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Abstract
Image annotation has been an active research in computer vision. Most of the prior research works focus on annotating

images with fixed number of labels, while it is unreasonable to annotate all images with the same number of labels and do

not take into consideration their contents. In this paper, we present an extensive survey on the recent works about image

annotation with label-to-image semantic relevance and propose a general framework for image adaptive annotation.

Compared to previous works on image annotation methods, the proposed framework is novel in the following aspects: (1)

It predicts label numbers of each image according to its visual features, which is more reasonable and practical for real-

world image annotation. (2) It models label-to-image relevance with similar images and related labels, which can generate

abundant candidate labels. (3) It can progressively refine the image label sets, which ensures the selected label set to be

truly representative and with few redundancies. Experimental results on two benchmark multi-label image annotation

datasets demonstrate that the proposed model outperforms the prior state-of-the-art approaches.

Keywords Image annotation � Variable length labels � Diverse labels � Similar images

1 Introduction

As an important and useful research topic in multimedia

and computer vision fields, automatic image annotation

aims at describing the contents of images with a set of

semantic labels, which has attracted lots of researchers’

interest. It is not only helpful to understand the semantics

of images, but also widely used in various applications of

digital image processing, such as image retrieval [25, 50]

and caption generation [5]. Automatic image annotation

well bridges semantic gaps between low-level features

used to represent images and high-level semantic labels

used to reflect image contents. On the other hand, due to

the complex semantic relationship between image content

and labels, label noises, etc., it is still a challenging task

[36, 52].

A great number of approaches have been developed for

automatic image annotation. Some early search-based

annotation methods [16, 29, 36] mainly focused on image-

to-label relevance, which tagged an image with labels of its

semantic neighborhoods. How to measure the similarity

between images is a key problem and many techniques

have been proposed to deal with relations between images

[53] such as search paradigms and visual similarity.

Recently, image annotation was considered as a multi-label

learning and classification problem with the help of deep

learning methods [27, 28, 51]. Each label was assumed to

be an individual category, and models can output some of

labels with a series of pre-trained classifiers. And because

of its simplicity and efficiency, some label classification

methods have been widely used for annotation.

Different from the mutually exclusive image categories

in classification, the labels in the scene are highly related.

And how to integrate the relationships and encourage the

diversity between labels to improve model performance

becomes a new trend [14, 18]. There are a variety of

methods, such as directed graphs [10, 46] and Recurrent
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Neural Networks (RNNs) [41], that have been used to

reveal the co-occurrence relations between labels and

obtained satisfactory annotation results. In addition, some

other intuitive semantic relationship within labels, such as

hierarchical structure (’’vehicle’’ includes ’’car’’), synony-

mous relationship(’’people’’ and ’’person’’), which can be

used to refine label and output more descriptive label sets

[26, 43, 45, 47].

Kulesza et al. [22] proposed a conditional determinant

point process (DPP) model, which models the probability

distribution of a fixed-size label subset and then integrates

the global negative correlation between the elements in the

subset to ensure the diversity among them. Therefore, in

order to ensure labels diversity, some image annotation

methods embed the label relationship in the DPP model

[43, 45]. These works assumed that all images have the

same number of labels and set a fixed label length k.

Many other works [28, 41, 44, 48] also evaluated their

performance using top-k retrieval performance, where k is

fixed at 3 or 5. This assumption gives convenience for

comparing performance between different methods, but it

does not take into account the difference among semantic

complexity of each image [20]. It is well known that the

number of ground-truth labels increases with the com-

plexity of the image content. As shown in Fig. 1a and b, the

labels statistics on two widely used image annotation data

sets(IAPRTC-12 and ESP-Game) are quite- different.

Figure 1c and d gives some examples of annotated results.

Conventional annotation algorithms are not effective in

case of imbalanced label distribution. We found that ima-

ges with salient foregrounds are more likely to be encoded

with dominant objects, such as ‘‘bottle’’ or ‘‘tree’’. While

for some complicated images, humans usually would like

to depict them with more labels. Therefore, it is more

practical to tagging images with different numbers of labels

according to their contents. Predicting the number of labels

in images and tagging them with variable length labels can

make a good balance between the diversity and accuracy of

image annotation.

