
ORIGINAL ARTICLE

IC-GAR: item co-occurrence graph augmented session-based
recommendation

Tajuddeen Rabiu Gwadabe1,2 • Ying Liu1,2,3

Received: 23 February 2021 / Accepted: 12 December 2021 / Published online: 8 January 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Session-based recommendation aims to recommend the next item of an anonymous user session. Previous models consider

only the current session and learn both of the user’s global and local preferences. These models fail to consider an

important source of information, i.e., the co-occurrence pattern of items in different sessions. The co-occurrence patterns

elicit the trajectory of other similar users and can improve the recommendation performance. We propose an Item Co-

occurrence Graph Augmented Session-based Recommendation (IC-GAR) model, a novel session-based recommendation

model that augments the representations of the current session with session co-occurrence patterns. IC-GAR consists of

three modules: Encode Module, Session Co-occurrence Module and Prediction Module. The Encoder Module learns both

of the user’s global and local preference from the current session using Gate Recurrent Units (GRU). The Session Co-

occurrence Module uses a modified variant of Graph Convolutional Network (GCN) to model higher order interactions

between the item transition patterns in the training sessions. By aggregating the GCN representation of items of the current

session, session co-occurrence representation is learned. The Prediction Module decomposes global preference, local

preference and session co-occurrence to predict the probability scores of candidate items. Extensive experiments on three

publicly available datasets are conducted to demonstrate the effectiveness of IC-GAR. 8.5–39.2% improvement are

achieved across datasets in Precision @5, 10 and MRR@5, 10.

Keywords Session-based recommendation � Graph neural networks � Sequential recommendation � Item co-occurrence

graph

1 Introduction

Recommender systems aim to predict the items a user

might be interested-in based on her previous interactions.

Recommender systems have recently become very impor-

tant, especially in e-commerce due to availability of a large

pool of items a user can select from. Recommender

systems play a crucial role to consumers and owners of the

business. Traditional recommender systems employ Matrix

Factorization (MF) [1, 2] methods to learn a low rank user

representation from the ratings of previous interactions. By

using this representation, the recommender system then

predicts the rating of other items the user maybe interested

in.

However, on most online platforms, users do not

explicitly rate items. Rather, implicit feedback, such as

clicks, must be relied on for recommendation. Since user

interests are dynamic, traditional MF methods cannot

capture such changes. To utilize implicit feedback and

capture user interest drifts, researchers have focused on

sequential recommender systems. A particular case of

sequential recommendation, called session-based recom-

mendation has gained a lot of attention recently. In session-

based recommendation, sessions cannot be linked to a
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particular user which may be warranted due to privacy

concerns.

To effectively recommend relevant items to users in

session-based recommendation, three important criteria

have to be considered; short-term preference, long-term

preference and session co-occurrence patterns. Consider

the example in Fig. 1, in Session 1 the user watched the

‘‘Fast and Furious’’ movies in serial order from the fifth

movie to the seventh movie. Based on the watch history, it

will be a good idea to recommend the next movie (eighth

movie). In this instance, the last watch (clicked) item is

important for recommendation and it is captured by the

short-term preference. However, from Session 2, the watch

history includes animation movies and action movies. The

user may not be really interested in the animation movie

but watched them with her kids. In this case, recom-

mending another animation movie may not be the best

decision but rather recommending both action movie and

animation movie. Here the short-term preference is insuf-

ficient. However, the long-term preference addresses this

issue by capturing the overall session interest. Consider

Session 3, the user is obviously interest in action movies,

however, using the knowledge from Session 1 that after

watching ‘‘movie 3’’ users watch ‘‘movie 4’’, it may be

relevant to recommend ‘‘movie 4.’’ The session co-occur-

rence pattern captures the inter-session interaction for

improved recommendation.

Short-term preference is represented by the most recent

interactions. Markov chain (MC) models have shown to be

successful on this task [3, 4]. FMPC [5] assumes inde-

pendence between interactions and models the first-order

MC for sequential recommendation. Older interactions are

important to fully understand session long-term preference

due to drift in user interest. Here MC models fail due to the

independent assumption and the difficulty in the scalability

of higher order MC models. Recurrent Neural Networks

(RNN) models are a great alternative to MC models for

modeling longer sequence and have become the state-of-

the-art in session-based recommendation [6–9]. NARM

[10], for example, models both user’s short-term and long-

term preference using GRU with the last hidden state as the

short-term user preference. An attention mechanism is then

used to learn a user’s long-term preference.

