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Abstract
In recent studies, machine learning and deep learning strategies have been explored in many EEG-based application for

best performance. More specifically, convolutional neural networks (CNNs) have demonstrated incredible capacity in

electroencephalograph (EEG)-evoked emotion classification tasks. In preexisting case, CNN-based emotion classification

techniques using EEG signals mostly involve a moderately intricate phase of feature extrication before any network model

implementation. The CNNs are not able to well describe the natural interrelation among the various EEG channels, which

basically provides essential data for the classification of different emotion states. In this paper, an efficacious and advanced

version of CNN called Emotion-based Capsule Network (EmotionCapsNet) for multi-channel EEG-based emotion clas-

sification to achieve better classification accuracy is presented. EmotionCapsNet has been applied to the raw EEG signals

as well as 2D image representation generated from EEG signals which can extricate descriptive and complex features from

the EEG signals and decide the different emotional states. The proposed system is then compared with the other con-

ventional machine learning and deep learning-based CNN model. Our strategy accomplishes an average accuracy of

77.50%, 78.44% and 79.38% for valence, arousal and dominance on the DEAP, 79.06%, 78.90% and 79.69% on AMIGOS

and attains an average accuracy of 80.34%, 83.04% and 82.50% for valence, arousal and dominance on the DREAMER,

respectively. These outcomes demonstrate that adapted strategy yields comparable precision on raw EEG signal and it also

provides better classification results on spatiotemporal feature of EEG signal for emotion classification task.

Keywords Time series data � Spatiotemporal � Spectrogram � Electroencephalograph (EEG) � EmotionCapsNet

1 Introduction

Emotions play a significant role in human social interaction

and are acquired by studying the psychological condition

of an individual which includes the cognition, behavior and

decision-making capability [1]. Human emotional states

can be unobtrusively impacted by multiple external and

mental factors and are a combination of time, space,

experience, environment and cultural background. This

diversity gives rise to the main challenges faced by

researches for emotion recognition (ER). Emotion is cate-

gorized by two essential models, i.e., the dimensional and

discrete models [2]. Happy, anger, sad, fear, disgust and

surprise are six essential emotions that are indicated by

discrete model to portray emotion [3]. Howbeit, the most

popular dimensional hypotheses is the 3D space: valence,

arousal and dominance (VAD). Valence, in particular,

alludes to the level of a person’s joy from optimist to

pessimist whereas, arousal maps the degree of energy from

inactive to dynamic and dominance goes from a powerless

and feeble inclination to an enabled feeling.

Hence, EEG signals are broadly utilized for ER model

by exploring data from the different frequency bands,

electrode position, temporal resolution and accomplished

agreeable outcomes. However, some existing work used

combination of physiological signals which provided

prominent accuracy for emotion classification. In this
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paper, we ought to achieve comparable classification

accuracy using EEG signal only (single modality) and

compare this with the outcomes of the techniques using all

the other signals like GSR, ECG, EOG, etc. (multiple

modality). EEG diagnostic tests essentially assist clinicians

to identify medical complications and determine the most

effective therapy to reduce long-term repercussions. There

are other applications that track viewers’ emotions based

on their emotional responses to videos clip [4]. EEG-based

ER model can also be used to help children with autism

spectrum disorder (ASD) with their social skills [5]. Now it

is possible to capture brainwave patterns and evaluate a

person’s mental state while wearing a wireless EEG

headset. The emotions of a person are identified and shown

on his/her avatar in real time, giving human computer

interfaces an additional ‘‘emotion dimension’’ [6]. An

EEG-enabled music therapy facility has also been devel-

oped that plays music to the patients to help them cope

with things like pain and sadness. A web-enabled music

player with an EEG-based system that displays the music

based on the user’s current emotional states was also

developed and implemented [7].

The previously adapted models for EEG-based emotion

classification incorporates convolutional neural networks

(CNNs) [8, 9], deep belief networks (DBNs) [10], RNN

and long short-term memory (LSTM) [11], capsule net-

work (CapsNet) [12] and so on. These methods have been

also implemented to computer vision, remote sensing,

semantic segmentation, robotics-related task and other

applications as in [13, 14]. Among the diverse deep

learning models, CNN shows the most precise and

promising outcomes for classification tasks. The existing

work [15, 16] on CNN-based visual evoked stimuli evoked

EEG signal classification and its prominent accuracy has

encouraged us to attempt an emotion classification task

using CNN. Therefore, we have implemented CNN archi-

tecture on raw EEG signals to achieve better accuracy than

conventional machine learning methods.

Although, we figured out two challenges; firstly, major

consideration is given on deciding how to acquire the

remarkable data related to emotion states from the temporal

and frequential domain, and secondly, the time–frequency

qualities of EEG signals. A few investigations have dis-

sected the spatial space attributes of multi-channel EEG,

that consist of notable data. Further, a couple of spatial

attributes which are restricted to the deviation between the

electrode pair sets [17]. In this manner, deciding how to

incorporate and represent the regular attributes of the EEG

signal by virtue of the spatial qualities is a crucial issue.

