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Abstract
Missing data imputation aims to accurately impute the unobserved regions with complete data in the real world. Although

many current methods have made remarkable advances, the local homogenous regions, especially in boundary, and the

reason of the imputed data are still the two most challenging issues. To address these issues, we propose a novel Generative

Adversarial Guider Imputation Network (GAGIN) based on generative adversarial network (GAN) for unsupervised

imputation, which is composed of a Global-Impute-Net (GIN), a Local-Impute-Net (LIN) and an Impute Guider Model

(IGM). The GIN looks at the entire missing regions to generate and impute data as a whole. Considering the reason of the

GIN results, IGM is assigned to capture coherent information between global and local and guide the LIN to look only at a

small area centered at the missing focused regions. After processing these three modules, the local imputed results are

concatenated to those global imputed results, which impute the rational values and refine the local details from rough to

accurate. The comprehensive experiments demonstrate our proposed method is significantly superior to the other three

state-of-the-art approaches and seven traditional methods, and we achieve the best RMSE surpass the second-best method

on both numeric datasets (17.3%) and image dataset (24.1%). Besides, the extensive ablation study validates the superior

performance for dealing with missing data imputation.

Keywords Missing data imputation � Imputation guider � Local refine � Deep learning

1 Introduction

Missing data imputation is an important and common topic

in the real world, aiming to impute the uncollected and

unobserved regions with rational values. Many imputation

approaches have been proposed to handle data containing

missing observations, such as multivariate time series

imputation [1–5], image imputation [6–9], regression

imputation [10, 11], sentence completion [12–14], to cite

just a few.

To deal with missing data imputation, various traditional

methods can be categorized into two types: (1) The simple

statistical imputation methods, (2) The machine learning-

based imputation methods. But these methods have the

limitations of changing the original data distribution and

assuming the data correlate with characteristics [44, 45].

Recently, a few effective methods about missing data

imputation based on the lately prevalent generative

adversarial network (GAN) [15] have been performed

[16–18]. Most of these methods utilize generators and

discriminators to learn the information of unobserved

regions. The generator frequently generates and imputes

missing data to deceive the discriminator, while discrimi-

nator discriminate between the imputation and fake data.

Although these methods enhance the characteristic

expression and follow the data distribution compared to the

traditional methods, local homogenous regions especially
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in boundary (as shown in the blue and red boxes in Fig. 1)

and the reason of the imputed data are still the challenging

issues that negatively impact the missing data imputation

results. Essentially, two main reasons are resulting in these

issues being challenging to solve. First, GAN-based

methods pay more attention to make the distribution of

generated data approximate the distribution of real data as

a whole, and the details receive insufficient attention

[41, 47, 50]. Hence, the detailed local representation of the

imputation is still not accurately accessed. Second, the

existing methods capture the random noise to feed the

model initially, which ignores the guiding results between

different levels from global to local [15, 46, 48, 49].

Therefore, we not only focus on the global and local

regions and avail the information effectively to combine

the global and the local regions well.

In this paper, we propose a novel unsupervised learning

of GAN-based imputation model GAGIN to deal with

missing data imputation, which consists of a Global-Im-

pute-Net (GIN), a Local-Impute-Net (LIN) and an Impute

Guider Model (IGM). GIN captures the global distribution

from the entire dataset and initially generates the imputa-

tion as a whole. Considering the clutter local area and the

improper results, we design IGM to stretch the information

from global to local and guide LIN to refine the local

regions, especially the boundary of imputation results. Our

GAGIN learns the guide information between global and

local and refine local regions enhancing the imputation

performance. Hence, the proposed GAGIN imputes more

rational values and the inadequate local regions from rough

to accurate.

To sum up, the significant contributions of our proposed

methods can be summarized as follows:

• We propose a novel GAGIN for missing data imputa-

tion. This network is designed to equip with three sub-

networks, the GIN can generate imputation as a whole,

while the LIN guided by IGM refines the local region

especially for inadequate areas.

• Our method compared with other 10 missing data

imputation methods verifies the effectiveness of our

GAGIN. The experimental results illustrate that our

method outperforms the other state-of-the-art

approaches on both numeric and image datasets.

Furthermore, the comprehensive ablation study demon-

strates that our IGM and LIN perform their effective-

ness and superiority for dealing with missing data

imputation.

2 Related work

2.1 Traditional methods

Existing traditional missing data imputation methods can

be categorized into two classes. The first algorithms are

statistical imputation methods such as zero imputation,

mean imputation, and the most common value imputation

[19]. The second kind of methods is machine learning-

based imputation algorithms. Multivariate Imputation by

Chained Equations (MICE) [20] fills the missing data by

using iterative regression model. MissForest algorithm [21]

uses known variables as feature data and the missing data

variable as a label and updates the missing values predicted

by the random forest. Matrix completion algorithm [22]

factorizes the incomplete dataset low-rank matrices and

adopts the product of these two matrices to impute the

missing data. Expectation–Maximization (EM) algorithm

[23] consisting of the ‘‘expectation’’ step and the ‘‘maxi-

mization’’ step iteratively updates model parameters and

imputed data. K-Nearest Neighbor (KNN) algorithm [24]

uses the mean value of k nearest neighbors to fill missing

data.

