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Abstract
Address matching, which aims to match unstructured addresses with standard addresses in an address database, is a key

part of geocoding. The core problem of address matching corresponds to text matching in natural language processing.

Existing rule-based methods require human-designed templates and thus, have limited applicability. Machine learning and

deep learning-based methods ignore the hierarchical relations between address elements, which easily misclassify

semantically similar but geographically different locations. We note that the hierarchy of address elements can fill the

semantic gap in address matching. Inspired by how humans discriminate addresses, we propose a multi-task learning

approach. The approach jointly recognises the address elements and matches the addresses to incorporate the hierarchical

relations between the address elements into the neural network. Simultaneously, we introduce a priori information on the

hierarchical relationship of address elements through the conditional random field model. Experimental results on the

benchmark datasets Shenzhen Address Database and Jiangsu-Hunan Address Dataset demonstrate the effectiveness of our

approach. We achieved state-of-the-art F1 scores (i.e. the harmonic mean of precision and recall) of 99.0 and 94.2 on the

two datasets, respectively.

Keywords Address matching · Multi-task learning · Recognizes the address elements · Hierarchical relations between

address elements

1 Introduction

Address matching [1], in which unstructured addresses are

matched with structured addresses to locate them on a map,

is an important application area in geographic information

science. Much of the urban information is related to geo-

graphic location [2]; however, most of this information

does not have spatial coordinates and thus cannot be inte-

grated for analysis. Address matching can integrate

addresses and facilitate the analysis of positioning systems,

which constitute the core aspects of digital city construc-

tion. Cab operations, courier logistics, and other services

rely on geographic query and address matching technolo-

gies. The core problem of address matching corresponds to

text matching [3] in natural language processing.

Traditional rule-based address matching methods can be

divided into two categories: character-based methods,

which discriminate similarity character by character, and

address element-based methods, which segment address

elements using manually designed rules and then match

each address element. However, designing rules is not only

labour-intensive, but also restricted to specific and more

standardised addresses. In recent years, deep learning has

been increasingly applied to geographic information sci-

ence: first, it can automatically model address features and
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avoid manual design rules; second, deep learning can

extract semantic information, which is suitable for a variety

of address structures, especially irregular addresses. How-

ever, as shown in Table 1, there are misclassifications for

addresses that are semantically similar and actually repre-

sent different locations.

In response to the above issues, we note that there is a

semantic gap between the semantic similarity of addresses

and ascertain whether they match, and that the information

of the hierarchical relationship of address elements can

solve the semantic gap problem, which is ignored by the

current deep learning methods. When we determine whe-

ther an address pair matches, we compare only the fol-

lowing address elements if the front address elements are

the same.

To solve the above problem, we incorporate information

about the hierarchical relationships of address elements from

both the data and model aspects. On the data side, we first

train an address element recognition model to tag the ele-

ments of a large number of unlabelled addresses. On the

model side, we use an address element recognitionmodule to

assist the address matching module from the perspective of

joint multi-task learning [4]. In addition, we introduce a

priori information about the hierarchical relationships of

address elements to effectively improve the address match-

ing performance. The main contributions of the study are as

follows.

(1) We incorporate information about the hierarchical

relationship of address elements into a deep learning

model to facilitate the development of address

matching.

(2) We pre-trained the model to tag address elements,

which solved the problem that a large amount of

untagged address data could not be used.

(3) We propose a multi-task learning model for address

element recognition and address matching, thus

incorporating information about the hierarchical

relationships of address elements in the model, using

the transition probability matrix of the conditional

random field (CRF) classifier [5] to incorporate a

priori information about the hierarchical relationship

of address elements into the model.

(4) After the experimental comparison, our model out-

performs existing methods and achieves the best

results.

The article is structured as follows. In Sect. 2, we intro-

duce the development and status of address matching. We

introduce our proposed multi-task learning model for

address element recognition and addressmatching in Sect. 3,

and we conduct comparison and ablation experiments on the

ShenzhenAddress Database and the Jiangsu-HunanAddress

Dataset in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Related works

Address matching is generally divided into rule-based

matching and semantic similarity matching based on

machine learning and deep learning.

