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Abstract
In order to overcome the complexity of the theoretical analysis caused by using decomposition method to explore the finite-

time synchronization behavior of fractional-order quaternion-valued neural networks (FOQVNNs), we aim to deal with this

problem directly instead of decomposition. Firstly, two inequalities about quaternion are developed to broaden the current

achievements in quaternion field. Secondly, a fractional differential inequality is established by using Laplace transform

and applying the definition of Mittag-Leffler function. Then, by employing the presented inequalities and two different

quaternion control strategies, some new conditions are derived to guarantee the finite-time synchronization of the delayed

FOQVNNs. Finally, two numerical examples are given to illustrate the correctness of the main results.

Keywords Finite-time synchronization � Fractional-order � Quaternion-valued neural networks � Inequalities �
Control

1 Introduction

The synchronization of fractional-order neural networks

(FONNs) is used widely in many application fields, such as

image encryption [1], cryptography [2], and secure com-

munication [3]. Recently, the synchronization of delayed

quaternion-valued neural network (QVNNs) gradually

draws researchers’ attention, as the networks carry more

information and have broad application prospects.

Exploring the field in depth is of great significance.

Compared with integer-order neural networks (IONNs),

FONNs describe the dynamic nature of neurons more

accurately with their strong memory and more degrees of

freedom. In the past few years, great progress has been

made in the synchronization of FONNs [4–10]. Based on

the developed fractional-order Gronwall inequality, a new

criterion is derived to guarantee the finite-time synchro-

nization of delayed fractional-order memristor-based neu-

ral networks in [4]. Under two different controllers, the

synchronization of fractional-order competitive neural

networks with reaction-diffusion terms and time delays is

explored via a new method in [6]. Several sufficient con-

ditions are deduced to ensure the global dissipativity and

quasi-Mittag-Leffler synchronization of the considered

FONNs in [8]. The non-decomposition method is

employed to investigate the finite-time cluster synchro-

nization of fractional-order complex-variable networks

with nonlinear coupling in [10]. It is noted that the above

researches are investigated in the real or complex domain.

However, the real-valued neural networks (RVNNs) and

the complex-valued neural networks (CVNNs) lose their

advantages in dealing with multi-dimensional features.

In view of the powerful processing and generalization

capabilities of quaternion neurons, QVNNs that can load

more information are introduced to handle multi-dimen-

sional feature problems. At present, the decomposition

method (decomposing the system into two CVNNs or four

RVNNs) and the Lyapunov direct method (considering the

system as a whole) are proposed to explore the dynamic

behaviors of QVNNs in [11–13]. For example, the expo-

nential stability conditions for an impulsive disturbed
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delayed QVNNs are derived by utilizing the real-valued

decomposition method and generalized norms in [11]. The

global Mittag-Leffler stability of FOQVNNs with leakage

and time-varying delays is studied directly in [13].

Nowadays, some researchers have concentrated on the

synchronization of FOQVNNs in [14–21]. By using the

Lyapunov direct method, some sufficient conditions are

obtained to ensure the quasi-synchronization of fractional-

order quaternion-valued discrete-time memristive neural

networks in [14]. The projective synchronization of

delayed FOQVNNs is studied based on the Lyapunov

direct method and adaptive controllers in [16]. A vector

ordering method is proposed to explore the stability and

synchronization control of the fractional-order quaternion-

valued fuzzy memristive neural networks in [18]. The

FOQVNNs are separated into four real-valued systems to

explore the adaptive impulsive synchronization in [20].

However, the synchronization of FOQVNNs is achieved

in an infinite time in [14–16, 18–21], which brings a lot of

time and economic consumption. Hence, finite-time syn-

chronization which has the features of fast convergence

and good robustness is proposed to shorten the synchro-

nization time. Several great results on finite-time syn-

chronization of FOQVNNs have been reported in [22–27].

Based on the quaternion-valued sign function, some lem-

mas are established to explore the finite-time projective

synchronization of the established FOQVNNs in [22]. The

non-separation method is used to investigate the robust

finite-time synchronization of uncertain FOQVNNs in [23].

The problem of finite-time synchronization for delayed

FOQVNNs is addressed by applying Lyapunov direct

method in [24]. However, in [25–27], the decomposition

method is employed to explore the finite-time synchro-

nization of FOQVNNs, which inevitably leads to a large

amount of calculations and complex analysis. It is quite

tricky to separate multiple QVNNs in practical engineer-

ing. In [22, 23, 26], time delays are ignored in the estab-

lished FOQVNNs, which is inconsistent with the actual

situation, since the limited signal transmission speed

between neurons inevitably leads to time delays. In addi-

tion, in [28–31], the problem of finite-time synchronization

for the considered IONNs is analyzed via integral

inequality method or maximum-value approach, instead of

finite-time stability theorems. Although the integral

inequality method and the maximum-value approach are

valid for IONNs, these methods cannot be directly applied

to FONNs.

Inspired by the above discussions, in this paper, we aim

to directly explore the finite-time synchronization of

delayed FOQVNNs through fractional finite-time stability

theorems. The main difficulty is to directly explore the

synchronization behavior of the system without decompo-

sition. The main innovations are as follows:

(1) Two inequalities about quaternion are developed to

avoid using the decomposition method, which

broaden the current achievements in the quaternion

field.

(2) A fractional differential inequality is established by

using Laplace transform and applying the definition

of Mittag-Leffler function. And the numerical results

show that the setting time obtained by employing the

established differential inequality is shorter than that

obtained by the estimation method in [39, 40].

Obviously, a new way is provided to achieve

stability and synchronization of FONNs in a shorter

time.