Although these methods are somewhat effective in

imputing the missing data, statistical and machine learning-

based methods for imputation have various drawbacks. For

instance, the main drawbacks of these imputation methods

are the lack of the utilization of the information and the

change of the original data distribution. Furthermore,

MICE, MissForest, EM, KNN, etc., are all based on the

assumption that the data are missing at random and having

a correlation between characteristics.

2.2 Generative adversarial networks (GANs)-
based methods

In recent years, generative adversarial network (GAN)

schemes [15, 25–27] have significantly developed missing

data imputation. Yoon et al. [18] proposed an imputation

Fig. 1 Some examples of challenges in missing data imputation.

a Ground truth (GT) and e missing mask of which missing

components are colored black. Visualization of b Zero imputation,

fMean imputation, c GAIN [18], g GAMIN [16], dMisGAN [17] and

h Our proposed GAGIN
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network (GAIN) that employs a hint vector to complete the

missing data. It is trained with a discriminator trying to

discriminate which in the fake complete data were imputed

or not. GAIN has improved the performance in imputation

compared to the traditional methods. Nevertheless, the

main drawback of GAIN is the limitation of dealing with

high dimensional datasets or high missing rate. Li et al.

[17] proposed a GAN architecture (MisGAN) and an

imputation method using it. MisGAN, consisting of two

generators and two discriminators, learns a complete data.

For imputation, another pair of generators and discrimi-

nators are used. Although MisGAN has taken advantage of

high-dimensional incomplete data, it tends to neglect cor-

respondence between imputations and groundtruth. The

above papers did not consider the design of local, so there

is a lack of local details. Yoon and Sull [16] proposed a

generative adversarial multiple imputation network

(GAMIN), which generated candidates of imputation and

presented a confidence prediction method to perform reli-

able multiple imputation. GAMIN has made tremendous

advances in high missing rate. However, the missing rate

rarely exceeds 80% for dataset. This work has studied local

to a certain extent, but due to the limited global-to-local

GAN information transmission problem, the solution is not

good.

3 The proposed GAGIN

In this paper, we propose a generative adversarial guider

imputation network (GAGIN) for missing data imputation.

Our design is based on solving the previous two problems:

global-to-local details and conditional guiding. We intro-

duce our model in this section, and in Sect. 4 we provide

the theoretical discussion proving our designing. The pro-

posed GAGIN receives a data missing completely at ran-

dom and outputs the imputation using the guide concept.

Figure 2 illustrates the overall architecture of the proposed

GAGIN, which involves a Global-Impute-Net (GIN), a

Local-Impute-Net (LIN) and an Impute Guider Model

(IGM). Section 3.1 describes our GIN, and the detailed

explanation of our IGM and LIN is mentioned in Sects. 3.2

and 3.3. The model training for imputation is explained in

Sect. 3.4.

3.1 Global-impute-net (GIN)

We design GIN to focus on the entire missing regions to

generate and impute data as a whole. After this network

simulates the global information, it also needs to pass the

information to the local network through the following

guider. The design of GIN is as follows:

In the generator, we take the missing data ~X, the missing

mask M, and a noise variable Z as input, while output is a

vector of generated data X: Obtained by taking the partial

observation of ~X and replacing each missing region with

the corresponding value of X, X̂ corresponds to the com-

pleted data vector. Thus, we define X and X̂ in Eqs. (1) (2)

as below:

X ¼ Gg
~X;M; 1�Mð Þ � Z
� �

ð1Þ

X̂ ¼ M� ~Xþ 1�Mð Þ � X ð2Þ

Fig. 2 The overall architecture of Generative Adversarial Guider Imputation Network (GAGIN)
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where Gg is defined as a function transforming the unob-

served data to generated data for every component and �
denotes element-wise multiplication.

There is a global discriminator Dg used to train our GIN

model, which tries to criticize whether each component of

input is imputed or not. The missing mask M and X̂ are

combined to feed in Dg and output a value in the [0,1]

range. Thus, the loss function for the adversarial global

impute net is defined in Eq. (3) as follows:

Lgadv ¼
Xs

i¼1

Ladv Gi
g;D

i
g X̂;M
� �� �

ð3Þ

where the i-th component of Di
g corresponds to the prob-

ability that the i-th component of X̂ was observed.

3.2 Impute guider model (IGM)

For missing data imputation, it is critical for imputers to

explore the felicitous structure and the appropriate local

information especially in smooth homogeneous regions.

However, the previous methods learn a variety of global

information and treat all characteristics without distinction

so that the finer details are ignored. In using GAN to solve

such a problem, the difficulty lies in how to use the global

information as the pre-condition of the local distribution to

guide the generation. As we all know, GANs cannot

directly use complex conditions, and the output dimension

of GIN is about Rn, which is not suitable as a condition. For

this we designed a module IGM.

Based on the above observation, we propose an IGM to

guide the LIN according to the GIN result X̂ and missing

mask to meet both local refinable and values reasonable.

