

being predicted by taking the square root of the relative

squared error.

RRSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðDi
P � Di

AÞ2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðDi
A � D�Þ2

q ð7Þ

3.8.5 Correlation coefficient

The Correlation Coefficient (CC) is a calculation of how

accurately the model replicates experimental results. It is

defined as follows:

CC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

PN
i¼1ðDi

P � Di
AÞ2PN

i¼1ðD� � Di
AÞ2

s
ð8Þ

4 Results and discussion

The previously mentioned algorithms were used to create

seven different hybrid models for predicting groundwater

levels. Tables 4 and 5 outline the features of all models

Table 3 The parameters of the machine learning algorithms used for groundwater level prediction

Model name Description of parameters

Bagging tree (BT) Batch size-80, bag Size percent=100, Classifier=REPTree, numbers of executions slots=1, number of

iteration=100, random seed=1

locally weighted linear regression

(LWLR)

Batch size-100, KNN=0,

Nearest neighbor search algorithm=linear NN

Reduced error pruning tree

(REPTree)

Batch size-100, Initial count=0, number of folds=3, random seed=1, minimum proportion of the variance

=0.001, minimum number=2, max depth=1

Improved support vector machine

(SMO-SVM)

Batch size-100, C=0.1, kernel used=polykernel

Random forest (RF) Batch size-100, bag Size percent=100, max depth=0, numbers of executions slots=1, number of iteration

=100, random seed=1

M5 Pruned M5P Batch size-100,

Minimum number of instances=4

Random tree (RT) Batch size-100, seed=1,

minimum variance proportion=0.001

Decision stump tree (DST) Batch size-100
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considered, as well as the values of the performance met-

rics for Rajshahi and Rangpur in the training and testing

phases, respectively.

4.1 Training stage

Figures 5 and 6 show the comparisons, for the training

stage, between the predicted and measured values of the

groundwater level for the Rajshahi and the Rangpur sta-

tions, respectively. The comparison is reported in the form

of a time series on the left, for the period January 1981–

December 1989, characterized by marked fluctuation of the

groundwater level, while on the right all the data are

reported in the form of measured versus predicted values

charts. Fluctuation of the GWL follows a clear seasonal

trend. In particular, groundwater reaches its maximum

depth, corresponding to a condition of groundwater scar-

city, in April, as a consequence of the dry season that

affects the area in the period from November to February.

Mean GWLs, for the training stage period (January 1981–

December 2008), equal to 8.88 m and 4.94 m were com-

puted for the Rajshahi and the Rangpur stations, respec-

tively. Otherwise, after the monsoon season, which leads

heavy rains, groundwater reaches its lower depth, corre-

sponding to a condition of greater groundwater availability,

in September, with mean GWLs of 3.86 m and 2.12 m,

respectively, for the Rajshahi and the Rangpur stations.

The best performances were obtained with the Bagging-

RT model, which provided accurate forecasting for both

Rajshahi (CC=0.96, RMSE=0.60 m, Fig. 5a and b) and

Rangpur (CC=0.97, RMSE=0.26 m, Fig. 6a and b). Bag-

ging-RF showed a slight performance decrease. However,

the forecasts were still very good for both the stations

(Rajshahi—CC=0.93, RMSE=0.76 m, Fig. 5c and d;

Rangpur—CC=0.96, RMSE=0.31 m, Fig. 6c and d).

Model Bagging-RepTree was less accurate than the latter

but also exhibited good performance for Rangpur (CC=

0.91, RMSE=0.47 m, Fig. 6e and f). However, it should be

noted that unlike the Bagging-RT and Bagging-RF models,

Bagging-RepTree was unable to predict the marked fluc-

tuation of the groundwater level measured for the Rangpur

station in January 1986, with groundwater that reaches a

depth of 7.01 m (Fig. 6e and f). For Rajshahi station,

Bagging-RepTree model led to a constant overestimation

of the GWL (Fig. 5e and f) with the metrics that reached a

CC equal to 0.85, usually considered as the minimum

values for a proper prediction [63]. The forecasting capa-

bilities of Bagging-M5P, Bagging-Decision Stump, Bag-

ging-LWLR and Bagging-SVM were very similar and

below a minimum level of accuracy to provide reliable

predictions with the worst performance for Rajshahi station

(CC between 0.66 and 0.78, RMSE between 1.23 m and

1.78 m).

