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Abstract
Deep convolutional neural network-based single image super-resolution (SR) models typically process either upsampled

full-resolution or original low-resolution features, which suffer from context lack and spatially imprecision, respectively.

To solve this, we propose a novel progressive SR network to preserve spatial precision through the original resolution and

to receive rich contextual information from low-to-high resolution representations. Our proposed progressive, selective

scale fusion network includes four key points: (a) parallel multi-scale convolution branches to extract multi-scale features,

(b) information exchange across the multi-scale branches, (c) attention mechanism-based multi-scale feature fusion, and

(d) gradual aggregation of multi-scale streams from low-to-high resolutions. The proposed method learns hierarchical

features that aggregate contextual information from different resolution streams while maintaining high-resolution spatial

details. Both quantitative and qualitative experiments on benchmark and real-world datasets show that our method offers a

favorable performance against state-of-the-art methods for SR tasks with different scaling factors.
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1 Introduction

Recently, single image-based super-resolution (SR) has

become an important task that aims at learning a nonlinear

mapping to reconstruct a clear, high-resolution image from

a downgraded low-resolution image. Image SR is a fun-

damental task being widely used in various computer

vision applications, e.g., security and surveillance imaging,

medical imaging, image recognition, and remote sensing.

However, SR is very challenging due to the ill-posed

inverse procedure caused by irreversible image degrada-

tion. To address this problem, numerous single image SR

algorithms have been developed, which can be divided into

three categories: interpolation-based methods, reconstruc-

tion-based methods, and learning-based methods [1, 2].

Interpolation-based methods are the simplest solution

that calculates values of the interpolated pixels through

neighboring pixels, so the computational complexity is

relatively low [3, 4]. However, high-resolution images

generated by these methods often suffer from edge halos

and artifacts [5]. Model-based reconstruction focuses on

designing degradation models to reconstruct high-resolu-

tion images [6]. This type of method mainly involves edge

prior [7, 8], gradient prior [9], non-local means priors

[10, 11], and sparsity priors [12–14]. To better represent

image features, some methods combine multi-priors to

improve the SR performance. However, these methods tend

to blur images, thus leading to details loss and over-

smoothness [15]. In contrast, the learning-based methods

obtain a high-resolution image by learning the mapping

between every pair of high-resolution and low-resolution

images. This kind of method exhibit better performance

than traditional ones by effectively eliminating the edge

halo and artifacts. Although numerous kinds of approaches

have been introduced to address the ill-posed inverse

problem in single image SR, unacceptable artifacts in high-

resolution images remain a common problem.
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In recent years, deep learning brings a boost to single

image SR tasks. Dong et al. [17] firstly used a 3-layer

convolutional neural network (SRCNN) to reconstruct a

high-resolution image by learning the nonlinear mapping

between the high-resolution and low-resolution images.

However, the shallow network brought limited improve-

ments. Kim et al. [18] presented a 20-layer deep convo-

lutional neural network (VDSR) with global residual

connections to improve the performance. Shi et al. [19]

developed a contextualized multi-task convolutional net-

work to super-resolved low-resolution images, which

enhances the structural details by taking the global

boundary context and the residual context as complemen-

tary information. However, the main drawback of these

deep models is that the number of parameters increases

with the network depth. Some interesting approaches have

been proposed to tackle this limitation. Kim et al. [20]

presented an image SR method based on a deeply recursive

convolutional network (DRCN), which involved weight

sharing across recursive layers. Moreover, Lai et al. [21]

introduced a Laplacian pyramid image SR network

(LapSRN) based on a CNN cascade which gradually

reconstructed the sub-band residuals of high-resolution

images. Since the input of the network was not upsampled,

the computational efficiency was improved. Similar solu-

tions have been adopted by EDSR [22], RDB [23], RCAN

[24], and IDN [25], and they used upsampling operations at

the end of the whole network to generate the final restored

high-resolution images. EDSR [22] improves the residual

SR network by removing the batch normalization layers

and constructing a deeper and wider network. RCAN [24]

proposed a residual in residual structure and adopted a

channel attention mechanism to build a deeper network,

which improves the network representation ability and

reduces the training difficulty. Although these deep learn-

ing-based methods have achieved outstanding performance

in objective evaluation, most of them tend to build deeper

and more complex network structures, which makes

training more difficult. In addition, most models simply

stack the building modules in a chained fashion without

capturing features across modules.