Therefore, the global imputation results act as a prior to

leading the generation and adjusting the local imputation

results. Each local information is extracted from the

intermediate imputation guider by the fully connected

layer. In order to model the impute guider of the inter-

mediate results dxcdd 2 Rlocal � Rlocal, our proposed method

IGM can be summarized as the following three steps as

illustrated in Fig. 3: (1) Dividing the whole GIN results

into few partitions and searching candidate local region

f localsearch �ð Þ via Eq. (4); (2) Digging the inter-imputation

relationship e using the extracted xcdd via the multilayer

perceptron fFC �ð Þ in Eq. (5); (3) Fusing missing mask and

intermediate results via Eq. (6).

xcdd ¼ f localsearch X̂;M
� �

ð4Þ

e ¼ fFC xcddð Þ ð5Þ
dxcdd ¼ C E eð Þ;Mð Þð Þ ð6Þ

where fFC �ð Þ is two fully connected layers with activation

function relu, E �ð Þ represents expanding the spatial

dimension of e to that of M, and C �ð Þ is the concatenation

operation.

Here we provide a linear/nonlinear module after the

guider, allowing the model to perform linear/nonlinear

conversion. Traditional theory believes that nonlinear

kernel function will increase the representation ability after

conversion. We have discussed this module in theoretical

research and experiment, respectively.

3.3 Local-impute-net (LIN)

Benefit from the results of IGM, the proposed LIN pays

more attention to partial regions relating to the missing

location. The GIN takes the full data as input to recognize

global consistency of the scene, while the LIN guided by

IGM focuses on a small region around the inadequate

imputation area to refine the quality of more detailed

appearance. Similar to Eq. (3), the adversarial local impute

net loss is defined as follows:

Lladv ¼
Xs

i¼1

Ladv Gi
l dxcddð Þ;Di

l X̂;M
� �� �

ð7Þ

Finally, the outputs of the global and the local dis-

criminators are concatenated together into a single vector,

which is then processed by a single fully connected layer,

to output a continuous value. A sigmoid transfer function

Fig. 3 The workflow of our Impute Guider Model (IGM), where

E and C denote the expanding and concatenation operations,

respectively

7600 Neural Computing and Applications (2022) 34:7597–7610

123



[40] is used so that this value is in the [0,1] range and

represents the probability that the data are real, rather than

imputed.

3.4 Model training for imputation

We design and joint two training loss functions of the

proposed GAGIN: the observation loss for training stability

and the adversarial loss for improving the imputation

performance.

The objective of imputation is to minimize the differ-

ence between the imputed values of the observed compo-

nents and the real observed values. For GIN, the

observation loss is given by:

L
g
obs ¼ d M � ~X;M � Gg

~X;M; 1�Mð Þ � Z
� �� �

ð8Þ

where d represents distance between the imputed data and

real data.

Similarly, we obtain the observation loss for the LIN

and Eq. (9) shows the whole observation loss.

Lobs ¼ L
g
obs þ Llobs ð9Þ

As mentioned above, GIN and the LIN are both adver-

sarial networks and the missing data imputation is well

trained between generators and discriminators. To obtain

global consistency and finer details, we define the adver-

sarial loss as follows:

Ladv ¼ Lgadv þ Lladv

¼
Xs

i¼1

Ladv Gi
g;D

i
g X̂;M
� �� �

þ
Xs

i¼1

Ladv Gi
l dxcddð Þ;Di

l X̂;M
� �� �

ð10Þ

The overall imputation losses jointing these two func-

tions are defined as below:

Limp ¼ Ladv þ Lobs ð11Þ

The pseudo-code is presented in Algorithm 1.

4 Theoretical analysis

In this section, we discuss the global-to-local problem and

conditional guiding problem for GANs as the following

points via theoretical analysis: 1) the imputation problem

can be transformed and solved by the simulation of the

global distribution from GAN; 2) introducing localization

could result in a better imputation with a smaller imputa-

tion risk function, so as to prove the advantages of global-

to-local imputation; 3) our designing could solve the region
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123



distribution simulation in local GAN with the global

condition.

4.1 Risk function for imputation

We first define the risk function of the overall imputation.

Let the observed value be x 2 X, the missing value be

y 2 Y , and the target value be y0 2 Y . The goal of impu-

tation is to estimate the missing value through the observed

value, which means to evaluate the conditional distribution

function F yjxð Þ. The objective can be expressed as the

following formula with the conditional mathematical

expectation function:

r xð Þ ¼
Z

ydF yjxð Þ ð12Þ

Given the functional set

f x; að Þ; a 2 Kaðf x; að Þ 2 L2 Pð Þ), if the regression r xð Þ
belongs to f x; að Þ,a 2 Ka, then the problem of regression

function is transformed into solving the following func-

tional. The risk function for imputation can be expressed

as:

R að Þ ¼
Z

y0 � f x; að Þð Þ2dF x; yð Þ ð13Þ

And the solution for such risk function is to minimize

the above risk function so that

f x; a�ð Þ ¼ argmin
a�

R að Þ ð14Þ

Equation (14) is a traditional regression problem [42]

that can be represented and solved by the risk function on

the functional space. And also be a theoretical description

for our imputation task.

Via the definition of empirical risk function, solving

(13) is a problem to find out a� in Ka as in (14). However,

in the rather complicated scenes, such as the imputation

study, solving (13) by empirical risk function is not a quite

good option [2] [6] [9]. The difficulty of the above problem

becomes the problem of turning a� into F x; yð Þ, which

provides a theoretical basis for using GAN to solve

imputation, because GAN can only calculate joint distri-

bution [15] [41].