Overall, predictions were significantly affected by the

chosen forecasting models, while Bagging-RT and Bag-

ging-RF showed the best results in this study. Furthermore,

worse performances were observed for Rajshahi. This

should be related to a fairly constant lowering of the

groundwater that affects the latter, passing from a mean

GWL equal to 4.86 m in 1981 to 8.55 m in 2008, with a

mean lowering equal to 0.14 m per year. Rangpur instead

highlights an almost constant mean GWL during the

training stage, passing from 3.28 m in 1981 to 3.51 m in

2008, with low fluctuation of different signs during the

years.

The anomalous positive peak measured for the Rangpur

station (Figs. 6a, c and e), nevertheless it took place in the

dry season, seems to be related mainly to external factors,

e.g., water pumping, as it did not show a seasonal com-

ponent, being measured only for the year 1986 in the

training stage period. However, Bagging-RT and, with less

accuracy, Bagging-RF models were able also to provide a

prediction of this singular event.

Table 4 Performance metrics for GWL prediction in the training stage

Hybrid models Rajshahi Rangpur

RMSE (m) MAE (m) RAE (%) RRSE (%) CC RMSE (m) MAE (m) RAE (%) RRSE (%) CC

Bagging-M5P 1.23 1.00 60.64 62.61 0.78 0.60 0.46 50.04 56.21 0.83

Bagging-RF 0.76 0.59 36.08 38.75 0.93 0.31 0.23 25.51 28.94 0.96

Bagging-REPTree 1.06 0.85 51.32 53.74 0.85 0.47 0.35 38.13 43.39 0.91

Bagging-RT 0.60 0.45 27.47 30.79 0.96 0.26 0.18 19.87 24.17 0.97

Bagging-decision stump 1.58 1.31 79.42 80.18 0.60 0.79 0.64 70.59 73.85 0.68

Bagging-LWLR 1.49 1.24 74.82 75.83 0.66 0.71 0.55 60.83 66.42 0.75

Bagging-SVM 1.78 1.32 80.02 79.90 0.60 0.78 0.60 66.08 72.55 0.70
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4.2 Testing stage

Figures 7 and 8 provide a comparison between measured

and predicted GWLs of the Rajshahi and the Rangpur

stations, respectively, for the testing stage period: January

2009–December 2017. During this period, GWL reached

its maximum during April, as for the training stage with,

however, greater mean GWLs, computed for the testing

stage period, equal to 11.92 m and 5.79 m for the Rajshahi

and the Rangpur stations, respectively. This shows how in

recent years the condition of water scarcity in the months

following the dry season has become even more dramatic.

Instead, groundwater reaches its lower depth during the

month of September for Rajshahi, with mean GWL equal

to 7.07 m, and October for Rangpur, with mean GWL equal

to 2.34 m. In terms of testing, Bagging-RT produced very

accurate results for both stations, demonstrating that it was

the best performing hybrid model among seven models. In

addition, there was no significant change in metrics

between Rajshahi (CC=0.96, RMSE=0.60 m, Fig. 7a and

b) and Rangpur (CC=0.95, RMSE=0.38 m, Fig. 8a and b).

