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Abstract
The use of soft computing techniques is becoming more common in providing solutions to complex engineering problems

such as the concrete breakout strength of anchor. Available techniques include semi-empirical equations that are known to

over or underpredict and some soft computing techniques that is incapable of generating predictive equations. This study

proposes a gene expression programming (GEP)-based mathematical model to predict the concrete edge breakout capacity

of single anchors loaded in shear. In doing so, an experimental database compiled by the American Concrete Institute

(ACI) Committee 355, containing 366 samples, was used for the model training and testing. The independent variables

considered in the model development are the edge distance, anchor diameter, embedment depth and concrete strength.

Moreover, the predictive performance of the developed model was compared to that of the existing models proposed in

ACI 318 and the Eurocode 2 (EC2) design standards. The assessment showed that the proposed GEP-based model provided

a much more uniform and accurate prediction of the actual strength than the models in the existing design standards. The

proposed mathematical model is simple and robust and is expected to be very useful for evaluating the concrete breakout

shear capacity of single anchors in pre-planning and pre-design phases; that is, towards inclusions in design standards.

Keywords Fastening to concrete � Gene expression programming � Concrete edge breakout failure � Edge distance �
Anchorages � Artificial intelligence � Soft computing

1 Introduction

The anchorage system or fastening system remains an

integral part of a structural system. Some typical applica-

tions of anchorages are connections between beam to col-

umn, beam to wall and column to foundation. Anchorage

systems are also commonly used in non-structural engi-

neering applications such as mechanical and electrical

engineering yet serve the same general purpose—fastening

two or more elements together. Therefore, it is imperative

to design anchorages in a cost-effective and yet reliable

manner. The main action forces experienced by load-

bearing anchors are axial tension and shear. Possible failure

modes of anchors loaded in shear are failures in the

materials used in an anchorage system. Steel related fail-

ures may be steel ruptures, prying out failure, bending of

the steel anchor. Experimental studies have shown concrete

failure modes of anchorage systems under shear to be

crushing of concrete at the loading region and concrete

edge breakout failure [1]. Concrete failures pose a serious

safety issue due to the brittle nature of concrete. This leads

to a failure mode which develops abruptly with no pre-

ceding signs of failure [2].

Consequently, a predictive model providing a reliable

prediction of concrete related failure needs to be used in

design. Most of the existing design models available to

predict the concrete edge breakout resistance of single

anchors loaded in shear are semi-empirical models. This
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leads to models that sometimes underestimate and, more

seriously, overestimates the actual shear resistance [3].

Most of these models have some limitations in their

application.

Over the past five decades, advancement in technology

has led to the development of various soft-computing (SC)

techniques utilising artificial intelligence. These techniques

have enabled engineers in various fields to model compli-

cated engineering problems and inspect the effects of

variables in real-time analysis. Unlike the conventional

method of analysis (such as the semi-empirical models),

soft-computing (SC) techniques have become an alterna-

tive due to the simplicity of implementation and the

probable higher degree of accuracy [4]. Various studies

have been conducted in the past on the use of SC tech-

niques to model anchorage related problems [2, 5–10]. The

most common techniques employed are artificial neural

networks (ANN), support vector machines (SVM) and gene

expression programming (GEP).

Alqedra and Ashour [5] used an artificial neural network

(ANN) to predict the shear capacity of single anchors near

the concrete edge. The developed ANN-based model

yielded better accuracy than the conventional concrete

capacity design (CCD) method in terms of the coefficient

of determination and the model error. Sakla and Ashour [7]

predicted the tensile capacity of single adhesive anchors

using artificial neural networks (ANNs). The authors used a

multi-layered feed-forward neural network trained with the

back-propagation algorithm and constructed using seven

design variables as network inputs and the uniform bond

strength of adhesive anchors as the only output. The results

indicate that ANNs are a useful technique for predicting the

tensile capacity of adhesive anchors.

Ashour and Alqedra [6] proposed a feed-forward neural

network model for evaluating the concrete breakout

strength of single cast-in and post-installed mechanical

anchors in tension. The predictions by use of the ANNs

captured the test results with mean ratios between 1.025 to

1.065, standard deviations between 19.9 and 22.6% and

coefficients of determination varying between 0.879 and

0.907, and they indicated that the Concrete Capacity

Design (CCD) method is a reliable predictor of the ultimate

loads. Olalusi and Spyridis [2] and Spyridis and Olalusi

[10] used the Gaussian Process regression (GPR) and

Support Vector Machine algorithms to model the failure of

anchors in shear and tension, respectively. The developed

models produced more accurate predictions with lower bias

and uncertainties than the existing procedures available in

design standards.