(3) Different from the decomposition method used in

[19–21, 25–27], by applying the new inequalities,

two different quaternion control strategies and frac-

tional finite-time stability theorems, some conditions

of finite-time synchronization for FOQVNNs are

derived, which greatly simplifies the previous

researches on synchronization for FOQVNNs.

The paper is organized as follows. In Sect. 2, some defi-

nitions and new inequalities are introduced, and a type of

delayed FOQVNNs is established. In Sect. 3, some con-

ditions are given to ensure the finite-time synchronization

of the delayed FOQVNNs. In Sect. 4, the theoretical results

are verified by two numerical simulations. Some useful

conclusions are given in Sect. 5.

2 Preliminaries and model description

Notation: Let R, Rþ, C, Q and Qn denote the set of real

numbers, the set of nonnegative real numbers, the set of

complex numbers, the set of quaternion numbers and n-

dimensional quaternion space, respectively. For any

z ¼ zR þ izI þ jzJ þ kzK 2 Q, z ¼ zR � izI � jzJ � kzK is

the conjugate of z, where zR, zI , zJ , zK 2 R, i, j, k are

standard imaginary units and obey Hamilton rules:

i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1, ij ¼ �ji ¼ k, jk ¼ �kj ¼ i,

ki ¼ �ik ¼ j. jzj1 ¼ jzRj þ jzI j þ jzJ j þ jzK j, jzj2 ¼
ffiffiffiffi

zz
p

.

For any Z ¼ ðz1; z2; � � � ; znÞT 2 Qn, then

jjZjj1 ¼
Pn

p¼1 jzpj1, jjZjj2 ¼ ð
Pn

p¼1 jzpj
2
2Þ

1
2.

2.1 Preliminaries

Some definitions, lemmas and new inequalities are

introduced.

Definition 1 [32] The Caputo fractional derivative of

order a 2 ð0; 1Þ for a function f ðtÞ 2 C1ð½t0;þ1Þ;RÞ is

defined by
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C
t0
Da

t f ðtÞ ¼
1

Cð1� aÞ

Z t

t0

ðt � sÞ�af 0ðsÞds;

where CðaÞ is Euler’s gamma function defined by

CðaÞ ¼
Rþ1
0

ta�1e�tdt.

Definition 2 [32] The Mittag-Leffler functions with two

parameters and one parameter are defined as

Ea;bðtÞ ¼
Xþ1

k¼0

tk

Cðkaþ bÞ ;EaðtÞ ¼
Xþ1

k¼0

tk

Cðkaþ 1Þ

where a[ 0, b[ 0, t 2 C.

Lemma 1 [33] The Laplace transform of function ðt �
t0Þb�1Ea;bðkðt � t0ÞaÞ can be described by

Lfðt � t0Þb�1Ea;bðkðt � t0ÞaÞg ¼ sa�b

sa � k
;

where t, s are the variables in the time domain and Laplace

domain, respectively. t� t0, a[ 0 , k; b 2 R, and

jks�aj\1.

Lemma 2 [34] Let t� t0, 0\a\1 , then Eað-ðt � t0ÞaÞ is
monotonically non-increasing, and 0\Eað-ðt � t0ÞaÞ� 1

and limt!þ1 Eað-ðt � t0ÞaÞ ¼ 0 for -� 0.

Lemma 3 [35] Assume that ap � 0 for all p ¼ 1; 2; . . .; n,

then for any 0\b� 1, one has

X

n

p¼1

abp �
X

n

p¼1

ap

 !b

Lemma 4 [36] Let zðtÞ 2 Q is a continuously differen-

tiable function, then for 0\a\1, one has

C
t0
Da

t zðtÞzðtÞ
� �

� C
t0
Da

t zðtÞ
� �

zðtÞ þ zðtÞCt0D
a
t zðtÞ:

Lemma 5 For any z 2 Q, the following inequality holds

zþ z ¼ 2zR � 2jzj2 � 2jzj1

Definition 3 [22] For any z 2 Q, the sign function of z is

defined by

bz ¼ signðzRÞ þ isignðzIÞ þ jsignðzJÞ þ ksignðzKÞ:

Lemma 6 [22] For any zðtÞ 2 Q, the following statements

hold:

(i)

bzðtÞbzðtÞ ¼ jbzðtÞj1:

(ii) For 0\a\1,

C
t0
Da

t zðtÞbzðtÞ þ bzðtÞzðtÞ
� �

� C
t0
Da

t zðtÞ
� �

bzðtÞ þ bzðtÞCt0D
a
t zðtÞ:

Lemma 7 For any zðtÞ;wðtÞ; d 2 Q, the following state-

ments hold:

(i)

wðtÞbzðtÞ þ bzðtÞwðtÞ� 2jwðtÞj1:

Particularly, if wðtÞ ¼ zðtÞ, then

zðtÞbzðtÞ þ bzðtÞzðtÞ ¼ 2jzðtÞj1:

(ii)

� zðtÞdbzðtÞ � bzðtÞdzðtÞ

� 2ðjdI j þ jdJ j þ jdK j � dRÞjzðtÞj1:

Proof For any zðtÞ ¼ zRðtÞ þ izIðtÞ þ jzJðtÞ þ kzKðtÞ,
wðtÞ ¼ wRðtÞ þ iwIðtÞ þ jwJðtÞ þ kwKðtÞ and

d ¼ dR þ idI þ jdJ þ kdK 2 Q, by Lemma 5, one has

wðtÞbzðtÞ þ bzðtÞwðtÞ

¼ 2 wðtÞbzðtÞ
� �R

¼ 2½wRðtÞsignðzRðtÞÞ þ wIðtÞsignðzIðtÞÞ

þ wJðtÞsignðzJðtÞÞ þ wKðtÞsignðzKðtÞÞ�

� 2jwðtÞj1:

ð1Þ

Particularly, if wðtÞ ¼ zðtÞ, then

zðtÞbzðtÞ þ bzðtÞzðtÞ ¼ 2jzðtÞj1:

In addition,
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� zðtÞdbzðtÞ þ bzðtÞdzðtÞ
� �

¼ �2ðzðtÞdbzðtÞÞR

¼ �2dRðjzRðtÞj þ jzIðtÞj þ jzJðtÞj þ jzKðtÞjÞ

� 2dI ½zRðtÞsignðzIðtÞÞ � zIðtÞsignðzRðtÞÞ

þ zJðtÞsignðzKðtÞÞ � zKðtÞsignðzJðtÞÞ�

� 2dJ ½zRðtÞsignðzJðtÞÞ � zIðtÞsignðzKðtÞÞ

� zJðtÞsignðzRðtÞÞ þ zKðtÞsignðzIðtÞÞ�

� 2dK ½zRðtÞsignðzKðtÞÞ þ zIðtÞsignðzJðtÞÞ

� zJðtÞsignðzIðtÞÞ � zKðtÞsignðzRðtÞÞ�

� � 2dRjzðtÞj1 þ 2ðjdI j þ jdJ j þ jdK jÞjzðtÞj1
¼ 2ðjdI j þ jdJ j þ jdK j � dRÞjzðtÞj1

ð2Þ

The proof of Lemma 7 is completed.

Remark 1 In order to avoid using the decomposition

method in [19–21, 25–27] to study FOQVNNs, some

useful tools for quaternion-valued functions are given in

this paper, which broaden the current research results in

quaternion field. In particular, if wðtÞ ¼ zðtÞ 2 Q, Lem-

ma 7(i) is reduced to Lemma 2 in [13] or Lemma 1 in [22].

If wðtÞ ¼ zðtÞ 2 C, Lemma 7(i) is reduced to Lemma 11 in

[37]. Clearly, Lemma 7 is more general than the existing

results [13, 22, 37] and supplements the non-decomposition

method for FOQVNNs [14–18, 22–24].

Lemma 8 Let V(t) be a continuous and nonnegative

function and satisfy

C
t0
Da

t VðtÞ� � kVðtÞ � q;VðtÞ 2 Rþnf0g ð3Þ

where 0\a\1, t� t0, k� 0, q[ 0, then the following

statements hold:

(i) If k ¼ 0, then

VðtÞ�Vðt0Þ �
qðt � t0Þa

Cðaþ 1Þ ;VðtÞ 2 Rþnf0g;

moreover, limt!t1 VðtÞ ¼ 0, and VðtÞ � 0 for

8t� t1, the setting time t1 is estimated by

t1 � t0 þ
Vðt0ÞCðaþ 1Þ

q

� �1
a

:

(ii) If k[ 0, then

VðtÞ� Vðt0Þ þ
q
k

� �

Eað�kðt � t0ÞaÞ �
q
k
;

VðtÞ 2 Rþnf0g

moreover, limt!t2 VðtÞ ¼ 0, and VðtÞ � 0 for

8t� t2, the setting time t2 satisfies

Eað�kðt2 � t0ÞaÞ ¼
q

kVðt0Þ þ q

Proof If k ¼ 0, inequality (3) is reduced to

C
t0
Da

t VðtÞ� � q;VðtÞ 2 Rþnf0g ð4Þ

the proof is similar to Lemma 10 in [37] and Proposition 1

in [38], which is omitted here.

If k[ 0, there exists a HðtÞ� 0, such that

C
t0
Da

t VðtÞ þ HðtÞ ¼ �kVðtÞ � q;VðtÞ 2 Rþnf0g: ð5Þ

Taking Laplace transform on both sides of equation (5), we

have

saVðsÞ � sa�1Vðt0Þ þ HðsÞ ¼ �kVðsÞ � s�1q; ð6Þ

where VðsÞ ¼ LfVðtÞg, HðsÞ ¼ LfHðtÞg, then

VðsÞ ¼ sa�1Vðt0Þ
sa þ k

� HðsÞ
sa þ k

� s�1q
sa þ k

ð7Þ

By Lemma 1, one has

VðtÞ ¼ Vðt0ÞEað�kðt � t0ÞaÞ � HðtÞ

� ½ðt � t0Þa�1Ea;að�kðt � t0ÞaÞ�

� qðt � t0ÞaEa;aþ1ð�kðt � t0ÞaÞ

ð8Þ

According to HðtÞ� 0, ðt � t0Þa�1 � 0 and

Ea;að�kðt � t0ÞaÞ� 0, then

HðtÞ � ½ðt � t0Þa�1Ea;að�kðt � t0ÞaÞ� � 0. Furthermore,

VðtÞ�Vðt0ÞEað�kðt � t0ÞaÞ
� qðt � t0ÞaEa;aþ1ð�kðt � t0ÞaÞ

ð9Þ

By Definition 2, one has

� qðt � t0ÞaEa;aþ1ð�kðt � t0ÞaÞ

¼ q
k

X

1

k¼0

ð�kÞkþ1ðt � t0Þaðkþ1Þ

Cðaðk þ 1Þ þ 1Þ

¼ q
k

X

1

k¼1

ð�kðt � t0ÞaÞk

Cðak þ 1Þ

¼ q
k

X

1

k¼0

ð�kðt � t0ÞaÞk

Cðak þ 1Þ � 1

" #

¼ q
k
Eað�kðt � t0ÞaÞ �

q
k

ð10Þ

Hence,

VðtÞ� Vðt0Þ þ
q
k

� �

Eað�kðt � t0ÞaÞ �
q
k
;