Moreover, numerous deep learning techniques have less

affect-ability to spatial features while handling 2D objects,

for example, the Stacked AutoEncoder (SAE) and Deep

Belief Network (DBN). Despite the fact that CNNs can

deal with 2D objects, they do not have the capacity to

depict the general connection between various local fea-

tures and the complete object, that can deliver applicable

data for classification. This paper also proposes an EEG-

based ER framework to deal with the challenges mentioned

above that converts 1D EEG signal to 2D representation

using STFT algorithm which represents spatiotemporal

information of EEG signal. Further, a capsule network

(CapsNet) is implemented which can deal excellently with

the spatiotemporal features of EEG signals. As compared

to CNNs, the CapsNet has a lot of potential for recognizing

the spatial relationship between confined features in the

spatial space, which can help to improve the overall

accuracy of system. The overall proposed capsule-based

emotion detection architecture EmotionCapsNet is shown

in Fig. 1 and implemented using three different emotion

datasets namely DEAP (dataset for emotion analysis using

physiological and video signals), DREAMER and AMI-

GOS to accomplish our task.

The layout of the paper is as follows: Sect. 2 presents

the related work in traditional and deep learning techniques

applied in EEG-based ER. Section 3 presents the brief

description of dataset, experimentation and architecture of

proposed model on ER. Section 4 reports the exploratory

accuracy results assessed on three popular emotion data-

sets and provides a discussion on comparative analysis of

proposed model with conventional methods. Finally, Sect.

5 provides an overall conclusion of the work presented in

this paper.

2 Related work

Emotion recognition is an exceptionally vital research

field, with numerous novel approaches being proposed and

researched over the past decade. With the availability of

EEG dataset and great computational power, deep learning

strategies are quickly turning out to be efficacious. EEG

signal has been one of the most favored physiological

signal structures in ER tasks, which provides a good chance

for exploration in this field. The common features essen-

tially include the three classes, namely: time-domain fea-

tures, frequency domain features and time–frequency

domain features. Time-domain features extract and repre-

sents the temporal features through EEG signals, for

example, differential entropy (DE), power spectral density

(PSD), the rational asymmetry (RASM) and so on. Dif-

ferent machine learning-based strategies have been utilized

as classifiers for EEG-based ER model with accept-

able model’s performance, for example, linear discriminant

analysis (LDA) [18], support vector machine (SVM) [19],

random forest(RF), k-nearest neighbors (k-NN) [20], naive

bayes (NB), neural networks [21, 22], etc. For comparison
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purpose, we implemented these traditional machine learn-

ing techniques on raw EEG data and calculated the clas-

sification accuracy which motivated us for further

improvement on results. Various deep learning (DL)-based

models have been applied in classification of EEG signals

to solve different types of classification problems.

CNN architecture has accomplished unrivaled achieve-

ment in computer vision tasks, for example, classification,

object recognition and semantic division. Howbeit, CNN

actually has a deficiency induced by pooling activity. CNN

cannot encode the orientation and position of learned fea-

tures from images. In the pooling layer, only the most

effective neurons are selected to be shifted to the next layer

resulting in a significant number of information lost. To

beat the weaknesses of CNN, an advance DL-based model

called the CapsNet has been proposed [23].

Considering the previously acknowledged preferences,

the CapsNet has been implemented in numerous expanse in

the previous years, for example, natural language pro-

cessing [24], clinical image segmentation and speech

recognition [25], and has outperformed the traditional

methods. The emotion-based model has been proposed

using CapsNet, which is equipped for performing view-

point location and emotion classification at the same time

[12]. Some researchers used the CapsNet to detect the brain

tumor using Magnetic Resonance Imaging (MRI). In [26],

CapsNet-based model was proposed with three convolu-

tional layers to classify the spectral-based images. Turan

et al. converted sound signals to spectrogram images and

afterward utilized the CapsNet to perceive a newborn

child’s cry [25]. CNN-based EEG emotional recognition

algorithms often require a very sophisticated pre-extraction

stage. The integral relationship between multiple channels

is a significant piece of evidence for characterizing emo-

tional states in multi-channel EEG-based ER. However,

CNN models may overlook certain inextricable relation-

ship between multiple channels of EEG signals and cannot

accurately differentiate the spatial relationship between

various features. Chao et al. [12] proposed a multiband

feature matrix (MFM) and a CapsNet-based deep learning

framework for ER to deal with intrinsic relationship of

emotion states. The experimental results show that the

three MFM characteristics were complementing, and that

the capsule network was superior, but performance was not

up to mark. Liu et al. [27] proposed a multi-level emotion

guided capsule networks (MLF-CapsNet) to increase

accuracy percentage in recognition tasks. The MLF-Caps-

Net framework can also be used at the same time for fea-

ture extraction from raw EEG signals and then emotional

states are determined with competently classification

accuracy. Ali et al. [28] have implemented capsule network

for ER and achieved good accuracy for each subject-de-

pendent EEG data. Howbeit, these approaches are applied

only on subject-dependent ER and do not deal with subject-

independent ER tasks. Subject-dependent technique to

predicting emotion from a specific subject (which collects

and only develops from that subject’s emotional input), is

ideal. It is required to create a subject-independent model

that can apply prior knowledge from a wide variety of

subjects to a new one. Almost all extracted attributes have

a beneficial impact on the new subject’s capacity to rec-

ognize emotions. The tremendous performance of CapsNet

encouraged the researchers to implement this emerging

architecture to solve various problems. The aim of this

paper is to propose a novel CapsNet-based architecture,

named emotion-based capsule network (EmotionCapsNet),

for subject-independent EEG-based ER. The following are

two main contribution of this paper:

1. This paper exquisitely deals with the issues that

shallow networks have frail ability to manage, where

2D convolution requires more data of temporal

dependency and they could not deal with spatial

information of EEG signals. To tackle this problem

STFT (short-term Fourier transform) algorithm is used

to transform raw 1D EEG signals to 2D spectrogram

Fig. 1 The overall workflow of proposed system for EEG-based ER
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images which retains the spatiotemporal information of

EEG signals of each electrode position.