The Bagging-RF model also forecasts well in Rajshahi (CC

=0.95, RMSE=0.71 m, Fig. 7c and d) and Rangpur (CC=

0.94, RMSE=0.42 m, Fig. 8c and d). While both models

are capable of accurately reconstructing the time-series

pattern, Bagging-RT captures the positive and negative

variations of the groundwater with greater precision than

Bagging-RF. GWL fluctuation shows a marginal underes-

timation of positive peaks and an overestimation of nega-

tive peaks for the latter. This is particularly true for the

Bagging-REPTree model, which performs worse than the

Bagging-RF model in both Rajshahi (CC=0.87, RMSE=

1.04 m, Fig. 7e and f) and Rangpur (CC=0.90, RMSE=

0.52 m, Fig. 8e, f). In particular, Bagging-REPTree was

unable to predict the marked fluctuation of the groundwater

level measured for the Rajshahi station in July 2010, with

GWL equal to 15.13 m (Fig. 7e, f). As stated in the training

stage, this anomalous peak, which also happened monsoon

season, could be related to external factors. However,

Bagging-RT and, partially, Bagging-RF models were able

to provide a forecasting of this event. The forecasting

capabilities of Bagging-M5P, Bagging-Decision Stump,

Bagging-LWLR and Bagging-SVM exhibit a marked

decrease in the performance with the worst performance

for Rajshahi station (CC between 0.63 and 0.74, RMSE

between 1.36 m and 1.58 m).

Overall, the best predictions for both stations and

training and testing stages were obtained by means of the

Bagging-RT model. It should be noted that, except for

Bagging-RT and Bagging-RF that are the best performing

models, the worst performances were observed for the

Rajshahi. This result highlights how the less performing

models are more affected by the lowering of the ground-

water level in providing reliable forecasts. As for the

testing stage, a fairly constant lowering of the groundwater

was observed for Rajshahi, passing from a mean GWL

equal to 8.55 m in 2008 to 9.88 m in 2017, with a mean

lowering equal to 0.15 m per year. Rangpur instead high-

lights a more marked lowering of the groundwater com-

pared to the training stage but in any case, of lesser entity

compared to the Rajshahi, passing from 3.52 m in 2008 to

3.93 m in 2017, with a mean lowering equal to 0.05 m per

year.

In order to further evaluate the prediction accuracy of

the seven models, two Taylor diagrams [3] are reported in

Figs. 9 and 10, respectively for the stations of Rajshahi and

Rangpur. The advantage of the Taylor representation is that

it allows to compare the similarity between measured and

predicted values in one diagram [1]. The Bagging-RT

model was closer to the target measured values in com-

parison with the other six models. The predictive results

can be also evidenced by considering the high values of

Correlation Coefficient (CC) computed for both Rajshahi

and Rangpur stations. This result provides a further

demonstration of how the Bagging-RT model can provide

accurate groundwater level prediction.

Table 5 Metrics for GWL prediction in the testing stage

Hybrid models Rajshahi Rangpur

RMSE (m) MAE (m) RAE (%) RRSE (%) CC RMSE (m) MAE (m) RAE (%) RRSE (%) CC

Bagging-M5P 1.36 1.03 61.73 67.91 0.74 0.69 0.54 52.35 57.89 0.83

Bagging-RF 0.71 0.51 30.71 35.64 0.95 0.42 0.29 28.30 35.48 0.94

Bagging-RepTree 1.04 0.75 44.91 52.16 0.87 0.52 0.38 36.37 43.54 0.90

Bagging-RT 0.60 0.40 24.25 29.99 0.96 0.38 0.24 23.55 31.77 0.95

Bagging-decision stump 1.52 1.17 70.07 76.04 0.69 0.90 0.74 70.76 57.12 0.66

Bagging-LWLR 1.36 1.01 60.89 67.88 0.76 0.82 0.67 64.40 68.28 0.73

Bagging-SVM 1.58 1.22 73.58 78.86 0.63 0.93 0.77 74.36 77.26 0.64
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Fig. 5 Comparisons between measured and predicted values for Rajshahi—Training stage
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Fig. 6 Comparisons between measured and predicted values for Rangpur—Training stage
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Fig. 7 Comparisons between measured and predicted values for Rajshahi—Testing stage
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Fig. 8 Comparisons between measured and predicted values for Rangpur—Testing stage
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4.3 Multicolinearity statistics and sensitivity
analysis

Table 6 shows the tolerance and variable important factor

for all inputs. Temperature showed high degree of toler-

ance while rainfall was characterized by the lowest degree.