VðtÞ 2 Rþnf0g:
ð11Þ

Let UðtÞ ¼ Vðt0Þ þ q
k

� �

Eað�kðt � t0ÞaÞ � q
k, by Lemma 2,
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UðtÞ is monotonically non-increasing, and

Uðt0Þ ¼ Vðt0Þ[ 0, limt!1 UðtÞ ¼ � q
k\0. Therefore,

there exists a constant t2 [ t0, such that Uðt2Þ ¼ 0, which

implies limt!t2 VðtÞ ¼ 0, and VðtÞ � 0 for 8t� t2, and the

setting time t2 satisfies

Eað�kðt2 � t0ÞaÞ ¼
q

kVðt0Þ þ q
:

If the above statements are wrong, then there exists a

t�2 [ t2, such that Vðt�2Þ[ 0. From inequality (11),

Vðt�2Þ�Uðt�2Þ�Uðt2Þ ¼ 0, which contradicts Vðt�2Þ[ 0.

Hence, VðtÞ � 0 for 8t� t2. The proof of Lemma 8 is

completed. h

Remark 2 Under the condition of k[ 0 in inequality (3),

in [39, 40], the researchers reduce inequality (3) to
C
t0
Da

t VðtÞ� � q to estimate the setting time. Actually, the

value of parameter k is an important factor affecting the

setting time. Hence, we introduce Lemma 8(ii) based on

the Laplace transform and the definition of Mittag-Leffler

function to explore the influence of k. And the numerical

results show that the setting time obtained by using

Lemma 8 is shorter than that given by the method used in

[39, 40] (see Example 1). Obviously, a new way is pro-

vided to achieve stability and synchronization of FONNs in

a shorter time. Besides, a novel proof idea is offered, which

is different from Proposition 1 in [38].

Lemma 9 [37] Let V(t) be a continuous and nonnegative

function and satisfy

C
t0
Da

t VðtÞ� � kVcðtÞ;VðtÞ 2 Rþnf0g

where 0\a\1, t� t0, k[ 0 and 0\c\a, then

VðtÞ� Va�cðt0Þ �
kðt � t0Þa

aBða; 1� cÞ

� �

1
a

;VðtÞ 2 Rþnf0g;

moreover, limt!t3 VðtÞ ¼ 0, and VðtÞ � 0 for 8t� t3, the

setting time t3 is estimated by

t3 � t0 þ
aVa�cðt0ÞBða; 1� cÞ

k

� �1
a

2.2 Model description

In comparison with RVNNs and CVNNs, QVNNs load

more information, and they can be directly used to encode

3D affine transformations. For example, in image com-

pression, the three imaginary parts of a quaternion-valued

neuron encode the three color channels to achieve color

image transmission. Moreover, FOQVNNs have the ability

to describe complex dynamics more accurately based on

the infinite memory of fractional-order derivatives.

Therefore, the following delayed FOQVNNs are

established:

C
t0
Da

t xpðtÞ ¼ �cpxpðtÞ þ
X

n

q¼1

apqfqðxqðtÞÞ

þ
X

n

q¼1

bpqgqðxqðt � sÞÞ

þ IpðtÞ; t� t0; p ¼ 1; 2; . . .; n;

xpðrÞ ¼ /pðrÞ 2 Q; r 2 ½t0 � s; t0�;

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

ð12Þ

where 0\a\1, xpðtÞ 2 Q is the state variable. cp 2 Q is

the neuron self-inhibition and satisfies cRq [ 0. apq 2 Q and

bpq 2 Q are connection weights, s[ 0 is time delay,

IpðtÞ 2 Q is the external input. fqðxqðtÞÞ, gqðxqðt � sÞÞ 2 Q

are activation functions.

System (12) is regarded as the drive system, and the

response system is as follows

C
t0
Da

t ypðtÞ ¼ �cpypðtÞ þ
X

n

q¼1

apqfqðyqðtÞÞ

þ
X

n

q¼1

bpqgqðyqðt � sÞÞ

þ IpðtÞ þ upðtÞ; t� t0; p ¼ 1; 2; . . .; n;

ypðrÞ ¼ upðrÞ 2 Q; r 2 ½t0 � s; t0�;

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

ð13Þ

where upðtÞ 2 Q is a controller.

Assumption 1 For u, v 2 Q, there exist positive constants

Flq, Glq, such that

jfqðuÞ � fqðvÞjl �Flqju� vjl;

jgqðuÞ � gqðvÞjl �Glqju� vjl;

where q 2 f1; 2; . . .; ng, and the symbol j � jl denotes l

norm, l ¼ 1; 2.

3 Main results

In this section, the conditions for FOQVNNs to complete

finite-time synchronization are derived by using the new

inequalities and two different controllers.

First, the controller upðtÞ 2 Q is designed as follows:

upðtÞ ¼ �rpepðtÞ � gpbepðtÞ; ð14Þ

where epðtÞ ¼ ypðtÞ � xpðtÞ, rp [ 0, gp [ 0.

Combining (12)-(14), the error system is given by
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C
t0
Da

t epðtÞ ¼ �cpepðtÞ þ
X

n

q¼1

apqef qðeqðtÞÞ

þ
X

n

q¼1

bpqegqðeqðt � sÞÞ

� rpepðtÞ � gpbepðtÞ;

t� t0; p ¼ 1; 2; . . .; n;

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

ð15Þ

where ef qðeqðtÞÞ ¼ fqðyqðtÞÞ � fqðxqðtÞÞ, egqðeqðt � sÞÞ ¼
gqðyqðt � sÞÞ � gqðxqðt � sÞÞ.