Rule-based address matching methods are divided into

two categories: a character-based method that discrimi-

nates similarity character by character, and an address

element-based method that segments address elements

using manually designed rules and then matches each

address element. Tian et al. [6] and Koumarelas et al. [7]

designed some great rules for address matching, but the

effect of address alias processing needs to be improved.

Santos et al. [8] integrated multiple character similarities to

consider address similarity and achieved some results.

However, designing rules is not only labour-intensive but

can only handle more standardised addresses.

In recent years, an increasing number of machine

learning and deep learning methods have been applied to

many natural language processing applications, Zhou et al.

[9] focus on modeling and analyzing the patient-physician-

generated data based on an interrated CNN-RNN fame-

work, and to geographic information science to extract text

semantics [10–14]. Acheson et al. [15] used rules combined

Table 1 Samples of the Shenzhen Address database

No Address pairs Hierarchical relations of address elements Match

or not

1 2-1, Lane 1, Longtengge, Baishixia Community, Fuyong Street,

Baoan District, Shenzhen (深圳宝安区福永街道白石厦社区龙腾

阁1巷2-1)

City-District-Street- Community, Village-Road, Lane -

House Number (市-区-街道-社区、村-道路、巷-门

牌号)

True

No. 2, Lane 1, Longtengge, Defeng Road, Fuyong Street, Baoan

District, Shenzhen (深圳宝安区福永街德丰路龙腾阁一巷2号)

City-District-Street- Road, Lane-House Number (市-区-

街道-道路、巷-门牌号)

2 101, No. 24, Xiangnan Village, Nanshan Street, Nanshan District,

Shenzhen(深圳市南山区南山街道向南村24号101)

City-District-Street- Community, Village -House

Number (市-区-街道-社区、村-门牌号)

False

No. 101, Xiangnan Community, Nanshan Street, Nanshan District,

Shenzhen (深圳市南山区南山街道向南社区101号)

City-District-Street- Community, Village -House

Number (市-区-街道-社区、村-门牌号)
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with random forest methods in machine learning for cross-

gazetteer matching. Comber et al. [16] used CRF and

Word2Vec [17] for address matching without manually

designing complex rules, but only shallow semantic fea-

tures were extracted. Santos et al. [18] used deep neural

networks for address matching, and Lin et al. [19] also used

the classical enhanced sequential inference model (ESIM)

[20], a deep learning model, for address record pair mod-

elling, which extracts the deep semantic features of

addresses and achieves better results; however, it ignores

the information about the hierarchical relationship of

address elements. There are misclassifications for some

semantically similar addresses that represent different

locations, hierarchical information seems to be important,

Shi et al. [21] proposed a hierarchical ASM search strategy

to make pathological organ segmentation framework more

efficient and robust.

Our proposed address matching method based on joint

multi-task learning with the hierarchical relationship of

address elements not only automatically extracts the deep

semantic features of address text, but also incorporates the

knowledge of the hierarchical relationship of address ele-

ments, and it enables the model to learn the information of

the hierarchical relationship of address elements by multi-

task learning.

3 Methods

We propose a multi-task address matching deep learning

model based on address element recognition to discrimi-

nate address matches. The overall structure of our model is

shown in Fig. 1. To learn the deep semantics of addresses,

we design a deep learning address matching model based

on address element recognition and incorporate the

knowledge of the hierarchical relationship of address ele-

ments by imitating the process of human discriminating

whether an address matches or not, that is, dividing

addresses hierarchically and comparing and analysing the

address elements at each level. As shown in Fig. 1, the

model mainly contains three modules: the address element

tagging network based on the word segmentation features,

the knowledge module of the hierarchical relationship of

address elements, and the multi-task network for joint

learning of address element recognition and address

matching. The knowledge module of the hierarchical

relationships of address elements encodes a priori hierar-

chical relationships of address elements into the address

element identification network during model training. The

address element recognition and address matching multi-

task learning network are a joint learning of the address

element recognition task and address matching task, which

acts on the training of the model simultaneously.

