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Abstract
Significant evolution in deep learning took place in 2010, when software developers started using graphical processing

units for general-purpose applications. From that date, the deep neural network (DNN) started progressive steps across

different applications ranging from natural language processing to hyperspectral image processing. The convolutional

neural network (CNN) mostly triggers the interest, as it is considered one of the most powerful ways to learn useful

representations of images and other structured data. The revolution of DNNs in medical imaging (MI) came in 2012, when

Li launched ImageNet, a free database of more than 14 million labeled medical images. This state-of-the-art work presents

a comprehensive study for the recent DNNs research directions applied in MI analysis. Clinical and pathological analysis

through a selected patch of most cited researches is introduced. It will be shown how DNNs are able to tackle medical

problems: classification, detection, localization, segmentation, and automatic diagnosis. Datasets comprises a range of

imaging technologies: X-Ray, MRI, CT, Ultrasound, PET, Fluorescene Angiography, and even photographic images. This

work surveys different patterns of DNNs and focuses somehow on the CNN, which offers an outstanding percentage of

solutions compared to other DNNs structures. CNN emphasizes image features and has well-known architectures. On the

other hand, limitations beyond DNNs training and execution time will be explained. Problems related to data augmentation

and image annotation will be analyzed among a multiple of high standard publications. Finally, a comparative study of

existing software frameworks supporting DNNs and future research directions in the area will be presented. From all

presented works it could be deduced that the use of DNNs in healthcare is still in its early stages, there are strong initiatives

in academia and industry to pursue healthcare projects based on DNNs.
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1 Introduction

1.1 Artificial intelligence (AI) from ideas
to practice

The term AI was firstly mentioned in a workshop organized

in a US non-famous university, Dartmouth College in

1956. The aim was to design a machine predicting human

intelligence [1]. Machine learning booming started in the

first decade of the twenty-first century due to the presence

of powerful computer hardware and workstations. Machine

learning, as a part of AI, is being successfully applied to

academic or industrial problems. Such machines with

powerful capabilities are exceeding human beings perfor-

mance [2]. Advance in big data and computing power

pushes AI from research to technology or from ideas to

practice. Starting 2016, four AI perspectives appeared:

research, teaching, media, and industry [3]. AI publications

are growing by about 13% annually during the last 5 years.

Five main clusters identify AI researches: search and

optimization, natural language processing, computer

vision, machine learning, and health care and medical

imaging. When focusing on health care and medical image
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analysis, this number is widely increasing by 38%

annually.

To conclude, AI is the main umbrella for machine

learning and deep learning. Such a relation will be

explained in the incoming sections. From my opinion, the

move of researchers from academia to industry during the

last 5 years could give a clear vision of how the number of

AI applications is increasing tremendously in all

disciplines.

1.2 Machine learning

There exist a wide range of open ended problems where it

is difficult to find mathematical models; therefore solutions

may depend on finding couples of examples with reason-

able accuracy [4]. Such problems could be better solved

using ML algorithms, where a set of sufficient examples

(learning examples) are provided, then the machine will be

able to take decisions regarding new examples (testing

examples). Biological effects usually inspire ML tech-

niques: neural networks, genetic algorithms, ants, decision

trees, or particle swarm [5]. From year to year, ML is

profiting from the increasing existence of digital informa-

tion, the fast evolution in high performance computing

facilities, and now from the possibility to be executed over

cloud [6]. The artificial neural network (ANN) is the first

ML technique inspired by the human neuronal synapse

system.

1.3 Deep learning and conventional neural
networks

Deep learning (DL) has changed forms and definitions

slowly since 2008. DL comprises layers of nonlinear

information processing in a hierarchical architecture for

feature extraction, pattern analysis, and data classification

[7]. Medical image classifications, computer vision, text-

to-speech synthesis tools, and language translation are all

highly annotated deep learning areas of research. MI

analysis aided with DL still needs much effort, not only

from computer scientists but also from physicians espe-

cially regarding lack of annotated image data and encour-

agement of automatic diagnosis systems. Though ANNs

are designed to fit with different input data representations,

DL networks are usually designed to cope with highly

specific applications.

DL uses networks with larger number of layers, thus

more parameters are needed to learn and converge.

Parameters and weights tuning in DL require a compromise

between training for minimal errors and overfitting; a sit-

uation that happens rarely in regular NNETs [8]. Com-

paring DL networks to conventional NNETs, DL have

larger number of neurons, larger number of connections

between neurons, and larger number of hidden layers. DL

has several advantages, such as learning from the data

itself, having state-of-the-art results in many domains, and

outperforming humans in accuracy. However, to perform

well, DL networks need high computation capabilities,

High performance of H/W implementations, and significant

amount of annotated training data. In my opinion, training

model in DL seeks the best set of values for the network

parameter vectors. This relation could be seen as a

heuristic optimization problem targeting minimization of

the loss function with respect to the network parameters.

Minimization constrains are the tuning of network

parameters towards the desired values.

2 Fundamentals of deep neural networks

The mostly used DL networks applied in MI analysis take

one of the following architectures:

• Convolutional Neural Networks (CNN)

• Recurrent Neural Networks (RNN)

• Restricted Boltzmann Machine (RBM)

2.1 Convolutional neural network (CNN)

A convolutional neural network (CNN) is classified as a

supervised learning model that aims to learn higher-order

features in the data via convolutions. The benefit of using a

CNN is its ability to develop an internal representation of a

two-dimensional signal. This allows the model to learn

position and scale in variant structures in the data, which is

important when working with images. CNNs, as shown in

Fig. 1 were designed to map image data to an output

variable. The first two layers seen in a CNN are the con-

volution layer and the affine (sub-sampling) layer. The

convolution layer calculates the convolution between

inputs to acquire feature maps. A nonlinear activation

function is then used post convolution followed by a sub-

sampling layer to reduce the dimension of feature maps

through averaging. Following the sub-sampling is a set of

ANN layers for classification, recognition, or decision

purposes [9]. CNN is initially designed for image classifi-

cation and nowadays is used for a variety of tasks. In a

CNN, assume the input image dimension is L, Kernel size

is K, thus the first convolution layer gives (L-K ? 1)

image sizes usually smaller than the original input. CNN is

an outstanding tool for MI Analysis for many reasons:

applying convolutional filters to learn image features,

performing hierarchical feature extraction, which is useful

while studying pathological images with different lesions,

using a pooling layer that is able of averaging all acquired

features and relating them to neighboring pixels.
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2.2 Recurrent neural network (RNN)

Recurrent neural networks (RNNs) are designed using

feedback signals to allow creating internal states or mem-

ories. These memories keep necessary information related

to previous inputs (recurrent). This design makes RNNs

useful to deal with sequential data, where inputs depends

on each other in a streaming manner (sentence consisting

of several words). RNNs are the best chosen networks for

speech recognition and automatic machine translation

systems [9]. The architecture of a RNN is shown in Fig. 2.

2.3 Restricted Boltzmann machine (RBM)

Boltzmann machine (BM) is an ANN where all neurons

from visible and hidden layers are connected to each other

resulting high complexity, slow learning speed, and

enlarged learning time. Therefore, restricted Boltzmann

machine (RBM) was introduced restricting connections

between neurons within the same layer [10]. Figure 3

shows structure of the RBM. Restricted Boltzmann

machines are probabilistic models, i.e., the model assigns

probabilities. RBMs architectures consist of one input layer

and one or more hidden layer(s). Activation functions and

neurons corresponding biases vectors are the core of RBM

function. The absence of an output layer is obvious. Here,

the biases or weights represent the filters parameters.

