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Abstract
Among various types of skin diseases, skin cancer is the deadliest form of the disease. This paper classifies seven types of

skin diseases: Actinic keratosis and intraepithelial carcinoma, Basal cell carcinoma, Benign keratosis, Dermatofibroma,

Melanoma, Melanocytic type, and Vascular lesions. The primary objective of this paper is to evaluate the performance of

these deep learning networks on skin lesion images. The lesion classification is implemented through transfer learning on

fourteen deep learning networks: AlexNet, GoogleNet, ResNet50, VGG16, VGG19, ResNet101, InceptionV3, Incep-

tionResNetV2, SqueezeNet, DenseNet201, ResNet18, MobileNetV2, ShuffleNet and NasNetMobile. The dataset used for

these experiments are from ISIC 2018 of about 10,154 images. The results show that DenseNet201 performs best with

0.825 accuracy and improves skin lesion classification under multiple diseases. The proposed work shows the various

parameters, including the accuracy of all fourteen deep learning networks, which helped build an efficient automated

classification model for multiple skin lesions.
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1 Introduction

Human skin is the biggest organ in the body and is loaded

with various factors, including sun rays (Ultraviolet),

sunburn, lifestyle, smoking, liquor utilization, physical

action, viruses, and the workplace. These factors compro-

mise its trustworthiness and have real and dangerous

impacts on human health. Diseases that influence the skin

directly are the common reasons for every human disease,

influencing almost 33% of the total population of around

1.9 billion at once, leading to research in this discipline.

Skin diseases added to roughly 1.79% of the global prob-

lem of diseases, estimated by balanced life years. In Great

Britain, 60% of the population experiences skin diseases

for the duration of their lives. Skin issues can be harmful,

incendiary, or infectious and influence individuals, all

things considered, particularly older people and young

children. There are various consequences of skin issues, for

example, death (on account of melanoma), loss of con-

nections, effect on day-to-day activity and damage to

internal organs. Besides, they likewise represent a danger

to humans, affecting them mentally, prompting loneliness,

misery, and even rashness. Dermal diseases should be
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treated at the beginning to decrease related outcomes,

costs, mortality, and morbidity rates. As indicated by Dr

Macrene Alexiades-Armenakas, cancer and eczema are

among the five most basic skin syndromes [1]. In this

manner, our fundamental emphasis is on building a system

that can automatically diagnose for analyses and grouping

these types of diseases.

The visual assessment with the naked eye during a skin

disease health check-up makes it hard to contrast skin

injuries and typical tissue, producing a misdiagnosis.

Indeed, dermoscopy is a mainly solid conceptual method

for skin injuries. The input thought of dermoscopy is to

obtain an enlarged high–resolution image while removing

reflections from the skin’s surface. The utilization of der-

moscopy imaging tools improves the general perception of

skin lesions, sensitivity (correct finding of disease) and

specificity (correct finding of doubtful disease) contrasted

with visual assessment; further, it needs improvement to

analyze skin disease. However, since physical examination

from dermoscopy images are frequently time-consuming,

error-prone, complex, and personal (i.e., might create dif-

ferent diagnostic outcome). Hence, an automated and

consistent computer-aided diagnostic (CAD) framework to

recognize skin cancer growth has developed a significant

evaluation device that offers dermatologists a subsequent

input to help and aid their decisions [2].

There are numerous investigations on diagnosing skin

disease utilizing deep learning and machine learning

strategies in the literature. In recent times, complex med-

ical problems are handled through deep learning convolu-

tional neural networks (CNN) [3–6], particularly

dermoscopic image analysis [7–11] to melanoma recogni-

tion. Overall, there are existing and tested convolutional

neural network classifiers based on deep learning, for

example, AlexNet [12], VGGNet [13], GoogLeNet [14],

ResNet [15], and DenseNet [16]. These CNNs go further to

expand for more accurately identifying the five challenging

tasks [17, 18]. The research goes to a two-course model

that utilizes a deep residual network to segment and clas-

sify skin lesions [11]. The method of moving a portioned

mask of skin lesions, alongside descriptions of clinical

rules, such as, shading, texture, and morphological quali-

ties, to the CNN through U-Net [19] has been used. Later, it

introduced a two-advance model for the classification of

skin lesions [20]. Shading, texture, and shape qualities

were removed from images through U-Net and sent to a

Support Vector Machine (SVM) classifier to analyze

favourable or dangerous dermoscopy pictures. The hybrid

system for classifying the skin lesion is introduced, a blend

of CNN and SVM with sparse coding(SC) [21]. In recent

years, researchers have also built a deep learning network

based on a hybrid approach through encoding local

descriptors [11]. The various features, including deep and

statistical from ResNet, utilized the SVM classifier and the

chi-square kernel to recognize the distinctive skin lesions.