Since sessions cannot be tied to particular users, item

co-occurrence patterns can elicit behavioral pattern

between different sessions. The existing session-based

recommendation models consider only the current session

for recommendation. However, user behavior can be

influenced by others as the old adage goes ‘‘birds of the

same feather flock together’’. Studies have shown that

recommender systems are subjected to conformity bias

[11, 12]. That is, users are influenced by the actions of

others. Researchers [13, 14] have leverage this trend to

improve recommendation. However, in session-based rec-

ommendation, user information or social information is not

readily available.

To this end, we propose IC-GAR (Item Co-occurrence

Graph Augmented Session-based Recommendation) model

that efficiently combines the three important criteria in a

session-based recommendation problem. To model the

short-term and long-term user preference, we use a GRU.

The last hidden state of the GRU represents the user’s

short-term interest. We then use attention mechanism to

capture the long-term interest of users from all hidden

states of the GRU. To model item co-occurrence, we first

construct a weighted undirected graph containing all the

training sessions. Each weighted edge of the graph repre-

sents the frequency of transitions from one item to another.

By using a variant of Graph Convolutional Network GCN

[15], we can learn an item representation that is aware of

the various transition patterns between that item and all the

other items. We then aggregate the item representations

from the GCN for each session to learn the session co-

occurrence representation. By using the short-term, the

Fig. 1 A toy example of relevance of short-term, long-term and session co-occurrence pattern in session-based recommendation
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long-term and the session co-occurrence representations,

we then employ a trilinear decomposition to recommend

the most relevant items.

In summary, our main contributions are as follows:

• We propose a model that considers three factors i.e.,

short-term, long-term and session-occurrence represen-

tation for session-based recommendation

• A novel IC-GAR model is proposed that accounts for

user interest dynamics and item co-occurrence patterns

in an end-to-end neural network.

• A graph representation is proposed to learn the session

co-occurrence representation in all training sessions.

• We conduct extensive experiments on three datasets to

demonstrate the effectiveness of IC-GAR. The pro-

posed IC-GAR model significantly outperforms the

state-of-the-art models in terms of MRR and Precision.

The rest of the paper is organized as follows: Sect. 2

presents related works, while Sect. 3 gives a detailed

description of IC-GAR model. The experimental results

and discussion are in Sect. 4 and the conclusion is in

Sect. 5.

2 Related works

Recommender systems have evolved over range with two

main branches emerging. That general recommendation

and sequential recommendation. General recommender

systems do not consider the temporal nature of user inter-

est, while sequential recommender systems are built with

the dynamic nature of user interest in mind. General rec-

ommender systems can be categorized into collaborative

filtering, content based and hybrid methods [16, 17]. Col-

laborative filtering generate recommendation for users by

exploring the preferences of other related users. Content-

based methods generate recommendations for users by

exploring similarity between items previously consumed

by the users. Hybrid methods on the other hand combines

the benefit of both collaborative filtering and content-based

methods. Recently, fuzzy tools have been developed for

improving general recommendation [18].

Session-based recommendation is a special type of

sequential recommendation where user information is not

available and sessions are short. This section will present

some related literature that are most relevant to our work.

Related works on session-based recommendation are pre-

sented in Sect. 2.1, while graph-based recommendation

systems are discussed in Sect. 2.2.

2.1 Session-based recommendation

Session-based recommendation is a sub-task of recom-

mender systems where given the historical sequential

interactions, the next item is predicted. Session-based

recommendation additionally assumes that sessions cannot

be tied to a particular user (anonymous user sessions).

Traditional collaborative filtering models cannot be used

for session-based recommendation because they do not

consider the sequence of interactions. Hence, MC-based

models have been extensively used [3, 5, 19, 20]. These

models predict the next action in a sequence using the last

action (or last few actions) and assume independence

relationship between actions in a sequence. Zimdars et al.

[19] used MC to extracted sequential pattern for session-

based recommendation. Shani et al. [3] improved the

maximum likelihood of MC transition graphs by using

heuristic methods for sequential recommendation. FPMC

[5] generalized MC and MF to learn sequential patterns and

long-term user preference. However, MC-based models

suffer from the independent assumption and an unman-

ageable state space when considering long sequences.