4.2 Estimation of F(x; yÞ in GAN Imputation

In this part, we discuss that GAN can well simulate F x; yð Þ,
and the simulated F x; yð Þ can further solve imputation.

However, in imputation, the distribution of F x; yð Þ is

unknown, and we can only observe the empirical samples

of ðyjxÞ and to estimate the F x; yð Þ. We define a density

functional p x; y; bð Þ, where b 2 Kb, and if b� is found, we

have

F x; yð Þ ¼
Z x;

�1;

Z y

�1
p u; v; b�ð Þdudv ð15Þ

Rprop bð Þ ¼ �
Z

lnp x; y; bð ÞdF x; yð Þ ð16Þ

p x; y; b�ð Þ ¼ argmin
b�

Rprop bð Þ argmin

�
Z

lnp x; y; bð ÞdF x; yð Þ
� � ð17Þ

Based on Bretagnolle–Huber inequality, there is
Z

p x; y; bð Þ � p x; y; b0ð Þj jdx� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� eR b0ð Þ�R bð Þ

p

s:t:R b�ð Þ � inf
8b2Kb

R bð Þ\ 2 ð18Þ

By letting the b ¼ D 2 KD as a discriminator neural

network in a functional space, we can obtain from Eq. (18)

as follows:
Z

pg x; y;Dð Þ � p x; y;D0ð Þ
		 		dx ð19Þ

And it coincidently turns to be a GAN loss function as

follows:
Z

pg x; y;Dð Þ
� �

dx�
Z

preal x; y;Dð Þð Þdx

¼ Eg zð Þ� pg D g zð Þð Þð Þ � E X;Yð Þ� preal D X; Yð Þð Þ ð20Þ

We explain below that using pg x; y;Dð Þ to fit imputa-

tion, the fitting result is equivalent to the original fitting

Eq. (13), so the problem of imputation can be solved by

GAN.

Plugging Eq. (20) into Eq. (13), we find that fitting an

imputation function f x; að Þ by GAN with an estimated

probability p x; y;Dð Þ is to:

R að Þ ¼
Z

y0 � f x; að Þð Þ2dF x; yð Þ

¼
Z

y0 � f x; að Þð Þ2p x; y; bð Þd x; yð Þ

¼
Z

y0 � f x; að Þð Þ2p x; y;D0ð Þd x; yð Þ

¼
Z

y0 � f x; að Þð Þ2 p x; y;D0ð Þ � p x; y;Dð Þ½

þp x; y;Dð Þ	d x; yð Þ

¼
Z

y0 � f x; að Þð Þ2 p x; y;D0ð Þ � p x; y;Dð Þ½ 	d x; yð Þ

þ
Z

y0 � f x; að Þð Þ2 p x; y;Dð Þ½ 	d x; yð Þ

ð21Þ

The first term is the error term caused by the inaccurate

distribution estimation, which can be seen from Eq. (18),
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Z
y0 � f x; að Þð Þ2 p x; y;D0ð Þ � p x; y;Dð Þ½ 	d x; yð Þ ! 0

.

So, we obtain:

R að Þ ¼
Z

y0 � f x; að Þð Þ2 p x; y;Dð Þ½ 	d x; yð Þ ð22Þ

We use the simulated distribution generated by GAN to

fit the imputation, which is the same as the original fit. It

can also solve the problem of F x; yð Þ super-dimensional

and unknown.

4.3 Advantages of localization imputation

The above conclusion shows that using GAN to simulate a

global probability distribution is a reasonable method to

solve the imputation. Then we further discuss that if the

local simulation method is used, the final overall loss will

be smaller.

For the risk function of Eq. (22), suppose we define the

region we want to impute as Ai, and let the regions except

Ai be Aj6¼i. s.t.Ai \ Aj 6¼i ¼ / and [iAi ¼ Aall ¼ I. If this

area regionalized and imputation performed, the risk

function of each area RAi
is defined as:

RAi
að Þ ¼

Z
L2 y0 � f x; að Þð ÞdFAi

x; yð Þ ð23Þ

where L2 is the norm-2 distance and is a concave function,

FAi
x; yð Þ is a margin distribution of F x; yð Þ,

FAi
x; yð Þ ¼

R
i6¼j F x; yð ÞdAj. Here we use dAj to simplify

d x; yð Þ, s.t. x; yð Þ 2 Aj without confusion.

Hence with a localization imputation, the entire risk

function is

Rall að Þ ¼
Z

RAi
dAi ¼

Z

i

L2 y0 � f x; að Þð ÞdFAi
x; yð ÞdAi

¼
Z

i

Z

i6¼j

L2 y0 � f x; að Þð ÞF x; yð ÞdAj

2

64

3

75dAi

ð24Þ

Given the fact that L2 is a concave function and from

Jensen Inequality, we have

Given the fact that Ai 2 Aall and L2 �ð Þ
 0, we have

Rall að Þ�
Z

y0 � f x; að Þð Þ2dF x; yð Þ ¼ R að Þ ð26Þ

Equation (26) proves that when the regionalization

strategy is used, the overall risk of regionalized imputation

is less than or equal to the risk of global imputation.

4.4 Localization imputation in GAN
with the global Information

We have discussed that localization usually has a smaller

risk function. But practically, we have globally observed

samples. Compared with Eq. (26) in C, the problem we

need to solve is fitting F x; yjx0ð Þ, which is a simulation

problem of conditional probability.