The usage of both handcrafted through traditional approach

and learned features using deep learning with ResNet-50

for improvement in classification was proposed. It con-

solidates high-quality conventional capacities through

picture handling and ResNet-50 profound, getting the hang

of learning capacities [8]. In the latest, the authors detect

seven classes of cancer using a support vector machine

with an artificial bee colony method. RNA sequencing is

also utilized [9].

Apart from the literature, we have classified the seven

different skin diseases, including Actinic keratoses and

intraepithelial carcinoma, Basal cell carcinoma, Benign

keratosis, Dermatofibroma, Melanoma, Melanocytic type,

and Vascular lesions, using fourteen types of deep learning

networks. The objective of this paper is to evaluate the

performance of these networks based on performance

measures. These networks are trained, validated, and tested

on ISIC 2018 dataset using Matlab.

In the following, we list contributions of this study:

1. We used transfer learning by adding one fully

connected layer, softmax layer and cross-entropy layer

as pre-trained networks. These three layers in total can

classify skin lesions into seven classes.

2. To improve the classification performance, we added

pre-processing steps as data normalization, resizing

and augmentation.

3. The comparison of fourteen types of deep learning

networks is analysed to build an automated classifica-

tion model.

The remainder of this paper is outlined as follows.

Section 2 presents the methodology with description of

dataset and detail of fourteen deep learning models. Sec-

tion 3 shows the experiments and results with implemen-

tation. Section 4 deliberates the performance of deep

learning networks for classification of multiple skin lesion.

Finally, the paper ends with a conclusion in Sect. 5.

2 Methodology

This section briefly explains the dataset description, its pre-

processing and different deep convolutional neural net-

works. Then, all these networks are compared using the

same number of epochs, learning rate and batch size.
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2.1 Dataset

This study used the ISIC 2018 dataset for dermoscopy

images [22, 23]. It contains pigmented lesions in different

populations. This data set consists of 10,015 images in

total. The image sizes are scaled to 224 9 224 9 3 or

227 9 227 9 3 or as per the network requirement. The

diagnostic classes in this dataset are given as follows

[22, 23].

(1) Actinic keratoses and intraepithelial carcinoma

abbreviated as ‘akiec’.

(2) Basal cell carcinoma abbreviated as ‘bcc’.

(3) Benign keratosis abbreviated as ‘bkl’.

(4) Dermatofibroma abbreviated as ‘df’.

(5) Melanoma abbreviated as ‘mel’.

(6) Melanocytic type abbreviated as ‘nv’.

(7) Vascular lesions abbreviated as ‘vasc’.

Figure 1 illustrate the examples for akiec. Figure 2

shows the examples for bcc. Figure 3 shows the examples

for bkl. Figure 4 shows the examples for df. Figure 5

shows the examples for mel. Figure 6 shows the examples

for nv. Figure 7 shows the examples for vasc. All examples

are taken from [22, 23].

The number of data contained in image set for each class

is defined in Table 1.

As shown in Table 1, most of the data in the dataset

belong to the sixth grade, and there is no equal distribution

between classes. Therefore, the training phase will lead to

more learning of the 6th class and the network to learn this

information.

2.2 Data pre-processing

In our approach, the pre-processing steps are reduced to

guarantee better generalizability when tried on the der-

moscopic skin lesion dataset. In this way, just the three

standard pre-processing steps are applied, generally uti-

lized for transfer learning. Initially, the images are nor-

malized by taking away the typical RGB values from the

dataset. After that, the images are resized utilizing bicubic

interpolation for the networks input (227 9 227 and

224 9 224). At last, the training set is augmented by

arbitrarily flipping the training images along the vertical

axis and changing it up to 30 pixels horizontally and

vertically. Data augmentation keeps the network away

from overfitting and memorizing the exact details of the

training images. The block diagram of the classification

model is shown in Fig. 8.

Fig. 1 The dataset for akiec [22, 23]

Fig. 2 The dataset for bcc [22, 23]

Fig. 3 The dataset for bkl [22, 23]

Fig. 4 The dataset for df [22, 23]

Fig. 5 The dataset for mel [22, 23]

Fig. 6 The dataset for nv [22, 23]

Fig. 7 The dataset for vasc [22, 23]
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2.3 AlexNet

This network contains 8 learned layers (5 convolutional

and 3 fully connected layers) [24, 25]. The convolution

filters and an activation non-linear function (ReLU) is

applied after every layer. Due to fully connected layers, the

input size is fixed to RGB images of 224 9 224 9 3, i.e.,

150,528 values. In the FCN and cross-entropy layer, there

are 4096 neurons; each neuron is a different feature of the

image. Dropouts are utilized at regular intervals to avoid

overfitting issues.