One disadvantage of the ANN, GPR, and SVM is the

inability to generate mathematical equations that can

become predictive models for design purposes. This is a

major bottleneck to the wide adoption of the SC methods as

opposed to the more traditional analytical predictive

models in design codes. Gene expression programming

(GEP) is an SC technique that generates predictive models,

therefore, overcoming the shortfall of ANN, GPR, and

SVM. Currently, there is a scarcity of the literature on the

use of GEP for edge breakout shear capacity of singe

anchors as opposed to ANN, GPR and SVM (as highlighted

in the previous paragraphs). This study, for the first time, is

aimed at generating a GEP model as a predictive equation

for the edge breakout shear capacity of single anchors.

With this sort of equation, the SC model of this study can

become generally adopted, used in design standards/codes,

and extended for various structural engineering problems.

As a matter of fact, all the SC techniques previously

applied to anchorage systems produced more precise pre-

dictions than the current models in design standards.

A GEP model developed by Gesoğlu et al. [9] for the shear

capacity of adhesive anchors post-installed into uncracked

concrete yield the highest correlation coefficient and lowest

errors when compared to existing standards. All these

indicate a lot of potential for a GEP model.

This study aims to develop an explicit formulation for

predicting the shear capacity of single anchors loaded close

to the edge with reasonable accuracy. The gene expression

programming SC technique was applied for constructing

the proposed model. The worldwide experimental database

consisting of 366 single anchors loaded in shear, compiled

by the ACI Committee 355, was utilised in this study. This

database is adopted because of its round-robin nature (re-

sults from around the globe) and has been declared accu-

rate/reliable by the America Concrete Institute. Moreover,

there is a scarcity of such databases as alternatives.

Predictions from the developed model were compared to

the mean predictions from existing formulas given in the

new EN 1992–1-4 [11] and ACI 318 [12]. While other

standards (such as Prestressed/Precast Concrete Institute

handbook [13]) exists for the prediction of shear capacity

of single anchors, those of EN 1992–1-4 [11] and ACI 318

[12] are deemed widely accepted and popular because of

their conventional approach. Hence, their adoption for this

study. Based on a previous study by the author [2] using the

ACI Committee 355 database, a comparison was also made

with the predictions of other SC techniques (GPR and

SVM) (Table 5). This is intended to highlight the effi-

ciencies of the various SC techniques. An advantage here is

the monotony of using the same dataset and using similar

data mining techniques allowing for equitable comparison

of the techniques. That is, how the new GEP technique can

possibly affect the result will be showcased.
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2 Procedures for calculating the edge
breakout shear capacity of a single anchor
according to the current design codes

The formulations to estimate the mean concrete edge

breakout strength of anchor loaded in shear in uncracked

concrete according to the ACI 318 [12] and EN 1992–1-4

[11] are expressed in Eq. 1 and 2, respectively. For anchors

loaded in shear resulting in a concrete edge breakout fail-

ure, the basic ACI 318 equation is based on the concrete

capacity design method (CCD-method) [14–16]. The CCD-

method is simplified by the ACI 318 to allow hand cal-

culations to be performed and concrete breakout resis-

tances to be determined easily. The EN 1992–1-4 is valid

for a dnom � 60mm and embedment depth hef � 12dnom in

case of dnom � 24mm and otherwise

� max 8max dnom; 300mmð Þ. The design calculations cov-

ered by EN 1992–1-4 are valid only up until

fck\60N=mm2. ACI 318 is valid for a concrete compres-

sive cylinder strength of 10,000 psi.

VACI�m ¼ min
lf
da

� �0:2

�
ffiffiffiffiffi
da

p ffiffiffiffiffiffi
fcm

p
c1ð Þ1:5; 7:1:

ffiffiffiffiffiffi
fcm

p
c1ð Þ1:5

( )

ð1Þ

VEC2�m ¼ 3:danom:l
b
f :

ffiffiffiffiffiffiffi
fcm:

p
c1:51 ð2Þ

where

a ¼ 0; 1 � lf
c1

� �0;5

b ¼ 0; 1 � dnom
c1

� �0;2

where da is the outside diameter of the anchor. f 0c is the

concrete cylinder strength per the ACI acceptance stan-

dards. ka is the modification factor for applications in

lightweight concrete. fcm is the mean concrete cylinder

compressive strength.