2. An enhanced version of CNN and a modified version

of the original capsule network namely Emo-

tionCapsNet model is proposed to manage relevant

data and spatial connections for ER, which not only

classifies the temporal and frequential information but

also classifies the spatial features of EEG signals. This

technique ensures better accuracy compared with the

other techniques for EEG-based ER on the DEAP,

DREAMER and AMIGOS datasets.

3 Methodology

3.1 Dataset description

We implemented and evaluated our structure on three

openly accessible multi-modular datasets in particular

DEAP [29], AMIGOS [30] and DREAMER [31]. Table 1

represents the three datasets, with an emphasis on the

modalities that we utilized in this work. The trials in the

DEAP and AMIGOS have been labeled on a scale of 1–9

for VAD by test subjects. For DREAMER, the VAD has

been labeled on a discrete scale utilizing numbers from 1 to

5, separately. For each dataset, the corresponding labels

were reported by each subject individually after visualizing

each trial video clip as visual stimuli. The emotion has

been classified into 2 classes for High-Valence and Low-

Valence, High-Arousal and Low-Arousal, High-Domi-

nance and Low-Dominance as we considered a rating point

that is greater than 4 for DEAP and AMIGOS and greater

than 3 for DREAMER dataset has been set for high

valance, arousal and dominance (labeled as 1) otherwise

will be considered for low valance, arousal and dominance

(labeled as 0).

Previous work on EEG-based ER using single-subject

techniques has long been criticized for their lack of global

recognition. The heterogeneity in specific neural activities

within the same emotion response is the first obstacle in

emotion detection utilizing brain signals. To put it another

way, directly transmitting knowledge about the neurolog-

ical system from one subject to another results in incom-

patibility or poor generalization. For example, if they had

1000 subjects, they would have 1000 particular models in

their system, resulting in enormous processing overhead

which may be suboptimal for practical systems. Therefore,

in this research experimentation, a subject-independent

strategy has been chosen for generalization of proposed

EmotionCapsNet that applies prior knowledge from a wide

variety of subjects to a new one. Almost all raw EEG data

samples of different electrode positions w.r.t different

subjects have been merged trail-wise that have a beneficial

impact on recognizing new subject’s emotion states. In this

manner, the total of 1280 � 258,048, i.e., 1280 = 40 � 32

(40 trials of each of 32 subjects) and 258,048 = 32 � 8064

(8064 samples of each of 32 electrode channels) raw EEG

data points for DEAP has been created in subject-inde-

pendent manner. Similarly, a total of 640 � 7168 and 414

� 7168 for AMIGOS and DREAMER dataset, respec-

tively, were re-sampled where 640 in AMIGOS represents

16 trial � 40 subjects and 414 in Dreamer represents 18

trails � 23 subjects with 7168 data points, i.e., 14 channels

� 512 samples of each channel. These raw EEG signals are

taken as input for the proposed system.

3.2 Preprocessing

These EEG signals can be decomposed into delta (1–4 Hz),

theta (4–7 Hz), alpha (8–15 Hz), beta (16–31 Hz) and

gamma ([ 32 Hz) bands, as per their frequency band

powers. The range of EEG frequency band to be used

peculiarly depends on the motivation of research. As per

Table 1 Dataset description based on the single modality (EEG)

DEAP dataset AMIGOS dataset DREAMER dataset

32 subjects 40 subjects 23 subjects

40�32�32 (trial / video�channel�subject) 16�14�40 (trial/video �channel� subject) 18�14�23 (trial / video�channel�subject)

32-channel EEG system (Two different raw

and preprocessed data available EEG

systems used. Channel locations: Fp1, AF3,

F7, F3, FC1, FC5, T7, C3, CP1, CP5, P7, P3,

Pz, PO3, O1, Oz, O2, PO4, P4, P8, CP6,

CP2, C4, T8, FC6, FC2, F4, F8, AF4, Fp2,

Fz, Cz)

Raw and preprocessed data available

14-channel EEG system (A single EEG

system used for all subjects. Channel

locations: AF3, F7, F3, FC5, T7, P7, O1, O2,

P8, T8, FC6, F4, F8, AF4)

Raw data available

14-channel EEG system (A single EEG

system used for all subjects. Channel

locations: AF3, F7, F3, FC5, T7, P7, O1, O2,

P8, T8, FC6, F4, F8, AF4)

Sampling rate 128 Hz Sampling rate 128 Hz Sampling rate EEG/ECG: 128/256 Hz

Valence/Arousal/Dominance rated using a

continuous scale between 1 and 9

Valence/Arousal/Dominance rated using a

continuous scale between 1 and 9

Valence/Arousal/Dominance rated using a

discrete scale of integers from 1 to 5
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our literature survey, many previous researches have uti-

lized 4–45 Hz band power for detection of emotions and

they perceived good accuracy with these frequency band of

EEG signals [32]. Therefore, in this paper, the recorded

raw EEG signals from all datasets were preprocessed with

a band-pass filter of 4–45 Hz and a notch filter of 50 Hz to

eliminate physiological artifacts, power band noises and for

interference noise cancellation [33, 34].