Theorem 1 Under Assumption 1 and controller (14), for

some l[ 1, if

M ¼ M1 � lM2 � 0

where M1 ¼ minp¼1;2;...;nfcRp þ rp � ðjcIpj þ jcJpj þ jcKp j
þ
Pn

q¼1 jaqpj1F1pÞg, M2 ¼ maxp¼1;2;...;nf
Pn

q¼1 jbqpj1G1pg,
then system (13) is synchronized with system (12) in a finite

time.

Proof Construct the following Lyapunov function

V1ðtÞ ¼
X

n

p¼1

jepðtÞj1 ð16Þ

By Lemmas 6 and 7, one has

C
t0
Da

t VðtÞ�
1

2

X

n

p¼1

C
t0
Da

t epðtÞ
� �

bepðtÞ þ bepðtÞ
C

t0
Da

t epðtÞ
h i

¼ � 1

2

X

n

p¼1

½epðtÞcpbepðtÞ þ bepðtÞcpepðtÞ�

þ 1

2

X

n

p¼1

X

n

q¼1

½apqef qðeqðtÞÞbepðtÞ

þ bepðtÞapqef qðeqðtÞÞ�

þ 1

2

X

n

p¼1

X

n

q¼1

½bpqegqðeqðt � sÞÞbepðtÞ

þ bepðtÞbpqegqðeqðt � sÞÞ�

� 1

2

X

n

p¼1

rp½epðtÞbepðtÞ þ bepðtÞepðtÞ�

�
X

n

p¼1

gpbepðtÞbepðtÞ:

ð17Þ

And it follows from Lemma 7 that

� 1

2

X

n

p¼1

½epðtÞcpbepðtÞ þ bepðtÞcpepðtÞ�

� ðjcIpj þ jcJpj þ jcKp j � cRp ÞjepðtÞj1:
ð18Þ

According to Lemma 7 and Assumption 1, we have

1

2

X

n

p¼1

X

n

q¼1

½apqef qðeqðtÞÞbepðtÞ þ bepðtÞapqef qðeqðtÞÞ�

�
X

n

p¼1

X

n

q¼1

japqef qðeqðtÞÞj1

�
X

n

p¼1

X

n

q¼1

japqj1jef qðeqðtÞÞj1

�
X

n

p¼1

X

n

q¼1

jaqpj1F1pjepðtÞj1:

ð19Þ

Similarly,

1

2

X

n

p¼1

X

n

q¼1

½bpqegqðeqðt � sÞÞbepðtÞ þ bepðtÞbpqegqðeqðt � sÞÞ�

�
X

n

p¼1

X

n

q¼1

jbpqegqðeqðt � sÞÞj1

�
X

n

p¼1

X

n

q¼1

jbpqj1jegqðeqðt � sÞÞj1

�
X

n

p¼1

X

n

q¼1

jbqpj1G1pjepðt � sÞj1:

ð20Þ

By Lemma 7, one has

1

2

X

n

p¼1

rp½epðtÞbepðtÞ þ bepðtÞepðtÞ� ¼
X

n

p¼1

rpjepðtÞj1: ð21Þ

Then, submitting (18)-(21) into (17) and combining the

conditions of Theorem 1, for V1ðtÞ 2 Rþnf0g, we get

C
t0
Da

t VðtÞ

� �
X

n

p¼1

cRp þ rp � jcIpj þ jcJpj þ jcKp j þ
X

n

q¼1

jaqpj1F1p

 !" #

jepðtÞj1

þ
X

n

p¼1

X

n

q¼1

jbqpj1G1pjepðt � sÞj1 �
X

n

p¼1

gpbepðtÞbepðtÞ

� �M1V1ðtÞ þM2V1ðt � sÞ � g
X

n

p¼1

bepðtÞbepðtÞ;

ð22Þ

where g ¼ minp¼1;2;...;nfgpg.
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By fractional-order Razumikhin theorem [41], for some

l[ 1, one has

C
t0
Da

t V1ðtÞ� � ðM1 � lM2ÞV1ðtÞ � g
X

n

p¼1

bepðtÞbepðtÞ:

ð23Þ

According to Lemma 6 and V1ðtÞ 2 Rþnf0g, then

bepðtÞbepðtÞ� 1, hence

C
t0
Da

t V1ðtÞ� �MV1ðtÞ � ng: ð24Þ

When M ¼ 0, inequality (24) is reduced to

C
t0
Da

t V1ðtÞ� � ng;V1ðtÞ 2 Rþnf0g; ð25Þ

and by Lemma 8, we have

V1ðtÞ�V1ðt0Þ �
ngðt � t0Þa

Cðaþ 1Þ ;

V1ðtÞ 2 Rþnf0g;
ð26Þ

moreover, limt!T1 V1ðtÞ ¼ 0, and V1ðtÞ � 0 for 8t� T1.

Therefore, under controller (14), system (13) is synchro-

nized with system (12) in a finite time. And the setting time

T1 is estimated by

T1 � t0 þ
V1ðt0ÞCðaþ 1Þ

ng

� �1
a

: ð27Þ

When M[ 0, according to Lemma 8,

V1ðtÞ� V1ðt0Þ þ
ng
M

� �

Eað�Mðt � t0ÞaÞ �
ng
M

;

V1ðtÞ 2 Rþnf0g;
ð28Þ

moreover, limt!T2 V1ðtÞ ¼ 0, and V1ðtÞ � 0 for 8t� T2.