Considering the diversity of the label subset and labels

refinement, we propose an adaptive image annotation

(AIA) method which progressively refines labels according

to image contents and label relations. The model consists

of three components: Label Length Prediction, Label-to-

Image Relevance and Diverse Subset Inference. First, we

use a pre-trained Inception-ResNet-V2 [35] as a feature

extractor and predict the number of labels according to the

feature distribution. Then, we give a model to simulate the

label-to-image relevance with visual similarity and

semantic relationship. Given an image to be labeled, we

can get its diverse candidate label set which consists of

related labels from its similar images. Finally, we use the

WordNet-based weighted semantic paths as prior knowl-

edge to refine labels.

Our main contributions are threefold: (i) We design an

Label Length Prediction module to predict the variable

label length of the image in line with the semantic infor-

mation of the image. The predicted number of labels is

more consistent with the actual tagging task. (ii) We use

similar images and related labels to calculate the correla-

tion between images and labels, and get a highly correlated

and rich candidate labels set. (iii) We propose a new

annotation method that treats image annotation as a label

subset selection problem, which combines the label

(a) (b) (c) (d)

Fig. 1 The statistics of testing images on IAPRTC-12 and ESP-Game.

a The number of times the label appears in the two datasets. b The

number of images corresponding to different label lengths. c Examples

of image annotation with salient foregrounds. d Examples of image

annotations with complex content
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semantic path and the sampling algorithm to select repre-

sentative variable-length labels from the candidate labels.

To evaluate the effectiveness of the proposed model,

experimental results on ablation analysis, as well as per-

formance, in comparison with several state-of-the-art

methods on two benchmark datasets are reported.

2 Related work

2.1 Image annotation with image-to-label
relevance

The primary goal of the image annotation methods with

image-to-label relevance is to model the visual and textual

relationship [1]. There are many methods that focus on

image-to-label relevance to improve annotation accuracy,

which can be broadly divided into generative models,

nearest neighbor models and discriminative models [7].

Generative models aim to learn a joint distribution over

image context features and semantic labels, and then pre-

dict the conditional probability of the label for the image to

be labeled. Jeon et al. [19] proposed a cross media rele-

vance model (CMRM), which clustered the segmented

image blocks into blobs and learned the joint probability

distribution between blobs and semantic labels to deduce a

set of labels with the greatest correlation to the image. The

model proposed in [11] was the joint probability distribu-

tion of labels and feature vectors from multiple image

rectangular regions. They also used multiple Bernoulli

model to estimate the predicted probability of each label.

Foumani et al. [12] combined Convolutional Neural Net-

work (CNN) and the Locality-constrained Linear Coding

(LLC) to generate more informative visual words. To deal

with label imbalance, they used a set of trained parameters

to weight each label. The tr-mmLDA model [34] presented

a topic-regression multi-modal Latent Dirichlet Allocation

method, which incorporated a linear regression module to

correlate two hidden topics of images and texts. It could

capture correlations between image features and annotation

texts.

Nearest neighbor models assume that visual similar

images are much likely to share same labels, so the key-

words of the nearest image can be assigned to the input test

image. Makadia et al. [31] exploited the distances between

unlabeled image and the labeled training images, and then

assigned the labels of its nearest neighbors with a greedy

algorithm. Li et al. [24] efficiently measured the label

importance weight for each image by accumulating votes

from visual neighbors’ label distribution. In [15], the

authors adopted logistic discriminant and weighted nearest

neighbor algorithm to increase the importance of infre-

quent labels and suppress frequent labels. Verma et al. [39]

proposed a 2-pass k-nearest neighbor algorithm with

image-to-label and image-to-image similarities to optimize

image annotation. Verma et al. [38] studied the diverse

image annotation with missing labels (DIAML), which

assumed that the training data to be partially labelled, and

then annotate test images with a fixed number of labels that

are simultaneously diverse, representative and maximally

relevant. For DIAML task, they also proposed a new

k-nearest neighbor (k-NN)-based algorithm, which used

the Bernoulli process to indicate whether the label present

and placed a Gaussian kernel over the image’ feature map

to calculate the similarity between images. Ma et al. [30]

incorporated a multi-label linear discriminant classification

method to assign different weights to image features, which

acquired the k-nearest neighbors of the image more accu-

rately. Wu et al. [42] used WordNet [9] to expand the

candidate label set of unlabeled images obtained based on

KNN, which pay more attention to the semantic correla-

tions among textual labels.

Discriminative models treat each label as a class and

learn an binary classifier for each label. Yu et al. [49]

proposed the traditional low rank empirical risk mini-

mization framework to learn the parameters of multi-label

classifier by minimizing the empirical loss. In [4], the

author trained two classifiers to evaluate image and label

independently, and ensemble them into agreement via co-

regularization in a joint loss function. With the develop-

ment of deep learning, some annotation models use CNN to

extract image feature with different convolution kernels

and then use them to a classifier at the last layer. Niu et al.