My opinion is that RBM has an advantage in creating

filters that have picked out the strongest features in the

input data. RBM could be used in applications where the

transformation part (features) is needed, such as dimen-

sionality reduction, classification, regression, and fea-

tures’ learning, as will be explained in Sect. 6.

3 Introducing deep neural networks
for medical image analysis

3.1 Motivations and challenges

Computer-aided diagnosis (CAD) based on DNN has

emerged over the past 3 years. Advance in computer

hardware architecture, efforts in DL software toolkits, and

improved image quality from different medical imaging

sources have all facilitated such area of research. CAD

aided with DNN could reduce errors and enable efficient

measurements when compared to physicians or traditional

CAD systems. It is evident that different medical image

Fig. 1 Convolutional Neural Network [8]

Fig. 2 Recurrent neural networks [8]

Fig. 3 RBM structure consisting of one input layer and one or more

hidden layers
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computing fields host an increasing number of annual

publications based on DNNs. Figure 4 shows achievements

of DNNs in image computing areas. However, the transi-

tion of CAD systems with DL from laboratory to bedside

faces difficulties for many reasons. This is time-consuming

and labor intensive. Moreover, researchers must aggregate

medical case studies with proven pathology. Medical

image databases are another challenge, there exists several

well-known databases such as ImageNet, Visual Object

Classes (VOC), and Microsoft Common Object Context

(COCO) with millions or hundreds of thousands of images;

however, they lack medical image annotations. Employing

CNN requires a large amount of annotated training dataset.

To solve the problem of training powerful and effective

DNN with only hundreds or thousands of patient scans or

images, new trends use data preprocessing, innovative

network designs, and different evaluation strategies. DNNs

have the ability to learn medical image features during

training [11]. Through multiple convolutional and data

reduction layers, learning process could be easier and use

adequate datasets [12]. For example, recent DNN could use

hundreds or less dataset size to reach very low errors and

improve the sensitivity of CAD systems by 13 to 34% in a

variety of medical imaging applications [13].

3.2 Applying deep neural networks in medicine

Recently, DNN is emerging in computer vision and med-

ical imaging especially in areas such as mammography

X-rays, cardiovascular CT/MRI scans, or microscopy

images. In the incoming sections, four different clinical

areas will be reviewed regarding intervention of DNN.

Figure 5 shows those areas.

3.2.1 Some examples of DNN contributing in clinical
images

• Mammogram Image Analysis

Screening is the only way to reduce breast cancer

risks and achieve early detection in women. Mam-

mography is the most safe and adequate way for

screening. Besides, the whole process comprises several

classes. Miscellaneous tissues are detected, lesions are

analyzed, and mass calcifications are monitored to

classify the tumor grade and surgery decisions [14].

Manual process for such detection usually reaches

sensitivity from 84 to 91% as proven by Zhang [15].

CAD systems that use CNN offer analysis of breast

lesions from mammograms in three main steps starting

from lesion detection, segmentation, to classification.

This achieves an automated end-to-end CAD system.

In 2015, a breast mass segmentation method based

on CNN was presented [16]. This used several potential

functions; however, authors concluded that DL stand-

alone models could not achieve high accuracy due to

small training data set. They suggested integrating DL

with a structured output model that gave assumptions

about appearance and shape of the masses. More efforts

were presented in breast cells detection in [17]. These

achieved high accuracy without intervention of any

integrated system and using adequate data set size. This

concluded that the use of DL allowed accuracy

improvements when compared to [16] in terms of

classification of tumors.

From my opinion, mammogram analysis using DNN

achieved a lot in the past few years due to data set

preprocessing and noise elimination using morpholog-

ical operations adopted by the authors. Furthermore, a

paradigm shift in mammograms analysis reduces the

classical triple-steps methodology to a one-step lesion

detection and classification, trained with smaller data

sets.

• Cardiovascular Image Analysis

Cardiac observations comprise several imaging

techniques. Ultrasound imaging is the most one used

in case of monitoring cardiac functionality analysis, CT

is widely used for coronary artery imaging, and

fluoroscopy/ angiography is the dominant in case of

interventions. Cardiac image analysis used traditional

segmentation techniques such as region growing,

thresholding, and watershed. More advanced methods

used active contours or level sets. However, DL

changed cardiac image analysis in the last few years

[18]. In [19], a CNN was presented to detect left

ventricular bounding box from MRI. They used level a

set function proposed in that work combined with an

DNN in Medical Image 
Compu�ng 

Detec�on and 
Localiza�on

Classifica�on & 
Diagnosis

2D & 3D 
Segmenta�on

Fig. 4 Medical Image Computing Fields of Focus

DNN in Medical Areas

Pathological

Tissues

Clinical

Organs Vessels Skin

Fig. 5 Emergence of DNN in Wide Medical Areas
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energy term, a region-based term, and prior shape

calculations. Good results were achieved. Zhen et al.

[20] presented an effective technique to estimate the

ventricular volume without segmentation. They pro-

posed an RBM, where each layer was fully connected to

its former layer. This type of full connectivity led to

more network parameters when compared to a CNN

and risked overfitting.

The main achievements are that the network was

trained using unlabeled data set and the trained

network was considered as an image feature extractor.

• Vessel Segmentation

In this area of vessel segmentation, DNN are usually

used to perform what is called pixel-wise classification.

The network is well trained in order to obtain the

segmentation mask. In [21], Wangetal used a CNN to

segment retinal vessel. This proposed a multilayer CNN

as a trainable feature extractor. The hierarchical method

achieved good results and high accuracy even with only

hundreds images training data sets.

• Retinal Diseases

The retina and retinal structure of human eyes in

diabetes is highly affected. This area needs more

attention from computer scientists. In [22], a new

supervised method for vessel segmentation from retinal

images was presented for image diagnosis of ophthal-

mologic diseases. A wide and deep neural network to

monitor this transformation and an efficient training

strategy were presented. This outperformed state-of-

the-art works in terms of sensitivity, computation, and

accuracy. Authors used cross-training (a semi- super-

vised learning method) which required no preprocess-

ing step and the training data set focused on diabetes

retinal images. However, high accuracy was obtained in

case of larger training databases.

The previous methods adopted pixel-wise classification

which is time-consuming. In [23], a method that combined

pixel classification and vessel tracking was presented. They

started from a seed point and moved toward vessel parti-

cles. Those particles are given scores for being vessel

belonging or not through a trained CNN. According to

those scores, vessels’ particles were selected. Combining

pixel classification and vessel tracking achieved a speed up

of 2X, compared to previous methods.

3.2.2 DNN for pathological image analysis

Pathological and clinical diseases are highly supported by

microscopic image analysis. This plays an important role in

CAD systems. Large amount of microscopic daily image

makes manual analysis inefficient. Deep learning finds the

way in this area, due to many reasons. Firstly, DL requires

huge amount of labeled images for training which is easily

found in microscopic images. Secondly, pathological

analysis is usually based on predefined models and struc-

tures which are easily detected through machine learning

techniques. Finally, accuracy in such area is more impor-

tant compared to computational time, which is achieved

through selected type of DNN [24].

Therefore, from previous overview, DNNs have biased

both clinical and pathological image analysis.

In the incoming sections, we will start focusing on

specific MI areas: detection, localization, automatic diag-

nosis, classification, and segmentation; monitor achieve-

ments and comment on obtained results.

4 CNN applied for detection and localization

Manual detection suffers many problems that could lead to

drastic consequences for both patients and physicians.