Therefore, under controller (14), system (13) is synchro-

nized with system (12) in a finite time. And the setting time

T2 satisfies

Eað�MðT2 � t0ÞaÞ ¼
ng

MV1ðt0Þ þ ng
: ð29Þ

The proof of Theorem 1 is completed. h

Remark 3 For controller (14), two control parameters are

designed, and rp is used to control the response system to

synchronize with the drive system, see the conditions of

Theorem 1. While gp is used to estimate the setting time,

see (27) and (29) in the proof of Theorem 1.

Then, the controller upðtÞ 2 Q is designed as follows:

upðtÞ ¼ �rpepðtÞ � gpbepðtÞjepðtÞj
b
2

ð30Þ

where 0\b\2a� 1.

Meanwhile, the error system is given by

C
t0
Da

t epðtÞ ¼ �cpepðtÞ þ
X

n

q¼1

apqef qðeqðtÞÞ

þ
X

n

q¼1

bpqegqðeqðt � sÞÞ

� rpepðtÞ � gpbepðtÞjepðtÞj
b
2 ;

t� t0; p ¼ 1; 2; . . .; n;

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

ð31Þ

where ef qðeqðtÞÞ ¼ fqðyqðtÞÞ � fqðxqðtÞÞ,
egqðeqðt � sÞÞ ¼ gqðyqðt � sÞÞ � gqðxqðt � sÞÞ.

Theorem 2 Under Assumption 1 and controller (30), for

some m[ 1, if

M� ¼ M�
1 � mM�

2 � 0

where M�
1 ¼ minp¼1;2;...;nf2ðcRp þ rpÞ �

Pn
q¼1ðjapqj2F2q

þjaqpj2F2p þ jbpqj2G2qÞg , M�
2 ¼

maxp¼1;2;...;nf
Pn

q¼1 jbqpj2G2pg , then system (13) is syn-

chronized with system (12) in a finite time.

Proof Construct the following Lyapunov function

V2ðtÞ ¼
X

n

p¼1

epðtÞepðtÞ ð32Þ

By Lemma 4, one has

C
t0
Da

t V2ðtÞ�
X

n

p¼1

epðtÞ
C

t0
Da

t epðtÞ þ C
t0
Da

t epðtÞ
� �

epðtÞ
h i

¼ �
X

n

p¼1

½epðtÞcpepðtÞ þ epðtÞcpepðtÞ�

� 2
X

n

p¼1

rpepðtÞepðtÞ

þ
X

n

p¼1

X

n

q¼1

½epðtÞapqef qðeqðtÞÞ þ apqef qðeqðtÞÞepðtÞ�

þ
X

n

p¼1

X

n

q¼1

½epðtÞbpqegqðeqðt � sÞÞ

þ bpqegqðeqðt � sÞÞepðtÞ�

�
X

n

p¼1

½epðtÞbepðtÞ þ bepðtÞepðtÞ�gpjepðtÞjb2 :

ð33Þ

By Assumption 1 and Lemma 5,

Neural Computing and Applications (2022) 34:9919–9930 9925

123



X

n

p¼1

X

n

q¼1

½epðtÞapqef qðeqðtÞÞ þ apqef qðeqðtÞÞepðtÞ�

¼ 2
X

n

p¼1

X

n

q¼1

epðtÞapqef qðeqðtÞÞ
� �R

� 2
X

n

p¼1

X

n

q¼1

jepðtÞj2japqj2jef qðeqðtÞÞj2

� 2
X

n

p¼1

X

n

q¼1

jepðtÞj2japqj2jF2qjeqðtÞj2

�
X

n

p¼1

X

n

q¼1

japqj2F2q þ jaqpj2F2p

� �

epðtÞepðtÞ:

ð34Þ

Similarly,

X

n

p¼1

X

n

q¼1

½epðtÞbpqegqðeqðt � sÞÞ þ bpqegqðeqðt � sÞÞepðtÞ�

�
X

n

p¼1

X

n

q¼1

jbpqj2G2qepðtÞepðtÞ

þ
X

n

p¼1

X

n

q¼1

jbqpj2G2pepðt � sÞepðt � sÞ:

ð35Þ

According to Lemma 3, Lemma 5 and Lemma 7,

�
X

n

p¼1

epðtÞbepðtÞ þ bepðtÞepðtÞ
� �

gpjepðtÞj
b
2

� � 2
X

n

p¼1

gpjepðtÞj
1þb
2

¼ �2
X

n

p¼1

gp epðtÞepðtÞ
� �

1þb
2

� � 2g
X

n

p¼1

epðtÞepðtÞ
 !

1þb
2

;

ð36Þ

where g ¼ minp¼1;2;...;nfgpg.
Then, submitting (34)-(36) into (33) and combining the

conditions of Theorem 2, for V2ðtÞ 2 Rþnf0g, we have

C
t0
Da

t V2ðtÞ

� �
X

n

p¼1

f2ðcRp þ rpÞ

�
X

n

q¼1

ðjapqj2F2q þ jaqpj2F2p þ jbpqj2G2qÞgepðtÞepðtÞ

þ
X

n

p¼1

X

n

q¼1

jbqpj2G2pepðt � sÞepðt � sÞ

� 2g
X

n

p¼1

epðtÞepðtÞ
 !

1þb
2

� �M�
1V2ðtÞ þM�

2V2ðt � sÞ � 2gV
1þb
2

2 ðtÞ
ð37Þ

By fractional-order Razumikhin theorem [41], for some

m[ 1 and V2ðtÞ 2 Rþnf0g, one has

C
t0
Da

t V2ðtÞ� � ðM�
1 � mM�

2ÞV2ðtÞ � 2gV
1þb
2

2 ðtÞ

� � 2gV
1þb
2

2 ðtÞ:
ð38Þ

Due to 0\b\2a� 1, it follows that 0\ 1þb
2
\a.