[32] proposed a multi-scale deep CNN model for fusing

rich and discriminative features at different layers, which

was effective for representing a wide range of visual con-

cepts. Ke et al. [21] proposed an end-to-end feature pyra-

mid annotation model. And a multi-label data enhancement

method based on Wasserstein Generative Adversarial

Network (WGAN) was proposed to reduce the over-fitting

problem of small-scale datasets.

2.2 Image annotation with label relations

There are important and complex relationships between

semantic labels, such as co-occurrence (e.g., ’’car’’ and

’’road’’) or semantic hierarchical relationship (e.g.,

’’clothes’’ and ’’sweater’’). Based on the above prior

knowledge, label relationships can provide semantic clues

for inferring label.

Some methods consider the co-occurrence relationship

between labels, they either predict the labels in a sequential

fashion or construct graph model based on label depen-

dency. For example, Chen et al. [6] constructed a directed

graph with the specified vertices and edges, where each

node is a label and each edge weight is the label co-
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occurrence probability between a pair of label. And, they

used Graph Convolution Network (GCN) to map this label

graphs to a set of inter-dependent label classifiers. Jin et al.

[20] proposed a RIA model that forms image annotation

problem as a sequence label generation, in which CNN was

used to encode image as a visual feature vector and then

RNN is utilized to decode the visual feature into a series of

labels. It is the first work for very rare image annotations

with arbitrary number of labels. However, the performance

of RIA varies with the label order given in the training

phase and rare-first order outperforms than dictionary

order, random order, frequent-first order, and so on.

However, it is not practical and difficult to rank labels in a

order for a given sets of unlabeled images.

WordNet [9] is another method for describing semantic

relationship between labels, which use multi-layer hierar-

chical structure to represent similar cluster, relations and

sub-relations. The synonymous and hierarchical relation-

ships included in WordNet can serve image annotation. Wu

et al. [47] proposed a mixed graph to encode three kinds of

label dependencies. It incorporates instance-level label

similarity and class co-occurrence as undirected edges

while semantic hierarchy is used as directed edges. This

unified model performs well especially for dealing with

noisy and missing labels. Lately, Wu et al. [45] proposed a

diverse image annotation (DIA) model, which was the first

work to encode the image-to-label correlation and the

semantic relationship of labels in a DPP [23] sampling

process. Furthermore, they constructed the hierarchical

relationship of labels into weighted semantic paths to guide

the model to sample the most diverse label subset from

fixed-length labels set. Then, in [43], they optimized the

DPP sampling process with a GAN to measure the rele-

vance of image features and label sets. Chacko et al. [2]

predicted the 5 category labels with the highest confidence

based on CNN and then retrieved other semantic infor-

mation about class labels among them through WordNet,

such as hyponyms, hypernyms and their semantic similar-

ity, which help in accurately tagging images.

3 Adaptive image annotation

Our AIA method mainly contains three modules: Label

Length Prediction (LLP), Label-to-Image Relevance (LIR)

and Diverse Subset Inference (DSI). We present more

details of these three parts in the following subsections.

Given an image, we first utilize a pre-trained Inception-

ResNet-V2 model to predict the number of labels accord-

ing its contents. In order to make full use of the image-to-

label relevance, we perform a content-based image retrie-

val and obtain plentiful candidate labels subsets which

come from the labels of its similar image. We try to

measure the similarity between images with the help of

deep learning features. And then we embed image-to-labels

relevance from the similar images and the related labels

into the DPP model to optimize candidate labels. Finally,

we utilize weighted semantic paths as semantic clue to

sample more representative subset from candidate labels

and obtain diverse labels as output. The flowchart of the

proposed framework is shown in Fig. 2.

Notation Assume that A ¼ fa1; a2; . . .; acg denotes the c
possible annotation labels. The training image set is

denoted as X ¼ ½x1; . . .; xn�, where xj 2 Rd denotes d

dimensional feature vector of the jth image, which extrac-

ted with some pre-trained deep learning models such as

VGG and ResNet [45]. yj; eyj represent the ground-truth and

predicted label sets of the jth image, respectively. And gj
represents the ground-truth number of the labels, egj rep-

resents the predicted labels length, i.e. gj ¼ jyjj,egj ¼ jeyj j.