3.1 Word embedding layer with segmentation
features

Word embedding is a distributed representation of words,

and distributed representations are more suitable as inputs

to neural networks. We used the CBOW model of

Word2Vec to train the address corpus. As shown in Fig. 2,

CBOW is a shallow neural network consisting of a three-

layer network of input, projection, and output layers, which

maps address text into a low-dimensional dense feature

space with specific meanings. The CBOW model trains

word embeddings by maximising the average log

probability.

1

T

XT
i¼1

logðpðwijContextwi
ÞÞ ð1Þ

pðwbjwaÞ ¼ expðe0ðwbÞTeðwaÞÞPjVj
k¼1 expðe0ðwkÞTeðwaÞÞ

ð2Þ

where T is the number of words in the text, Contextwi
is the

context of wi, pðwbjwaÞ is the probability of predicting the

occurrence of the bth word by the ath word in the text, jVj
is the total number of classes of words in the text, eðwiÞ
denotes the word embedding representation of word wi, and

e0ðwiÞ denotes another word embedding representation of

word wi. Therefore, words with similar meanings are

eventually more similar in semantic feature space.

In addition, the Jieba word splitting tool is used to split

the original address, the splitting information is encoded

according to the following formula, and then, the CBOW

model is used to map the encoded text into a fixed

dimensional splitting vector. Finally, the word vector is

spliced with the word vector of the original text and used as

the input for the model. For example, ‘Bai Shi Xia Com-

munity, Fuyong Street, Baoan District, Shenzhen (深圳市宝

安区福永街道白石厦社区)’ is divided into ‘Shenzhen/Baoan

District/Fuyong Street/Bai Shi Xia Community (深圳市/宝安

区/福永街道/白石厦社区)’ and encoded as ‘0 1 2/0 1 2/0 1 1 2/0

1 1 1 2’.

f ðxÞ ¼
0 x is at the beginning of w
1 x is in the middle of w
2 x is in the end of w

8<
: ð3Þ

where x is a character in the current word w.

3.2 Address element tagging network

To automatically tag a large number of unlabelled data, we

manually tag the address elements of a small-scale dataset

and design an address element tagging network based on

word segmentation features. The address element tagging

network is trained through a small-scale manually tagged
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dataset, and the trained address element tagging network is

used to tag a large-scale dataset. It is worth noting that the

label obtained in this way is pseudo, but the accuracy of the

address element tagging network itself is high. Therefore,

obtaining a pseudo-label by this method not only saves a

lot of manual tagging workload but also has less damage to

the credibility of the label, a lot of works has proved the

effectiveness of pseudo tags, Zhou et al. [22] designed a

auto-labeling scheme based on Deep Q-Network(DQN) to

improve the learning efficiency in IoT environments.

3.2.1 Address element label

To train an address element tagging network and tag large-

scale datasets through the network, we first need to design a

tagging system. To solve this problem, an appropriate

address hierarchy element tagging system according to the

suggestions of professionals is used. The address hierarchy

element tagging system is shown in Table 2.

3.2.2 Structure of address element tagging network

As shown in Fig. 3, we use a bidirectional long short-term

memory (Bi-LSTM) model [23], which is a type of

recurrent neural network [24], combined with CRF [25] to

tag the address hierarchy elements. Compared with tradi-

tional recurrent neural networks, LSTM introduces a gate

mechanism that includes an input gate, output gate, and

forgetting gate. The forgetting gate can filter out useless

information and capture long-distance dependencies, which

alleviates the problem of key information being forgotten

due to gradient dispersion in traditional recurrent neural

networks and still preserves important information above

when processing below. Thus, LSTM can remember longer

sequential information and is suitable for modelling

address text. To obtain contextual information simultane-

ously, BiLSTM concatenates the hidden states of the for-

ward LSTM and backward LSTM to more

comprehensively represent the semantic information of

sentences.