Overall, figuring out how to perform upsampling (i.e.,

generating high-resolution output from low-resolution

input) is a key problem in image SR. Most of the existing

CNN-based SR methods typically follow two architecture

designs according to the employed upsampling operations

and their locations in the model. The first is pre-upsam-

pling SR [17, 18, 20], in which a low-resolution image is

first interpolated to obtain a ‘‘coarse’’ high-resolution

image and then transformed into a ‘‘refined’’ image through

an end-to-end CNN mapping. The intuition is that it may

be easier to conduct the first stage using traditional meth-

ods than to learn a direct mapping from a low-dimensional

space to a high-dimensional space; thus, the CNN only

needs to learn how to refine the coarse image, which is

simpler. Moreover, since we avoid transposed convolutions

here, checkerboard artifacts may be circumvented. The

downsides, however, are the predefined upsampling

methods may amplify noise and cause blurring, and these

networks extract less contextual information due to their

limited receptive field. The second typical architecture

design is post-upsampling SR [22–25]. In this architecture,

the low-resolution images are directly passed to CNNs and

upsampling is always performed last using a learnable

layer. Since CNN-based feature extraction is performed in

the lower dimensional space (before upsampling), the

computational complexity is more reduced than pre-up-

sampling methods. Furthermore, by using a learnable

upsampling layer, the model is flexible and can be trained

end-to-end. Although these approaches make full use of

deep learning technology to increase resolution automati-

cally, the fine spatial details can be lost as the layer goes

deeper, making it harder to recover them in the last

upsampling stage. Compared to multi-frame SR recon-

struction, which deals with multiple low-resolution images

or video frames with similar backgrounds, single image SR

reconstruction cannot make use of information between

different frames. Hence, making full use of the hierarchical

information in a single low-resolution image is key to

further improving performance.

To fully exploit the multi-scale features of the original

images, this work proposes a novel progressive and

selective scale fusion network for single image super-res-

olution. The proposed network not only leverages original-

scale representations but also gradually expands them to

representations of the target scale. This study aims to

leverage the representation capabilities from all low-to-

high-resolution parallel convolutions. In contrast with most

existing methods that simply use post-upscaling or pre-

upscaling, our network processes multi-resolution features

by applying parallel convolution branches that provide us

with a more precise and context-rich feature representation.

In addition, different from existing methods that process

each scale separately, the information across parallel

streams can be efficiently exchanged with repeated multi-

resolutions by designing the selective scale fusion module.

At the same time, a new selective scale fusion mechanism

is used to exchange fine-to-coarse and coarse-to-fine

information on each stream. Rather than simply concate-

nating or weighting the features from multi-scale streams,

the proposed fusion method uses self-attention to dynam-

ically select useful scale sets from each branch represen-

tation. Moreover, our fusion units combine features from

the different receptive fields while retaining their unique

complementary features.

In summary, the main contributions are threefold:
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1. We connect low-to-high scale convolution branches in

parallel rather than implementing post-upscaling or

pre-upscaling. Our method not only utilizes the

features at the original resolution but also fully exploits

multi-scale features from low resolution to high

resolution so that the learned representation is more

abundant and accurate.

2. We propose a novel selective scale fusion method to

repeat aggregate multi-scale features that adaptively

combines different receptive fields and accurately

retains the input feature information at each spatial

scale. As a result, the representations at different

resolutions complement each other.

3. Extensive experiments are conducted on both simula-

tion and real image benchmark datasets. The experi-

mental results demonstrate that the proposed method

leads to better performance than a series of state-of-

the-art approaches in terms of both visual and objective

quality.