3.3 Spatial encoding of EEG signals
into spectrogram

In this study, the STFT algorithm, which interprets tem-

poral signals into spatiotemporal signals, was used to

transform EEG signals into an image-like representation

called spectrogram. The EEG information is initially seg-

mented into shorter pieces of equal length and then Fourier

transform is computed on each shorter segment. The var-

ious other research applicability of Fourier transform has

been experimented [35, 36]. The STFT calculation is

described in Eq. 1:

STFT sðtÞf gðm; f Þ � Sðm; f Þ ¼
X

sðtÞwðt � mÞe�iftdt

ð1Þ

where s(t) is the signal to be transformed using w(t) win-

dow function, here Hamming window function has been

used. S(m, f) is basically the Fourier Transform of

s(t)(m, f), a complex function representing the phase and

magnitude of the signal over time (m) and frequency f.

Hence, to maintain both time and spatial persistence of the

acquired EEG signal, the STFT algorithm is applied to the

filtered EEG signals, for converting 1D EEG signals of

every EEG electrode position E to 2D spectrogram images.

For instance, in the experiment, the EEG signals in DEAP

dataset were acquired from 32 electrode points, therefore,

32 2D spectrogram images were generated for each of the

40 emotion evoking video clips. The data has been col-

lected from 32 subjects while viewing 40 videos therefore,

32�40�32 = 40,960 spectrogram images with 64� 64

image size is generated. Whereas, AMIGOS and DREA-

MER dataset consists of 14 EEG channels, which were

used to create 14 2D spectrogram images for each 40 and

23 subjects, respectively. Further, each subject’s EEG

signals are recorded for each of the 16 and 18 emotion

evoking video clips, therefore, for each subject, 14� 16�
40 ¼ 8960 and 14� 18� 23 ¼ 5796 spectrogram images

are produced. These generated spectrograms are then

labeled with the 2 classes names low/high valence, low/

high arousal and low/high dominance. The generated data

was split into 80:20 ratio, i.e., 80% data is used for training

and 20% is used for testing of the proposed model. The

detailed structure of the datasets is described in Table 1.

3.4 EEG-based emotion classification with deep
learning-based CNN using raw EEG signal

Apart from the advanced deep learning-based proposed

methodology, some traditional machine learning tech-

niques such as support vector machine (SVM), random

forest (RF), decision tree (DT), K-nearest neighbor (KNN)

and Gaussian Naive Bayes (GNB) has been implemented

on raw EEG signals without any feature extraction. Fur-

ther, convolutional neural network (CNN) and advance

version of CNN architecture called capsule network have

been implemented using raw EEG signals and an image-

like representation, i.e., 2D spectrogram images generated

from EEG signals to classify emotional states. In the cur-

rent work, the proposed CNN architecture comprises 3

Conv1D modules, a Batch Normalization and MaxPool1-

D layer along with 2 Fully connected (FC) layers. A non-

linear activation function LeakyRelu (leaky rectified linear

units) is applied to all convolutional layers to convert the

outcomes between 0.01 and 1 and a dropout layer prior to

output layer has been added. The first Conv1D layer

acquires the raw EEG signals of dimension 1280 9

258,048; 640 9 7168 and 414 9 7168 as input for DEAP,

AMIGOS and DREAMER dataset, respectively, where

1,280; 640 and 414 represent the total number of trials and

258,048 and 7,168 represents the data size which has been

flattened to get a 1D array (as described in the earlier

Sect. 3.1). A brief explanation with the number of layers,

input and output size, different operations along with the

filter size in the proposed CNN model for EEG based

emotion classification is shown in Table 2. This architec-

ture has been tested using all the three datasets and pro-

vides a slight improvement from the accuracy achieved

through the Machine learning techniques.

Table 2 Architecture of proposed convolutional neural network

Layer Operation Filter size/parameters

1 Conv1D ? LeakyRelu 256� 3

2 Batch Normalization –

3 MaxPool1D 2

4 Conv1D ? LeakyRelu 128� 3

5 Conv1D ? LeakyRelu 64� 3

6 Dropout 0.2

7 Flatten –

8 Dense ? LeakyRelu 64

9 Dense ? Softmax 2
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3.5 Emotion recognition with proposed emotion
capsule network (EmotionCapsNet) using
raw EEG signal

The proposed EEG-based ER model based on CapsNet has

four modules, namely, convolutional layer with rectified

linear unit (ConvReLU), primary capsule (PrimaryCaps),

emotion capsule (EmotionCaps) and fully connected layer.

The overall structural details are illustrated in Table 3a. A

1D convolutional layer, which has 128 convolutional ker-

nels and 8 kernel size with a stride of 1 and ReLU acti-

vation has been used to classify 1D raw EEG signals. The

three datasets described in Sect. 3.1 is used as input to 1D

convolutional layer that generates sample point values to

feature map, which can then be used as input variables to

the PrimaryCaps which consist a Conv1D layer with 256�
8 filters with 32 channels of convolutional 8D capsules (in

other words each emotion capsule contains 8 convolutional

units) followed by EmotionCaps layer which has 32D

capsules that correlate to two components of emotional

states since this framework perform binary classification

tasks, such as low/high valence, low/high arousal and low/

high dominance. The routing-by-agreement process,

implemented between PrimaryCaps and EmotionCaps,

which integrates the existing EmotionCaps module with

the preceding PrimaryCaps layer. Figure 2 depicts the

structural details of routing-by-agreement process. Finally,

the two fully connected layers with 256 and 2 dense sizes

are implemented for classification of emotional states. The

overall architecture description of EmotionCapsNet is

described in Table 3 and the classification accuracy result

has been described in Sect. 4.