Thus, automatic localization and detection prevents miss-

ing parts during MI analysis. Bowl [25] introduced a

detection of cancerous lung from CT lung scans. He used

two- stages CNN; the first for image enhancement and

feature extraction, and the second for classification of

cancer probability. To train the proposed network 2000 CT

scans were used to obtain an accuracy of 98%. This

accuracy is reached due to the proposed cascaded design;

however, no studies related to time or algorithm com-

plexities were presented. Another study was presented by

Shin in [26] in the same area of lymph nodes cancer

detection from CT images, where a CNN was used. They

used ImageNet database (ImageNet: an image database

with thousands of annotated images) and achieved an

adequate accuracy of 95%. Yang et al. [27] did an effort in

kidney cancer detection from histopathological images.

They used a CNN with seven convolutional layers and used

a set of 500 images for training to achieve an accuracy of

98%. Their training problem was easy enough since they

only classified images as tumor or non-tumor. In [28], Shin

et al. used an unsupervised learning method based on

restricted Boltzmann machine (RBM) applied on a set of

78 MRI scans. The scans regions were containing liver or

kidney tumors. They succeeded to detect tumors from both

image categories and the RBM was able to learn features.

They achieved accuracy of up to 79% based on the organ.

It could be highlighted that unsupervised learning methods

achieve lower accuracy compared to those obtained from

CNN.

In the incoming subsections, highly selected research-

ers’ efforts and state-of-the-art works in medical image

detection and localization will be surveyed deeply. Com-

ments and discussions will enrich presented works.
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4.1 Solving false positive detection in CAD
systems using CNN

False positive (FP) in medical image detection means

considering a few normal pixels as abnormalities. These

usually reduce the sensitivity of automatic CAD systems

and lead to wrong invasive interventions. Several works

used cascaded classifiers for FP reduction [29]. This was

achieved either using a post-processing filter that can

eliminate FPs based on statistical analysis or using manual

methods. However, these methods are not effective and

contradict with automatic diagnosis systems. A better

method is to acquire new image features at the candidate

location and use such features to train new classifying

methods. New features can lead to missing information

within the first stage and thus could lead to a better clas-

sification; FPs could be then reduced to the minimum

extent [30].

In [31] (more than 90 Scopus citations), authors pre-

sented a FP detection solution for CAD systems keeping

high sensitivities. In this work, CNN is used to differentiate

hard false positives from true positives. To let the CNN

better sees 2D images, random rotation, translation, and

multiscaling analysis were applied around a coordinate

center. Sensitivity has increased from an average value of

57% to an average value of 75% regarding FP localization.

The following paragraphs describe method, algorithm,

and CNN implementation. Finally, we will comment on

results.

4.1.1 Data set preparation

Since CNN effectiveness is highly dependent on the size of

training data, authors in [31] presented a simple and effi-

cient way to produce an increased number of training

dataset in number and diversity. The 3D volumetric raw

images are first sliced into 2D images, three different

transformations are then applied to each 2D slice: transla-

tion along a random vector v, rotation around a center

coordinate with angle in the range [0� 360�], and scaling.

The number of random translations, rotations, and scales

are Nt, Nr, and Ns, respectively. It is mandatory to keep the

same number of pixels/voxels during such transformations.

Finally, this preprocessing stage generates N sample 2D

images (N = Ns 9 Nt 9 Nr) for each region of interest

(ROI). To obtain labeled images for the prepared data set,

ground truth data are used. Observations on pixels under

investigations as ‘FP’ or ‘TP’ depends on whether it

belongs to a true lesion (object of interest) or not. Resultant

labeled images are successfully used to train the CNN in a

fully supervised manner.

4.1.2 CNN implementation

Three radiological data sets were chosen comprising dif-

ferent clinical applications: spine images for sclerotic

metastases detection, cancer detection from lymph images,

and cancer detection from colonic images. The proposed

CNN was run on an NVIDIA GeForceGTX TITAN

(6GBmemory) hardware environment. Training time while

considering a number of 1200 optimization epochs ranged

from nine to thirty hours. Supervised learning methods

with labeled MI data sets may take large training time and

thus it is essential to use GPU cores [32], as will be

explained later.

4.1.3 Comments and observations

From my opinion, the proposed method succeeded in

solving FP detection problem using CNN. Two important

observations could be monitored. The first is the proposed

image preprocessing that created a huge training dataset

using scaling, rotation, and translation. The second is the

study of the same 2D slice from different views and scales

that increased the effectiveness of the CNN as a classifier

and thus led to an increasing sensitivity.

4.2 Mitosis detection from breast cancer
pathological images

Pathology quantitative tissue analysis could help in better

understanding cancer behavior and localization. State-of-

the-art work in cell and nucleus detection usually consid-

ered thresholding and morphological operations [33],

region growing [34], level sets [35], K-means [36], or

active contours [37]. However, recent researches consider

DL techniques to test and validate larger number of

histopathological images [38]. Mitotic count is a good

indicator for breast cancer aggressiveness. This is manually

performed by pathologists, which is dangerous and time-

consuming. A multistage DL method for mitotic cells

detection from histopathology images was presented [39]

(37 citations in Scopus in 8 months). The proposed method

[39] has two main objectives: deep detection network for

localization of mitotic cells using contextual based infor-

mation, and a deep verification network for removal of

false positive detection, as will be shown below. A state-of-

the-art well-known breast cancer dataset was used during

experimental results [40]. The performance of such sys-

tems is evaluated according to only correct counts, irrele-

vant from the shape of the mitosis [39]. Details are given in

the incoming paragraphs.
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4.2.1 Data set preparation

The system in [39] used 1696 High Power Field (HPF), i.e.,

area visible under the maximum magnification power of the

electron microscope, images at 40X magnification. Each

HPF had a size of 1539 9 1376 pixels. The training data

consisted of 1200 with only 749 labeled images. The

testing dataset considered the rest of images. Dataset

augmentation used cropping, rotation, and mirroring. It

started by cropping into 512 9 512 pixels from original

images then images were rescaled to 1024 9 1024. Rota-

tion and mirroring were both applied to the original HPF

images to produce more training samples. Rotation was

applied with a step size of 45�.

4.2.2 CNN implementation

The core component of this proposed system is the deep

detection (DeepMitosis). This utilized a 50-layers CNN,

trained over 12,000 iterations, and learning rate of 0.01.

This CNN generated reference boxes during the last con-

volutional feature map layer. Those reference boxes were

called anchors. Two fully connected layers (pooling) were

designed to classify anchors and reduce bounding box

sizes. The refining detection came as a second phase, took

the detected boxes from the detection CNN as input and

estimated a probability score for each anchor being ‘true

positive’ or ‘false positive’. The system was implemented

on Caffe DL framework using Python and C ? ? .

Experiments were carried out on Lunix server with NVI-

DIA GeoForce GTX TITAN X GPU and results are shown

in Fig. 6.

4.2.3 Comments and observations

Since, mitotic count and not the mitotic shape is the most

critical item when estimating breast cancer from patho-

logical images, the proposed work with detection and

refinement is highly appreciated.

From my point of view, the method used to form image

patches is inadequate, since mitotic cells in the boundary

of patches could be split into two or more patches and thus

increase the counts. Since pathological images are usually

analyzed in labs and not real time, authors did not give any

study regarding time performance while using two cas-

caded CNNs one with 50 layers.

5 Classification and diagnosis using deep
neural networks

Deep learning diagnosis convolves several areas. In [41],

electrocardiogram (ECG) beat classification has been ana-

lyzed aided with deep learning. Since ECG beat data lies

on high-dimension manifold, this work proposed a novel

‘‘local deep field’’ for classifying the devil in the details of

such complex variations of ECG data. This method learnt

different deep models to be able to detect the hidden class

information within local distributions. The results showed

good accuracy in classifying ECG that surpassed cardiol-

ogists work.