In contrast, rainfall was the highest effective variable in

GWL prediction, followed by humidity. Moreover, Table 7

and Fig. 11 show the outcomes of a regression analysis to

identify the most effective input parameters in predictive

data-driven models. The results of the performed regres-

sion analysis on all input parameters proved that temper-

ature and humidity, having highest absolute standard

coefficients (β=0.14 and 0.47), were identified as the most

influential input parameters, respectively, for simulation of

GW3L.

5 Discussion

The comparative analysis of GWL prediction models

indicate that all the considered models performed quiet

well. In particular, hybrid ensemble models such as

Bagging-RT and Bagging-RF models showed the highest

predictive performance than the other models. It is evident

that a hybrid model will perform better than a standalone

model [76]. Many researchers used a hybrid model and

reported that the predictive performances of the hybrid ML

models can outperform basic models [18, 52, 88, 104].

Likewise, in this research, the performance of the hybrid

models, i.e., Bagging-RT and Bagging-RF are also better

than the single Bagging classifier. Bagging ensemble effi-

ciently decreases both ambiguity and biases in the method

[81]. Generally, common statistical tools have over-fitting

and bias issues. ML-based ensemble tools can simply

overcome these issues [43, 46]. Importantly, our findings

suggest that Bagging ensembles with RT and RF models

can reflect complex nonlinear relationships between GWL

and input parameters, but the lack of statistically significant

testing with hybrid ensemble models limits quantitative

hypothesis findings. Earlier research suggested that ML

methods could be more useful in GWL studies than the

traditional numerical model (Nourani and Moosavi,

[68, 77, 103]. Therefore combining ML methods in hybrid

models such as the Bagging-RT and Bagging-RF models,

the accuracy of the Bagging model has improved, and the

Fig. 9 Taylor diagrams for the

seven used models at Rajshahi
station

10766 Neural Computing and Applications (2022) 34:10751–10773

123



Bagging-RF model now has the highest forecasting preci-

sion. The Bagging-RF model has some advantages, e.g.,

high prediction precision, a smaller number of user-

friendly parameters, and capability of escaping over-fitting

issues [81]. Likewise, the RT method can deal with

regression and classification issues. The main advantage of

RT is that it can handle nonlinear heterogeneous events

between the input and model output parameters as thus to

achieve high model accuracy [60]. Similarly, Bagging-RT

hybrid ensemble model aids addressing the presence of

over-fitting issues compared to the other traditional models

[56]. On the other hand, the M5P, decision stump, LWLR,

and SVM models have required many hyper-parameters,

which need to be carefully tuned for groundwater level

modeling.

RT was identified as the most successful approach of the

proposed seven hybrid methods used in this study, fol-

lowed by RF, decision stump, M5P, SVM, and REP tree

methods, implying that RT was the most capable tool in

reducing the variance, biases, and noise of the GWL esti-

mation. One of the key benefits of the Bagging-RT para-

digm is that it employs bootstrap aggregation, which allows

for the collection of acceptable input parameters and

training dataset volume. This was warranted by the reasons

that Bagging-RT and Bagging-RF models needed less time

for calculation, with a minimum error, while other hybrid

Fig. 10 Taylor diagrams for the

seven used models at Rangpur
station

Table 6 Tolerance and variables important factor (VIF)

Temp Rainfall Humidity

Tolerance 0.616 0.404 0.589

VIF 1.622 2.475 1.697

Table 7 The regression analysis

for identifying the most

effective parameters

Source Value Standard error t Pr[|t| Lower bound (95%) Upper bound (95%)

Temp. 0.140 0.043 3.281 0.001 0.056 0.224

Rainfall 0.000 0.000

Humidity -0.473 0.043 −11.075 \0.0001 −0.557 −0.389
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models, for example, Bagging-M5P, Bagging-REPTree,