As well known, GAN is not good at conditional prob-

ability simulation (for example, the classical CGAN can

only satisfy one-dimensional condition as the label [43]),

while the condition of imputation design is a high-dimen-

sional observation sample set. Next, we support our inno-

vative design through theoretical discussions that how to

solve the above difficulty fitting F x; yjx0ð Þ, we make the

following design.

We define the result of global imputation net (GIN) as

ŷ 2 Y :

Rall að Þ ¼
Z

i

Z

i 6¼j

L2 y0 � f x; að Þð ÞdFAi
x; yð Þ

2

64

3

75dAi �
Z

i

L2

Z

i6¼j

y0 � f x; að Þð ÞdFAi
x; yð Þ

2

64

3

75dAi

¼
Z

i

L2

Z

all

y0 � f x; að Þð ÞF x; yð ÞdAall �
Z

all

y0 � f x; að Þð ÞF x; yð ÞdAi

2

4

3

5dAi

¼
Z

i

L2

Z

all

y0 � f x; að Þð ÞF x; yð ÞdAall

2

4

3

5dAi �
Z

i

L2

Z

all

y0 � f x; að Þð ÞF x; yð ÞdAi

2

4

3

5dAi

ð25Þ
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ŷ ¼ r xð Þ ¼
Z

ydF x; yjx ¼ x0ð Þ ð27Þ

ŷ is not the optimal solution for the fitting since there is

a more minor risk function from localization. An opti-

mization result from localization risk function could be a

better result. Hence we will discuss how to get a ŷAi
while

satisfying a condition density function of pðyjxAi
; xA j6¼iÞ.

For the local imputation net (LIN), taking into account

global-to-local information, we let the input noise as an

encoder representation of ŷAi
.Without loss of generality,

take the encoding as an operator T, an imputation guide

model (IGM) in our framework.

Z ¼ f ðŷAi
� TÞ ð28Þ

where Z is the input noise for the local GAN. f can be

linear/nonlinear function. Actually, when we use a non-

linear function as activation, the guider is closer to an

encoder. Interestingly, through subsequent heuristic

experiments we find a linear function has better charac-

terization ability. We suspect this is because a linear

transformation can retain more ‘‘original information’’ as a

priori, while a nonlinear transformation will bring more

disturbances. The relevant results will also be given under

Sect. 5.4.

If the local generator in LIN is considered as an encoder

T0, then we will find that

yAi
¼ Z � T 0 ¼ ŷAi

� T � T 0 ð29Þ

Given the fact that

ŷAi
�FðyAi

jxAi
; xAj6¼i

Þ ð30Þ

So we finally have

yAi
�F yAi

jxAi
; xAj

� �
� T � T 0
 �

ð31Þ

It is a conditional probability from xAi
and xAj

to the

localized imputation result yAi
. yAi

uses the global infor-

mation xAj
.

The above (31) theoretically supports how the method

proposed in this paper uses the global imputation (GIN)

result as a condition to generate the process of local

imputation (LIN). Hence, we have successfully solved the

problem of the conditional simulation in a local imputation.

In summary, we have discussed that GAN can be used to

simulate F(x,y) to solve the imputation problem and

localized imputation can theoretically bring better solu-

tions. Finally, the proposed method can use global infor-

mation as a condition to complete the localized imputation.

5 Experiments

5.1 Datasets and experimentation details

5.1.1 Datasets

We evaluate our method both on numeric datasets and on

image dataset available for missing data imputation tasks:

UCI Machine Learning Repository [28] and MNIST [29].

The UCI maintains 559 datasets as a service to the machine

learning community. Like [18], we select four real-world

datasets (Breast, Spam, Credit, Letter) to evaluate the

imputation performance quantitatively, as shown in

Table 1. MNIST is a dataset of handwritten digits images

of size 28 9 28 containing 70,000 images. We use the

provided 50,000 as training set, 10,000 as validation set,

and the remaining 10,000 images as testing set. Tenfold

cross-validation is applied.

5.1.2 Experimentation details

For our training set, the range values of each numeric

dataset and image dataset are rescaled to [0, 1]. We sim-

ulate that each missing value is independent of the missing

rate. The dropout missing rates of our experiments are set

from 10 to 80% with a step of 10%. During the training

process, our GAGIN parameters are initialized by Xavier

[30, 37]. The dimensional vector Z is the same as the input

data. Our whole network is trained by Adam optimizer [31]

with learning rate 1e-3 and the batch size is set to 128.

Then, we stop the whole learning process at 10 k iterations.

We implement our model based on TensorFlow [32]

framework using python 3.7 [38] and our experiments run

on a Nvidia RTX 2080Ti GPU [39]. Due to demonstrating

the proposed model’s performance fairly, as to all the

compared methods, we implement with the same FC

architecture that only fully connected layers for both the

generators and the discriminators.

5.2 Evaluation metrics

To be fair to all methods, we use a unified evaluation

metric to quantitatively analyze the results of all missing

Table 1 UCI Datasets used in the experiments

No. of samples No. of attributes

Breast 569 32

Spam 4601 57

Credit 30,000 24

letter 20,000 16
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data imputation methods. Through the inspiration of the

papers [16–18], we choose root mean square error (RMSE)

[33, 36] and Frechet inception distance (FID) [34, 35] as

the evaluation metrics, to compare the performances with

the state-of-the-art imputation methods.