The CRF model combines the advantages of the hidden

Markov model (HMM) [26] and max entropy Markov

model (MEMM) [27] and also avoids the label bias prob-

lem in MEMM. CRF is a key technique for named entity

recognition [28].

Fig. 1 Overall structure of the model

Fig. 2 The structure of the CBOW model
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3.2.3 Loss function

We use the CRF to calculate the loss of the address hier-

archy element tagging network. In contrast to using the

cross-entropy function directly as a loss, the CRF layer can

add some constraints to the final predicted labels to ensure

that the predicted labels are reasonable, with the following

loss function:

loss ¼ � logðpðygoldjXÞÞ

¼ �sðX; ygoldÞ þ log
X
y2Yx

esðX;yÞ
 !

ð4Þ

where X denotes the input word sequence, ygold denotes the

actual label sequence, sðX; ygoldÞ denotes the score of the

label sequence, and Yx denotes all possible prediction

sequences corresponding to the input sequence x.

3.3 Multi-task learning

To enhance the robustness and accuracy of the address

matching model, we imitated the human judgement process

of address matching, compared different hierarchical ele-

ments among different addresses, and designed a multi-task

learning network of address element recognition and

address matching, so that the model can learn the depen-

dency relationship among different address elements in the

process of judging address matching and assist the model

in judging the address matching more reasonably and

accurately. We used parameter sharing to train the multi-

task model.

3.3.1 Address feature extraction network

Considering the hierarchical structure of addresses and the

interaction of neighbouring elements, recurrent convolu-

tional neural networks (RCNN) [29] are used as the basic

feature extractor. As shown in Fig. 4, the feature extractor

mainly consists of a word representation layer, which

extracts information about the address element hierarchy,

and a text representation layer, which extracts more global

information about the entire address. For example, ‘Yan-

tian District (盐田区)’ in ‘Building A, No. 1051 Wutong

Road, Tiandong Community, Haishan Street, Yantian

District, Shenzhen City (深圳市盐田区海山街道田东社区梧桐路

1051号A栋)’ is represented by ‘Shenzhen City (深圳市)’

above, ‘Haishan Street (海山街道)’ below, and itself.

3.3.2 Address element recognition network based
on address element hierarchy information

After the feature extraction layer, the features associated

with the address elements are further extracted using the

fully connected layer and combined with the CRF layer for

address element recognition.

Table 2 Address element classification table

Element type Element tag Explain

Administrative area XZQHS Municipalities/provinces/autonomous regions and special administrative regions

XZQHCS Provincial capital/prefecture-level city/autonomous prefecture/region/alliance

XZQHQX County /(county-level) city/flag/autonomous town/(municipality) district

XZQHJD Street office/community/township/town

XZQHSQ Village

Road JD1 Road/avenue /lane/alley

Compound JD2 District/garden/community

Building JD3 Apartment/Building

House number MP1 House Number (House number/section 1 of Building)

Building brand MP2 Building Number/Dormitory (House number/section 2 of Building)

Unit no DYS1 Unit (Unit Room/Floor 1 section)

Room no DYS2 Room (Unit Room/Floor 2 section)

Local point position POI Supermarket/market/hotel/building/city/garden building/square/centre/building

Fig. 3 The structure of the address element tagging network

Neural Computing and Applications (2022) 34:8919–8931 8923

123



To provide the model with a priori knowledge of the

hierarchical relationships of address elements, enhance the

robustness of the model, and accelerate the convergence of

the model, we incorporate the coding of the hierarchical

relationships of address elements into the training process

of the address element recognition network. First, the

transition probabilities Pi;j between the various types of

address elements in the training corpus were counted.

pi;j ¼ ni;jPt
k¼1 ni;k

ð5Þ

where t denotes the total number of types of address ele-

ments, ni;j denotes the number of samples where the ith

class of address elements is followed by the jth class of

address elements, and the transition probability matrix is

used as the transition matrix of the CRF loss function.

3.3.3 Address matching network

After the shared feature extraction layer, based on the

address elements information learned, the full connection

layer and the ReLU activation function [30] are used to

further globally extract the deep features that are most

relevant to the address match, to discriminate whether the

address pairs match.