Bagging-decision stump, Bagging-LWLR, and Bagging-

SVM require a higher memory, maximum datasets, and

more time for computation, followed by Rahman et al. [74]

and Salam and Islam [81]. Besides, the disadvantage of

traditional models is that these models require more time,

larger datasets, and more input variables which are not

appropriate for data-scarce drought-prone region, such as

northwest Bangladesh [82]. Our findings are in line

with Sharafati et al. [88] and Jajarmizadeh et al. [48], who

stressed the importance of using nonlinear approaches for

preprocessing input parameters for prediction. This

research demonstrated that hybrid ensemble tools can

proficiently minimize noise, variance, and over-fitting

issues of input datasets, leading to an improved and more

stable modeling [80, 100]. Our results, however, can vary

because they are dependent on the sites and the range of

GW input parameters. Following that, hybrid machine

learning tools 77 are capable and vital techniques for GWL

prediction. The employed models can be used in other

areas worldwide in similar hydro-climatic conditions for

their better applicability. However, these GWL predictions

will help policymakers for devising plans to lessen the

GWL depletion and to manage GWR.

A myriad number of studies suggested that hybrid ML

models have improved the performance of the base models

in most cases. For instance, Avand et al. [8] showed that

the Bagging coupled with the decision tree method

improved the prediction ability of the GW potential zone.

Chen et al. [19] demonstrated that the application of the

J48 decision tree has better performance when coupled

with Bagging and Dagging to identify GW potential zones

in Wuqi County, China. In another research, Nguyen et al.

[67] reported that Dagging and Bagging improved the

performance of the logistic regression model for GW

potential mapping. Though the literature review has mainly

stated the efficacy of hybrid ML methods, these methods

exhibited various performances for various issues in

diverse regions. For example, Pham et al. [69] showed that

the RF-CDT (Rotational forest-Credal Decision Tree)

ensemble model performed better coupled with CDT and

Bagging, Dagging, and Decorate techniques for landslides

prediction, while Roy and Shaha [79] reported that multi-

layer perceptron neural network (MLP)-Dagging models

performed better with MLP, MLP-Bagging for gully ero-

sion prediction. Unlike others, findings have also been

observed for flood susceptibility mapping using the hybrid

ML models [43, 46, 69]. From previous studies, it can be

concluded that the standalone and hybrid ML models are

significantly case- and location-specific, and that their

performances profoundly rely on the local environment

that the training data are generated upon, implying that the

use of various techniques in various areas should be sus-

tained to get the best model for each hydro-climatic setting

[81].

Though hybrid methods have led to better forecasting

performance and generalization, the time-wasting variable

tuning may limit their uses in other areas for various pur-

poses. The input variables of the hybrid models generated

in our research were physically adjusted based on a trial-

and-error basis [67]. However, there are multiple alterna-

tive of executing variable optimization (e.g., gradient-

based optimization, particle swarm optimization, mayfly

optimization and Gray wolf optimization) that can signifi-

cantly enhance the model-generating procedure. Nonethe-

less, the use of software like WEKA simplifies the

development of these hybrid methods [39] and does not

need extensive programming proficiency.

In recent decades, especially the drought-prone north-

western region of Bangladesh has been experiencing the
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problem of reduction in the GWL since the prevailing GW

reserves are quickly being exploited due to the lack of

balance between demand and supply of GW in this region.

The long-term GWL fluctuation is a function of many-

fold parameters including annual rainfall, annual ground-

water withdrawal, and local surface geological conditions.

Precipitation has a great impact on GWL, being the pri-

mary source for the recharge of the groundwater [46]. The

annual rainfall in the Rajshahi and Rangpur regions had

never surpassed 1400 mm and 1800 mm in the last three

decades, which is 45 and 25% less than the country’s

average of 2550 mm [110]. The decreasing precipitation

trend, which is consistent with the GWL lowering in the

study area, should be taken as a key factor [23]. In the

present study region, the rainfall has reduced 10–55 mm/

year over the past 12 years, which would possibly lead to a

decrease of natural recharge [47], even more due to surface

geology that characterizes the shallow alluvial aquifers in

the region, which affects the response time of the aquifers

and the groundwater recharge pathways [101]. In particu-

lar, in the layers of superficial clay of considerable thick-

ness, which are characterized by very low hydraulic

conductivity, the lowering effect of the groundwater stor-

age is relevant [87].