2.4 GoogleNet

The GoogleNet architecture comprises 22 convolutional

layers containing 9 Inception modules [26]. The Inception

module has three kernel varieties with various sizes: 5 9 5,

3 9 3 and 1 9 1 for convolution and 3 9 3 filters for

pooling. These small convolutions help reduce the depth of

the feature map, and many inception modules also helps

reduce the number of computations. The receptive field

size for this network is 224 9 224 9 3 utilizing the RGB

colors gap with the predefined parameter. Like different

CNNs, this network also learn convolutional filters con-

tributions through stochastic gradient descent (SGD)

algorithms throughout the training stage to retrieve com-

pelling features as the image crosses the hierarchical

structure of the network.

2.5 ResNet50

This network consists of a stem used for input, followed by

four stages and an output layer [27]. It consists of 50 layers

and an input image size fixed to 224 9 224. The stem is

input through a 7 9 7 convolution by a return of 64

channels besides a pitch of 2, trailed through a 3 9 3 max

pooling layer besides a pitch of 2. The width and height of

the input decrease by stem through a factor of 4, and rises a

size of channel to 64. The individual stage starts with a

downsampling block, further trailed by various residual

blocks at the starting of stage2. This block consists of path

A and path B. Path A consists of three convolutions with a

kernel size of 1 9 1, 3 9 3, and 1 9 1. Path B utilizes a

Fig. 8 Block diagram of

Classification model

Table 1 Data indicating how many data each set contains in the

dataset

Diagnosis class

in the dataset

Total Train Validate and test

Akiec 327 229 98

Bcc 514 360 154

Bkl 1099 769 330

Df 115 81 34

Mel 1113 779 334

Nv 6705 4694 2011

Vasc 142 99 43

Total 10,015 7011 3004
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pitch of 2 with a 1 9 1 convolution to convert the input

into the output of path A. Finally, the sum of these two

paths is used to get the output of the downsampling block.

2.6 VGG16/VGG19

The VGG-16 architecture is reasonable for GPUs with

local memory [28]. The architecture consists of 16 layers,

among which there are 13 convolutional layers, 5 Max

Pooling layers and 3 fully connected layers, which sums up

to 21 layers but only 16 weight layers. The information

layer is thought to be a 224 9 224 9 3 pixel RGB picture.

All convolutional layers are followed by the Relu function

with a size of 3 9 3. The VGG19 network [29] contains 19

trained layers combining convolutional and FC layers,

max-pooling, and dropout layers.

2.7 ResNet101

The ResNet101 network structure consists of residual

connections and generally used for classification purposes.

The gradients flow throughout the layers directly and

Fig. 9 AlexNet training Progress with accuracy and error loss over 10 Epochs

Fig. 10 Confusion matrix of

predictions made by transfer

learning on AlexNet
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prevent gradient as zero after the chain rule applications

[30]. A total of 104 convolutional layers are present in the

network. Alongside, there are 33 blocks of layers, and the

output of the previous block is used among these 29 blocks

directly as residual connections above. To receive the input

of the other blocks, these residual connections are being

utilized at the termination of every block using the initial

value of the sigma operator.

2.8 InceptionV3

This network is based on inception modules and consists of

48 layers deep [31]. These inception blocks contain con-

volutions corresponding with diverse kernel sizes to

abstract features and finally summative the results. Ini-

tially, the input image is passed through convolution, batch

normalization, Relu and this sequence are followed by

pooling and various inception layers for feature extraction.

Finally, in the classification part, the dropout layer is

applied to reduce overfitting, and softmax with cross-en-

tropy as output layers.

2.9 InceptionResNetV2

This network [32] consists of 164 layers in deep and

inception blocks with residual connections. The input size

of an image acceptable to the network is of size

299 9 299. The network consists of the main module as

stem, followed by Inception resnet-A, Reduction-A,

Inception resnet-B module, reduction B and inception

resnet-C modules. The stem module consists of series of

3 9 3 convolution, 3 9 3 maxpool, and filter concat to

give input to inception resnet-A block. The Relu activation

function is applied in each inception block and the reduc-

tion block contains 1 9 1, 3 9 3 convolution with a

pooling layer. Inception-ResNet used batch-normalization

only on top of the traditional layers but not on top of the

summations.