RNN solved the limitation of MC-based models. RNN

can efficiently learn longer sequences and have recently

shown superior performance in tasks such as machine

translation [21, 22], image captioning [23, 24] and con-

versation systems [25]. RNN have also shown superior

performance in sequential recommendation tasks such as

next location [26, 27], next click [28–30] and next basket

[31, 32] recommendation. Hidasi et al. [6] is the first to

propose using RNN for session-based recommendation,

which uses parallel mini-batches with pair-wise ranking.

Tan et al. [33] improved the model by using data aug-

mentation, privileged information and point-wise ranking

loss. These models and others [34–36] only consider the

last hidden state (local user preference) of the RNN for

recommendation. To improve the capability of modeling a

user’s dynamic interest, NARM was proposed to learn both

of the global and the local user preference [10]. Other

models [37–39] have leveraged these two preferences and

have achieved improved performance. STAMP [37] uses

memory network for local and global user preference with

a trilinear decomposition. LSAMN [40] proposed using

hierarchical attention to balance between global user

interest and sequential behavior. HLN [39] introduces a

hierarchical leap network to skip preference un-related

items. In addition to global and local user preference,

CSRM [9] uses a memory network to incorporate neigh-

borhood sessions.
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2.2 Graph neural network based
recommendation systems

Graph neural networks GNN are deep learning methods on

graph structured data [41]. They learn powerful represen-

tation by using message passing technique between the

nodes [15]. The main technique of GNN is to iteratively

aggregate the features from the neighboring nodes with the

features of the current node for a powerful node repre-

sentation. GNN have achieved great success in tasks such

as node classification [42–44], protein structure [45, 46]

and physical systems [47, 48]. Naturally, recommendation

task can be represented as a bipartite graph of user-item

interactions. Several GNN models have been proposed on

bipartite graphs [49–53]. Berg et al. [49] used graph auto-

encoder to learn the node embeddings on a user-item

bipartite graph. Ying et al. [50] improved the scalability of

GNN in recommender systems by using random walks for

feature aggregation. IG-MC [52] constructs one-hop sub-

graph based on user-item pairs to learn an inductive matrix

completion method. Other models focus on both the user-

item bipartite graph with additional side information

graphs, such as social networks, [54–56] and the knowl-

edge graphs [57–59]. Wu et al. [55] captured the hetero-

geneous information from the social and user-item graphs

to model the social influence in recommendation. KGAT

[59] proposed to learn the relationships in a higher-order

collaborative knowledge graph. Recently, GNN have been

applied on sequence data for recommendation [60–64]. SR-

GNN [60] employs a gated graph neural network and an

attention mechanism with bilinear decoder for recom-

mendation. A-PGNN [62] proposed a personalized rec-

ommendation model to capture the complex item transition

in a user-specific fashion. DHCN [65] replaces the directed

graph used in SR-GNN with hypergraph and proposed a

self-supervised learning for improved performance. GCE-

GNN [66] uses epsilon neighbor and augment the long-

term user preference in SR-GNN, while neglecting the

short-term user preference. GAG [67] considers dynamic

sessions against the static sessions and proposed using

GNN with Wassertein reservoir for streaming session-base

recommendation.

In this paper, our proposed model differs with the

existing models from the following three points: (1) We

proposed to augment an RNN-based session-based model

with item co-occurrence graph which has not been con-

sidered. (2) Different from the existing GNN session-based

recommendation models that construct two (incoming and

outgoing) graphs for each session, we construct one undi-

rected graph for all sessions in the training sequences. (3)

We consider three sources of information i.e., global

preference, local preference and item co-occurrence pattern

for recommendation.

3 IC-GAR model

In this section, we present a detailed description of the

proposed IC-GAR model. First, we present an overview of

the model in Sect. 3.1. We then present the details of each

of the three modules of IC-GAR: Encoder Module, Session

Co-occurrence Module and Prediction Module in Sects.

3.2, 3.3 and 3.4, respectively. For simplicity, Table 1,

shows the meaning of symbols used in the paper.

3.1 Overview of IC-GAR

Let V ¼ fv1; v2; . . .; vng be the set of all items and s ¼
½vs;1; vs;2; . . .; vs;m�1� be the sequence list of items clicked in

session s such that vs;i 2 V . Session-based recommendation

aims to predict the next item that will be clicked in session

s, vs;m. The output of IC-GAR are the probability scores by

for all the candidate items, where the top-k items based on

the highest probabilities are recommended as the potential

next click.

The IC-GAR model is composed of three modules,

Encoder, Session Co-occurrence and Prediction Modules

as shown in Fig. 2. The Encoder Module learns both the

local and the global preference. To model the local pref-

erence, we use the last hidden state of GRU. For the global

preference, we use an attention mechanism on all hidden

states of GRU to selectively model the global preference.