3.3.4 Address matching task joint address element
recognition task

Joint multi-task learning implies learning a shared repre-

sentation from other tasks. The use of shared

representations in learning different tasks allows what is

learned in one task to be better learned in other tasks.

As shown in Fig. 5, we introduce the address element

recognition task while performing the main address

matching task, so that the address matching task can learn

the relationships between different address elements, thus

making the address matching model more robust. We

perform joint learning of the two tasks through parameter-

sharing, a hard-share approach [31], first proposed in 2008.

By balancing the noise in both tasks through joint learning

of address matching and address element recognition, the

model focuses on addressing hierarchical features and is

able to capture address representations that incorporate

address element hierarchy information, thus reducing the

risk of overfitting the model on address matching tasks.

3.3.5 Loss function

The training goal of the network was to minimise the total

loss of the model LðhÞ
LðhÞ ¼ k1lossclsðhÞ þ k2lossnerðhÞ ð6Þ
k1 þ k2 ¼ 1 ð7Þ
where h is the model parameter, lossclsðhÞ is the cross-

entropy loss of the address matching network, and

lossnerðhÞ is the CRF loss of the address hierarchy element

recognition network. k1 and k2 are the weight coefficients

of the two aforementioned losses, respectively.

Fig. 4 The network structure of the RCNN [29]
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4 Experiments

4.1 Experiment setting

4.1.1 Dataset

To evaluate the effectiveness of our proposed model, we

conduct experiments using the Shenzhen Address Database

proposed by Yue Lin et al. and on our Jiangsu-Hunan

Address Datasets, both of which are used for address

matching. At the same time, the self-labelled address ele-

ment recognition dataset is used to train and evaluate the

address element tagging network. Levenshtein distance

[32] is a measure of similarity between two strings; the

smaller the Levenshtein distance, the more similar the

strings are to each other. In addition, the Jaccard similarity

coefficient [33] is also a string similarity measure; the

higher the Jaccard similarity coefficient, the smaller the

difference between two strings.

Shenzhen address database [34]. As shown in Table 3, the

Shenzhen address dataset contains 59,153 real addresses in

Shenzhen, Guangdong Province, China, each containing

two addresses and a label indicating whether they match or

not, with 42,237 positive and negative samples each.

Jiangsu-Hunan address dataset As shown in Table 3, we

generated 7600 address matching datasets for Jiangsu

Province and Hunan Province based on the deviation of

coordinate positions, with 3450 matching addresses and

3420 mismatched addresses.

Address element recognition dataset is composed of 36,962

address texts all over the country. These texts are labelled

by us, and 30,285 samples are used as the training set; 3410

samples are used as validation set, and 3267 samples are

used as the test set.

4.1.2 Benchmark

We compare other mainstream address matching methods

to verify the validity of our model, which include Leven-

shtein distance, Jaccard similarity coefficient, random for-

est (RF) classifier [35], support vector machine (SVM)

classifier [36], ESIM, and Transformer [37].

Levenshtein distance is a measure of similarity between

two strings; the smaller the Levenshtein distance, the more

similar the strings are to each other.

Jaccard similarity coefficient is also a string similarity

measure; the higher the Jaccard similarity coefficient, the

smaller the difference between two strings.

RF is a classical integrated learning algorithm for classi-

fication that contains multiple decision trees. The results of

multiple decision trees jointly determine the final result of

the random forest and, therefore, produce higher accuracy.

SVM is a supervised learning approach for classification. Its

goal is to maximise the classification interval and thus,

enhance the robustness of the model. Low-dimensional

indistinguishable data can be processed by soft interval or

kernel transformation, where kernel transformation is used

to map the data from low-dimensional space to high-di-

mensional space, thus making the data distinguishable.

ESIM is a classic interaction-based deep learning model for

text matching with a finely designed sequential inference

structure that considers both local and global inferences.