A further factor that has led to a lowering of the GW

table is the agricultural one. The abuse of existing GWL,

which are mostly being extracted for paddy farming, rice

mill operations and other industrial purposes, is an alarm-

ing issue that affects in the Rajshahi region. Groundwater

provides 79% of the water needed for rice irrigation.

The application of the Bagging-RT hybrid model allows

to get an accurate prediction of the GWL fluctuations,

leading to a better management of the GW resources in the

northwestern region as well as providing suitable tech-

niques for devising operational strategies. If the integration

of remote sensing tools and hybrid Bagging-RT is properly

operated, it can assist water managers and other practi-

tioners linked the management of the GW to get precise

results. This has become enormously crucial due to the

limited GW reserves and the enormous demand for GW in

the agricultural field. Our study has used the time-series

dataset for assessing the variations in GWL and cycles of

these variations. This provides an understanding of the

hydrological and hydro-geological patterns. Any oscilla-

tions happening in the natural patterns and any changes in

the GWL-triggered due to external factors (e.g., over-ex-

ploitation of GW resources, and lack of water recharge)

may be observed using these tools coupled with the data

collected from Remote sensing and hybrid ML model.

Despite substantial advances in the GWL model using

ML tools in the past decades [76, 80], there are yet several

crucial problems that should be addressed to enhance

reliability between ML tools and their theoretical and

physical-based complements [55]. Many studies have paid

increasing attention to develop the hybrid ensemble

methods for identifying various cycles (such as trends,

periodicities, or level alterations) in time-series datasets (e.

g., Rezaie-balf et al. 2017, [58, 74] or to produce multi-

model ensemble tools [65] for enhancing model perfor-

mance, mostly for long-term GWL prediction. Our study

developed seven hybrid ensemble models for long-term

prediction of GWL. The developed hybrid models showed

high performance for most of the cases. However, model

performance for the short-term and mid-term prediction

can probably be further improved by integrating time-ser-

ies datasets of GW recharge, discharge, pumping, and

evapotranspiration. Coupling these related input parame-

ters may enhance the model performance for the mid- and

short-term prediction.

For this research, we only considered GWL, relative

humidity, rainfall, and mean temperature as model input

parameters, which are usually regarded as input parameters

for GWL prediction using ML methods [76]. Besides,

related studies commonly overlook integrating some vital

parameters including bore well depths, and hydro-geolog-

ical features, e.g., aquifer porosity and permeability, and

closeness to sink or source tube wells. Further investigation

is essential for thoroughly integrating these important

hydro-geological parameters in ML tools to enhance their

performance for short and mid-term prediction and to

confirm these hybrid methods agree well with the theo-

retical and numerical-based methods. Such understanding

could give further numerical insights and would probably

lead to a higher acceptance of ML methods in the sus-

tainable management of GWR.

6 Conclusion

Multiple groundwater level prediction models were built

and compared in this study to explore potential knowledge

of GWL fluctuations. GWL datasets from two observed

wells in Bangladesh’s northwestern area were collected

and used to train and test the seven developed hybrid ML

models for long-term prediction. The CC, MAE, RAE,

RRSE, RMSE, and Taylor diagrams were used to compare

output with seven ML models. The inclusion of Bagging as

a base classifier significantly improved the efficiency of

seven hybrid versions, according to the results. Based on

their accuracy matrices, the Bagging-RT model outper-

formed the other hybrid models in GWL estimation. Thus,

the Bagging-RT model provides (i) a potential application

of historical GW datasets; (ii) accurate forecasting for GW

level; and (iii) a potential way of exploring new knowledge

for hydrologic field experts and practitioners, as well as

other parts of the world in similar hydro-climatic settings.
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Future research should focus on finding a solution for

coupling hydrogeologic features knowledge with novel

deep learning models in order to achieve more satisfactory

results.
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