The rest of the paper is organized as follows. Section 2

discusses related works for single-image SR. Section 3

introduces the proposed framework for learning disentan-

gled representations. In Sect. 4, we present the experi-

mental procedures and results. Finally, we provide a brief

conclusion in Sect. 5.

2 Related work

2.1 Deep feature extraction for image super-
resolution

Various feature extraction modules based on CNN for

different vision tasks have been introduced to offer

improved performance, including residual block [26],

dense block [27], and inception block [28]. Haris et al. [29]

used the inception module to extract multiple features from

low-resolution images for SR. Tong et al. [30] used dense

skip connections to effectively aggregate low-level features

and high-level features to improve the image SR perfor-

mance and to alleviate the vanishing gradient problem of

very deep networks. Zhang et al. [23] introduced a residual

dense block to exploit rich local features by densely con-

nected convolutional layers. Although the residual dense

block fully used residual learning and dense connections,

both adopted convolution kernels in a fixed size, which

limited the extraction of image multi-scale features. Fur-

thermore, the computational complexity of the dense

blocks increases heavily as the number of dense connec-

tions increases. To address such problems, Li et al. [31]

presented a multi-scale residual block (MSRB) to fully

extract multi-scale image features with different sizes of

convolution kernels. In addition, these local multi-scale

features with global features solved the problem of features

disappearing. Furthermore, a 1 9 1 convolution layer at

the end of each MSRB was utilized to fuse global features

and to reduce the computational complexity. However, two

MSRB bypasses of the same depth make this method dif-

ficult to fully utilize shallow and deep local image features.

Qin et al. [32] proposed a multi-scale feature fusion

residual block with multiple intertwined paths, which

provides a more accurate representation of the local fea-

tures. However, the extracted features were not spatial

multi-resolution features because the sizes of both the

feature map and the convolutional kernel were the same in

different paths. Based on this, a novel selective scale fusion

network for single image SR is proposed in our work.

2.2 Multi-scale feature fusion

Multi-scale features have attracted extensive attention in

both traditional feature extraction [33] and deep learning

[34] to enhance the performance of computer vision tasks.

The ability of feature extractors to represent context at

different scales is a fundamental requirement to generate

multi-scale features for visual tasks. CNNs can learn multi-

scale features adaptively, from coarse to fine, to a certain

extent through a set of convolution operators [35]. How to

design a more efficient structure to make full use of multi-

scale features is the key to further improving the perfor-

mance of CNN-based single image SR. A simple approach

is to input multi-scale feature maps into multiple networks

and fuse the output response maps [36]. The Hourglass [37]

net produces features across all scales and pools them

down to a very low resolution, then upsamples and com-

bines features across multiple scales. Similarly, U-Net [38]

and SegNet [39] gradually combine high-resolution fea-

tures from the contracting path with those from the

upsampled expanding path through skip connections. Chen

et al. [40] introduced a cascaded pyramid network con-

sisting of global-net and refine-net. The former aggregates

low-to-high level features gradually, and the latter aggre-

gates the low-to-high level features processed by the con-

volution operations. PSPNet [41] and DeepLabV2/3 [42]

combine the pyramid features generated by the pyramid

pooling and atrous spatial pyramid pooling. The proposed

multi-scale feature fusion module outputs different-reso-

lution representations rather than single resolution features

and is repeated several times inspired by Sun et al. [43].
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3 Proposed method

3.1 Overall pipeline

This work aims to conduct end-to-end learning for map-

ping from an original low-resolution image to a high-res-

olution image by constructing a selective scale fusion

network. The overall network structure is shown in Fig. 1,

and it contains parallel multi-scale convolutions, repeated

multi-scale fusion modules, and an output head demon-

strated in Fig. 3. We use the 9 8 scale as an example; the

whole network structure can be divided into four stages.