The RMSE between the real data and imputed data of

missing data imputation is defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

reali � imputedið Þ2
vuut ð32Þ

where N represents the number of samples.

The FID is a measure of the similarity between the

generated images and real ones, which is defined as below:

FID i; rð Þ ¼ li � lrj jj j22þTr
X

i

þ
X

r

�2
X

i

X

r

 !1
2

0

@

1

A

ð33Þ

where i; rð Þ represents the imputed image and the real

image. li and
P

i are the mean-value and covariance

matrix of the imputed image’s vectors, the same as lr andP
r. Tr denotes the trace of the matrix.

5.3 Performance comparison on UCI and MNIST
missing dataset

In the experiments, our GAGIN is compared against 10

methods, including three state-of-the-art methods (GAIN,

MisGAN, GAMIN) and seven traditional methods (zero-

imputation, mean-imputation, MICE, MissForest, Matrix,

EM, KNN). Fairly, as to all the compared methods, we

directly use the author’s released codes or repeat according

to the author’s idea to perform the evaluations. Before the

starting of the experiments, we have standardized the input

datasets.

5.3.1 Evaluation on various missing rates and dimensions
for UCI missing dataset

Table 2 shows the comparison results between some other

imputation methods and our proposed method GAGIN in

the last row. We conduct two experiments, in which we

vary the missing rate and the number of dimensions on the

Credit dataset. Figure 4 shows the RMSE performance for

various missing rates from 10 to 80% with a step of 10%.

The blue columns show the traditional methods for impu-

tation, while the green polylines represent the GAN-based

imputation methods. Even though the RMSE of each

algorithm decreases as missing rates increase, our GAGIN

consistently outperforms the benchmarks across the entire

range of missing rates as the proposed GAGIN can capture

the global information and learn the local relationship of

the unobserved values guided by IGM. Besides, our

method can impute the missing data with more accurate

values.

We also investigate the influence of the comparison for

various dimensions by the different methods as shown in

Fig. 5. The RMSE performances decrease with the

increasing of dimensions. The red line shows the superi-

ority of RMSE with different dimensional datasets. We can

Table 2 Comparison of the

RMSE of the different methods

on UCI dataset with 20%

missing rate(Average ± Std of

RMSE)

Breast Spam Credit letter

MICE 0.1626 ± 0.0044 0.0691 ± 0.0007 0.2574 ± 0.0028 0.1537 ± 0.0029

MissForest 0.1667 ± 0.0067 0.0564 ± 0.0011 0.1991 ± 0.0005 0.1542 ± 0.0018

Matrix 0.2010 ± 0.0023 0.0604 ± 0.0008 0.2533 ± 0.0007 0.1448 ± 0.0004

EM 0.2286 ± 0.0054 0.0754 ± 0.0009 0.2419 ± 0.0026 0.1575 ± 0.0006

KNN 0.1383 ± 0.0045 0.0581 ± 0.0022 0.1923 ± 0.0015 0.1302 ± 0.0007

GAIN18 0.0881 ± 0.0089 0.0529 ± 0.0011 0.1801 ± 0.0018 0.1296 ± 0.0005

Ours-tanh 0.0864 ± 0.0021 0.0531 ± 0.0015 0.1797 ± 0.0019 0.1281 ± 0.0009

Ours-sigmoid 0.0838 ± 0.0032 0.0527 ± 0.0013 0.1805 ± 0.0013 0.1273 ± 0.0006

Ours-linear 0.0789 ± 0.0019 0.0500 ± 0.0008 0.1536 ± 0.0010 0.1229 ± 0.0004

Fig. 4 Comparison of the RMSE performance by the different

methods on Credit dataset for various missing rates from 10 to 80%

with a step of 10%. The smaller the RMSE, the better the results
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conclude that the proposed GAGIN is also robust to the

number of dimensions.

5.3.2 Quantitative evaluation on MNIST missing dataset

Our comparison of evaluation metrics is shown in Table 3,

and our method’s evaluation scores are shown in the last

column. For RMSE, our GAGIN surpasses the second-best

method by 24.1% on MNIST dataset with 50% missing

rate. Moreover, our method presents the lowest score of

FID and is 33.2% lower than the second-best method. To

intuitively show the comparison, we calculate the FID

score of all the methods under independent dropout with

missing rates from 10 to 80%. The FID results are illus-

trated in Fig. 6. The blue polylines show the traditional

methods for imputation, while the green polylines represent

the GAN-based imputation methods. It can be observed

that, in all cases, our proposed method evidently gains the

best imputation FID than the others.

When the missing rate is low (10%-60%), the overall

distribution is retained more, and the GANs method per-

forms well owing to simulating the global information

well. However, when the missing rate increases, the global

information becomes less, and the traditional algorithm is

greatly affected at this time (the observation surrounding is

more missing points). When the missing rate is greater than

60%, the RMSE rises sharply. It is undeniable that our

method has the best performance, as the global-to-local

method gives a better solution and optimizes the details. In

addition, this problem can be derived from the subsequent t

test experiment. Consequently, our GAGIN outperforms all

the other methods on missing data imputation.