2.9.1 SqueezeNet

This network starts with [33] a separate convolution layer

(conv1), trailed by 8 Fire modules (fire2-9), and termina-

tion with a final convolution layer (conv10). The filters

numbers get increased as per fire module from starting till

the end of the network. The fire module is composed with a

squeezed convolution layer of 1 9 1 filters only, serving

into an enlarge layer with a combination of 1 9 1 and

3 9 3 size convolution filters. The maxpooling operation is

applied after convolution1, fire4, fire8, and convolution10

layers.

Table 2 Performance measures of AlexNet

Type of disease Recall Precision F1 Score

Akiec 0.438 0.60 0.506

Bcc 0.649 0.699 0.673

Bkl 0.451 0.629 0.525

Df 0.882 0.333 0.483

Mel 0.50 0.511 0.505

Nv 0.937 0.868 0.901

Vasc 0.86 0.787 0.411

Overall accuracy 0.793

Fig. 11 Predictions on random

samples made by transfer

learning on AlexNet
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2.9.2 DenseNet201

The connections are directly between the convolutional

layers in this network (DenseNet) [34, 35]. In every net-

work layer, the feature map of the continuing layer acts as

input, whereas feature maps that are generated are used by

way of inputs to the next layer. This network consists of

four blocks with layers in the same amount. These blocks

have feature maps with various sizes of 56-by-56, 28-by-

28, 14-by-14, and 7-by-7. The number of input feature

maps are reduced to advance the computational efficiency

by using 1 9 1 convolution before each 3 9 3 convolu-

tion, known as the bottleneck layer.

Table 3 Performance measures of GoogleNet

Type of disease Recall Precision F1 Score

Akiec 0.428 0.494 0.458

Bcc 0.708 0.603 0.651

Bkl 0.469 0.585 0.521

Df 0 0 0

Mel 0.356 0.559 2

Nv 0.950 0.860 0.903

Vasc 0.698 0.732 0.714

Overall accuracy 0.785

Fig. 12 GoogleNet training progress with accuracy and error loss over 10 Epochs

Fig. 13 Confusion matrix of

predictions made by transfer

learning on GoogleNet
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2.9.3 ResNet18

This network starts with 7 9 7 convolution, 3 9 3 max

pooling, followed by 4 convolutional layers in each module

[36]. There are total 18 layers which include the first

convolution layer and the last FC layer. This network has

an image input size of 224-by-224. The initial 2 layers of

this network are similar to the GoogLeNet: the 64 output

channels with stride 2 based 7 9 7 convolutional layer

trailed by 3 9 3 max pooling layer, stride 2 and Relu

function. The change is the batch wise normalization layer

additional next to every convolutional layer in the network.

It consists of residual blocks with 3 9 3 convolutional

layers having a similar amount of output channels.

2.9.4 Mobile NetV2

The MobileNetV2 model [37] is based on the concept of

separable convolutions, which can be depth wise (dw) or

pointwise (pw) convolution. In the case of the former, a

filter is applied to every channel used for input. Then to

combine an output of former 1 9 1 convolution is applied

by later convolution. A one-step process is required to get

the original block of outputs by filtering and pooling

together by convolution. The process is separated in two

Fig.14 Predictions on random

samples made by transfer

learning on GoogleNet

Fig. 15 ResNet50 training with accuracy and error loss over 10 Epochs
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layers, filtering and combining. This factorization results

into significantly reducing computation and size.

2.9.5 ShuffleNet

The ShuffleNet [38] utilizes pointwise group convolution

and channel shuffle to reduce computation cost while

maintaining accuracy. By shuffling the channels, Shuf-

fleNet outperforms MobileNetV1. The network contains a

heap of network units assembled in three stages. It has two

units as bottleneck unit through depthwise convolution and

shufflenet unit through pointwise group convolution.

2.9.6 NasNetMobile

Nasnet [39] is an architecture constitute of basic building

blocks i.e. cells optimized through reinforcement learning.

The network has an image input size of 224-by-224. A cell

composed of convolution and pooling operations, depends

upon the strength of the network to repeat these operations

Table 4 Performance measures of ResNet50

Type of disease Recall Precision F1 Score

Akiec 0.50 0.671 0.573

Bcc 0.643 0.723 0.340

Bkl 0.633 0.628 0.630

Df 0.882 0.30 0.448

Mel 0.446 0.634 0.524

Nv 0.951 0.877 0.912

Vasc 0.698 0.882 0.780

Overall accuracy 0.816

Fig. 16 Confusion matrix of

predictions made by transfer

learning on ResNet50

Fig. 17 Predictions on random

samples made by transfer

learning on ResNet50
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at n number of times. This network contains 12 cells and

millions of multiply-accumulates (MACs). There are two

cells: Normal cell, which returns a feature map of the same

dimension and Reduction cell, which returns a feature map

where the feature map height and width are reduced by a

factor of two. The various combinations of operations or

layers applied to the network in the form of identity,

convolution (1 9 7, 7 9 1), average pooling (3 9 3), max

pooling (5 9 5), depth wise convolution (3 9 3, 7 9 7,

5 9 5) and dilated convolution (3 9 3).