ESIM achieved the best results on the Stanford Natural

Language Inference (SNLI) dataset [38]. Yue Lin used

ESIM to perform local inference between address pairs,

synthesised local inferences for global prediction, and

achieved better results.

Transformer is a model consisting of attention mecha-

nisms. The Transformer differs from previously existing

sequence-to-sequence models in that it does not use

recurrent neural networks but relies entirely on self-atten-

tive mechanisms. It also uses positional encoding to com-

plement the positional information of the sequences and

thus, can run efficiently in parallel, achieving the best

results on multiple tasks at that time.

4.1.3 Model setting

The Shenzhen Address Database uses 59,151 samples as

the training set, 8487 samples as the validation set, and

16,834 samples as the test set. The Jiangsu–Hunan address

dataset uses 5054 samples as the training set, 606 samples

as the validation set, and 985 samples as the test set.

We used the default parameters in the CBOW algorithm

in Word2Vec to train the word vectors of the address text.Fig. 5 The architecture of multi-task joint learning model
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In the address element tagging network, the maximum

length is set to 50, the batch size is 32, and the learning rate

is 0.001. The hidden layer dimension of bidirectional

LSTM is 100. At the same time, epoch is set to 1 and 10,

respectively, to compare the impact of address tagging

networks with different performance on address matching

task. In the multi-task learning network based on address

element recognition and address matching, the maximum

length is set to 50, the batch size is 64, the learning rate is

0.0001, the maximum epoch is 25, and the number of steps

set by early stop is 1500. The RCNN in the address feature

extraction network uses a bidirectional LSTM with a hid-

den layer dimension of 200 dimensions. The Adam [39]

optimizer is used to optimise the training objective

function.

4.1.4 Metrics

We evaluated our model using precision, recall, and F1

[40]. Precision is the ratio of the number of correctly

classified positive samples to the number of samples

judged as positive by the classifier.

precision ¼ TP

TPþ FP
ð8Þ

where TP denotes the number of correctly classified posi-

tive samples and FP denotes the number of negative

samples judged as positive samples.

Recall is the ratio of the number of correctly classified

positive samples to the number of true positive samples.

recall ¼ TP

TPþ FN
ð9Þ

where FN indicates the number of positive samples judged

as negative samples.

The F1 score is the summed average of the precision

and recall, which is defined as

F1 ¼ 2� precision� recall

precisionþ recall
ð10Þ

4.2 Comparative experiment

The results of the comparison experiment are presented in

Table 4. Seven mainstream address matching methods are

compared with our method on the Shenzhen Address

Database and the Jiangsu Hunan Address Dataset. As

shown in Table 4, our method performs better than the

previous methods. Compared with traditional methods, our

method avoids manual design rules and has a wider range

of applications. Compared with previous machine learning

and deep learning methods, we incorporate the hierarchical

relationship of address elements into the deep learning

model from both data and model aspects, which alleviates

the gap between the semantics of addresses and address

matching.

In addition, the result of the above comparison experi-

ments shows that the deep neural network methods (ESIM,

Transformer, and RCNN) outperform the machine learning

methods (RF and SVM), indicating that the deep neural

network-based methods can effectively learn the semantic

representation of text. Deep learning can capture more

valid features and contextual information than traditional

methods. Moreover, deep learning avoids manual feature

extraction and the design rules.

When comparing ESIM, Transformer, and RCNN, we

can see that the RCNN achieves better results. This indi-

cates that RCNN is more suitable for constructing semantic

representations of addresses compared to other neural

networks. We believe that the main reason is that RCNN

can not only represent the current address element by

surrounding address elements, but also obtain information

about the most critical address elements in address

matching through the pooling layer.