The network progressively adds low-to-high resolution

branches, forms new stages, and combines multi-scale

branches in parallel. Therefore, the scales for the parallel

branches of a later stage are composed of the scales from

the previous stage and an additional higher one. The first

stage consists of input low-resolution convolutions, and the

second, third, and fourth stages are formed by repeating

modularized multi-resolution modules. Specifically, the

first stage includes two residual units, each of which con-

sists of two ResNet blocks. In addition, each ResNet block

consists of three consecutive operations, a 3 9 3 convo-

lution, rectified linear units (ReLU) [44], and another

3 9 3 convolution. Thus, the four stages contain four

parallel convolution streams, in which the resolution of the

feature maps progressively increases, and accordingly, the

number of channels is halved. The fusion unit crosses

parallel subnets so that each subnet repeatedly receives

information from the other parallel subnets. Therefore, the

scales for parallel branches of a later stage consist of scales

from the previous stage, and an extra higher one. For an

s stage network, the resolution of the output is 2 s-1 times

the resolution of the first branch. The multiple parallel

convolutions in our network generate a spatially precise

output by maintaining original resolution representations

while receiving rich contextual information from different

resolutions. Moreover, the proposed network allows

information exchange across parallel streams to consoli-

date the high-resolution features with the help of low-res-

olution features, and vice versa.

3.2 Selective scale feature fusion

The fusion unit exchanges information across multi-scale

feature representations. The mechanism of the adaptive

regulation of the sensory domain can be generated by

multi-scale features (at the same layer). Then, the features

are aggregated, selected, and integrated into the CNNs. A

simple concatenation or summation is commonly used for

feature fusion. However, these options provide limited

representation ability for the deep network [45, 56]. To this

end, a self-attention-based nonlinear process is introduced

in our work to fuse multiple-resolution features, which is

referred to as a selective scale feature fusion. A fusion

example with three scales is shown in Fig. 2; the selective

scale feature fusion module dynamically adjusts receptive

fields including aggregation and selection steps. The

aggregation step obtains global feature representations by

combining information from multi-scale branches, while

the selection step utilizes the obtained global feature rep-

resentations to recalibrate feature maps and their aggre-

gations for different streams. Furthermore, a detailed

example is provided for two steps of the case with three

branches, but it can be easily extended to more branches.

For the aggregation step, the selective scale fusion module

acquires the inputs of three parallel convolution branches

carrying the information of different scales, F1, F2, and F3.

First, the module sums these multi-scale features F in the

dimension of H 9 W 9 C and then applies the global

average pooling on F to obtain channel-wise statistics.

Next, a convolutional layer is used to produce a compact

feature representation z by reducing the number of feature

channels. Finally, three parallel convolutional layers (one

Output Head4th stage 

3rd stage 

2nd stage 

1st stage 

C

C

CC

Feature maps

Concat

Fig. 1 The architecture of our proposed selective scale fusion network

for image super-resolution. We use the 9 8 scale as an example.

There are four stages and an output head. The first stage consists of

low-resolution convolutions. The second (third, fourth) stage repeats

two-resolution (three-resolution, four-resolution) blocks. The detail is

explained in Sect. 3.1
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for each scale branch) process the feature vector z and

generate three feature representations in the dimension of

1 9 1 9 C. The selection step uses SoftMax to generate

attention activation w1, w2, and w3, which are then used to

adaptively recalibrate the multi-scale feature maps F1, F2,

and F3, respectively. The final procedure of the multi-scale

feature recalibration and fusion is defined as F = w1•
F1 ? w2� F2 ? w3� F3.

3.3 Output head

Global residual learning is applied to generate the original

resolution feature maps before executing the output mod-

ule. While the local multi-scale features are further adap-

tively involved in global feature learning. The deep

features are obtained after global residual learning, and the

proposed model takes full advantage of all the different

scale features before global residual learning. We explore

three types of output heads, which are termed V1, V2, and

V3, respectively. As shown in Fig. 3a, the output of V1 is

the representation only from the high-resolution branch. V2

scales the low-resolution representation with bilinear

upsampling, concatenates the four representations in series,

and then mixes the four representations by a 1 9 1

convolution. This is illustrated in Fig. 3b. V3 is the pro-

posed representation method, and it upsamples the low-

resolution representation with pixel-shuffle outputting 28-k

channels, which will be concatenated to a k ? 1th low-

resolution representation. This is illustrated in Fig. 3c, and

k = {1, 2, 3}.