Table 5 Performance measures of VGG16

Type of disease Recall Precision F1 Score

Akiec 0.459 0.562 0.505

Bcc 0.799 0.723 0.759

Bkl 0.50 0.685 0.578

Df 0.882 0.60 0.714

Mel 0.655 0.463 0.542

Nv 0.902 0.914 0.908

Vasc 0.884 0.745 0.808

Overall accuracy 0.799

Fig. 18 VGG16 training with accuracy and error loss over 10 epochs

Fig. 19 Confusion matrix of

predictions made by transfer

learning on VGG16
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3 Experiments and results

The experiments are performed with Dell compatible

computer equipped with a Core i7 processor. The ISIC

2018 dataset defined in RGB space is used. The datasets are

divided into seven classes, Actinic keratoses and intraep-

ithelial carcinoma, Basal cell carcinoma, Benign keratosis,

Dermatofibroma, Melanoma, Melanocytic type, and Vas-

cular lesions. The fourteen types of convolution deep

learning networks are used; in which the last fully con-

nected layer is replaced with FC7, softmax and cross-en-

tropy for classification. The experiments are performed

with all types of networks using 10,015 dermoscopic

images.

Each experiment consisted of the number of runs where

the batch size, epochs and the initial learning rate were 64,

10 and 0.0001, respectively, and these values are fixed for

all experiments. The images are randomly divided: 70% of

Fig. 20 Predictions on random

samples made by transfer

learning on VGG16

Fig. 21 VGG19 training with accuracy and error loss over 10 epochs
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the images are used for training and 30% are used for

validation and testing. All the images are pre-processed

using re-sizing, normalization, and augmentation. The

networks are evaluated using the following metric descri-

bed in Eqs. 1, 2, 3 and 4:

Accuracy ¼ tp þ tn=tp þ fp þ fn þ tn ð1Þ
Recall ¼ tp=tp þ fn ð2Þ
Precision ¼ tp=tp þ fp ð3Þ
F1 score ¼ 2 � Recall � Precisionð Þ= Recall þ Precisionð Þ

ð4Þ

where, tp, tn, fp and fn refer to true positive, true negative,

false positive and false negative, respectively.

The alexnet training Progress with accuracy and error

loss over 10 Epochs is shown in Fig. 9. The performance of

alexnet in which class wise recall, precision, f1 score and

overall accuracy based on confusion matrix are shown in

Fig. 10 and Table 2, the best result is highlighted in bold.

The Predictions on Random samples made by Transfer

Learning on AlexNet is shown in Fig. 11.

The GoogleNet training Progress with accuracy and

error loss over 10 Epochs is shown in Fig. 12. The per-

formance of GoogleNet in which class wise recall,

Table 6 Performance measures of VGG19

Type of disease Recall Precision F1 Score

Akiec 0.439 0.566 0.494

Bcc 0.636 0.760 0.692

Bkl 0.60 0.670 0.633

Df 0.147 0.100 0.119

Mel 0.662 0.481 0.557

Nv 0.912 0.916 0.914

Vasc 0.860 0.925 0.891

Overall accuracy 0.810

Fig. 22 Confusion matrix of

predictions made by transfer

learning on VGG19

Fig. 23 Predictions on random

samples made by transfer

learning on VGG19
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precision, f1 score and overall accuracy based on confusion

matrix are shown in Fig. 13 and Table 3, the best result is

highlighted in bold. The Predictions on Random samples

made by Transfer Learning on GoogleNet is shown in

Fig. 14.

The ResNet50 training Progress with accuracy and error

loss over 10 Epochs is shown in Fig. 15. The performance

of ResNet50 in which class wise recall, precision, f1 score

and overall accuracy based on confusion matrix are shown

in Fig. 16 and Table 4, the best result is highlighted in

bold. The Predictions on Random samples made by

Transfer Learning on ResNet50 is shown in Fig. 17.