3.6 Emotion recognition using EEG spectrogram
images with proposed emotion capsule
network (EmotionCapsNet)

The proposed EmotionCapsNet uses spectrogram images

generated from emotion-based EEG signals, which con-

verts 1D EEG signals to 2D Spectrogram images with size

64964 using STFT algorithm as input data. Here, three

different datasets are used for this experiment (as described

in the earlier Sect. 3.1). The preprocessing and spectro-

gram formulation is also described in Sects. 3.2 and 3.3

which act as input data in current scenario. The generated

spectrogram images are split into training and testing data.

The training data is then fed to the proposed model to train

the EmotionCapsNet and the performance of the proposed

system can be tested using the testing data. The proposed

EmotionCapsNet model comprises of four sections: the

initial segment consists of a 2D Conv?ReLU and convo-

lution activities are performed on each input image to

extract the significant and decisive features. PrimaryCaps is

the subsequent part, that comprises of a convolution pro-

cedure and transforms data to the capsules. The last capsule

layer is EmotionCaps, which incorporates the dynamic

routing process among capsules and is utilized for emotion-

based spectrogram image classification. At the final stage,

decoder attempts to reconstruct the information from the

final capsule output and classify namely low/high valence,

low/high arousal, low/high dominance, the two emotion

states for DEAP, AMIGOS and DREAMER dataset. The

proposed model’s overall accuracy shows the capability

and the probability of proposed system to distinguish

between three emotion states from the evoked EEG signals

of a subject while viewing a video clip. The workflow and

the architecture of emotion capsule network are same for

all the datasets which is described in this section. The

layers and module description of EmotionCapNet for

classification of emotion states using raw EEG signal and

spectrogram images formulated from EEG signal is given

in Table 3a, and 3b, respectively. Figure 3 shows the

design of the proposed EmotionCapsNet-based

methodology.

A brief description of the emotion capsule network

architecture on DEAP, AMIGOS and DREAMER dataset

is:

1. The EEG-based spectrogram images with 64� 64 size

is taken as input.

2. The first Conv2D layer consists of 64 kernels with 7�
7 2D convolution kernel block, no padding and a stride

of 1. This Conv2D layer yields 64 feature maps with

size 58� 58.

Fig. 2 Routing-by-agreement process
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3. PrimaryCaps comprises of 32 filter channels with 4D

capsule blocks (i.e., a primary capsule layer has 128

filters; 32 channels� 4 capsules; of size 9� 9 with

stride of 1). After that 128, 50� 50 output of primary

capsule is reshaped to yield ui of 50�50 32�4 (each

output is an 4D vector) as input shape for the upcoming

emotion capsule layers. For these inputs, a capsule

prediction vector ûij is determined by multiplying an

input vector ui of capsule i and weighting metrics Wij

as in Eq. 2.

ûjji ¼ Wijui: ð2Þ

The weighted sum over all prediction vectors ûjji is

calculated as sj in Eq. 3:

sj ¼
X

i

cijûjji ð3Þ

whereby cij is the ‘‘coupling coefficient’’ between ith

primary capsule and jth emotional capsule that is cal-

culated using the dynamic routing algorithm demon-

strated in ( [23]). The output of jth emotional capsule,

vj is then determined (as shown in Fig. 2) using a

nonlinear squash function as in Eq. 4, which ‘‘squa-

shes’’ vectors near zero when input capsule sj (Eq. 3),

is short and near 1 in case when vector length is long.

vj ¼
jjsjjj2

1þ jjsjjj2
sj

jjsjjj
: ð4Þ

4. The EmotionCaps has 32Demotional capsules that

pertain to two states of emotion as the proposed

framework is implemented to perform binary classifi-

cation tasks, such as low/high valence, low/high

arousal and low/high dominance. In this regard, the

classification loss is calculated using the distance and

orientation of each capsule vector which indicate the

presence of an emotional class in the EmotionCaps

layer. In this phase, the routing-by-agreement process

is used to connect EmotionCaps and PrimaryCaps layer

to improve the learning process in comparison with

conventional pooling procedure. Furthermore, this

model employs a unique margin loss for each emotion

capsule. For a capsule representing class c, the margin

loss Lc is as follows:

Lc ¼ Pc max ð0;mþjjvcjjÞ2 þ kð1� PcÞmax ð0; jjvcjj � m�Þ2:
ð5Þ

In the loss function formula, the correct label deter-

mines the value of Pc, where Pc is 1 if the correct label

c matches with the image of the particular Emo-

tionCapule and 0 otherwise. The hyper-parameters mþ

Table 3 Architecture of proposed emotion capsule network (EmotionCapsNet) for (a) raw EEG signal and (b) spectrogram images formulated

from EEG signal

Modules Operation Parameters Shape/value

(a)

Input Input – DEAP: 32 � 8064 AMIGOS:14 � 512 Dreamer: 14 � 512

ConvReLU Conv1D Kernel 128 � 8

Primary capsule Conv1D Kernel 256 � 8

Reshape size 256 � 1

Emotion capsule Dynamic routing Wij 8 � 32

Dense Fully connected layer 256 –

Dense Fully connected layer 2 –

Loss – mþ 0.9

– m� 0.1

(b)