3.4 Implementation details

The main body of the proposed network includes four

stages with four parallel convolution branches. The scaling

resolutions are 1, 2, 4, and 8. The first stage includes four

residual units, and the second, third, and fourth stages

contain 2, 2, 1 modularized blocks, respectively. The

numbers of output channels in the convolution branches for

the four resolutions are C, C/2, C/4, and C/8, from a low to

a high resolution. It is worth noting that the network

includes 2, 3, and 4 stages depending on the scaling factor

2, 4, and 8, respectively. Except for the convolutional

kernel size in the selective scale fusion module being set to

1 9 1, the kernel size for all other convolutional layers is

set to 3 9 3. For the convolutional layer with a kernel size

of 3 9 3, we pad zeros to each side of the input to keep the

feature size fixed. Since the network outputs high-resolu-

tion images in color, the output channel number of the final

convolutional layer is 3.

The mean square error (MSE) function and the L2 loss

function are the most widely used loss functions in deep

learning-based SR image tasks. Although optimization

based on MSE or L2 can achieve relatively higher objective

evaluation indexes, such as peak signal-to-noise ratio

(PSNR) and structural similarity index (SSIM) [46], they

tend to produce over-smooth textures, resulting in blurred

visual effects [59]. The multi-scale structural similarity

index (MS-SSIM) is more insensitive to changes in

brightness or shifts in colors. However, it can better pre-

serve high-frequency information compared to the other

loss functions. The L1 norm can better preserve the color

and luminance characteristics, but it does not generate

quite the same contrast as MS-SSIM [47]. Hence, the

comprehensive loss function is obtained by combining

them as follows:

Loss ¼ ð1 � MSÞ þ a � L1 ð1Þ

where MS and L1 are the content loss that evaluates the

MS-SSIM and the 1-norm distance between the recovered

image and the reference image, and a is the coefficient to

balance different loss terms.

(a) Fusing the information for different scale.

(b) Selective scale fusion mechanism.

up sampling conv with stride 2 selective scale fusion

Input1 Input2

Global pooling

Conv+ReLU

Conv Conv

Softmax

Input3

Conv

Output

Fig. 2 Schematic for selective scale feature fusion with 3 inputs. It

operates on features from multiple convolutional branches, and

performs fusion based on self-attention
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4 Experimental results

This section evaluates the proposed network architecture

on the benchmark image SR datasets. It first describes the

experimental datasets and settings and then presents a

comparison with state-of-the-art methods. Finally, some

ablation studies are also presented.

4.1 Experimental datasets and settings

Recently, Timofte et al. [48] introduced a large dataset

(DIV2K) for single image SR studies. DIV2K contains

1000 high-quality images (2K resolution), in which 800 are

used for training, 100 are used for verification and the rest

100 for testing. Flickr2K [22] is another large high-quality

dataset collected on Flickr, and it contains 2,650 2K res-

olution images covering different scenes including people,

animals, landscapes, and more. Both datasets are widely

used in image SR studies, and some methods use them

together for training to help the model generate more

natural high-resolution images. To this end, we follow this

training scheme. Furthermore, we train our models in RGB

channels and augment the training dataset with random

horizontal flips and 90-degree rotations. We evaluate the

trained models on four widely used benchmark datasets:

Set5 [49], Set14 [16], B100 [50], and Urban100 [51] for

single image SR.

To fully prove the effectiveness of our proposed model,

we adopt bicubic down-sampling by using the MATLAB

function ‘imresize’ to simulate low-resolution images with

a scaling factor of 2, 4, and 8, respectively. We randomly

crop 16 low-resolution RGB patches with a size of

40 9 40 as inputs in each training batch. For optimization,

this work uses Adam [52] with b1 = 0.9 and b2 = 0.999.

All models are implemented using the PyTorch and are

trained using an NVIDIA Titan Xp GPU.