Another outstanding area is the early diagnosis of Renal

Transplant Rejection (RTR), where the current diagnostic

technique is renal biopsy that is not preferred due to its

invasiveness, time recovery, and complications. A com-

puter-aided diagnostic (CAD) system for early Automatic

RTR (ARTR) detection from 3D magnetic resonance

imaging (MRI) data was presented in [42]. The CAD

process started from kidney tissue segmentation using

level-set-based segmentation. A B-spline-based 3D data

alignment was employed to overcome local deviations due

to breathing and heart beating. Then, empirical cumulative

distribution functions of apparent diffusion coefficients of

the segmented tissue were collected as discriminatory

transplant status features. Finally, a deep-learning-based

classifier with autoencoders was employed to distinguish

between rejected and non-rejected renal transplants.

Experiment was applied on 100 subjects, 97.0% were

correctly classified.

There is a high demand for developing CAD tools to

help pathologists making accurate diagnosis. CAD systems

from histopathology are possible since emergence of dig-

ital pathology [43 and 44]. Recently, interest has been

given to the application of DL techniques to implementing

CAD systems that are able to classify and take decisions

aided with big data images. Another research area where

DNNs assisted CAD systems remarkably is mammogram

image classification and diagnosis. Since, it was found

difficult to segment mammogram image accurately due to

low contrast between normal and abnormal lesion tissues,

in [45], a CNN was used to better learn features of an initial

contour of mammograms and micro calcifications located

through a Chan–Vese level set method. To increase the

classification accuracy and reduce the false positives, a

relaxation network classifier was used in the last stage of

the proposed CNN. Three performance measures were

applied. Accuracy, sensitivity, and specificity reached

99%, 0.9875, and 1.0, respectively. These results proved

how DNNs could improve CAD systems with annotated

data.
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In the incoming sections, focus will be given to three

research articles to show DNNs performance in different

clinical areas.

5.1 A skin cancer classification approach
from photographic images

Skin cancer is visually diagnosed. Beginning with an initial

clinical screening and followed potentially by dermoscopic

analysis, biopsy, and histopathological examination. The

intervention of DL in MI analysis can open another view

and facilitate detection of the most common human

malignancy [46 and 47]. Previous work in dermatological

CAD systems focused only on either dermoscopy or his-

tological images. The former needs a specialized instru-

ment, while the latter uses invasive biopsy and microscopy

[48].

An outstanding research was presented in [49] (214

citations in Scopus). This work presented an end-to-end

well trained CNN for skin cancer classification from direct

skin images. Photographic images exhibit few problems:

zoom, angle and lighting, or blurring. This makes classi-

fication a challenging problem [50 and 51].

The proposed method in [49] overcame such problem

using a data driven approach, i.e., training a million of

photographic images over CNN transforms image features

into learnt data via the CNN and makes it robust for pho-

tographic variability.

5.1.1 Data set preparation

The data set used came from a combination of open access

dermatology and Stanford Hospital. Data set contained

images representing same lesions form multiple view

points for the same person, i.e., image scaling, rotation, and

flipping were used with random probabilities. Blurry ima-

ges were removed from testing and validation pool but kept

in training phase. The overall data set consisted of 129,450

images representing about 2000 visual skin appearances.

5.1.2 CNN implementation

The taxonomy presented in [49] described a tree structure

with two main classes. The first class comprised: benign –

malignant – non neoplastic lesions. The second class rep-

resented the major diseases nodes as shown in Fig. 7. The

paper used 2014 ImageNet CNN already trained but

replacing the final classification layer according to the skin

cancer problem. All images were adjusted to 299 9 299

Fig. 6 Results of Two DNNs: Localization and Verification [39]
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pixels to fit with the CNN. Google TensorFlow DL

framework was used.

5.1.3 Results

The proposed CNN achieved 73% sensitivity compared to

66% in traditional analysis methods (dermatologists: der-

moscopy or histological images).

5.1.4 Comments and discussions

In my opinion, the proposed work has opened a new trend

for future DL in medical image analysis for many reasons:

• Classification from photographic images, where it

could be possible, was impressing and achieved good

results.

• The author extended their work to a mobile application

used by dermatologists outside clinics.

• The CNN evaluation is highly outstanding, a group of

21 board-certified dermatologists approved obtained

results. This is an important achievement regarding the

real existence and approval of CAD systems by

physicians.

The impressing number of citations and the quality of

the paper (Nature publication) makes it a role model for

CNN applications in medical imaging.

5.2 Lung diseases CAD system using CNN

Lung diseases comprise more than 100 chronic lung dis-

orders characterized by inflammation of the lung tissue

[52]. Till now, the diagnosis of lung diseases involves

questioning the patient, performing physical examinations,

and image scans via chest X-ray or CT. Those scans are

examined through physicians using visual inspections

leading to wrong diagnosis in many cases. Rare CAD

systems for lung assessment comprise the following steps:

lung segmentation – lung disease quantification – diagnosis

or classification. A few classifiers were presented in the

literature based on: k-nearest neighbors, ANN, support

vector machine, or random forest [53 and 54]. Some

attempts have recently used DL techniques, especially

CNN in lung tissue analysis [55].

In [56] (85 citations in Scopus), a CNN was proposed

for lung diseases patterns classification. The proposed

CNN consisted of five convolutional layers followed by an

average pooling layer following the number of diseases

classes. In their work, seven classes were selected: healthy,

ground glass opacity (GGO), micronodules, consolidation,

reticulation, honeycombing, and a combination of GGO/

reticulation.

5.2.1 Data preparation

The data used for training and validation were acquired

from two main sources: Swiss University Hospital (94

scans) and Bern University (26 scans), leading to a total of

120 patients’ scans, each of size 512 9 512 pixels. Images

comprised healthy and unhealthy tissues.

A new trend was applied to augment data size. Each

scan was partitioned into a 32 9 32 pixels image patch,

i.e., one CT scan gave 256 image patches. A total of 30,720

(120 9 256) image patches were then obtained for the

whole data set. However, physicians excluded non-ROIs

and bronchovascular patches resulting a total of 14,969

Fig. 7 Proposed Taxonomy Classes [49]
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image patches for training and evaluation. This new trend

of subdividing the image was adopted for two reasons.

First, one CT scan for a patient could have more than one

disease. Therefore, each part in the image scan is of great

importance. Second, focusing on every part let the CNN

learn features better. Figure 8 presents example of gener-

ating image patches.

5.2.2 CNNs architectures

The input image to the CNN was 32 9 32, and five con-

volutional layers were then used. The size of the kernels in

each layer was chosen the minimal (2 9 2), as smaller

kernels lead to deeper CNNs. An average pooling layer

followed the convolutional layers with size 7 (representing

the classes). Three CNNs were implemented for results

comparisons, all with similar architecture but with different

kernels sizes, number of convolutional layers, and loss

functions. The proposed algorithm was implemented using

Theano framework [57], and experiments were performed

under Lunix OS on a core i7 machine with GPU NVIDIA

GeForce Titan.

5.2.3 Results

The number of kernels affected the convergence time and

each training epoch became slower by more than 20X. By

altering the number of convolutional layers, it could be

concluded that five to six layers gave the best results.

Comparison with state-of-the-art work showed that the

proposed CNN proved superior performance. Accuracy

achieved was 0.86. Furthermore, the accuracy achieved in

this method surpassed VGG-Net [57] and AlexNet [58] by

8% and 12%, respectively.

5.2.4 Comments

The number of convolutional layers plays an important

role, as increasing this number led to overfitting and

smaller numbers reduced the accuracy.

The proposed data augmentation method represents a

new trend, since splitting the features map into multiple

pooled regions leads to more features view in different

areas of the same image and thus facilitate the CNN to

study such features.

To the best of my knowledge, if the authors used Wavelet

Transform (WT) prior CNN, they may have achieved better

performance. Since WT emphasizes image features and

could help in image partitioning in both spatial and fre-

quency domains, it could be an asset to the previous work.