Input Input – DEAP: 64 � 64 � 3 AMIGOS:64 � 64 � 3 Dreamer: 64 � 64 � 3

ConvReLU Conv1D Kernel 64 � 7 � 7

Primary capsule Conv1D Kernel 128 � 9 � 9

Reshape Size 128 � 1

Emotion capsule Dynamic routing Wij 4 � 32

Dense Fully connected layer 128 –

Dense Fully connected layer 2 –

Loss – mþ 0.9

— m� 0.1
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is set to 0.9 meaning if an object of class c is present

jjvcjj should not be less than 0.9 and m� 0.1 means if an

object class is not present then jjvcjj should not more

than 0.1. The k parameter weakens the impact of the

labels that mismatch with the correct class label is set

to 0.5 for numerical stability. Though traditional CNN

avoids overfitting by applying dropout layer, Capsule

systems are regularized with a reconstruction autoen-

coder. The reconstruction loss is obtained from the

Euclidean distance of recreated and original data.

5. The decoder includes two fully connected layers along

with 128 and 2 neurons, respectively. The number of

neurons in the last fully connected layer is the same as

the number of emotion classes identified.

4 Results and discussion

4.1 Parameter optimization and classification
accuracy of proposed EmotionCapsNet

To begin with, different designs with different parameters

have been evaluated for EmotionCapsNet, utilizing the

above referenced datasets, to decide on the ideal network

environment. As per the description of the DEAP, AMI-

GOS and DREAMER dataset, a classifier was prepared and

tried for all subject. As clarified in the above sections, the

raw EEG signals are converted into spectrogram images

using STFT, which then serve as an input data for the

proposed CapsNet-based technique. Additionally, this

methodology was built and trained in 32 mini-batches for

all three datasets. The stochastic gradient descent (SGD)

optimizer was used for 100 epochs. In routing-by-agree-

ment algorithm, the agreement parameter is set as 3 and the

margin loss function is used while compilation of the

model. These hyper-parameters are optimized after many

trials. The hyper-parameters of the CapsNet to be stream-

lined include: The iteration number in Dynamic Routing

Process (1, 2, 3), number of filters used in convolutional

layers (32, 64, 128), kernel size used in convolutional

layers (3, 4, 7, 9), number of the capsules and dimensions

in the PrimaryCaps layer (64, 128, 256) and the Image-

Caps capsules (32, 16, 8). During the parameter improve-

ment stage, the number and type of trainable parameters

influence the overall performance and classification accu-

racy of CapsNet model. To find the ideal combination of

model parameters, various models were tested on the

Fig. 3 The proposed architecture of EmotionCapsNet on DEAP, AMIGOS and DREAMER dataset
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datasets. These model parameters were chosen by alluding

to references [23, 37]. The complexity of the system is

reduced by applying Reshaping, L2-norm Regularization

and SGD optimizer in EmotionCapsNet model. Extremely

complicated models are more difficult to comprehend, have

a higher risk of overfitting and are likely to be computa-

tionally costly. In this paper, Regularization and dimen-

sionality reduction strategies are applied to reduce model

complexity. In capsule network pooling operation has been

eliminated and reshaping has been done for dimensionality

reduction between convolutional layer and primary capsule

layer which compresses the multi-dimensional feature

vector to 1D vector without losing of prominent informa-

tion for further processing in capsule layer which helps to

build feature-wise capsule for higher layers. Regularization

essentially preserves all features but reducing (or penaliz-

ing) their impact on the model’s projected values. The

reduced effect comes from shrinking the magnitude, and

therefore the effect, of some of the model’s term’s coeffi-

cients. L2 regularization is applied to reduce overfitting

issue and hence uses a penalty factor to the loss function of

‘‘squared magnitude’’ of the coefficient. The penalty

increases with the magnitude of the term’s coefficient,

which simply indicates that the optimization factor

encourages the coefficient to be near to 0. If the dataset size

is huge, training will be slow and computationally expen-

sive [38]. In this case, gradient descent optimization is the

preferred way to optimize machine and deep learning

algorithms which updates the weight and bias using the

entire training dataset but causes high computational

complexity. To overcome the gradient descent issue, a

stochastic gradient descent (SGD) optimization technique

is introduced that updates parameters only using a single

record. In this work, the learning rate for SGD was set to

0.0001 and momentum to 0.7 is used. In SGD with

momentum, a momentum in a gradient function is added

which means the present gradient is dependent on its pre-

vious gradient and so on that accelerates the converge of

SGD.

4.2 Comparison with the other implemented
conventional methods

As discussed in Related Work section, many researchers

have achieved good accuracy results for ER task using

these signals as well as combination of multi-modality

signals. In this work, three objective has been accom-

plished, first to achieve comparable accuracy result using

EEG signals as single modality for emotion classification.

Second, to bypass the feature extraction step without

degrading the accuracy. Third, an Advance DL-based

EmotionCapsNet has been proposed to achieve better

accuracy results using raw EEG signals as well as from 2D

spectrogram images generated from raw EEG signals.