4.2 Comparison with state-of-the-art methods

This subsection compares the proposed model with state-

of-the-art single image SR algorithms including SRCNN

[17], FSRCNN [53], VDSR [18], DRCN [20], LapSRN

[21], SRMDNF [55], CARN [54], MSRN [31], SEAN [57]

and SRFBN [58]. For a fair comparison, we use the image

SR results publicly provided by authors for existing

methods. In addition, the image SR results are evaluated

with PSNR and SSIM on the Y channel (i.e., luminance) of

a transformed YCbCr space. A comparison results includ-

ing the proposed algorithm and 12 state-of-the-art algo-

rithms for 9 2, 9 4, and 9 8 scaling SR are shown in

Table 1. Noticing that there is a big gap between the results

of the basic bicubic interpolation method and other CNN-

based methods, which means that the bicubic cannot pro-

duce any extra details. All these CNN-based methods use a

well-designed network to learn the mapping function

between low-resolution and high-resolution images directly

and all of them achieve great improvement. In general, the

proposed method can achieve superior results compared

with all the other methods including the extremely com-

petitive SRFBN. Almost all the quantitative results of our

method are the best. Specifically, for scale 9 2, the best

results are achieved on Set5, Set14, and Urban100,

respectively. Our PSNR is only 0.01 dB less than SRFBN

on the B100 dataset but we achieve the best SSIM, which

indicates our model can better recover visible structures.

For scale 9 4 and 9 8, the proposed method outperforms

the others on all datasets. When compared with the multi-

scale residual network (MSRN), the proposed method

outperforms it on all datasets with all scaling factors. This

shows better effectiveness in our selective scale feature

fusion method over the multi-scale residual block in

MSRN. Furthermore, a modified version of the MSRN is

used for soft-edge extraction for the image in SEAN.

Compared with SEAN, our method also achieves better

results on all scaling factors. This further demonstrates the

importance of the image multi-scale features on a different

scale-SR problem.

To illustrate the visual quality of our proposed method

against other state-of-the-art methods, we show several SR

results on the B100 and Urban100 with the 9 4 scaling

factor among different methods in Fig. 4. Noting that these

examples contain rich structured contents, which is a

(a)                    (b)                 (c)

C

C

C

C

Fig. 3 Various kinds of output

heads. a V1: only outputting the

representation from the high-

resolution convolution stream.

b V2: concatenating the

(upsampled) representations

that are from all the resolutions.

c V3: progressively upsampling

and concatenating the output

representations that are from all

the resolutions
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relatively difficult case for image SR tasks, our model can

recover sharper lines, clearer contours, and richer details.

In general, the proposed method can generate more con-

vincing SR results. Moreover, we can observe that most of

the compared algorithms have difficulty in reconstructing

the lost details in the low-resolution image. Specifically,

we can see from image ‘img092’ that some unpleasant

artifacts are produced during the degradation process. All

compared methods cannot handle this problem well, since

the texture directions obtained by these methods are all

inaccurate to a varying degree. In contrast, we can see that

our model can alleviate the artifact effects and reconstruct

accurate and clear contents. The proposed model makes

full use of multi-scale information to obtain more faithful

SR results. The proposed model makes full use of multi-

scale information to obtain more faithful SR results, which

can be further verified through the SSIM scores of our

model since the SSIM focuses on the visible structures in

the image.

4.3 Experiment on real-world images

To further present the performance of the proposed model,

some additional experiments are implemented using his-

torical images with JPEG compression artifacts. We com-

pare five existing methods: SRCNN [17], FSRCNN [53],

SRMDNF [55], MSRN [31], and SEAN [57]. As shown in

Fig. 5, the image from the historical dataset contains the

Table 1 The PSNR and SSIM results of different methods on Set5, Set14, B100, and Urban100 with down-sampling factor 9 2, 9 4, and 9 8