3 An overview of gene expression
programming (GEP)

Gene expression programming uses genetic algorithms

which contain populations of individuals, selects them

according to their fitness and introduces genetic variations

in the form of mutations based on one or more genetic

operators. In genetic algorithms, individuals are pro-

grammed as linear strings of a fixed length known as

chromosomes. Chromosomes are fixed in length and

thereafter expressed as nonlinear entities ranging in shapes

and sizes [17]. In general, genetic algorithms are used to

optimise real-life problems [4]. GEPs seamlessly translate

information between chromosomes (genotype) and

expression trees (phenotype). This makes modifications in

easily manipulated components, such as chromosomes,

syntactically translated to expression trees, allowing GEPs

to replicate a genotype/phenotype relationship truly. Apart

from merely manipulating linear, compact components like

chromosomes, an added advantage is that expression trees

are based solely on their specific chromosomes and are

chosen based on their respective chromosomes. Thus, in

the case of selection for fitness, the best-fitted expression

trees are chosen for reproduction with modification of their

chromosomes, much like the reproduction of humans

[17, 18]. Unlike other SC techniques such as ANN, GPR

and SVM, gene expression programming (GEP) can gen-

erate an explicit equation or expression denoting the rela-

tionship between variables. This study uses gene

expression programming to derive a new formulation to

predict the breakout capacity of single anchors loaded in

shear with a reasonable degree of accuracy.

4 Methodology

This section details the methodological approach used to

achieve the aims and objectives of this project. The

methodological approach describes the input parameters,

data collection process, the detailed procedure followed to

develop the GEP-based predictive model, and its perfor-

mance evaluation.

4.1 Selection of the input parameters

Visually depicted by a half-cone shaped failure as shown in

Fig. 1, a concrete breakout occurs in anchorage systems

where the anchor is located near a free edge of the concrete

block. A shearing load applied perpendicular cause failure

in the concrete provided the steel’s tensile strength is not

exceeded [3]. Bede et al. [19] reported that when an anchor

is exposed to an arbitrary shearing force, a concrete failure

would likely occur first instead of a prying out failure or

steel rupture failure, provided the location requirements of

the embedded anchor are met. This failure is due to the

relatively low edge distance and the required force to cause

a concrete breakout instead of the force required for a steel

tensile failure. Consequently, this makes concrete breakout

failures the critical controlling factor during anchors’

design [19]. From above, it is observed that the angle of

failure is approximately 35̊ to 45̊ based on the standard

used with a length of about three times that of the distance

from the edge [11, 12].

Due to the critical nature of concrete edge breakout

failures, it is vital to consider all factors affecting a
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concrete breakout failure. Several studies in the literature

[1, 2, 14, 19, 20] discusses the range of factors affecting the

concrete breakout failures of single anchors located near

the edge subjected to shear in uncracked concrete. The

major factors are the edge distance c1, anchor diameters

dnom, embedment depth lef and concrete strength fc. As

shown in Eqs. 1 and 2, these are also the factors considered

by the ACI 318 [12] and EN 1992–1-4 [11]. Hence, the

factors (dnom; lef ; c1, fc) are considered as the input

parameters for the developed GEP based predictive model

discussed in the next sections.

4.2 Data collection and pre-processing

To develop the GEP-based model, a database containing

experimentally determined values is required. This pro-

vides a source of knowledge for the soft computing tech-

nique used (in this study—gene expression programming)

to learn from and test against. This study uses a worldwide

database compiled and provided by the American Concrete

Institute Scientific Committee 355—Anchorage to Con-

crete. The database consists of 366 experimentally mea-

sured failure load for single anchors loaded in shear. The

dataset was cleaned to detect and correct inaccurate

records. Each sample within the database consists of the

following measurements:

• dnom Diameter of embedded anchor bar.

• lef Effective load-bearing embedded length of the

anchor.

• c1 Distance from the center of an anchor shaft to the

edge of concrete in the direction of the shear force.

• fc Compressive strength of concrete.