3.1 Label length prediction

We notice that images with salient objects can be described

with a small number of labels, while complex ones may

require more labels to depict their confusing contents. The

statistics about label distribution of two benchmark data-

sets ESP-Game and IAPRTC-12 are shown in Table 1. The

total number of image labels in two datasets ESP-Game

and IAPRTC-12 are 268 and 291, respectively. From the

table, we can see that the maximum number of image label

is 23. The standard deviation indicates a big number

variation between images even in a same image dataset.

In order to establish the relationship between image

content and label length, we formulate label length pre-

diction as a regression problem. Therefore, we replace the

final classification layer in Inception-ResNet-V2 [35] with

three fully connected layers to solve the regression task.

Given an image xj 2 RH�W�3, the modified Inception-

ResNet-V2 is expected to extract the semantic information

of the image. The output of the last fully connected layer

specified as an integer value egjis provided as the predicted

number of the image labels. We train the model to mini-

mize Mean Squared Error (MSE), defined as follows:

MSE ¼ 1

n

X

n

j¼1

egj � gj
� �2 ð1Þ
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where gj is the ground-truth labels length, and n represents

the number of images in the training set.

We adjust the size of all inputs images to 229� 229, the

learning rate is 1� 10�4, the decay is 1� 10�6, and batch

size is 32. We also use the training sets of two datasets

ESP-Game and IAPRTC-12 shown in Table 1 for training

the LLP module, in which the label number for input image

is set to the expected output.

3.2 Image-to-Label relevance

In this section, we exploit the relationships between image

and label sets. Different from existed methods, the rele-

vance in this section take both image visual features and

label sets of similar images into consideration.

We consider the label associations between similar

images firstly. Images are grouped together to c image

subsets M ¼ ½M1; . . .;Mc� according to their labels. Given

an image, we build its semantic image set ZM by selecting

the most K similar images from each cluster (according to

its labels) in M, ZM consists of at most c � k images. Here,

we propose a deep learning method to measure the simi-

larity between image pairs. The Euclidean distance of

combined deep features extracted by the

FVGG�F ;FResNet;FVGG�6;FVGG�7 is used to boost similarity

accuracy. Then, we use parameter W to represent the cor-

relation of image features to labels, this relevance W ¼
½w1; . . .;wc� 2 Rd�c learned from training data by mini-

mizing the negative log likelihood with ‘2 regularization

[45]. It can be obtained the optimization problem as

follows:

EðWÞ ¼ � 1

n

X

n

j¼1

logPWðyjjxjÞ þ
g
2

X

c

i¼1

wik k22 ð2Þ

where PW is the conditional DPP model, the sampling

probability of the label subset is obtained through it. The

parametric DPP is formulated as follows [23]:

PW yjxð Þ ¼
det Ly x;Wð Þ

� �

det L x;Wð Þ þ Ið Þ
ð3Þ

where I is an identity matrix, det �ð Þ means the determinant

calculation. Lðx;WÞ 2 Rc�c is a positive semi-definite

kernel matrix. The sub-matrix Lyðx;WÞ ¼ ½Li;oðx;WÞai;ao2y�
is generated by selecting the rows and columns of L(x; W)

according to the label indexes in y:

Li;oðx;WÞ ¼ qiðxÞ � SAði; oÞ � qoðxÞ; 8i; o 2 A ð4Þ

where SAði; oÞ is the semantic similarity between label ai
and ao which can be calculated by the following equation:

Fig. 2 Illustration of the proposed AIA method. It mainly contains

Label Length Prediction (LLP), Label-to-Image Relevance (LIR) and

Diverse Subset Inference (DSI). LLP is used to predict the number of

labels for each image, LIR is used to generate candidate labels based

on visual feature and similar images, and DSI is used to sample

refined labels from the candidate labels

Table 1 Statistics of images and labels in two datasets

Dataset ESP-Game IAPRTC-12

Training images 18689 17495

Testing images 2081 1957

Labels 268 291

Labels per training image� 4.7/15/2.2 5.7/23/2.5

Labels per testing image� 4.6/13/2.2 5.6/19/2.5

� The form of ’’average/max/standard deviation’’
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SA i; oð Þ ¼ 1

2
þ ti; toh i

tik k2 tok k2
;8i; o 2 A ð5Þ

where ti; to 2 R300 is the representation vector of labels

ai; ao obtained by Glove [33]. Moreover, ti; toh i denotes the
inner product between ti and to, �k k2 means the ‘2 norm of a

vector. And in Eq.(4), qiðxÞ is used to measure the rele-

vance between label ai and input image x, which is defined

as:

qi xð Þ ¼l expð0:5wT
i xÞþ

ð1� lÞ
X

M
expð�Dðx; ZMÞdðai; ZMÞÞ

ð6Þ

where the former part of Eq. (6) mainly focuses on the

relevance of image features and labels. The later part of

Eq. (6) focuses on similar images share the same labels.