The important contribution of IC-GAR model is the session

co-occurrence representation. To model the session co-

occurrence, we first construct a weighted undirected graph

of the transition on all items in the training set. Each

weighted edge of the graph represents the frequency of

transition from one item to another. The size of the graph is

of the order V2 and for a large item size, it will slow the

Table 1 Meaning of symbols

Symbol Meaning

V Set of all items

d Hidden dimension size

sl Local user preference

sg Global user preference

ss Item co-occurrence pattern

sf Final session embedding

Ml GCN layer update

m� Final item embedding in the co-occurrence graph

bz Un-normalized candidate item score

by Probability scores for each item
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computation. By using a variant of GCN, we model a lower

dimension representation of the item co-occurrence graph

of order Vd where d � V . The learned lower dimension

representation incorporates the higher-order transition

patterns between the items. By using a permutation

invariant aggregation function, we form session co-occur-

rence representation with the representation of all the items

in the current session. The session co-occurrence learns

nonlinear transition patterns between the current session

and all the items in the training set. Note that, we only use

the sessions in the training set to construct the graph. The

prediction module makes inference by first efficiently

learning the final session representation using a trilinear

decomposition. Finally, the probability of each next item is

computed by multiplying the final session representation

with candidate item and taking the softmax operation.

Detailed description of each component of the model is

presented next.

3.2 Encoder module

The encoder module learns both the global and the local

session preference. The local preference represents the

current interest of the session, while the global preference

represents the changes in interest over the current session.

To learn these preferences, we use a GRU which has been

shown in [33] to outperform LSTM [68] and the vanilla

RNN in session-based recommendation. GRU eliminates

the vanishing gradient problem of the vanilla RNN by

using the reset gates and the update gates. The last hidden

state ht of GRU is a linear combination between the pre-

vious hidden state ht�1 and a candidate state bht. It is given

by:

ht ¼ 1 � ztð Þht�1 þ ztĥt; ð1Þ

where zt is the update gate and is computed as:

zt ¼ r Wzxt þ Uzht�1ð Þ; ð2Þ

while xt is the input at timestamp t. The candidate state

can be computed as:

ĥt ¼ tanh Wxt þ U rt � ht�1ð Þð Þ; ð3Þ

where rt is the reset gate and is computed as:

rt ¼ r Wrxt þ Urht�1ð Þ: ð4Þ

Wz;Uz;Wr;Ur;W; andU are weight matrices of the update

gate, reset gate and candidate state, respectively. The final

hidden state hn of the GRU represents the current interest

of the session. Hence, we represent the local preference, sl
as:

sl ¼ hn: ð5Þ

The global preference aims to capture the changes in

interest over the current session. However, some item

Fig. 2 Overall schematic architecture of IC-GAR model. For each

session the encoder module learns the global and the local preference,

sg and sl. The session co-occurrence module first learns representa-

tions by using GCN. For the current session, the corresponding

embeddings are aggregated to model session co-occurrence repre-

sentation, ss. The prediction module decomposes the three represen-

tations and predict the ranking probabilities

Neural Computing and Applications (2022) 34:7581–7596 7585
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clicks in the session may not truly represent a user interest,

or may not contribute to current user interest. To effec-

tively model user dynamic interest over the session, we use

an attention mechanism conditioned on the last clicked

item. The global preference of each session, sg is thus

computed by:

sg ¼
X
n

i¼1

aihi: ð6Þ

hi is the hidden state of the GRU at timestamp i and ai is

the attention weight at i; computed as:

ai ¼ qTr W1ht þW2hi þ bð Þ: ð7Þ

W1;W2and q are learnable parameters that control the

attention weights. r is a nonlinear activation function

defined as r ¼ 1= 1 þ exp �xð Þð Þ. The encoder module

converts the current session into two representations

sl and sg, the local session preference and the global,

respectively.

3.3 Session co-occurrence module

The session co-occurrence module learns the transition

patterns between each item in the current session and all

the other items in the training sessions. The session co-

occurrence improves the performance of recommendation

through injecting similarity in transition patterns. The

session co-occurrence module is composed of three stages,

(1) Item co-occurrence graph construction. (2) Learning

lower dimension representation. (3) Aggregation of the

learned item co-occurrence embedding. We discuss each

stage as follows:

3.3.1 Item co-occurrence graph construction

We construct a weighted undirected graph to represent the

item co-occurrence patterns. The graph G ¼ V; Eð Þ is

constructed where v 2 V. A weighted undirected edge

ðvi�1; viÞ 2 E exists if vi�1 is clicked before or after vi. The

weights indicate the frequency of transitions between each

pair of items in the training set. A weighted undirected

adjacency matric A is then obtained for the graph. We

embed each item v 2 V into a unified embedding space,

and then use a GCN to learn the higher-order transitions

between the items.