• Vexp Concrete breakout strength for anchors loaded in

shear in uncracked concrete.

4.3 Data analysis & splitting of dataset

Since the experimental database used in this investigation

consists of various configurations of anchors loaded in

shear, the samples were configured in an orderly manner.

The sample configurations range from smallest to largest

edge distance c1, smallest to the largest diameter dnom,

lowest to highest concrete strength fc and shallow to deep

embedment depths lef . The statistical characteristics of the

experimental database are summarised in Table 1. An

elaborate discussion on the database can be found in [2]. Of

the 366 experimental observations in the dataset, 244

samples were used to train the GEP model, while the

remaining 122 samples were used to test the predictive

model. As noted earlier, the dataset is a form of round robin

results, that is, they are independent samples (and results)

(a)

(b)

Fig. 1 a. Schematic representation of the methodology and workflow.

b Sketch of concrete edge breakout for an anchor under shear with a

load towards the edge and dimensions of idealised failure bod [10]

Table 1 Statistical Characteristics of Experimental Database

dnom(mm) lef (mm) c1(mm) fc(MPa) Vexp(kN)

Minimum 8 50 45 18.36 4.72

1st quartile 16 100 70 22.9 21.1025

Median 20 135.5 100 25.4 38.905

3rd quartile 25.4 300 200 28.475 80.755

Maximum 88.9 762 508 85.38 518.62
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from around the globe. Hence, they qualify for data split-

ting for cross-validation of the generated model.

4.4 Developing the GEP based predictive
equation

The GeneXproTools version 5.0 programme [21] was

adopted in this study to develop a new mathematical model

for predicting the concrete breakout capacity of single

anchors loaded in shear. GeneXproTools is a powerful tool

with multiple modelling capacity. The simple user inter-

face allows users to seamlessly integrate models and pro-

vides various controls, thus allowing for a more controlled

user experience [17]. The choice of a GEP-enabled data

modelling software is authors’ preference, and this is

believed not to influence the outcomes in any way; other

platforms (such as r, python) are also available for such

purposes. To avoid overfitting, the programme randomly

splits the experimental database into the training datasets

(244 samples [66.66%]) and testing datasets (122 samples

[33.33%]). The shear parameters (dnom; lef ; c1, fc) for both

the training and testing datasets have even statistical

properties such as mean, standard deviation and coefficient

of variation.

The GEP based model was developed using four influ-

encing input parameters, as expressed in Eq. 3. As noted

earlier, these are the germane influencing factors known to

influence the shear breakout capacity. They are also the

measurements available in the database.

V ¼ f dnom; lef ; c1; fc
� �

ð3Þ

In developing the predictive model, the selection of

various GEP parameters and settings is required. The

parameter selection will have a significant impact on the

generalisation capability and the predictive performance of

the developed model. The selected parameters are listed in

Table 2, which were tested to be adequate for the predic-

tion; the addition of more parameters made no significant

effects. The values of some of the parameters were selected

based on a trial-and-error approach, and some previously

suggested values [22–24]. It should be noted that the trial-

and-error method for the values is usually the starting point

for repetitive algorithms until the convergence of the

solution. The programme was run until there was no longer

significant improvement in the performance of the models.

The best GEP model was selected based on the model’s

simplicity and the best fitness value on the training and

testing dataset.

The derived GEP-based formulation for the concrete

breakout strength prediction of single anchors loaded close

to the edge is expressed in Eq. 4. In comparison, the

existing formulas in EN 1992–1-4 [11] and ACI 318 [12]

are given in Eqs. 1 and 2. The GEP generated model can be

said to be more robust and simpler enough for implemen-

tation into codes and standards.

VGEP ¼ c1 þ fc
25:8

� �2

þ fc þ 25:8

10:44
þ 149� lef
�3:2fc þ 3:4þ dnom

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 � d4nom þ c31

l2ef

3

s

ð4Þ

A common form of representing formulations is the use

of a binary expression tree diagram. Expression trees rep-

resent the variables and operations on leaf nodes indicating

the structure of the formulation. Expression trees are usu-

ally read from bottom to top and left to right. The corre-

sponding expression tree of the derived model is shown in

Fig. 2.where,

d0 is the anchor diameter, dnom in mm.

d1 is the effective load-bearing length of the anchor, lef
in mm.