Table 3 Address character

similarity analysis
Attribute Shenzhen Jiangsu-Hunan

Total number of address pairs 59,153 7600

Number of matching address pairs 29,576 3450

Number of unmatched address pairs 29,576 3420

Average length difference for matching address pairs 3.41 7.46

Average length difference for unmatched address pairs 5.16 10.19

Average Levenshtein distance for all address pairs 10.91 11.08

Average Levenshtein distance for matching address pairs 6.43 8.89

Average Levenshtein distance for unmatched address pairs 15.39 13.17

Average Jaccard similarity coefficient for all the address pairs 0.48 0.58

Average Jaccard similarity coefficient for matching address pairs 0.70 0.51

Average Jaccard similarity coefficient for unmatched address pairs 0.25 0.66
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When comparing whether to use the address element

recognition task as an auxiliary task to help address

matching task learning, we find that the multi-task learning

improves the model performance. We believe that an

effective address representation can improve the perfor-

mance of multiple related tasks, while sharing parameters

weakens the network capability to a certain extent and

prevents model overfitting. At the same time, the recog-

nition ability of a single address matching model for sim-

ilar strings representing the different hierarchy of

information shown in Table 1 is poor, resulting in mis-

judgement, and adding hierarchical relationship informa-

tion can effectively alleviate this semantic gap. The

hierarchical relationship information of address elements is

easily learned by the address element recognition task, but

difficult to learn by the address matching task, probably

because the address matching task is more focused on other

features, which hinders the model’s ability to learn the

features of the hierarchical relationship of address ele-

ments. With multi-task learning, we can allow the model to

eavesdrop, that is, to learn the feature using the address

element recognition task.

To enable the model to learn the relationship between

address elements, we also incorporate the knowledge of

hierarchical relationships of address elements to enhance

the model’s effectiveness. We believe that introducing the

knowledge of hierarchical relationships of address ele-

ments not only helps the model learn the relationships of

address elements, but also narrows the search space of the

model and prevents overfitting of the model.

4.3 Ablation study

The effect of model hyperparameters [41] on the experi-

mental results on the Shenzhen Address Dataset is shown

in Table 5. The best result is obtained when the number of

hidden layer neurons in the RCNN is set to 200, the batch

size is set to 64, the learning rate is set to 0.0001, the

number of RNN layers is set to 2, and the weight (subtask

weighting in Table 5) of the hierarchical element recog-

nition network in the multi-tasking network is set to 0.1.

As shown in Fig. 6, in Experiment 2 of Table 5, F1 and

loss values of the training set and the validation set change

with the number of training rounds. When the model

reaches the 20th training round, the loss of the validation

set stabilises and reaches a minimum value, the F1 score

reaches a maximum value, and the model converges.

To verify the impact of address tagging network accu-

racy on multi-task learning network, we use the address

tagging network with poor accuracy for comparison. The

accuracy of the address tagging network and the compar-

ison results of address matching networks under corre-

sponding conditions is shown in Table 6. It is obvious that

the higher performance address tagging network can pro-

vide higher quality labels for the address element recog-

nition network in the multi-task learning network, so better

address matching results are obtained.

To verify the effectiveness of each module in our pro-

posed model, ablation experiment is carried out. The

ablation experimental results of each module are shown in

Table 7, which shows the impact of each module on the

overall accuracy. Among them, single address matching

network refers to the construction of address matching

model only based on RCNN. As shown in Table 7, the

model achieves its best results when multi-task learning is

used simultaneously and incorporates address element

hierarchy information. These results demonstrate the effect

of our proposed model.

To verify whether our proposed model can alleviate the

misjudgement caused by the semantic gap shown in

Table 1, 103 texts containing the semantic gap are selected.

These 103 data were used for ablation experiments, and the

experimental results are shown in Table 8. Among them,

Table 4 Comparison of address matching models

Methods Shenzhen Jiangsu-Hunan

Precision Recall F1 Precision Recall F1

1 Jaccard similarity 96.0 75.0 84.0 77.9 77.8 77.8

2 Levenshtein distance 90.0 81.0 85.0 26.3 51.3 34.8

3 Word2Vec?RF [19] 92.0 89.0 91.0 83.3 77.3 80.2

4 Word2Vec?SVM [19] 87.0 81.0 84.0 83.4 83.7 83.6

5 Word2Vec?ESIM [19] 97.0 97.0 97.0 89.2 89.1 89.1

6 Word2Vec?Transformer 97.1 97.2 97.2 89.5 89.5 89.5

7 Word2Vec?RCNN 97.9 97.8 97.8 89.6 89.4 89.4

8 Word2Vec?RCNN?Multi?hierarchal

relations

99.0 99.0 99.0 94.3 94.2 94.2

The best results are highlighted in bold
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Table 5 The influence of hyperparameters on the results of multi-task network