5.3 Alzheimer’s diseases classification using RBM

According to Alzheimer’s Disease International, nearly 44

million people have Alzheimer worldwide. Only 1-in-4

people with Alzheimer’s disease has been diagnosed.

Alzheimer’s is most common in Western Europe and

North America. On the other hand, it is least prevalent in

Sub-Saharan Africa and Asia. Alzheimer’s is considered

the top cause for disabilities in later life [59].

5.3.1 Alzheimer’s classification challenges

Early diagnosis plays an important role in preventing dra-

matic drawbacks of Alzheimer’s Disease (AD). This is

based on classifying extracted features from brain images.

The problem is very different when compared to tumors or

calcifications detection, since such features have to monitor

variations of anatomical brain structures, such as, ventri-

cles size, shape, tissue thickness, or brain volume. In [60], a

deep 3D-CNN was proposed to capture AD biomarkers,

learn generic features, and predict AD. The 3D-CNN was

pre-trained to capture anatomical shape variations in

structural brain MRI scans. Experiments showed good

results over the proposed MRI dataset with no skull-strip-

ping preprocessing. To diagnose AD and its prodromal

stage, namely, Mild Cognitive Impairment (MCI), Suk

et al. [61] proposed a DL method for finding high-level

latent and shared features from two imaging modalities:

MRI images and Positron Emission Tomography (PET)

images. In their study, a restricted Boltzmann machine

(RBM) was used to find a latent hierarchical feature rep-

resentation from a 3D patch (a joint feature representation

from the paired patches of MRI and PET) with a multi-

modal RBM. In the multimodal deep Boltzmann machine,

a Gaussian RBM was trained to transform the paired pat-

ches into binary vectors. After finding high-level latent and

shared features by using the paired patches and trainedFig. 8 Generating Image Patches from One CT Slide [56]
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multimodal deep Boltzmann machine, an image-level

classifier was developed to perform the final classification.

5.3.2 RBM structure and training

Restricted Boltzmann machines are probabilistic models.

RBMs have one of the easiest architectures; it consists out

of one input layer, called the visible layer and one or more

hidden layer(s). The absence of an output layer is obvious

in this proposed model, since the predictions are made in a

different manner; the biases or weights represent the filters

parameters. These filters can be visualized as a grayscale

image, as explained before in Sect. 3.3. Dataset was par-

titioned into ten subsets, each including 10% of the total

data. Nine subsets were used for training and the rest for

testing. They defined a preprocessor that effectively con-

verted MR tissue densities or PET voxel intensities into

500-dimensional binary vectors. Those vectors were used

to train the RBMs. The proposed RBM consisted of three-

layers for MRI and PET (PET-DBM) respectively, and

four-layers for MRI ? PET. Both the MRI-RBM and the

PET-RBM were structured with 500 (visible), 500 (hid-

den), and 500 (hidden) neurons. The MRI ? PET had a

final layer with 1,000 hidden units.

5.3.3 Results

To validate the effectiveness of the proposed method,

authors performed experiments on ADNI dataset and

compared with the state-of-the-art methods. In a binary

classification problem of AD against healthy Normal

Control (NC), a maximum accuracy of 95.35% was

obtained, outperforming the state-of-the-art work in this

area. By visual inspection of the trained model, it could be

observed that the proposed method could hierarchically

discover the complex latent patterns inherent in both MRI

and PET.

5.3.4 Comments

From the previous state of the art works, it could be con-

cluded that RBM surpasses CNN and other DNN tech-

niques in classifying Alzheimer. The main reason is that the

challenge within AD is that we are searching for textures

rather than abnormalities within the image. The effect of

RBM as filter banks helped so much in this area.

6 Deep neural networks for medical image
segmentation

Automatic tissue and region of interest (ROI) segmentation

in medical images is of great importance for different

clinical routines. Segmentation is sometimes a prepro-

cessing stage for several medical analysis. MI segmenta-

tion encounters many challenges. For example, automatic

and reliable segmentation techniques for removing brain

tumors are required since this can affect patients’ health

and shorten their life. However, such tumors have large

spatial variability and structural complexity [62]. Several

state-of-the-art works used DL in brain tumor segmenta-

tion’s methods [63, 64]. For example, Pereira et al. [65]

used a CNN with reduced convolutional kernels with the

aim to segment gliomas (the most common and aggressive

brain tumors). In their research, authors used small kernels

and thus deep networks for more features’ observation.

Other DL methods focused on segmentation of various

tissues to differentiate between three important ROIs in an

MRI brain image: Gray Matter (GM), White Matter (WM),

and Cerebrospinal Fluid (CSF) [66]. Therefore, CNN

architectures were designed according to different input

patch sizes. Different convolutional network architectures

with variable number of convolutional layers were used for

comparison purposes and to obtain resulted different fea-

ture map levels.

MI segmentation for measurement of cardiac ventricle

parameters plays a crucial role in clinical assessment, i.e.,

ventricular volume, wall thickness, and ejection fraction,

and functionality. Therefore, DL methods have been pro-

posed to reach an accurate automatic segmentation [67].

For example, to segment the LV from MRI images, Avendi

et al. [19] proposed a methodology, as explained earlier in

this survey, which combined DL architecture and

deformable models.

6.1 Brain tumors segmentation using two-
pathways CNNs

Although surgery is sometimes essential for brain tumors

treatment, there are tumors that cannot be physically

removed. Radiation and chemotherapy are used to slow the

growth of those tumors. MRI is one of the most common

tests for brain tumors’ diagnosis and surgery decision.

Automatic brain tumor segmentation has great impact on

growth rate prediction and treatment planning. As descri-

bed above, healthy brains are consisting of three types of

tissues: WM, GM, and the CSF. The aim of brain tumor

segmentation is to detect the active tumorous tissue, or the

location and extension of the tumor regions [68]. In the last

5 years, the use of deep CNNs for brain tumor
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segmentation was discussed in several big medical con-

ferences. Davyetal [69], Zikicetal [70], and Urban et al.

[71] divided the 3D MR images into 2D or 3D patches [71]

and trained a CNN to predict its center pixel class. Urban

et al. [71] as well as Zikic et al. [70] implemented a

common CNN consisting of a series of convolutional lay-

ers, a nonlinear activation function between each layer and

a softmax output layer.

In [68] (345 citations in Scopus), a fully automatic brain

tumor segmentation method based on CNNs was presented.

The proposed networks were tailored to glioblastomas

pictured in MR images: tumors that can appear anywhere

in the brain with different kind of shapes, sizes, and

contrasts.

6.1.1 Motivations

The motivation within this work was to explore different

CNN architectures and thus present a novel architecture

that could exploit both local features as well as global

contextual features simultaneously. Furthermore, they used

a fully connected layer as an output layer; which allowed a

40X speed up in the overall training and testing algorithms.

Finally, they explored a cascaded architecture in which the

output of the CNN was treated as an additional source of

information for a subsequent CNN. The results reported on

the 2013 BRATS test dataset when compared with [68]

revealed that this architecture improved segmentation

performance.

6.1.2 CNN architecture

• Two-pathway Architecture

The architecture in [68] consisted of two main

streams: a pathway with 7 9 7 receptive fields and

another with 13 9 13 receptive fields.

Pathways were named: ‘local pathway’ and ‘global

pathway’, respectively. The motivation for this archi-

tectural choice was the correct prediction of the label of

a pixel influenced by two aspects: the visual details of

the region around that pixel and its larger ‘‘context’’,

i.e., exploit both local features as well as global con-

textual features simultaneously.