Table 7 Performance measures of ResNet101

Type of disease Recall Precision F1 Score

Akiec 0.510 0.562 0.535

Bcc 0.734 0.604 0.663

Bkl 0.676 0.603 0.637

Df 0.147 0.50 0.227

Mel 0.563 0.558 0.560

Nv 0.905 0.920 0.912

Vasc 0.628 0.844 0.720

Overall accuracy 0.808

Fig. 24 ResNet101 training with accuracy and error loss over 10 epochs

Fig. 25 Confusion matrix of

predictions made by transfer

learning on ResNet101
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The VGG16 training Progress with accuracy and error

loss over 10 Epochs is shown in Fig. 18. The performance

of VGG16 in which class wise recall, precision, f1 score

and overall accuracy based on confusion matrix are shown

in Fig. 19 and Table 5, the best result is highlighted in

bold. The Predictions on Random samples made by

Transfer Learning on VGG16 is shown in Fig. 20.

The VGG19 training Progress with accuracy and error

loss over 10 Epochs is shown in Fig. 21. The performance

of VGG19 in which class wise recall, precision, f1 score

and overall accuracy based on confusion matrix are shown

in Fig. 22 and Table 6, the best result is highlighted in

bold. The Predictions on Random samples made by

Transfer Learning on VGG19 is shown in Fig. 23.

The ResNet101 training Progress with accuracy and

error loss over 10 Epochs is shown in Fig. 24. The per-

formance of ResNet101 in which class wise recall, preci-

sion, f1 score and overall accuracy based on confusion

Fig. 26 Predictions on random

samples made by transfer

learning on ResNet101

Fig. 27 InceptionV3 training with accuracy and error loss over 10 epochs

8002 Neural Computing and Applications (2023) 35:7989–8015

123



matrix are shown in Fig. 25 and Table 7, the best result is

highlighted in bold. The Predictions on Random samples

made by Transfer Learning on ResNet101 is shown in

Fig. 26.

The InceptionV3 training Progress with accuracy and

error loss over 10 Epochs is shown in Fig. 27. The per-

formance of InceptionV3 in which class wise recall, pre-

cision, f1 score and overall accuracy based on confusion

matrix are shown in Fig. 28 and Table 8, the best result is

highlighted in bold. The Predictions on Random samples

made by Transfer Learning on InceptionV3 is shown in

Fig. 29.

The InceptionResNetV2 training Progress with accuracy

and error loss over 10 Epochs is shown in Fig. 30. The

performance of InceptionResNetV2 in which class wise

recall, precision, f1 score and overall accuracy based on

confusion matrix are shown in Fig. 31 and Table 9, the best

result is highlighted in bold. The Predictions on Random

samples made by Transfer Learning on InceptionResNetV2

is shown in Fig. 32.

The SqueezeNet training Progress with accuracy and

error loss over 10 Epochs is shown in Fig. 33. The

Table 8 Performance measures of inceptionV3

Type of disease Recall Precision F1 Score

Akiec 0.25 0.571 0.348

Bcc 0.669 0.582 0.622

Bkl 0.60 0.555 0.577

Df 0 0 0

Mel 0.380 0.552 0.450

Nv 0.942 0.864 0.901

Vasc 0.186 0.100 0.130

Overall accuracy 0.784

Fig. 28 Confusion matrix of

predictions made by transfer

learning on InceptionV3

Fig. 29 Predictions on random

samples made by transfer

learning on InceptionV3
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performance of SqueezeNet in which class wise recall,

precision, f1 score and overall accuracy based on confusion

matrix are shown in Fig. 34 and Table 10, the best result is

highlighted in bold. The Predictions on Random samples

made by Transfer Learning on SqueezeNet is shown in

Fig. 35.

The DenseNet201 training Progress with accuracy and

error loss over 10 Epochs is shown in Fig. 36. The per-

formance of DenseNet201 in which class wise recall, pre-

cision, f1 score and overall accuracy based on confusion

matrix are shown in Fig. 37 and Table 11, the best result is

highlighted in bold. The Predictions on Random samples

made by Transfer Learning on DenseNet201 is shown in

Fig. 38.

Table 9 Performance measures of inceptionResNetV2

Type of disease Recall Precision F1 Score

Akiec 0.112 0.733 0.194

Bcc 0.331 0.761 0.461

Bkl 0.624 0.417 0.500

Df 0 0 0

Mel 0.368 0.470 0.413

Nv 0.924 0.858 0.890

Vasc 0 0 0

Overall accuracy 0.750

Fig. 30 InceptionResNetV2 training with accuracy and error loss over 10 epochs

Fig. 31 Confusion matrix of

predictions made by transfer

learning on InceptionResNetV2
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Fig. 32 Predictions on random

samples made by transfer

learning on InceptionResNetV2

Fig. 34 Confusion matrix of

predictions made by transfer

learning on SqueezeNet

Fig. 33 SqueezeNet training with accuracy and error loss over 10 epochs
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The ResNet18 training Progress with accuracy and error

loss over 10 Epochs is shown in Fig. 39. The performance

of ResNet18 in which class wise recall, precision, f1 score

and overall accuracy based on confusion matrix are shown

in Fig. 40 and Table 12, the best result is highlighted in

bold. The Predictions on Random samples made by

Transfer Learning on ResNet18 is shown in Fig. 41.