5.3.3 Qualitative comparison on MNIST missing dataset

Figure 7 shows the visible imputation results generated

from different methods on MNIST dataset of 50% missing

rate. The (c) to (e) columns are the traditional methods, i.e.

zero-imputation, mean-imputation and matrix-based

imputation, while the (f) to (h) columns are the GAN-based

methods for imputation recently as GAIN, MisGAN and

GAMIN. Intuitively, the zero-imputation method and the

mean-imputation method cannot produce valuable impu-

tations. The matrix-based imputation generates the blurred

images with stars. Furthermore, images imputed by GAN-

based methods possess unclear and insufficient boundary in

detail. It is apparent from Fig. 7 that our imputation results

of the proposed method present the clearest and the most

precise boundary particularly in visual performance.

Fig. 5 Comparison of the RMSE performance by the different

methods on the Credit dataset for various dimension numbers

Table 3 Comparison of the evaluation metrics of the different methods on MNIST dataset with 50% missing rate

Metric Zero

imputation

Mean

imputation

Matrix

imputation

GAIN18 MisGAN19 GAMIN20 Ours-

tanh

Ours-

sigmoid

Ours-

linear

FID 5.6061 5.1386 4.8681 3.3416 2.1124 1.6602 1.3880 1.3714 1.2467

RMSE 0.2522 0.2402 0.2387 0.2028 0.1825 0.1805 0.1518 0.1537 0.1455

Fig. 6 Comparison of the FID score by the different methods trained

on MNIST dataset for various missing rates from 10 to 80% with a

step of 10%. The smaller the FID, the better the results
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5.4 Ablation analysis

5.4.1 Linear or nonlinear GIN

In our framework, we use a linear/nonlinear module after

IGM module. Here we heuristically choose two nonlinear

functions as the kernel transform after the Guider. Com-

pared to the linear transform, the result is listed in the last

three columns of Tables 2 and 3. Interestingly, people

generally consider adding nonlinear kernel could increase

the representation ability of the module. However, in our

study, we can see that the effect of using nonlinear func-

tions has become worse. This is because the guide here

obtains information from global random variables as a

priori to generate the local part. To avoid potential over-

fitting, a permutation is rational enough to introduce some

uncertainty/variance from a solid global-to-local relation-

ship. Nonlinear functions extremely disturb this situation,

especially in the case of digital data, which excessively

weaken the priors passed by the guider. On the other hand,

this proves the effectiveness of the guider conduction prior

we designed. To sum up, this part of the work is enlight-

ening. It is not ruled out that knowing the nonlinear

function that can simultaneously haa better representation

and more prior information is in the future research.

Therefore, we still retain this module in the final model

design.

Fig. 7 Imputation results of 50% dropout missing: a groundtruth,

b missing mask of which missing components are colored black,

c impute with zero value, d impute with mean value, e impute with

Matrix algorithm, f GAIN based imputation, g MisGAN based

imputation, h GAMIN based imputation, i Ours GAGIN based

imputation. The c to e and f to h columns respectively show the

traditional methods and GAN based methods for imputation
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5.4.2 Effectiveness of local-impute-net (LIN)

As mentioned, our LIN’s goal is to optimize the local

boundary details and refine the inadequate imputation area.

To validate the effectiveness of LIN, we get rid of the

complete LIN and then directly obtain the results of IGM

and GIN concatenated together as the final outputs. The

RMSE with (Row GAGIN) and without LIN (denoted as

‘‘w/o LIN’’) are reported in Table 4. It can be observed that

the proposed GAGIN with LIN works better than that

without LIN. In addition, our method without LIN gains

the best performance compared with other state-of-the-art

approaches and traditional-based methods combining

Table 3, which also highlights the effectiveness of our

subnetworks (i.e. GIN and IGM). Intuitively, we show the

visual results generated by our method without LIN and

with LIN (denoted as ‘‘w/ LIN’’) in Fig. 8. In terms of

visual results, (d) is more concrete than (c), illustrating that

our LIN can refine the boundary details and effectively

promote the final imputation outputs.

5.4.3 Analysis of impute guider model (IGM)

To explore the importance of IGM (i.e. bX;f localsearch and fFC),

we conduct our experiments with four different instances.

Considering 1) why feed X̂ generated by GIN into our IGM

as input; 2) how to choose different candidate local region

for our impute guider model; 3) how to dig the inter-im-

putation relationship using the extracted region. Based on

above considerations, our ablation studies about the input

bX , f localsearch and fFC are shown in the effectiveness of IGM part

in Table 4. To investigate the importance of GIN’s infor-

mation, we first replace the input with random noise (de-

noted as ‘‘w/o X̂’’). To verify the effectiveness of impute

guider model, we get the RMSE and FID results without

f localsearch and fFC (denoted as ‘‘w/o f localsearch ? w/o fFC’’) by

replacing these modules with the corresponding fully

connected layers. As for the local region choice, the impute

guide model is only equipped with fFC (denoted as ‘‘w/

fFC’’). Then, as for the digging the relationship of imputing

guider model, we only add f localsearch (denoted as ‘‘w/ f localsearch’’).

Compared with basic model (w/o f localsearch ? w/o fFC), our

IGM can decrease FID up to 1.944 and reduce RMSE up to

0.0722. Hence, our X̂, f localsearch and fFC significantly improve

the results.