• Cascaded Architecture

The idea was based on feeding the output probabil-

ities of the first CNN as additional inputs to the layers

of a second CNN. The outcome was to increase the

efficiency of CNNs to specify the dependencies

between adjacent labels. This technique was named

‘joint segmentation’. Figure 9 depicts the architecture.

6.1.3 Implementation and results

The implementation was based on an open source machine-

learning library specialized in DL algorithms, Pylearn2

[72]. It also supported the use of GPUs, which are nowa-

days essential for DL algorithms. Since CNN’s are able to

learn useful features from scratch, Havaei et al. applied

only minimal preprocessing. The preprocessing followed

three steps: the 1% highest and lowest intensities were

removed, a bias correction was applied, and finally the data

were normalized within each input channel by subtracting

the channel’s mean and dividing by the channel’s standard

deviation. The training dataset contained 30 patient sub-

jects all with pixel accurate ground truth (20 high grade and

10 low grade tumors); the testing dataset contained 10 (all

high grade tumors). The training brains come with ground

truth with five segmentation labels: non-tumor, necrosis,

edema, non-enhancing tumor, and enhancing tumor. In

total, the model iterated over about 2.2 million examples of

tumorous patches.

6.1.4 Comments

The first achievement in this work is the performance when

using the novel two-pathway architecture that was able to

model both the local details and global context or modeling

local label dependencies. From my opinion, the cascaded

CNN could better be replaced by one or two additional

convolutional layers.

The authors did not observe the disadvantage of cas-

caded layers since they implemented their system over

highly performing distributed GPU cores.

6.2 Interactive MI segmentation using DL

Interactive segmentation methods are new trends that

integrate user knowledge and non-visual image features to

reach accurate results [73]. These trends are highly

appreciated by most physicians. In [74], a novel DL

interactive segmentation framework used CNNs to study a

bounding box from a supervisor. The proposed framework

was applied to segment human organs from 2D MRI slices.

The experimental and simulation results showed that the

proposed model was robust to segment unseen organs with

high accuracy and little intervention from supervisor. The

system succeeded when trained in an unsupervised learning

manner.

6.2.1 Interactive segmentation challenges

Three challenges could be observed related to organs

segmentation:
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• One MI contained several neighboring organs.

• CNN usually does not generalize to previously unseen

organs.

• Interactive segmentation requires DL of a ROI then

generalization using context variations outside this

ROI.

• Fast inference and memory efficiency are highly

required for interactive segmentation.

6.2.2 Method

The proposed interactive framework [74] consisted of

bounding box that represented the input to a CNN. This

specified an initial organ segmentation. The segmentation

was based on the fact that the CNN is capable of learning

some common features, saliency, contrast, and hyper

intensity across different objects. This process was applied

to other organs for more generalization during training. The

pre-trained CNN accepted unseen images and was capable

of segmenting the organ existing in the bounding box.

6.2.3 Training phase

The proposed CNN consisted of five convolutional layers,

one concatenation layer, and one softmax layer. The kernel

size was varied during the five convolutional layers to 1, 2,

4, 8, and 16. The main reason was that to adapt the CNN to

capture features at different scales. Since, the MRI input

image contained several organs even inside the bounding

box. Features from these five layers were concatenated and

fed into layer six; that served as a classifier. Finally, a

softmax layer was used to obtain probability-like outputs.

In the testing phase, they updated the model to ensure

efficient fine-tuning and fast response to user interactions.

Features in the concatenation layer for the test image were

stored before the fine-tuning.

6.2.4 Results

MR images from 18 patients were used. They performed

data splitting at patient level and used images from 10, 2, 6

patients for training, validation, and testing, respectively.

The training set consisted of 333 and 213—2D instances of

the placenta and fetal brain. The validation set contained

70, 25, 36, and 41—2D instances of the placenta, fetal

brain, fetal lungs, and maternal kidneys. The testing set

consisted of 165, 80, 114, and 124 2D instances of the

placenta, fetal brain, fetal lungs, and maternal kidneys,

respectively. The CNN performed well on previously

unseen fetal lungs and maternal kidneys.

6.2.5 Comments

From my view, two main observations could be seen within

this study. The first is that authors succeeded to build a

CNN that segmented totally unseen images. The second, is

the user interaction framework. User interaction leads to

weak learning and slower time; however, results proved

high accuracy and fast response.

6.3 3D Medical image segmentation using CNN

Deep learning techniques emerged as powerful supervised

learning tools with great model capacity and ability to learn

highly discriminative features for different MI tasks. Usu-

ally segmentation of 3D images was performed by pro-

cessing groups of 2D slice independently, which lacks the

importance of volumetric medical image data [75]. Fully

3D CNNs come with an increased number of parameters,

significant memory usage, and high computational

requirements. Several works studied limitations while

using 3D CNN for medical imaging [76]. The main reasons

for that could be summarized in the following two

considerations:

Fig. 9 Two Pathways and Cascaded Architectures [68]
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– Convolution with 3D kernels are computationally

expensive

– 3D-CNN architectures have a huge number of training

parameters

In [77], a dual pathway, 11-layers deep, 3D- CNN was

presented. The challenging task was a brain lesion seg-

mentation. To overcome the computational problem within

3D MI scans, authors achieved three contributions:

– An efficient dense training scheme that used adjacent

image patches instead of using the whole image during

training

– The development of a deeper and more discriminative

3D-CNNs

– Introducing a dual pathway architecture at multiple

scales

This work improved the state-of-the-art work with top

ranking performance on the public benchmarks BRATS

2015 [75].

6.3.1 3D- CNN architecture

3D- CNNs used voxel segmentation by classifying each 3D

image voxel independently taking the neighborhood (the

local and contextual image information) into account. This

was achieved by sequential convolutions of the input with

multiple filters at the successive layers of the proposed

network. The neurons of higher layers combined the pat-

terns extracted in previous layers, which resulted in the

detection of increasingly more complex patterns. The

activations of the neurons in the last layer (L) was related

to particular segmentation class labels, thus the last layer

was also considered as the classification layer. Figure 10

demonstrates a 3D CNN with kernel equal 5 9 5 9 5.

Similarly to 2D convolution, the size of the resultant image

is (L-K ? 1), where L is the input image size and K is the

kernel size.

6.3.2 Dense training on image segments in 3D- CNN

When the receptive field is fully enclosed within the input

and captures only original content, i.e., the input segment

dimensions are divided by the kernel size, the computa-

tional costs and memory loads will be reduced. In [77],

repeated computations of convolutions on the same voxels

in overlapping patches were avoided for the reason stated

above and thus optimal performance was achieved. How-

ever, GPU memory constraint means that there is no suf-

ficient space to deal with the complete input images and

thus image patches were used to be small enough and fit

into memory. Image patches (Segments) were analyzed

instead of original images, where the number of patches

was assumed as B. Larger Bs were preferred as they could

approximate the whole data more accurately and led to

better segmentation of the tumor lesions. However, a

compromise should be considered when selecting B even

while using GPUs.

6.3.3 Deeper CNN

In order to build a deeper 3D architecture, small kernels

were adopted. Smaller kernels are faster to convolve with

and contains less weights. In the work presented by

Kostantinos [77], it was concluded that small kernels

reduced both the element-wise multiplications and the

number of trainable parameters, as well.

6.3.4 Multiscale parallel convolutional pathways

In order to incorporate both local and larger contextual

information into the proposed 3D-CNN, a second parallel

pathway was added. This operated on down-sampled

images, thus, the 3D-CNN simultaneously processed the

input image at multiple scales. Higher level features such

as the location within the brain were learnt in the second

pathway, while the detailed local appearance were learnt in

the first pathway. The size of the pathways could be

adjusted based on the existing computational capacity.