According to Lemma 9,

V2ðtÞ� V
2a�1�b

2

2 ðt0Þ �
2gðt � t0Þa

aBða; 1�b
2
Þ

 !1
a

;V2ðtÞ 2 Rþnf0g;

ð39Þ

moreover, limt!T3 V2ðtÞ ¼ 0, and V2ðtÞ � 0 for 8t� T3.

Therefore, under controller (30), system (13) is synchro-

nized with system (12) in a finite time. And the setting time

T3 is estimated by

T3 � t0 þ
aV

2a�1�b
2

2 ðt0ÞBða; 1�b
2
Þ

2g

0

@

1

A

1
a

: ð40Þ

The proof of Theorem 2 is completed. h

Remark 4 The decomposition method provided in

[19–21, 25–27] is quite complicated since both the original

system and the controller need to be decomposed. There-

fore, in this paper, two inequalities about quaternion are

established and two different quaternion-valued controllers

are designed, which complements the direct exploration of
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synchronization of FOQVNNs and avoids the complex

decomposition process. Especially for multiple multi-di-

mensional systems, our method has the advantages of

simple operation, easy analysis and less calculation.

4 Numerical simulations

In this section, in order to verify the validity of the theo-

retical results, we simulate two examples based on the

quaternion-valued recurrent neural networks model applied

to image compression [42].

Example 1 Consider the following delayed FOQVNNs as

the drive system:

C
0D

a
t xpðtÞ ¼ � cpxpðtÞ þ

X

2

q¼1

apqfqðxqðtÞÞ

þ
X

2

q¼1

bpqgqðxqðt � sÞÞ þ IpðtÞ;
ð41Þ

where t� 0, p ¼ 1; 2, a ¼ 0:96, s ¼ 1:8, IpðtÞ ¼ 0,

fqðxqðtÞÞ ¼ tanhðxRq ðtÞÞ þ itanhðxIqðtÞÞ þ jtanhðxJqðtÞÞ
þ ktanhðxKq ðtÞÞ

and

gqðxqðtÞÞ ¼ sinðxRq ðtÞÞ þ isinðxIqðtÞÞ þ jsinðxJqðtÞÞ
þ ksinðxKq ðtÞÞ

, the initial values /1 ¼ 2þ i� j� 2k and /2 ¼ 1:2�
2:5i� jþ 3:5k for t 2 ½�1:8; 0�, and

C ¼ diagðc1; c2Þ

¼
3:2þ 0:5i� 0:7jþ 1:4k 0

0 3þ 1:2iþ 0:1j� 0:6k

 !

;

A ¼ ðapqÞ2	2

¼
0:4þ 0:3iþ 0:8jþ 1:5k 0:9� i� 0:1j� 1:3k

�0:5þ 1:1i� 0:1jþ 0:1k 0:2þ 0:1i� jþ k

 !

;

B ¼ ðbpqÞ2	2

¼
0:7þ i� 0:5j� 0:5k 0:3� iþ 0:8j� 0:1k

0:1þ 1:5i� 0:8j� 0:4k 1:4þ 0:5i� 0:8j� 0:2k

 !

:

The response system is described as follows

C
0D

a
t ypðtÞ ¼ � cpypðtÞ þ

X

2

q¼1

apqfqðyqðtÞÞ

þ
X

2

q¼1

bpqgqðyqðt � sÞÞ þ IpðtÞ þ upðtÞ;
ð42Þ

where the initial values u1 ¼ �0:5� 1:4iþ j� k and

u2 ¼ �1þ 1:2jþ 2:3k for t 2 ½�1:8; 0�.
If upðtÞ ¼ 0, the synchronization error evolution for four

parts is depicted in Fig. 1, which indicates system (42) is

not synchronized with system (41).

The parameters are set to satisfy the conditions of

Theorem 1, as shown below. By calculation, for q ¼ 1; 2,

we have F1q ¼ G1q ¼ 1. V1ð0Þ ¼ 16,
P2

q¼1 jaq1j1F11 ¼ 4:8,
P2

q¼1 jaq2j1F12 ¼ 5:6,

cR1 � ðjcI1j þ jcJ1j þ jcK1 j þ
P2

q¼1 jaq1j1F11Þ ¼ �4:2,

cR2 � ðjcI2j þ jcJ2j þ jcK2 j þ
P2

q¼1 jaq2j1F12Þ ¼ �4:5,

M1 ¼ minfr1 � 4:2; r2 � 4:5g,
P2

q¼1 jbq1j1G11 ¼ 5:5,
P2

q¼1 jbq2j1G12 ¼ 5:1, M2 ¼ maxf5:5; 5:1g ¼ 5:5. Fixing

l ¼ 1:1, to ensure M ¼ M1 � lM2 � 0, we choose

r1 ¼ r2 ¼ 11, then M1 ¼ minf6:8; 6:5g ¼ 6:5 and

M ¼ 0:45. According to the conditions of Theorem 1, at

this time, we only need to ensure that the parameters g1 and
g2 are greater than 0. Hence, we choose the special case of

g1 ¼ g2 ¼ 0:1 and estimate the corresponding setting time

T2 
 10:45. Therefore, under controller (14), system (42)

t

0 10 20 30 40 50 60 70 80

eQ p
(t)

,Q
=R

,I,
J,

K,
p=

1,
2

-3
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-1
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2

3

4

5

eR
1

(t) eI
1
(t) eJ

1
(t) eK

1
(t) eR

2
(t) eI

2
(t) eJ

2
(t) eK

2
(t)

Fig. 1 Synchronization error evolution for four parts without control

 t
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eQ p
(t)

,Q
=R

,I,
J,

K,
p=

1,
2

-3

-2

-1

0

1

2

3

eR
1

(t) eI
1
(t) eJ

1
(t) eK

1
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2
(t) eI

2
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2
(t) eK

2
(t)

T
2

Fig. 2 Synchronization error evolution for four parts under controller

(14)
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is synchronized with system (41) at T2 
 10:45, which is

shown in Fig. 2. However, when this set of parameters is

fixed, the estimation method in [39, 40] is used, and the

setting time is estimated as T�
2 
 94:4. Obviously, our

results are more accurate.