Table 4 represents the accuracy along with F1 score using

single modality EEG-based emotion classification on

DEAP, AMIGOS and DREAMER dataset where F1 score

is metric that produces a comparison between precision and

recall which describe a probability relevant predictions are

selected by the model [39]. As it can be seen that the

reported accuracy achieved using raw EEG signal without

going through any feature extraction step performs equally

well. The achieved accuracy results of deep learning-based

proposed CNN architecture described in Sect. 3.4 has

significantly improved the recognition accuracy as com-

pared to other machine learning methods which has been

implemented on raw EEG signals only. However, the

classification accuracy obtained from proposed CNN

architecture is not that much good, to achieve better

accuracy results we tried to implement an Advanced DL

model.

4.3 Comparison between the classification
accuracy of proposed EmotionCapsnet
on raw EEG signals and 2D spectrogram
images generated from EEG signals

Table 5 represents the training and testing accuracy along

with F1 score for three emotion states on three datasets.

The classification accuracy and F1 score of the proposed

EmotionCapsNet architecture has been implemented using

raw EEG signal and using 2D spectrogram images gener-

ated from raw EEG signals for three datasets is compared

in Table 5. The proposed architecture and implementation

of EmotionCapsNet model for raw EEG-based emotion

classification with some modification on general architec-

ture of CapsNet has been already described in Sect. 3.5. It

can be observed from Table 5 that accuracy results of

EmotionCapsNet on raw EEG signal have been slightly

improved but it cannot be considered as good accuracy

results and encouraged us to work further to achieve better

accuracy results. As per the literature review, the original

CapsNet performed well for the handwritten digital images

classification in the MNIST dataset, therefore we have

converted the raw EEG signals into 2D spectrogram ima-

ges using STFT algorithm as described in Sect. 3.3 to

evaluate the proposed EmotionCapsNet. Table 5 shows the

average training and testing accuracy along with F1 score

of proposed EmotionCapsNet on raw EEG data and EEG

generated spectrogram data (given in bold). It can be

observed from the accuracy results described in Table 5,

that the proposed EmotionCapsNet architecture has sig-

nificantly improved the classification accuracy using

spectrogram data (Sect. 3.6), as compared to the raw EEG-

based EmotionCapsNet and other conventional methods. In

these traditional methods, the most significant and
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challenging issues is overfitting, as the recorded EEG sig-

nal are generally noisy, inconsistent and unstable in nature.

The evoked EEG signals can vary across the same subject

as well as situation or stimuli. EEG signals have more

intricate intramural representations of emotion states which

require deep learning to learn its complex feature layer-

wise. EmotionCapsNet learns the temporal, frequential as

well as spatial features of encoded EEG signal and identify

the significant low level features and forward it to high

level feature to provide more descriptive and premised

features sets for classification tasks.

Table 6 presents the comparison studies between pro-

posed model and other existing models which uses single

modality as EEG signals. It can be seen that the proposed

model has achieved better accuracy on raw EEG as com-

pared to other traditional classifier’s accuracy (given in

Table 5). The proposed EmotionCapsNet using spectro-

gram images formulated from EEG signals has also over-

ridden the accuracy achieved from CapsNet implemented

by [12] as well as other conventional methods.

Further, considering the privacy aspect of the model, the

DL life span can be divided into two parts: training and

testing/inference. The privacy devastation caused by DL is

classified into two types: model extraction threats and

model inversion threats. Differential privacy, homomor-

phic encryption, secure multi-party computing and trusted

execution environment are the four basic defenses against

them. There are two types of DL security threats: adver-

sarial attacks and poisoning attacks. Adversarial defenses

are being developed in three primary directions: prepro-

cessing, malware detection and model robustness

improvement [46]. As this paper works on subject-inde-

pendent ER task, secure multi-party computing is applied

to overcome the problem of collaborative computing that

preserves each subject’s EEG data privacy in a legion of

the numerous subject’s data. Fundamentally, all partici-

pant’s EEG signals are merged for collaborative compu-

tation of proposed model. Preprocessing step has been also

incorporated in this work by conducting band-pass and

notch filter to remove noise and artifacts from raw EEG

signals. This defense technique is applied before the input

and the first layer of the model. Training techniques and

regularization, applied to improve the model’s robustness

seek to enhance the model’s capacity to resist adversarial

data. For this purpose, Batch normalization used in pro-

posed CNN model and L2-norm regularization has been

applied on EmotionCapsNet model [47, 48].

Table 4 Average accuracy (%) along with F1 score (%) of different machine learning-based methods on three datasets for valence, arousal and

dominance emotional states classification tasks

Dataset Emotion states SVM RF KNN GNB DT CNN

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

DEAP Valence 60.41 62.00 61.97 75.00 60.00 68.00 56.26 68.00 56.77 67.00 64.07 73.00

Arousal 58.07 68.00 63.02 76.00 62.25 75.00 45.31 45.00 53.12 65.00 69.92 75.00

Dominance 63.28 74.00 69.27 81.00 69.45 80.00 42.70 43.00 64.58 75.00 71.88 76.00

AMIGOS Valence 55.72 68.00 65.05 67.00 52.33 68.00 46.87 50.00 52.08 63.00 67.97 71.00

Arousal 54.68 66.00 51.04 65.00 44.56 50.00 52.08 57.00 52.08 58.00 64.69 69.00

Dominance 48.43 54.00 52.08 63.00 52.20 64.00 50.52 62.00 52.60 47.00 70.00 73.00

DREAMER Valence 54.48 66.00 55.37 68.00 52.33 64.00 55.68 63.00 56.88 66.00 69.09 71.00