Dðx; ZMÞ is the Euclidean distance of features between

image x and its similar image that in the subset ZM . An

indicator function d ai; ZMð Þ takes a value 1 if similar image

ZM contains the label ai and 0 otherwise. The parameter

l 2 ð0; 1Þ trades off image’s visual information and ima-

ge’s neighbor label information, and can be selected by

doing cross-validation in training set. In fact, when l ¼ 1,

Eq. (6) is a special case given in [45].

For each image xj , we can get the correlation infor-

mation qiðxjÞ between xj and each label i with Eq. (6). We

rank this vector and select the top d1:5 � egje labels as the

candidate labels set of image xj, denoted as �yj, in which egj
is the label length predicted by the LLP module.

3.3 Diverse subset inference

From the section 3.2, we can obtain abundant candidate

labels �yj of each image. However, there may be some

redundancy in these candidate labels. We should delete

some labels and keep their integrity and descriptive at the

same time. According to this, we explore the weight of

each label in the coarse subset with the help of WordNet

[9]. Given a particular subset, we can traverse the WordNet

network to find semantic hierarchy (’’pant’’ is a piece of

’’clothes’’) or synonyms (’’people’’ and ’’person’’ have the

same meaning) with related meanings.

Weighted semantic paths are constructed based on the

hierarchical relationship among all candidate labels [45].

Figure 3a shows a part of hierarchical relations between

labels. Let [’’clothes,’’ ’’trouser,’’ ’’sweater,’’ ’’pant,’’

’’pullover’’] denote the complete vocabulary of candidate

labels. Their weights are closely related the semantic paths

shown in Fig. 3b. Using WordNet, we can build directed

paths such as [‘‘clothes,’’ ! ‘‘sweater’’ ! ’’pullover’’] and

[‘‘clothes,’’ ! ‘‘pant’’ ]. We encode each node i in a path

with a triple set ðai;l; ai;d; ai;bÞ, which represent its layer, the

number of descendants and weight, respectively. The

weight of each label ai in a given semantic path depends on

the level of the label and the number of descendants labels

of the label. For example, in semantic paths [‘‘clothes,’’ !
‘‘sweater’’ ! ‘‘pullover’’], ’’pullover’’ in bottom layers is a

leaf node without descendant labels, and the weight of leaf

node is set to 1. The weight of non-leaf node ai in the

semantic path is defined as:

ai;b ¼
sai;l

ai;d
ð7Þ

where the factor s ¼ 0:7 [45]. So, ’’clothes’’ in the left

semantic path can be represented as (2,4,0.1225), which

indicates that ’’clothes’’ is in the second layer, has four

descendant labels in total, and its weight in this semantic

path is 0:1225 ¼ 0:72=4.

For a given label set, there are many semantic paths,

which are represented by HA ¼ fH1; . . .;Hrg. Although

different paths may share labels, the weight of same label

in different path may varies according to their level and

descendants. For a given label, we add up all weights in the

related semantic paths to get the final weight of the label.

And then the weight of all labels can be denoted as

B ¼ ða1;b; . . .; ai;b; . . .; ac;bÞ.

3.4 AIA sampling algorithm

Algorithm 1 is a modified version of the standard k-DPP

sampling algorithm [23], by embedding the LLP module in

Line 1, Image-to-Label Relevance module in Line 2-3, and

weighted semantic paths in Line 7-9. Given an unlabeled

image, we use the LLP model to obtain the number of

labels egj and also use the extracted CNN features to

retrieval similar images from the training set and named as

ZM . Then, we can get 1:5 � egj candidate labels with Eq. (6)

according the image and label relevance. Subsequently, the

k-DPP sampling algorithm and weight semantic paths are

used to refine the coarse label set, as shown in Line 7-19.

Line 9-11 ensures that two labels in the same semantic path

will not be selected together. We run 10 samplings to

obtain 10 different label subsets. Finally, we select the

Fig. 3 Simple examples of weighted semantic paths
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subset with the largest sum of label weights in the 10

sampling process as the optimal label set eyj .