Method Scale Set5 PSNR/SSIM Set14 PSNR/SSIM B100 PSNR/SSIM Urban100 PSNR/SSIM

Bicubic 9 2 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403

SRCNN 9 2 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946

FSRCNN 9 2 37.05/0.9560 32.66/0.9090 31.53/0.8920 29.88/0.9020

VDSR 9 2 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140

DRCN 9 2 37.63/0.9584 33.06/0.9108 31.85/0.8947 30.76/0.9147

LapSRN 9 2 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101

SRMDNF 9 2 37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204

CARN 9 2 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256

MSRN 9 2 38.08/0.9605 33.74/0.9170 32.23/0.9002 32.22/0.9326

SEAN 9 2 38.08/0.9609 33.75/0.9190 32.27/0.9008 32.50/0.9318

SRFBN 9 2 38.11/0.9609 33.82/0.9196 32.29/0.9010 32.62/0.9328

Ours 9 2 38.19/0.9614 33.92/0.9216 32.28/0.9026 32.65/0.9339

Bicubic 9 4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577

SRCNN 9 4 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221

FSRCNN 9 4 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280

VDSR 9 4 31.35/0.8830 28.02/0.7680 27.29/0.0726 25.18/0.7540

DRCN 9 4 31.56/0.8810 28.15/0.7627 27.24/0.7150 25.15/0.7530

LapSRN 9 4 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560

SRMDNF 9 4 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731

CARN 9 4 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837

MSRN 9 4 32.07/0.8903 28.60/0.7751 27.52/0.7273 26.04/0.7896

SEAN 9 4 32.33/0.8970 28.72/0.7855 27.65/0.7388 26.32/0.7942

SRFBN 9 4 32.47/0.8983 28.81/0.7868 27.72/0.7409 26.60/0.8015

Ours 9 4 32.54/0.9006 28.85/0.7931 27.73/0.7489 26.68/0.8081

Bicubic 9 8 24.40/0.6580 23.10/0.5660 23.67/0.5480 20.74/0.5160

SRCNN 9 8 25.33/0.6900 23.76/0.5910 24.13/0.5660 21.29/0.5440

FSRCNN 9 8 20.13/0.5520 19.75/0.4820 24.21/0.5680 21.32/0.5380

VDSR 9 8 25.93/0.7240 24.26/0.6140 24.49/0.5830 21.70/0.5710

DRCN 9 8 25.93/0.6743 24.25/0.5510 24.49/0.5168 21.71/0.5289

LapSRN 9 8 26.15/0.7380 24.35/0.6200 24.54/0.5860 21.81/0.5810

MSRN 9 8 26.59/0.7254 24.88/0.5961 24.70/0.5410 22.37/0.5977

Ours 9 8 26.85/0.7521 25.01/0.6321 24.93/0.5996 22.65/0.6031
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letters ‘‘NOV’’ and ‘‘CEWV.’’ The first four compared

methods suffered from blurring and unpleasant artifacts.

The results of SEAN are cleaner than those four methods,

but it produces some errors. By contrast, the proposed

method recovers clearer and more natural super-resolved

results. Except for the MSRN method, most of the com-

pared models do not make full use of multi-scale features

to enhance the representation capability of the network.

Although the MSRN uses a two-bypass network with a

different convolution kernel to extract multi-scale image

features, its feature fusion method is a simple concatena-

tion operation. In addition, the proposed method fuses

hierarchical features from both multi-scale features and

shallow feature extraction layers for the final representa-

tion. These comparison results demonstrate the benefits of

learning multi-scale features from the input image, which

img 092     

HR SRCNN  FSRCNN VDSR DRCN LapSRN

SRMDNF CARN MSRN SEAN SRFBN   Ours

HR                     SRCNN                 FSRCNN                  VDSR                   DRCN                 LapSRN   

HR  SRCNN  FSRCNN VDSR DRCN LapSRN

SRMDNF  CARN MSRN SEAN SRFBN  Ours

SRMDNF CARN MSRN SEAN SRFBN Ours

(a) Urban100: (b) img 050 (c)B100: 302008

(d) The zoomed region in (a)

(e) The zoomed region in (b)

(f) The zoomed region in (c)

Fig. 4 Image super-resolution

results with scaling factors 9 4
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enables our network to perform robustly across various

scene types.