Arousal 58.63 56.00 58.76 63.00 57.61 66.00 48.80 64.00 47.16 48.00 65.01 68.00

Dominance 51.45 45.00 29.60 55.00 50.00 54.00 42.40 56.00 44.48 44.00 63.40 65.00

Table 5 Average training and testing accuracy (%) along with F1 score (%) of proposed EmotionCapsNet on three datasets

Dataset Input Emotion states

Valence Arousal Dominance

Train Acc. Test Acc. F1 Train Acc. Test Acc. F1 Train Acc. Test Acc. F1

DEAP Raw EEG signal 63.17 63.02 0.62 62.17 66.93 0.69 60.38 66.15 0.67

Spectrogram 73.12 77.50 0.71 82.81 78.44 0.78 81.56 79.38 0.77

AMIGOS Raw EEG signal 66.92 61.04 0.63 66.96 66.15 0.67 59.92 55.73 0.56

Spectrogram 81.88 79.06 0.76 80.07 78.90 0.79 77.87 79.69 0.79

DREAMER Raw EEG signal 60.55 60.80 0.60 67.09 61.20 0.63 60.87 65.00 0.62

Spectrogram 78.12 80.34 0.79 79.06 83.04 0.81 78.28 82.50 0.80
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5 Conclusion

In the current research work, advance deep learning-based

EmotionCapsNet model has been implemented for multi-

channel EEG-based ER model. The proposed framework

can determine the inherent interaction encompassed by

various EEG channels well. The raw EEG data is combined

together w.r.t. EEG channels only to build a subject-inde-

pendent ER model. Then the prominent features extracted

from different convolution layers to form primary capsules

which encapsulates the most prominent extricated features

from various convolution operations into a capsule-like

structure. An EmotionCaps layer is then used to select the

most descriptive feature capsule for classification. Finally,

experiments are conducted on DEAP, AMIGOS and

DREAMER. The proposed method achieves average

accuracy of 77.50%, 78.44% and 79.38% for VAD on the

DEAP dataset, 79.06%, 78.90% and 79.69% on AMIGOS

dataset and accomplishes average accuracy of 80.34%,

83.04% and 82.50% for VAD on the DREAMER,

respectively. The experimental outcomes demonstrate that

the proposed EmotionCapsNet-based methodology pro-

duces higher accuracy than some classical machine learn-

ing-based classifiers, such as the SVM, RF, KNN, GNB,

DT and CNN methods. The advancement of this work has

been presented in two primary perspectives. The first one

is, a promising feature representation technique STFT is

used to convert the visually evoked 1D EEG signals into

2D spectrogram images for acquiring improvements in

classification results. The accuracy results represent that

the proposed technique accomplished acceptable outcomes

with three datasets. This shows that a spectrogram which

contain spatial as well as time-frequency domain infor-

mation are useful to recognize the various emotion states

(valence, arousal and dominance), and the model depen-

dent on capsule network could effectively utilize this data

for classifying VAD emotion states. In the future, the

proposed EmotionCapsNet-based model will be imple-

mented for subject-independent EEG-based ER and can

work to reduce the complexity of the system through

enhancing layers and sharing parameters between capsule

layers. The advantages and findings of our proposed mul-

tilayer capsule network approach are as follows: The need

for sophisticated feature extraction is eliminated. It also

outperforms other methods that are subject independent.

The improved accuracy on subject-independent-based

recognition performance can be attributed to the fact that

capsules are able to record the fundamental spatial rela-

tionship from the spectrogram images, between the com-

ponents of an object of seen images, while EEG recording.

Therefore, this approach offers a practical means of

describing the intrinsic interactions between the varied

EEG channels to be specific; the main capsules encapsule

the neural circuits and the transition matrices reflect the

relationship between distinct parts of the brain. The

advance CNN model-based capsule network is useful for

getting to the highest levels of discrimination in an

ER model. Moreover, the huge dimension of diversified

Table 6 Comparison of proposed EmotionCapsNet with other existing work

Studies Input Classifier Dataset Accuracy(%)

Valence Arousal Dominance

[29] Power spectral density (PSD) GNB DEAP 62.00 0.5760 –

[40] DT-CWPT(dual-tree SVM DEAP 66.90 65.30 69.10

complex wavelet packet transform)

[41] DBN features SVM DEAP 64.20 58.40 65.80

[42] PCA features SAE DEAP 49.52 46.03 –

[43] Statistical features CNN DEAP 73 81 –

[12] Multiband feature matrix (MFM) Capsule network DEAP 68.28 66.73 67.25

[44] Statistical features VAE AMIGOS 67 68.80 –

[31] PSD SVM DREAMER 62.49 62.17 61.84

[45] PSD-based images VGG-16 network DREAMER 78.99 79.23 –

Proposed Raw EEG signals EmotionCapsNet DEAP 63.02 66.93 66.15

work AMIGOS 61.04 66.15 55.73

DREAMER 60.80 61.20 65.00

Proposed Spectrogram images EmotionCapsNet DEAP 77.50 78.44 79.38

work AMIGOS 79.06 80.07 79.69

DREAMER 80.34 83.04 82.50
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EEG signal is often considerable, that increases the length

and size of parameters and the network’s complexity. The

suggested framework tends to decrease the amount of data

and complexity using subject-independent EEG channels.

Dimension reduction and regularization techniques are

applied here to reduce overall complexity of the proposed

methodology.
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