d2 is the distance from the centre of an anchor shaft to

the edge of the concrete, c1 in mm.

d3 is the specified compressive strength of concrete fc,

N/mm.

and constants in

Table 2 GEP parameters used for the proposed model

Parameters Settings

General

Chromosomes 30

Genes 3

Head size 8

Mutation rate 0.00138

Inversion rate 0.00546

Linking function Addition

Function set ? , -, *, �, Pow, Exp, x2, x3, x4;
ffi

3
p

Genetic operators

Mutation rate 0.00138

Inversion rate 0.00546

Numerical constants

Constants per gene

Data type Integer Floating point

Lower bound - 10

Upper bound 10
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Sub�ET1 : Sub�ET2 :

c0 ¼ 5:08 c0 ¼ 3:4

c2 ¼ 5:34 c2 ¼ �3:2

c8 ¼ 25:8 c3 ¼ 10:6

c9 ¼ 1:89

4.5 Performance evaluation of the developed
predictive model

Several statistical measures were adopted to assess the

predictive performance of the developed model. The sta-

tistical methods used in this investigation utilised the

experimental failure load from the database ðVexpÞ, and the

predicted capacity from the developed GEP model ðVGEPÞ.
Whilst various statistical measures can be used to assess a

Fig. 2 Demonstrates the expression tree for the terms used in the formulation of the GEP model
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model’s predictive capability, a few of the critical mea-

sures are considered in this study. These measures are the

coefficient of determination R2ð Þ, Root-Mean-Squared

Error (RMSE), Mean Absolute Error (MAE), the mean and

standard deviation of the Model error. These four methods

are generally acceptable to be adequate for evaluating

model’s predictive capability.

4.5.1 Coefficient of determination (R2Þ.

The R2 of a model is a relative value which denotes the

proportion of variance depicted by the model. The R2 value

is only to be compared to models tested with the same

dataset [25]. For example, since this study uses the same

dataset for the testing of the GEP model, ACI 318 model

and EC2 model, a valid comparison between the models

using the R2 value can be made. The R2 of a model can be

calculated according to Eq. 5.

R2 ¼ 1�
P

Vexp � Vpred

� �2
P

Vexp � Vexp;m

� �2 ð5Þ

where,

Vexp is the experimental shear strength.

Vpred is the predicted shear strength from the model

under consideration.

4.5.2 Root-Mean-Squared Error (RMSE)

The RMSE is a standard evaluation technique in analysing

the predictive capability of a model. The RMSE is known

for penalising large errors between the predicted and actual

values of a model and having the same units as the outcome

values of the dataset. It is highly improbable for a pre-

diction model to predict outcomes with 100% efficiency.

Thus, a measure such as the RMSE provides a means of

assessing how much values that are not predicted accu-

rately deviate from the experimental values. The RMSE

can range from 0 to infinity, with values closer to 0

denoting better predictive capabilities and is calculated

according to Eq. 6.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Vexp � Vpred

� �2
n

s
ð6Þ

where n is the number of samples.

4.5.3 Mean Absolute Error (MAE)

The MAE measures the average magnitude of the errors of

a prediction model, without considering the direction in

which the error occurs. Thus, the MAE represents the

average absolute difference between the experimental

values and the predicted values with each individual dif-

ference having an equal bias. The MAE can be calculated

according to Eq. 7.

MAE ¼
P

Vexp � Vpred

�� ��
n

ð7Þ

4.5.4 Model error

In this study, the model error is characterised as the ratio of

experimentally observed to predicted mean shear breakout

capacities. 0, as shown in Eq. 8 [26]. The model error is

calculated for each sample set within the testing database

of 122 samples for each model under inspection. The

model errors are assessed in terms of their mean value,

standard deviation and coefficient of variation.

#x ¼
Vexp;x

Vpred;x
ð8Þ

where, #x represents the model error for sample x from the

testing dataset.

5 Results and discussion

5.1 Comparative assessment of the performance
of the GEP, ACI and EC2 models using
statistical measures

The statistical metrics for all the models investigated are

presented in Table 3. As seen in the table, a strong corre-

lation between the predicted values and experimental val-

ues was generally observed with all models producing a

correlation coefficient greater than 0.99 (see Table 3).