4.4 Ablation studies

This subsection performs an ablation study for the com-

ponents in the proposed network over the super-resolution

task with a 9 4 scale factor. It first studies how the rep-

resentation module affects the image SR performance by

using the estimation of the PSNR and SSIM. Our network

outputs different response features, from low-to-high res-

olutions. The output of V1 is the representation only from

the high-resolution branch, and the output of V2 is con-

catenated and is mixed with different representations in

series. While the V3 is our proposed representation

method, we gradually upsample and concatenate different

feature representations from low-to-high resolutions.

Table 2 shows that the proposed representation method

brings improved performance. Next, we analyzed our fea-

ture fusion strategy in Table 3, and the results indicate that

the proposed selective scale fusion network achieves

superior performance compared to summation and

concatenation.

4.5 Analysis and discussion

The above extensive experiments on benchmark datasets

demonstrate that the proposed approach substantially out-

performs the state-of-the-art methods in terms of the

quantitative metrics (PSNR and SSIM) and visual quality.

Besides, the comparative advantages of our model become

more appealing, surpassing these competing methods on

the real-world test sample. For a single image SR problem,

input and output images are highly correlated. It is crucial

to fully exploit the features of the input image and transfer

them to the end of the network for reconstruction. Most

deep learning-based image SR methods either maintain the

original resolution features along with the network struc-

ture or use a pre-upscaling operation to process the target

resolution. The former helps preserve accurate spatial

details, and the latter provides a better representation of

contextual information. However, most existing methods

only exhibit one of the above advantages although com-

bining the two aspects can maximize useful information

from the original image. In contrast, our model can grad-

ually aggregate this hierarchical information to form more

representative features. The success of the proposed

method stems from two aspects: (1) gradually upsampling

by adding low-to-high resolution subnetworks one by one

to form more stages, and connection of the multi-resolution

subnetworks in parallel; and (2) nonlinear multi-resolution

(a) Historical: img004

(d) SRMDNF  (e) (b)SRCNN   (c) FSRCNN MSRN   (f) SEAN (g) Ours

Fig. 5 Visual results on real-

world images with scaling

factor 9 4

Table 2 Ablation study on different representation modules

Representations V1 V2 V3 (ours)

Set5 32.45/0.8988 32.48/0.8990 32.54/0.9006

Set14 28.79/0.7924 28.82/0.7925 28.85/0.7931

B100 27.69/0.7479 27.71/0.7482 27.73/0.7489

Urban100 26.49/0.8027 26.59/0.8052 26.68/0.8081

Table 3 Ablation study on different feature aggregations

Fusion Methods Summation Concatenation Ours

Set5 32.42/0.8979 32.48/0.8989 32.54/0.9006

Set14 28.80/0.7920 28.83/0.7924 28.85/0.7931

B100 27.70/0.7473 27.72/0.7485 27.73/0.7489

Urban100 26.59/0.8051 26.63/0.8062 26.68/0.8081
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feature fusion repeatedly using a self-attention mechanism

and rendering reliable high-resolution features. Overall, an

ambidextrous design of progressive multi-scale fusion

network not only inherits the superiority of post-upscaling

structure but also utilizes the complementary set of multi-

scale branches. Our network provides better-contextualized

features, and the proposed repeated multi-scale fusion

dynamically combines variable receptive fields.

5 Conclusion

In this paper, we propose a new network structure for

single image SR, in which the base stream was designed for

original-scale processing and a series of complementary

parallel streams to explore rich multi-scale information.

Furthermore, a new selective scale fusion mechanism is

proposed to learn the relationships between the features

across multi-scale branches and to adaptively fuse the

multi-scale features. The proposed feature fusion strategy

can preserve the original image details while dynamically

adjusting the receptive field. The effectiveness of our

method is demonstrated through consistently better results

compared to state-of-the-art image SR tasks on several

benchmark datasets.
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