4 Experiments

4.1 Experimental setting

Datasets. We use two benchmark image annotation data-

sets IAPRTC-12 and ESP-Game for experiment compari-

son. The IAPRTC-12 [13] dataset consists of 19627 images

and there are 291 labels. The minimum and maximum

number of image labels are 1 and 23 respectively. The

ESP-Game [40] dataset includes a wide variety of images

that consist of drawings, logos, personal photos, etc. There

are 20770 images and the size of vocabulary is 268. The

minimum label length of training images is 1 and the

maximum is 15. For both datasets, we follow the training/

test partition used in the normal way [37]. Some statistics

of these datasets are shown in Table 2.

Comparison methods. We compare the annotation

results of our method with five state-of-the-art image

annotation methods including LEML [49], MLMG [47],

DIA [45], D2-GAN [43] and RIA [20]. The first four

methods were proposed for predicting fixed number of

label sets, and the last one is the baseline for variable

length image annotation. The comparison experiments

conducted according to the two conditions: Annotate image

with the given the number of labels(3 or 5 as normal) and

annotate with different number of labels. Because RIA

method did not report results of fixed number tags, we do

not compare with RIA in the first comparison experiment.

We revise the first four method LEML, MLMG, DIA, D2-

GAN with our proposed LLP module and named as LEML-

LLP, MLMG-LLP, DIA-LLP, D2-GAN-LLP, respectively.

RestNet152 [17], VGG16 [8] and VGG-F [3] are three

widely used networks for image feature extraction [35].

DIA and D2-GAN used pre-trained VGG-F model to

extract a 4096-dimensional feature vector and got satis-

factory results. Thus, for a fair comparison, we also use this

model to extract the same dimensional features to measure

image similarity and the corresponding method was named

as AIA-Single. Furthermore, we investigate the perfor-

mance of higher dimensional feature vector, which

obtained with pre-trained VGG-F, VGG16 and Rest-

Net152. We measure image similarity based on the com-

bined features and keep the remaining steps same as AIA-

Single, the corresponding method named as AIA-Mix.

Metrics. The standard metrics are precision, recall, and

F1-measure, which are widely used in previous work. The

corresponding semantic metrics based on weighted

semantic paths, proposed by Wu et al. [45], can be used to

evaluate relevancy and diversity more meaningful and

precise. The semantic metrics are computed as follows:

SPj ¼
Hyj

T

H
eyj

�

�

�

�

�

�

H
eyj

�

�

�

�

�

�

ð8Þ

SRj ¼
Hyj

T

H
eyj

�

�

�

�

�

�

Hyj

�

�

�

�

�

�

ð9Þ

SF1j ¼
2 SPj � SRj

� �

SPj þ SRj

� � ð10Þ

Table 2 The mean absolute error and accuracy of LLP

Datasets Method MAE# Accuracy(%)"

ESP-Game LLP 1.53 21.09

5-tags 1.74 17.49

3-tags 2.12 15.52

IAPRTC-12 LLP 1.45 23.09

5-tags 1.97 17.68

3-tags 2.90 9.96

Bold values indicate the best numerical result in the current column
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where H represents the semantic paths, �j j represents the

number of semantic paths. jHyj

T

H
eyj
j is the weight of

correct labels. SP, SR and SF1 are the average metrics

value of all images in the dataset. The higher value indi-

cates the better performance of the method.

4.2 Effective evaluation for LLP

We quantify the efficiency of LLP for labels number pre-

diction with two metrics, Mean Absolute Error (MAE) and

Accuracy. We choose the number of tags for each image gj
as a reference and use metrics to demonstrate the difference

between fixed number(3 or 5) and predicted variable

number. The former metric is the mean absolute error

between the predicted quantities and ground-truth quanti-

ties, and the later metric is the proportion of correct pre-

dicted quantities in all testing images. The MAE and

Accuracy are defined as follows:

MAE ¼ 1

n

X

n

j¼1

egj � gj
�

�

�

� ð11Þ

Accuracy ¼ 1

n

X

n

j¼1

d egj ; gj
� �

ð12Þ

For fixed label numbers, we do not use LLP to predict the

number of labels and assume the predicted quantity egj ¼ 3

or egj ¼ 5, and indicator function d egj ; gj
� �

takes value 1 if

egj ¼ gj, otherwise 0.