Fig. 10. 3D- CNN with kernel size (5 9 5x5) and four convolutional layers
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6.3.5 Comments

Deeper network variants that are more efficient can be

designed by simply replacing each layer of common

architectures with more layers that use smaller kernels.

However, deeper networks are difficult to train. From my

point of view, the use of 3D CNNs was efficient. It opened

an area to future research in medical image analysis of 3D

volumetric data.

7 Discussion and observations

From the previous sections, it could be concluded sum-

marized the main highlights in Table 1. The aim is to

describe in a deeper way some of the highly recognized

efforts in MI detection, diagnosis, and segmentation using

DNNs. Table 2 summarizes the challenges and their rele-

vant solutions. The table presents six major challenges we

faced while surveying hundreds of papers in the area, rel-

evant solutions are given citing one of the most compre-

hensive research that solves such problem.

8 Deep neural networks implementation

The most well-known software frameworks in the past few

years includes: Caffe, MXNet, Tensorflow, MatConvNet,

Torch, and Theano. Caffe stands for ‘‘Convolutional

Architecture for Fast Feature Embedding’’ [80]. MXNet,

‘‘Mix and Maximize Networks’’ [81], is a high-perfor-

mance deep learning library with many systems-level

design decisions. Tensorflow where its name is derived

from the operations that such neural networks perform on

multidimensional data arrays referred to as ‘‘tensors’’ [82],

and ‘‘MATLAB Convolution Networks’’ (MatConvNet)

[83] are two important frameworks. Torch [84] and Theano

[85] could be classified as the least used DL tools nowa-

days. Tables 3 and 4 summarize a comparative study for

well-known DNN frameworks.

Choosing the correct hardware for DL depends on the

learning problem, the throughput requirements, and the

available cost. Special hardware design and architectures

have significantly increased the efficiency of DNNs for

medical applications: development of graphical processing

units (GPUs) and progress in distributed systems. GPUs

play an important role in DL because of their effective

Table 1 Discussion and observations in surveyed work

MI Analysis Problem discussed Results Comments/observations

Detection FP solution in CAD systems

[31]

Classifying FP from TP areas with

75% accuracy

Better accuracies could be achieved using advanced

H/W technologies, such as NVIDIA TITAN RTX

with 576 cores

The method presented for dataset augmentation is of

great importance

Mitosis Detection in breast

cancer [39]

Detection and refinement stages for

pathological images with 95%

accuracy in image patches

Efficient for those who work with histopathological

images

Python framework. Better accuracies while using

advanced H/W technologies, such as NVIDIA

TITAN RTX with 576 cores

Diagnosis Mobile App for skin cancer

classification [49]

Diagnosis with 75% accuracy from

mobile camera photos

Classification from photographic images

System performance evaluation is outstanding for fast

screening. Open future directions using advanced

CNN pre-trained structures in Tensorflow

environment

CNN for lung diseases

classification [56]

Diagnosis with 86% accuracy Theano framework. The accuracy could be increased

while using pre-trained networks in Tensor flow

framework

Diagnosis of Alzheimer

disease using RBM [61]

Diagnosis with 95% accuracy RBM surpasses CNN when searching for texture rather

than abnormalities

Segmentation Brain tumor segmentation

using two-pathway and

cascaded CNNs [68]

Segmentation accuracy reached 95% Two-pathway architecture is considered as a novel

trend and led to high accuracy

Deeper CNN for 3D image

segmentation [77]

Reduced training accuracy due to

large data size

Multiscale parallel convolutional pathways open future

research directions for volumetric data
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Table 2 Challenges in MI

analysis and relevant solutions
Challenges Suggested solution(s)

Less training data size Use dataset augmentation [31]

Sparsity of labeled data Semi-supervised CNN [78]

Extracting image features in a better way Multi-pathway architecture [68]

3D images understanding Using multiscale architectures [77]

Imbalanced labeling distribution Use cascaded CNN [79]

Differentiate RBM and CNN Classify RBM application [61]

Table 3 A Comparative Study for Well-known Deep Neural Networks Frameworks

Tool Advantages Disadvantages

Caffe Open source A good scientific and research package, but limited usage in

applications

Implemented in C11 and CUDA CUDA is sometimes difficult to use

Supports Python

Specialized in image processing

Fast running: Processes approx. 1000 images/sec (inference)

and 250 images/sec (training)

Many pre-trained models

TensorFlow Open source

Supports C11 and Python Less support for recursive networks (RNN)

CPU and GPU modes and support multi-GPUs

Runs over Android and iOS

Very flexible and customizable

Supports a converter for Caffe

Excellent documentations

Google official DL framework

MXNet Open source Difficult to be customized in C??, you have to build the

application from the beginning

Supports C11 and Python Less documentation

CPU and GPU modes and support multi-GPUs

Supports computer vision and machine translation applications

Effective in building bigger networks

Efficient run time

•MatConvNet Support MATLAB language Slow

Supports C11 •Could not support GPU unless presence of parallel GPU

toolbox

Flexible MATLAB license

•Easy to implement Does not support Python

•Torch •Fast running and good flexibility Steep learning curve

•Includes many pre-trained models No longer in active starting 2018

•Run on GPU

•Used by Facebook and Twitter

•Theano •CPU and GPU modes Slow

•Supports Python Less pre-trained models

•Very flexible and customizable

•Good support for RNN
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highly parallel processing structure for both learning and

inference algorithms. The typical application requires a

host computer with a GPU board installed. Each GPU core

includes tens of arithmetic logic units (ALUs). In CNN,

large amounts of neurons will be processed by the same

instructions at each layer [86]. Since the performance of a

single GPU is not sufficient to manage large-scale deep

learning applications, it is quite common to parallelize

processing tasks across multiple GPUs. Distributed com-

puting is an efficient parallel solution to increase the DL

performance by exploiting more distributed resources [87].

Although GPU processing has solved most computa-

tional challenges in the area of medical image processing,

the GPU efficiency is still around 20% of the maximum

performance [88 and 89]. Both memory bandwidth and

capacity have a great effect on training, validation, and

testing performances [90]. To explain this problem, all

network parameters are distributed toward layers (a size-

able amount of data that makes the network layers exhibit

an incremental amount of data. The main problem with

increasing this efficiency is related to the high bandwidth

stacked memory [91 and 92]. Different approaches based

on FPGA, GPU, and CPU are listed accordingly in Table 5.

This table presents a comparison between different devices

to facilitate the tradeoffs while choosing an approach for

configuring your system designed using FPGA, GPU, or

CPU devices. To conclude, each has its corresponding

strong and weak areas, which means that still there are no

clear one-size-fits-all solutions. It is all according to the

application [93].

9 Future of CNNs in medical image
computing

9.1 Summary of existing well-known CNN
structures

With the increased performance from GPU achievement

and big data, CNN researches experienced breakthroughs.

One of the most classical CNN structures is AlexNet.

AlexNet [58] when introduced used dual-GPU training

process then moved to a single GPU with eight deep layers

as a result of the advance in GPU computation. AlexNet is

considered the root for several CNN structures. VGGNet

comes as an upgraded CNN developed by Simonyan and

Zisserman [57]. It uses repeatedly stacking convolutional

layers and maximum pooling layer. This widely used net-

work to extract image features using a number of 16 to 19

CNN layers. The innovation of VGGNet to extract image

features is due to the use of a 3 9 3 convolution and 2 9 2

pooling kernels, respectively.

Utilizing more deep layers leads to negative effects:

overfitting, gradient disappearance, or gradient explosion.

GoogleNet [94] proposes another way which for a more

efficient computation time, i.e., extracting more features

with the same computation amount. The structure consists

of several cascaded modules. This idea indicates that when

two convolutions are put in series, more nonlinear features

could be combined. Using a 1 9 1 convolution reduces the

dimensionality, which in turns decreases the computational

complexity.