Example 2 Consider the following delayed FOQVNNs as

the drive system:

C
0D

a
t xpðtÞ ¼ � cpxpðtÞ þ

X

2

q¼1

apqfqðxqðtÞÞ

þ
X

2

q¼1

bpqgqðxqðt � sÞÞ þ IpðtÞ;
ð43Þ

where t� 0, p ¼ 1; 2, a ¼ 0:98, s ¼ 1, IpðtÞ ¼ 0, the initial

values /1 ¼ 1� iþ jþ k and /2 ¼ �1� i� k for

t 2 ½�1; 0�, and

fqðxqðtÞÞ ¼ gqðxqðtÞÞ

¼ 1� e�xRq ðtÞ

1þ e�xRq ðtÞ
þ i

1� e�xIqðtÞ

1þ e�xIqðtÞ

þ j
1� e�xJqðtÞ

1þ e�xJqðtÞ
þ k

1� e�xKq ðtÞ

1þ e�xKq ðtÞ
;

C ¼ diagðc1; c2Þ

¼
1� iþ 0:3j� k 0

0 1:2� iþ 0:1k

 !

;

A ¼ ðapqÞ2	2

¼
�1� i� j� k � 1þ iþ jþ k

0:5� iþ 2j� k � 2þ j� k

 !

;

B ¼ ðbpqÞ2	2

¼
�2iþ 2jþ 2k � 2þ 2i� 2:4j

�1� iþ 2k � 1:5iþ jþ k

 !

:

The response system is described as follows

C
0D

a
t ypðtÞ ¼ � cpypðtÞ þ

X

2

q¼1

apqfqðyqðtÞÞ

þ
X

2

q¼1

bpqgqðyqðt � sÞÞ þ IpðtÞ þ upðtÞ;
ð44Þ

where the initial values u1 ¼ �1þ i� j and u2 ¼ 1þ i�
j for t 2 ½�1; 0�.

The parameters are set to satisfy the conditions of

Theorem 2, as shown below. By simple calculation, for

q ¼ 1; 2, we have F2q ¼ G2q ¼ 0:5. V2ð0Þ ¼ 23, 2cR1 �

P2
q¼1ðja1qj2F2q þ jaq1j2F21 þjb1qj2G2qÞ 
 �5:84, 2cR2

�
P2

q¼1ðja2qj2F2q þ jaq2j2F22 þ jb2qj2G2qÞ 
 �4:56,

M�
1 ¼ minf2r1 � 5:84; 2r2 � 4:56g,

P2
q¼1 jbq1j2G21


 2:96,
P2

q¼1 jbq2j2G22 
 2:89, M�
2 ¼ maxf2:96; 2:89g

¼ 2:96. Fixing m ¼ 2, to ensure M� ¼ M�
1 � mM�

2 � 0, we

choose r1 ¼ 6, r2 ¼ 5:5, then M�
1 ¼ minf6:16; 6:44g ¼

6:16 and M� ¼ 0:24. According to the conditions of

Theorem 2, at this time, we only need to ensure that the

parameters g1 [ 0, g2 [ 0 and 0\b\0:96. Hence, we

choose the special case of g1 ¼ g2 ¼ 0:5 and b ¼ 0:4, and

estimate the corresponding setting time T3 
 8:27. There-

fore, under controller (30), system (44) is synchronized

with system (43) at T3 
 8:27, which is depicted in Fig. 3.

Particularly, when fractional order a and other parameters

are fixed, the evolution of setting time T3 versus b is shown

in Fig. 4. As shown in Fig. 4, the setting time T3 first

decreases and then increases with the increase of b. Hence,
we can properly adjust parameter b to get a smaller setting

time.

 t
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Fig. 3 Synchronization error evolution for four parts under controller

(30)
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Fig. 4 Evolution of setting time T3 versus b for a ¼ 0:98
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5 Conclusion

In this paper, the finite-time synchronization of delayed

FOQVNNs is explored by using some new inequalities and

control strategies. First, two inequalities about quaternion

are developed and a fractional differential inequality is

established by using Laplace transform and applying the

definition of Mittag-Leffler function. Then, by applying

new inequalities and two different controllers, some con-

ditions are derived to guarantee the finite-time synchro-

nization of the delayed FOQVNN. Finally, the theoretical

results are verified by two numerical examples. The results

of numerical example 1 show that the setting time is more

accurate than that obtained by the estimation method in

[39, 40]. The results of numerical example 2 suggest that if

fractional order a and other parameters are fixed, the set-

ting time first decreases and then increases with the

increase in fractional-order power law b in controller (30).

Hence, the parameter b can be adjusted appropriately to

obtain a smaller setting time. Regrettably, the estimation of

the setting time is affected by the initial values of the

system, and the initial values are difficult to know in

advance. Therefore, discussing the fixed-time synchro-

nization of delayed FOQVNNs that does not depend on the

initial values will be our future research topic.
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