The MAE and Accuracy results of the LLP predicted

label length and the traditional fixed label length are shown

in Table 2. From statistics of image datasets, the average

label number of testing images on the ESP-Game and

IAPRTC-12 datasets are 4.6 and 5.6, respectively. It means

that fixed label number 5 is closer to average number

compare to 3-labels, and MAE and Accuracy values of 5-

labels should be higher than those of 3-labels. Moreover,

the MAE and Accuracy values with LLP are much better

than 5-labels. We can make a conclusion that our quantity

prediction is more in accordance with the ground-truth

quantity than conventional fixed-length.

4.3 Comparison of models with fixed label
length

According to most of the annotation methods proposed for

a fixed number of labels k, we also adjust our method to let

the model predict a given number of labels. Our method is

compared with four image annotation methods that utilize

label relationships, including LEML, MLMG, DIA, and

D2-GAN. It should be noted that DIA, D2-GAN and our

approach utilized diverse subset inference to ensure labels

diversity. The main difference between DIA and AIA-

Single is that DIA only used the first half of Eq. (6).

We present semantic metrics results of the proposed

model on two benchmark datasets, which are shown in

Tables 3 and 4. The first three lines are the reported results

in [45], and the fourth line is reported results in [43]. It is

evident that our AIA method exhibits superior performance

for both 3 and 5 labels on two datasets. In the 5-tags

evaluation, compared with D2-GAN, SF1 score of AIA-

Single increases 2.02% and 4.55% on ESP-Game and

IAPRTC-12, respectively. And, compared with DIA, SF1

score of AIA-Single increases 2.12% and 4.73% on two

datasets, respectively. The reason maybe the kernel matrix

measures robust relevance between images and labels, and

it can generate more correct and diverse candidate labels.

Moreover, in the 5-tags evaluation, compared with AIA-

Single, the SF1 scores of AIA-Mix on the two datasets are

increased by 2.79% and 4.46%, respectively. This shows

that multiple CNN-based features can boost AIA to achieve

better performance than a single CNN-based feature. Also,

our method has more improvements on IAPRTC-12

because the ESP-Game dataset is more challenging than

IAPRTC-12.

Table 3 Semantic metrics results (%) of methods on ESP-Game

Method 3 tags 5 tags

SP SR SF1 SP SR SF1

MLMG [47] 30.51 16.55 19.73 36.61 29.63 30.59

LEML [49] 45.16 23.61 28.31 41.82 33.87 34.58

DIA [45] 42.37 30.48 33.43 36.15 40.1 35.96

D2-GAN [43] 42.96 32.34 34.93 35.04 41.50 36.06

AIA-Single 44.59 33.39 36.20 36.90 43.95 38.08

AIA-Mix 47.84 36.34 39.09 39.53 47.47 40.87

Bold values indicate the best numerical result in the current column

Table 4 Semantic metrics results (%) of methods on IAPRTC-12

Method 3 tags 5 tags

SP SR SF1 SP SR SF1

MLMG [47] 35.74 17.99 21.89 41.95 29.56 31.98

LEML [49] 43.03 19.54 24.86 47.27 29.76 33.67

DIA [45] 44.01 25.16 30.13 38.91 34.21 34.23

D2-GAN [43] 43.57 26.22 31.04 37.31 35.35 34.41

AIA-Single 47.70 28.81 33.93 42.30 40.07 38.96

AIA-Mix 53.12 32.11 37.85 47.03 44.88 43.42

Bold values indicate the best numerical result in the current column
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4.4 Comparison of models with variable label
length

Our method is first compared with the published results of

the RIA method, which is a method for predicting variable

length labels. Then, our method is compared with the

LEML, MLMG, and DIA methods that use our label length

prediction as a priori knowledge. For convenience, we

renamed three methods to LEML-LLP, MLMG-LLP and

DIA-LLP.

RIA is influenced by label sequence order and provided

four results in different rules. For a fair comparison, we use

the same precise, recall and F1-score metrics to measure

our method, and the results are presented in Table 5. On

ESP-Game dataset, AIA-Single-LLP outperforms RIA in

frequent-first order and random order. On IAPRTC-12

dataset, AIA-Single-LLP outperforms RIA in frequent-first

order, random order and rare-first order. Especially, AIA-

Mix-LLP outperforms RIA in four orders, F1-Score of

AIA-Mix-LLP increases 1.5% and 4.6% than the best result

of RIA on ESP-Game and IAPRTC-12, respectively.