However, upon closer inspection, the GEP model correlates

closest to the experimental value when compared to the

ACI and EC2 models. This is further reinforced with the

RMSE and MAE both scoring the lowest for the GEP

model. The RMSE is the dispersion of the unexplained

variance or errors which occurs within the model. As such,

the lowest RMSE represents the lowest deviation from the

Table 3 Performance assessment of GEP, ACI and EC2 Models

Statistical metric GEP ACI EC2

MAE 8.79 15.90 18.03

RMSE 13.77 25.79 33.17

MSE 189.63 665.62 1100.46

Correlation coefficient r 0.99 0.99 0.99

R2 0.99 0.98 0.98
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mean error for every model tested, thus implying a better

predictive model. The MAE denotes the distance of the

predicted shear capacity from the experimentally measured

shear capacity. Since the absolute value is taken, the

direction in which the error occurs becomes irrelevant and

only the magnitude of the error is assessed. Overall, the

GEP model shows the closest prediction to the actual

observed values compared to the ACI and EC2 models.

The ACI and EC2 models also yield result closer to the

observed experimental values. Figure 3 shows the over-

lapped plots for all three models under assessment. Since

the model is developed using each individual sample set

within the testing database, the illustration further rein-

forces the fact that the database contained a few large

([ 200 kN) measurements for breakout capacities. This is

proven by the lack of data points which exceed the 200 kN

mark (Fig. 3).

5.2 Model error assessment

As previously expressed, the model error denoted as #, can

be represented using Eq. 8. For this representation, a model

with a ratio of 1 represents a perfect relation between the

predicted and experimentally observed values for the

concrete breakout capacity of a single anchor loaded in

shear [26]. Values greater than 1 denotes an underpredic-

tion of the model’s actual strength, and values less than 1

denotes an overprediction of the actual strength by the

model.

The histograms presented in Fig. 4 presents a graphical

representation of the estimated model errors for each of the

models under investigation. The presented histogram plots

the frequency of occurrence of a random model error

against the interval in which the error occurs. The width of

each interval represents the extents of scattering of the

model error.

Figure 4b and c shows that the ACI and EC2 model has

a greater frequency of overpredictions than the GEP model.

Such correlated with the design principle of accounting for

the worst-case scenario and, hence overdesigning. These

models, such as the ACI and EC2 models, which have

increasing conservative biases provide a greater sense of

reliability, however, overdesigning usually increases the

construction cost of a project and may lead to unnecessary

designs for the intended purpose of the design. The GEP

model expressed (Fig. 4a) shows a fairly symmetrical

distribution of the frequencies observed about the mean

model error of 1.01 (Table 4) in comparison with the ACI

and EC2 models. This shows little to no underlying bias

present in the GEP model. The scatter plot of Vexp vs Vpred

presented in Fig. 3 serves two functions. Firstly, the plot

provides a visual representation of each sample’s closeness

within the testing database to a ‘perfect prediction line’ for

each model. Secondly, the plot provides a means of

assessing potential outliers within the database. The ‘per-

fect prediction line’ represented as a black diagonal line in

Fig. 3 denotes the point at which the predicted breakout

capacities equal the measured breakout capacities. The

figure shows the scatter of predictions from the different

models around the perfect prediction line. This provides a

visual means of understanding the predictive capabilities of

each model in comparison with each other.

Outliers are determined as points which significantly

deviate from the trend of expected results. Outliers pose a

potential threat to a study as it affects the variance of the

model. Subsequently, all indicators which incorporate the

variance into the calculation are then affected. Outliers can

usually be traced back to human error whilst conducting

the experiments or faulty instruments used in the experi-

ment. However, outliers may be accurately measured
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Fig. 3 a Comparison of the experimentally observed and the

predicted shear breakout capacity. b Comparison of the experimen-

tally observed and the predicted shear breakout capacity for anchors

with strength � 200 kN
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outcomes as well [26]. Fortunately, this study does not

indicate any potential outlier for the models assessed in this

study. Instead, the potential outliers are just poorly pre-

dicted outcomes by the prediction models.

Table 4 presents a summary of the statistical parameters

assessed for the model errors. Here, the main parameters

under inspection for the model errors are the mean, stan-

dard deviation and coefficient of variation. The best model

is characterised by the model error mean value closest to 1

and the minimum standard deviation. The GEP-based

strength model achieved the best ranking with a model

error mean value of 1.01 (i.e. 1% bias) and the lowest

dispersion of 0.18.