5.4.4 Statistical T test to ensure the superiority of GAGIN

T test is a common method testing two independent sam-

ples in statistics. Considering whether imputed data and

real data are similar, we used the t test method to quantify

the significance of the difference between the two type

samples in missing data imputation. The test results with

10–80% missing rate of MNIST data set are presented in

Table 5. From the table, we see that as the missing rate

increases, the p value gets smaller, but the t value gets

larger. When p value[ 0.05, accept the null hypothesis

and consider that the difference between the two samples is

not significant, and vice versa. When the missing rate is

between 10 and 60%, the p value is more significant than

0.05, indicating that the generated imputed data are similar

to the real data, and the lower the missing rate, the more

similar. When missing rate[ 70%, the p value\ 0.05, and

it is considered that there is a certain gap between the
Fig. 8 Visual comparison of missing data imputation results without

and with LIN

Table 4 Ablation analysis of our proposed GAGIN using FID and

RMSE

Methods Credit MNSIT

RMSE RMSE FID

GAGIN 0.1536 0.1455 1.2467

Effectiveness of LIN

w/o LIN 0.1792 0.1803 1.6247

Effectiveness of IGM

w/o X̂ 0.2176 0.2293 3.4219

w/o f localsearch ? w/o fFC 0.2035 0.2177 3.1907

w/o f localsearch
0.1904 0.2075 2.8585

w/o fFC 0.1848 0.1987 2.2786

Table 5 Statistical t-test of our proposed GAGIN using t-value and p-
value

Missing rate t-value p-value

10% 0.0778 0.9380

20% 0.2365 0.8130

30% 0.3403 0.7337

40% 0.4722 0.6368

50% 0.8799 0.3791

60% 2.0391 0.0416

70% 2.8428 0.0045

80% 6.3088 3.89E-10

7608 Neural Computing and Applications (2022) 34:7597–7610

123



generated sample and the real sample. The t test further

proves the significance of our proposed method in

statistics.

6 Conclusions

In this paper, we propose a novel generative adversarial

guider imputation network (GAGIN) for missing data

imputation. To solve the interference of local clutter and

the inaccurate imputation boundary details, we design a

Global-Impute-Net (GIN), a Local-Impute-Net (LIN) and

an Impute Guider Model (IGM).

After the GIN generating and imputing data on the

whole, the LIN is assigned to capture and refine local

details guided by the IGM. Comprehensive experiments

indicate our proposed method has the superiority of miss-

ing data imputation. However, we need to improve our

method for all realistic settings. Future work will investi-

gate the performance of GAGIN in other missing data

types (MAR, MNAR). Furthermore, we plan to make an

additional absolute guide imputation to enhance the per-

formance of our method.
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45. Jerez José M et al (2010) Missing data imputation using statistical

and machine learning methods in a real breast cancer problem.

Artifi Intell Med 50(2):105–115

46. Li L, Fu H, Xu X (2021) Active learning with sampling by joint

global-local uncertainty for salient object detection. Neural

Comput Applic. https://doi.org/10.1007/s00521-021-06395-8

47. Ma X, Li X, Zhou Y et al (2021) Image smoothing based on

global sparsity decomposition and a variable parameter. Comp

Visual Media 7:483–497

48. Wang Q, Hu X, Gao Q et al (2014) Global–local fisher dis-

criminant approach for face recognition. Neural Comput Applic

25:1137–1144

49. Cheng Y, Song F, Qian K (2021) Missing multi-label learning

with non-equilibrium based on two-level autoencoder. Appl Intell

51:6997–7015

50. Raja PS, Sasirekha K, Thangavel K (2020) A novel fuzzy rough

clustering parameter-based missing value imputation. Neural

Comput Applic 32:10033–10050

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

7610 Neural Computing and Applications (2022) 34:7597–7610

123

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://yann.lecun.com/
http://arxiv.org/abs/1806.07755
http://arxiv.org/abs/1806.07755
http://arxiv.org/abs/1704.08863
http://arxiv.org/abs/1704.00028v3
http://arxiv.org/abs/1411.1784
https://doi.org/10.1007/s00521-021-06395-8

	GAGIN: generative adversarial guider imputation network for missing data
	Abstract
	Introduction
	Related work
	Traditional methods
	Generative adversarial networks (GANs)-based methods

	The proposed GAGIN
	Global-impute-net (GIN)
	Impute guider model (IGM)
	Local-impute-net (LIN)
	Model training for imputation

	Theoretical analysis
	Risk function for imputation
	Estimation of {{\varvec F}}\left\lpar {{{\varvec x}},{{\varvec y}}} \right) in GAN Imputation
	Advantages of localization imputation
	Localization imputation in GAN with the global Information

	Experiments
	Datasets and experimentation details
	Datasets
	Experimentation details

	Evaluation metrics
	Performance comparison on UCI and MNIST missing dataset
	Evaluation on various missing rates and dimensions for UCI missing dataset
	Quantitative evaluation on MNIST missing dataset
	Qualitative comparison on MNIST missing dataset

	Ablation analysis
	Linear or nonlinear GIN
	Effectiveness of local-impute-net (LIN)
	Analysis of impute guider model (IGM)
	Statistical T test to ensure the superiority of GAGIN


	Conclusions
	Acknowledgements
	Author contribution
	References