And then, our method is compared with LEML-LLP,

MLMG-LLP and DIA-LLP, which use the result of label

length prediction as a priori. The semantic metrics results

of these methods are shown in Table 6. It can be seen that

our method achieves better performance in multiple met-

rics. Compared with DIA-LLP, from semantic SF1 score,

AIA-Single-LLP increases 1.95% and 4.75% on ESP-

Game and IAPRTC-12, respectively. Compared with AIA-

Single-LLP, SF1 score of AIA-Mix-LLP increases 2.82%

and 4.84% on ESP-Game and IAPRTC-12, respectively. At

the same time, we can compare the SF1 of AIA-mix in

Tables 3–4 and SF1 of AIA-mix-LLP in Table 6 to infer

the effectiveness of LLP in our method.

Moreover, we further count the number of images of

methods at different SF1 scores, and results are shown in

Fig. 4. When SF1 score is larger than 0.5, our method

Table 5 Precise, recall and F1-score Results (%) of variable number

label annotation methods on ESP-Game and IAPRTC-12

Datasets Method P R F1

ESP-Game RIA(frequent-first) [20] 34 23 24

RIA(random) [20] 36 24 27

RIA(dictionary) [20] 32 29 29

RIA(rare-first) [20] 33 31 31

AIA-Single-LLP 33.2 27.9 27.9

AIA-Mix-LLP 37.9 32.1 32.5

IAPRTC-12 RIA(frequent-first) [20] 31 20 22

RIA(random) [20] 33 25 28

RIA(dictionary) [20] 32 28 29

RIA(rare-first) [20] 35 34 34

AIA-Single-LLP 36.0 30.6 30.7

AIA-Mix-LLP 45.8 37.7 38.6

Bold values indicate the best numerical result in the current column

Table 6 Semantic metrics results(%) of methods with label number

prediction on ESP-Game and IAPRTC-12

Datasets Method SP SR SF1

ESP-Game LEML-LLP 31.87 36.34 32.41

MLMG-LLP 34.21 37.94 34.34

DIA-LLP 36.46 41.38 36.99

AIA-Single-LLP 38.08 43.81 38.94

AIA-Mix-LLP 40.96 46.95 41.76

IAPRTC-12 LEML-LLP 37.26 33.66 33.99

MLMG-LLP 39.06 35.47 35.81

DIA-LLP 39.18 35.85 36.00

AIA-Single-LLP 42.93 41.53 40.75

AIA-Mix-LLP 48.36 46.15 45.59

Bold values indicate the best numerical result in the current column

Fig. 4 The number of images in five methods at different semantic

SF1 scores
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contains more images compared to other methods. While

SF1 score is lower than 0.5, our method contains less

images.

Finally, we show mean SF1 scores of methods at dif-

ferent number of ground-truth labels in testing images, and

the results are presented in Fig. 5. The overall trend is that

as number of ground-truth labels increases, so does SF1

scores. Moreover, it can be seen that our method outper-

forms other methods when the predicted labels are variable.

Also, several image annotation results of four methods

are shown in Fig. 6. Labels in bold are consistent with

ground-truth labels. Look for the first image in Fig. 6, ’’a

statue of a man on a grey base,’’ MLMG predicted three

labels are ’’adult,’’ ’’people,’’ and ’’person,’’ they are

related to ’’man.’’ However, predicted labels of MLMG

exist redundancy. DIA predicted three labels are ’’statue,’’

’’sky,’’ and ’’man.’’ And our method predicted four labels

are ’’statue,’’ ’’base,’’ ’’front,’’ and ’’man.’’ Both DIA and

our method predicted more diverse labels than MLMG, but

our method predicted more correct labels than DIA, espe-

cially our method predicted four labels as same as the

number of ground-truth label length.

5 Conclusion

In this paper, we proposed a variable length annotation

model with diversity. Different from the conventional

methods, our methods can generate label subsets with

variable length according to the complexity of image

semantics. The label quantity subproblem was solved by

CNN architecture with regress layers. Furthermore, in

order to avoid label redundancy, our method construct a

robust label-to-image relevance to obtain the candidate

labels, and then the optimal labels were decided from this

candidate labels via weighted semantic paths. In order to

evaluate the performance of our method, we first compare

the proposed method with some state-of-the-art methods

under the conventional fixed-length evaluation setting on

two datasets. And then, our method is compared with the

published results of RIA, which generated label sequence

with variable length. Finally, we compared with several

methods that use our label quantity as prior knowledge.

From the experimental results on two datasets, our method

outperforms several state-of-the-art methods.
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