The performance of the developed model is compared to

other SC techniques, as presented in Table 5. Olalusi and

Spyridis [2] developed models for predicting the concrete

breakout strength of single anchors in shear. They assessed

the performance of the developed model using the

Fig. 4 Histogram of Model error

Table 4 Statistical properties of the model error

Model error GEP ACI EC2

Mean 1.01 0.89 0.82

Standard deviation 0.18 0.21 0.18

Coefficient of variation 0.18 0.24 0.22

Min. 0.61 0.42 0.33

Max. 1.48 2.28 1.84

Table 5 Statistical properties of the GPR and SVM based model [2]

Model error GPR SVM

Mean 0.99 1.01

Standard deviation 0.11 0.22

Sample size 110 110

*GPR (Gaussian Process Regression) SVM (Support Vector Machine)
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distribution of the model error (obtained as the ratio of

experimental breakout strength to predicted breakout

strength) in terms of the mean value and dispersion

(Table 5). Evidently, the performance of the proposed GEP

model aligns with that of the GPR model and outperforms

that of the SVM model, as reported in Table 5 [2]. How-

ever, this must remain under the perspective that [2] has

used a smaller testing dataset compared to what is used in

this study.

5.2.1 Sensitivity of the model error to input variables

A perfect predictive model is expected to show no corre-

lation/trend between its input design variables and its

model error [26]. According to [27], correlation coeffi-

cients ranging between 0 and 0.2 represent very weak

correlations, 0.2 and 0.4 represent weak correlations, and

0.4 to 0.6 represent moderate correlations. To further assess

the proposed equation’s predictive capability, the model

error trend is assessed against the main design variable, as

presented in Fig. 5. The figure suggests that the GEP based

strength model has good accuracy with no significant trend

with respect to the design parameters. The correlation

between the model error and the concrete edge distances

and anchor diameters for the ACI and EC2 model can be

classified as weak correlations. However, the results pro-

duced by the building codes are notably scattered.

6 Conclusions

This study developed a mathematical model to predict the

concrete edge shear breakout capacity of single anchors

using gene expression programming. The choice of GEP

emanates from the advantage of generating a mathematical

model for prediction as compared to other soft computing

techniques. The predictive performance of the developed

model is compared to that of the existing standardised

models. In comparing the models, a set of experimentally

observed shear capacities was used. Each sample within the

database contained the edge distance c1, anchor diameters

dnom, embedment depth lef and concrete strength fc and the

failure load Vu.
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Fig. 5 Scatter plots of model error versus shear parameters
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Upon assessing the generated mathematical model in

comparison with other models in terms of statistical mea-

sures such as the MAE, RMSE, R2 and correlation coeffi-

cient r of all three models, evidence suggests that the GEP

model produced the closest prediction to the experimen-

tally measured shear breakout capacities. Notably, both the

ACI and EC2 models produced fairly accurate predictions

with both models having a correlation coefficient of 0.99.

The models were further assessed in terms of the statistical

properties of their model error which were obtained as the

ratio of the experimentally observed shear capacity to the

predicted shear capacity. GEP model produced the best

performance in terms of mean value and spread of the

model error. The sensitivity analysis shows a low correla-

tion between the input variables and the model error for all

the models investigated. Whilst a poor correlation usually

indicates poor performance, in this case, an ideal model has

little or no correlation between the input variables and the

model error.

In comparison, the predictions obtained from the pro-

posed GEP model were more uniform and much closer to

the actual results than the predictions obtained from the

models adopted in the ACI 318 and EC2 design standards.

The proposed model is expected to be very useful for

evaluating the concrete breakout shear capacity of single

anchors in pre-planning and pre-design phases. This study

can be used as a reference for code-researchers and the

developers of standards in providing information on the

performance of the models investigated in this study. Since

the proposed GEP model predicts the shear capacity of a

single anchor more accurately than existing models, the

implementation of the GEP model will produce more cost-

effective and reliable designs as the designs will be less

susceptible to over-designing or under-designing.

One of the drawbacks of soft computing approach is the

need for many large-samples databases. With the avail-

ability of more adequate experimental dataset (on the shear

capacity of single anchors) and testing, a generalised

equation can be developed, based on a GEP computing,

that will find its way into design standards and codes.
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