Number of hidden layer neurons Hyperparameters Metrics

Batch size Learning rate RNN layer Subtask weighting Precision Recall F1

Base 200 32 0.0001 2 0.1 98.5 98.5 98.5

1 250 32 0.0001 2 0.1 98.6 98.6 98.6

2 200 64 0.0001 2 0.1 99.0 99.0 99.0

3 200 32 0.001 2 0.1 98.7 98.6 98.6

4 200 32 0.0001 1 0.1 98.5 98.5 98.5

5 200 32 0.0001 2 0.2 98.7 98.7 98.7

6 200 32 0.0001 2 0.05 98.5 98.4 98.4

7 200 32 0.0001 2 0 98.3 98.3 98.3

The best results are highlighted in bold

Fig. 6 Evolution of F1 and loss values of the training and validation sets with the number of training rounds

Table 6 Comparison of the

impact of address tagging

network on address matching

Address tagging Address matching

Shenzhen Jiangsu-Hunan

Epoch Accuracy Precision Recall F1 Precision Recall F1 Precision Recall F1

1 1 96.1 92.2 94.0 93.1 98.8 98.8 98.8 90.2 90.2 90.2

2 10 99.1 98.6 98.6 98.6 99.0 99.0 99.0 94.3 94.2 94.2

The best results are highlighted in bold

Table 7 The ablation experiments of different modules

Methods Shenzhen Jiangsu-Hunan

Single address matching network Multi-task Hierarchical relations Precision Recall F1 Precision Recall F1

√ 97.9 97.8 97.8 89.6 89.4 89.4

√ √ 98.7 98.7 98.7 93.3 93.3 93.3

√ √ √ 99.0 99.0 99.0 94.3 94.2 94.2

The best results are highlighted in bold
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103 texts are referred to as Data with Semantic Gap (DSG)

in the table.

As shown in Table 8, the model achieves its best results

when multi-task learning is used simultaneously and

incorporates address element hierarchy information. These

results demonstrate the importance of hierarchical infor-

mation. The inclusion of deleted hierarchical relations will

greatly damage the accuracy of the model, which also

shows that our proposed model can alleviate the semantic

gap shown in Table 1.

5 Conclusions

Address matching is a key aspect of geocoding. Previous

rule-based methods require human-designed complex

templates and have limited applicability. Machine learning

and deep learning-based methods ignore the hierarchical

relationship between address elements, leading to mis-

classification. We propose a multi-task learning model for

address-element recognition and address matching. First,

we use a pre-trained model to identify address elements,

thus solving the problem of utilising a large amount of

unlabelled address data. Then, the model learns the hier-

archical information of the address elements using multi-

task learning. Finally, information about the hierarchical

relationships between the address elements is explicitly

incorporated through the CRF model. The effectiveness of

our model is demonstrated by comparing previous methods

on the Shenzhen Address Dataset with the Jiangsu and

Hunan Address Datasets.

Our proposed model has the ability to distinguish similar

characters representing the different hierarchy of informa-

tion by adding the address element recognition task for

joint training. It has the following prospects:

(1) It has achieved better performance compared with

other existing models in detailed address recognition,

which can be applied to delicate address matching.

(2) It can simultaneously predict whether two address

texts match and identify the address elements. The

address element recognition results can be used in:

(a) Address matching: Adding manually designed

rules to further improve the accuracy of

address matching.

(b) Model generalization: Adding customized

rules to improve the model adaptability and

generalizing ability.

(c) Diversion in the express industry.

(3) It can be used not only for address matching, but also

for address error correction by mapping the wrong

address to the correct address through address

matching.
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