The MobileNetV2 training Progress with accuracy and

error loss over 10 Epochs is shown in Fig. 42. The per-

formance of MobileNetV2 in which class wise recall,

precision, f1 score and overall accuracy based on confusion

matrix are shown in Fig. 43 and Table 13, the best result is

highlighted in bold. The Predictions on Random samples

Table 10 Performance measures of squeezeNet

Type of disease Recall Precision F1 Score

Akiec 0.367 0.419 0.391

Bcc 0.662 0.593 0.626

Bkl 0.527 0.515 0.520

Df 0 0 0

Mel 0.431 0.512 0.468

Nv 0.908 0.873 0.890

Vasc 0.651 0.778 0.709

Overall accuracy 0.769

Fig. 35 Predictions on random

samples made by transfer

learning on SqueezeNet

Fig. 36 DenseNet201 training with accuracy and error loss over 10 epochs
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made by Transfer Learning on MobileNetV2 is shown in

Fig. 44.

The ShuffleNet training Progress with accuracy and

error loss over 10 Epochs is shown in Fig. 45. The per-

formance of ShuffleNet in which class wise recall, preci-

sion, f1 score and overall accuracy based on confusion

matrix are shown in Fig. 46 and Table 14, the best result is

highlighted in bold. The Predictions on Random samples

made by Transfer Learning on ShuffleNet is shown in

Fig. 47.

Table 11 Performance measures of denseNet201

Type of disease Recall Precision F1 Score

Akiec 0.51 0.625 0.562

Bcc 0.773 0.647 0.352

Bkl 0.70 0.647 0.672

Df 0.206 0.636 0.311

Mel 0.530 0.594 0.560

Nv 0.925 0.913 0.460

Vasc 0.814 0.945 0.875

Overall accuracy 0.825

Fig. 37 Confusion matrix of

predictions made by transfer

learning on DenseNet201

Fig. 38 Predictions on random

samples made by transfer

learning on DenseNet201
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Table 12 Performance measures of resNet18

Type of disease Recall Precision F1 Score

Akiec 0.367 0.562 0.444

Bcc 0.844 0.580 0.687

Bkl 0.670 0.570 0.616

Df 0.882 0.75 0.811

Mel 0.464 0.533 0.496

Nv 0.897 0.908 0.902

Vasc 0.744 0.681 0.711

Overall accuracy 0.793

Fig. 39 ResNet18 training with accuracy and error loss over 10 epochs

Fig. 40 Confusion matrix of

predictions made by transfer

learning on ResNet18
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Fig. 41 Predictions on random

samples made by transfer

learning on ResNet18

Fig. 42 MobileNetV2 training with accuracy and error loss over 10 epochs

Fig. 43 Confusion matrix of

predictions made by transfer

learning on MobileNetV2
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Table 13 Performance measures of mobileNetV2

Type of disease Recall Precision F1 Score

Akiec 0.408 0.635 0.497

Bcc 0.688 0.693 0.690

Bkl 0.618 0.576 0.596

Df 0.588 0.333 0.425

Mel 0.503 0.542 0.522

Nv 0.926 0.896 0.911

Vasc 0.794 0.880 0.835

Overall accuracy 0.802

Fig. 44 Predictions on random

samples made by transfer

learning on MobileNetV2

Fig. 45 ShuffleNet training with accuracy and error loss over 10 epochs
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Table 14 Performance measures of shuffleNet

Type of disease Recall Precision F1 Score

Akiec 0.377 0.578 0.456

Bcc 0.636 0.726 0.678

Bkl 0.582 0.636 0.608

Df 0.147 0.385 0.213

Mel 0.491 0.498 0.494

Nv 0.930 0.881 0.905

vasc 0.698 0.789 0.741

Overall accuracy 0.798

Fig. 46 Confusion matrix of

predictions made by transfer

learning on ShuffleNet

Fig. 47 Predictions on random

samples made by transfer

learning on ShuffleNet
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Table 15 Performance measures of nasNetMobile