Table 4 Well-known

Frameworks and Libraries
Framework License Language Homepage

Caffe BSD C?? http://caffe.berkeleyvision.org/

Tensorflow Apache 2.0 C? ? and Python https://www.tensorflow.org/

MXNet Apache 2.0 C?? https://github.com/ dmlc/mxnet

MatConvNet Oxford MATLAB http://www.vlfeat.org/matco nvnet/

Torch BSD C and Lua http://orch.h/

Theano BSD Python http://deeplearning.net/software/

theano/

Table 5 Different approaches

based on FPGA, GPU, and CPU
Main feature Highly recommended Comments

Power Consumption FPGA Both FPGA and CPU have low power consumption

Time Complexity FPGA FPGA runs much faster compared to GPU

Programming CPU CPU is the easiest, then GPU, and finally FPGA

Customization All Better flexibility could be found in FPGA

Interface FPGA FPGA supports a wide variety of interfaces

Big data GPU CPU supports best storage capabilities

DNNs-MI Training GPU GPU performance is non comparable

Neural Computing and Applications (2022) 34:5791–5812 5807

123

http://caffe.berkeleyvision.org/
https://www.tensorflow.org/
https://github.com/dmlc/mxnet
http://www.vlfeat.org/matconvnet/
http://torch.ch/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/


ResNet was proposed by He, Zhang [95] in 2015. It

utilizes residual units. ResNet trains a 152 layer CNN, and

achieves the best result with a minimal number of param-

eters compared to VGGNet. ResNet structure is able to

speed up the training process of the DNN with higher

accuracy. If the DNN depth is continuously increasing, a

degradation problem might occur, i.e., the accuracy rise,

reach saturation, then decline.

UNet is a classical CNN with a U-shaped structure that

is able to capture semantic information during down-sam-

pling. The main advantage of this structure is its ability to

be trained with a small number of images based on sliding

Windows [96]. One of the main limitations of U-Net is that

it uses SoftMax cross entropy loss to deal with the problem

with medical images with similar target boundaries. Solu-

tions suggested adding weights to each pixel while calcu-

lating the objective function for the network to be more

able to specify boundaries.

The region-based CNN or the R-CNN [97] starts by

extracting regions of interest from input images and warp

them to a fixed size images. It aims focusing on possible

target locations. These normalized regions are entered into

the CNN to extract features. SVM is applied as a classifier

to identify features with linear regression. Using low and

high quality regions, R-CNN performs better than the tra-

ditional sliding window from accuracy point of view. The

R-CNN is time-consuming due to repeated computations.

Moreover, it takes larger memory size. Other versions have

been implemented such as fast and faster R-CNN [98].

YOLO [99] CNN algorithm could be considered as a

one-stage target detection algorithm. The main contribu-

tions within the YOLO are its high speed, less background

errors, and good generalization performance. However,

YOLO has a reduced performance in target positioning

process leading to low detection accuracy.

SDD [100] is as an extended version of YOLO, as

YOLO uses full-image features while SSD predicts loca-

tions by means of features nearby that location. SSD con-

siders different scales in different image feature’s layers.

SSD outputs a series of discrete boxes representing feature

maps of different layers and different aspect ratios, a

method that resemble multi0scale analysis.

9.2 Future CNN trends in MI applications

The main problem affecting the accuracy of DNNs applied

for MI analysis is the amount of labeled data used for

training. Due to the lack of available labeled medical data

sets, recently, some researchers proposed several directions

to overcome such problem. One practical image prepro-

cessing stage was explained in Sect. 4.1, data augmenta-

tion. Simple augmentation techniques such as cropping,

rotating, and flipping succeeded to generate new abnormal

images.

On the other hand, CNN could be combined with

transfer learning [101]. Transfer learning is a research

technique that stores knowledge gained while solving a MI

problem in an organ (e.g., brain tumor detection) and

applies such knowledge into a different organ (e.g., lung

tumor detection). The idea concerns with using the CNNs

obtained parameters in the first application to train the

second one. Integrating transfer learning into CNNs could

be considered as an important future research direction that

could solve the limiting number of labeled medical data.

Moreover, another possible idea for data set increment is

to introduce the crowdsource mechanism [102]. Crowd-

sourcing for health challenges means sharing solutions

(trained structures) from one research team to a group of

people (public). This is also an interesting future research

direction that shifts individual tasks to public tasks gener-

ating public benefit. Some unsupervised or semi-supervised

learning methods could be used to deal with inconsistent

training data [78 and 103]. The main difference between

both methods is that the former works independently

without any labeled data, while the latter needs to incor-

porate labeled data (small amount) with unlabeled data

(large amount). Semi-supervised learning showed adequate

results for a few medical areas, but still needs more and

more efforts in the future.

Future CNN comprises three main trends: Pre-trained,

frozen, and multimodal CNNs. Those could be summarized

as:

Pre-trained Models: The availability of pre-trained

networks to learn a complex model using data from a

source with large-scale annotated images will be the future

of DNNs when only a small number of annotated images

are available.

Frozen Deep Networks: Reducing the number of

learning parameters in the DNN could be achieved using

freezing few of network layers to constant parameter val-

ues, those parameter values are directly learnt from other

networks trained on similar tasks. The rest of the network

that now has less parameters can then be trained for the

target task as normal [104].

Multimodal Images: Learning from multi sources can

give a milestone regarding in-depth understanding and thus

error-free decisions [105]. Multimodal deep machine

learning will be a multi-disciplinary field with big potential

in the next decade, as it could acquire different source of

images and combine them to reach a decision.
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10 Conclusions

A comprehensive study of recent DNN techniques applied

in Medical Imaging was introduced. Such techniques were

classified according to either clinical or pathological

analysis and according to image processing areas (classi-

fication – detection – localization – segmentation- and

diagnosis). Both supervised and unsupervised learning

DNNs were examined. On the other hand, different imag-

ing technologies: X-Ray, MRI, CT, Ultrasound, PET,

Fluorescene Angiography, and even photographic images

were used. From the presented work, it could be concluded

that DNNs are highly flexible modeling approaches that

learn a comprehensive representation of the input data

through optimizing a loss function to find millions of net-

work weights. The CNN represents the largest percentage

of published researches in this area for many reasons. CNN

emphasizes image features which are extremely important

for medical image analysis. Furthermore, it has a well-

known architecture and many pre-designed networks could

be found within related software frameworks. Finally, pre-

trained CNNs are found in different environments and for

several applications. Regarding DL implementation, it

would be efficient to use GPUs for DNNs training due to

their significant speed. However, for tasks like inference, it

is usually believed that CPUs are sufficient and are more

attractive due to their cost savings except when inference

speed is important (real-time applications).

Concerning training and DNNs architecture, a huge number

of training samples is needed and thus data augmentation is

presented. Data augmentation could be achieved through

cropping, rotation, and translation. Using image patches and

segments could be another way. Another way to boost training

samples is to use an open image database, especially in case of

unsupervisedmethods such asRBM.However,CNNandRNN

are supervised methods and require annotated data or manual

labeling. Regarding DNN architecture, deeper networks

require tremendous training time and may lead to overfitting

while smaller networks could sometimes never converge and

give unacceptable accuracies. Thus, it is of great importance to

pre-train the network several times, using multi architectures

before inference phase. CNN structures encountered several

schemes starting from multilayers networks, moving toward

complex structures such as dual-pathways and cascaded net-

works. The latter could be considered efficient solutions to

study local and global features and thus increase the overall

testing accuracy. To conclude, DL is becoming widespread,

and will continue to grow in the near future in all fields of

medical science.
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