Type of disease Recall Precision F1 Score

Akiec 0.918 0.474 0.625

Bcc 0.383 0.472 0.423

Bkl 0.50 0.445 0.471

Df 0 0 0

Mel 0.416 0.341 0.375

Nv 0.883 0.856 0.869

Vasc 0.139 0.857 0.239

Overall accuracy 0.717

Fig. 48 NasNetMobile training with accuracy and error loss over 10 epochs

Fig. 49 Confusion matrix of

predictions made by transfer

learning on NasNetMobile
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The NasNetMobile training Progress with accuracy and

error loss over 10 Epochs is shown in Fig. 48. The per-

formance of NasNetMobile in which class wise recall,

precision, f1 score and overall accuracy based on confusion

matrix are shown in Fig. 49 and Table 15, the best result is

highlighted in bold. The Predictions on Random samples

made by Transfer Learning on NasNetMobile is shown in

Fig. 50.

The fourteen deep convolutional networks with number

of layers, size, parameters, input size, time, accuracy,

recall, precision and f1 score, the average out for a single

matrix, are presented in Table 16. DenseNet201 performs

better in performance measures and highlighted bold in the

Table 16.

4 Discussion

It is noted that the results obtained from the fourteen deep

convolutional networks are comparable in terms of accu-

racy, recall, precision and f1 score performance measures.

By comparing the performance measures, DenseNet201

Table 16 Comparison of fourteen deep convolutional networks

Network Depth Size Parameters

(Millions)

Image input

size

Time

(9 105 s)

Accuracy Recall Precision F1

Score

AlexNet 8 227 MB 61.0 227-by-227 0.1575 0.793 0.673 0.632 4.004

Google Net 22 27 MB 7.0 224-by-224 0.5262 0.785 0.515 0.547 0.749

ResNet 50 50 96 MB 25.6 224-by-224 1.2764 0.816 0.679 0.673 0.601

VGG16 16 515 MB 138 224-by-224 2.4092 0.798 0.726 0.670 0.688

VGG19 19 535 MB 144 224-by-224 2.8894 0.810 0.608 0.631 0.614

ResNet 101 101 167 MB 44.6 224-by-224 2.1734 0.808 0.595 0.656 0.608

Inception V3 48 89 MB 23.9 299-by-299 1.8746 0.784 0.432 0.460 0.432

Inception

ResnetV2

164 209 MB 55.9 299-by-299 4.0600 0.749 0.337 0.463 0.351

Squeeze Net 18 4.6 MB 1.24 227-by-227 0.2892 0.769 0.506 0.527 0.515

Dense Net201 201 77 MB 20.0 224-by-224 4.2896 0.825 0.637 0.715 0.542

ResNet 18 18 44 MB 11.7 224-by-224 0.4973 0.793 0.695 0.655 0.667

Mobile NetV2 53 13 MB 3.5 224-by-224 0.7178 0.802 0.646 0.651 0.639

Shuffle Net 50 6.3 MB 1.4 224-by-224 0.3882 0.798 0.551 0.642 0.585

NasNet

Mobile

Do not consist of linear

modules

20 MB 5.3 224-by-224 1.3905 0.717 0.462 0.492 0.429

Fig. 50 Predictions on random

samples made by transfer

learning on NasNetMobile
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network can perform best with 0.825 accuracy. Further-

more, this network gives good efficiency by eliminating the

vanishing gradient problem, supporting feature propaga-

tion, encouraging reuse of features, and reducing the

number of parameters. Besides improved efficiency,

another best point is that the information flow and gradients

movement is smooth in this network, which helps them in

training and reduces the overfitting problem.

The performance of the networks is evaluated on the

ISIC 2018 dataset consists of 10,015 dermoscopic images.

The training progress, confusion matrix for each type of

class and testing images results show the best performance

of DenseNet201. The ResNet50 model takes the second

position, which is taking less time and good accuracy.

Similarly, the other model’s performance is measurable

with time parameters complexity.

5 Conclusion

This study compared the performance of fourteen deep

convolutional neural networks for classifying seven types

of diseases. This model’s performance is measured using

ISIC 2018 dataset. The pre-trained networks are modified

by replacing their last fully connected layer with our fully

connected-7, softmax and cross-entropy layer for classifi-

cation into seven classes. The results are summarized in

Table 16. The results show the best performance of Den-

seNet201 for classification. In the upcoming years, com-

puter-aided diagnostic systems will be more for classifying

a skin lesion by looking at the inspiring results of our study

and the former studies using deep learning techniques. The

models designed with this baseline are expected to give

high accuracy with minimum computation time. In future,

our goal is to achieve more effective results by increasing

the number of epochs and skin lesions categories.
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