3.3.2 Higher-order transition representation learning

GCN is an implementation of graph neural network based

on message passing technique. The GCN model proposed

in [15] updates the representation at each layer by message

construction and aggregation. The update at layer l is given

by:

Ml ¼ ReLU ~D
�1=2 ~A ~D

�1=2
Ml�1Wl�1

� �

ð8Þ

~A ¼ Aþ I; ~D is the diagonal matrix of �
A , Wl�1 is the

weight matrix at layer l� 1 and Ml�1 is the representation

at layer l� 1: M0 is given by:

M0 ¼ X ð9Þ

X is the initial embedding of the items. In our case it is

given by V.

However, the GCN model in [15] was proposed for node

classification task. To make the model suitable for our task,

we make the following modifications. First, our update at

layer l is given by:

Ml ¼ LeakyReLU ~D
�1 ~AMl�1Wl�1

� �

ð10Þ

We found out that these modifications can improve the

stability of the model. Secondly, similar to [51], the final

embedding is given by concatenating the output of each

layer. Although, [43] proposed other alternatives such as

max pooling or sum pooling, concatenation can outperform

these methods. The final embedding of each item in the co-

occurrence graph m� is thus given by

m� ¼ m0 . . .k kml ð11Þ

where k is a concatenation operation. It controls the range

of the propagation and enriches the final embedding. We

also employ node and message dropout in the propagation

layers to improve the robustness. The node dropout acts by

dropping the nodes with p1 probability, while the message

dropout acts by dropping connections between the nodes

with probability p2.

3.3.3 Aggregation

To obtain the session co-occurrence representation, we

aggregate the individual item embedding of each session.

Assuming a session is given by, s ¼ v1; v2; v3; we obtain

the session co-occurrence representation as:

ss ¼
X

3

i¼1

m�
i ð12Þ

where m�
i is the final representation of item vi in GCN and

vi 2 s.

3.4 Prediction module

The final prediction of the model consists of two stages.

Firstly, obtaining the final session representation from the

local preference, the global preference and the session co-
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occurrence; secondly, obtaining the probabilities of all the

candidate items for recommendation. To efficiently obtain

the final session representation, we employ a trilinear

decomposition given by: \a; b; c[ ¼ a� b	 cð Þ.
Specifically, the final session embedding sf is given by:

sf ¼ sl � sg 	 ss
� �

ð13Þ

where � denotes the Hadamard product and 	 denotes the

element-wise addition. The two representations sg and ss
are conditioned on sl to amplify the current user interest for

recommendation.

With the embedding of each session sf obtained, the

candidate item bz can be computed as:

ẑ ¼ sTf v ð14Þ

v is the initial embedding of all the candidate items.

Softmax function is then applied to obtain the output

probabilities by of the candidate items

ŷ ¼ softmax ẑð Þ ð15Þ

For each session, we use cross-entropy loss function

between the predicted click and the ground truth. The

cross-entropy loss function is defined as:

L ŷð Þ ¼ �
X
n

i¼1

yilog ŷið Þ þ 1 � yið Þlog 1 � ŷið Þ ð16Þ

where y is the ground truth represented by one-hot

encoding. We use Back-Propagation Through Time

(BPTT) to train IC-GAR model. Similar to [10, 33], we

truncate the back-propagation at 19 timestamps.

4 Experimental results and performance
analysis

In this section, we first describe the datasets, the state-of-

the-art baseline models and the evaluation metrics for

performance evaluation. We then intend to answer the

following research questions.

RQ1 Does the proposed IC-GAR model achieve the

state-of-the-art performance?

RQ2 What is the effect of the item co-occurrence graph

on the performance of IC-GAR?

RQ3 How well does IC-GAR perform with different

embedding size, the aggregation methods and the graph

type?

4.1 Dataset

To evaluate the performance of IC-GAR model, we used

two popular transactional datasets, namely; RetailRocket1

and Yoochoose.2 RetailRocket dataset contains 6 months

personalized transactions from an e-commerce site. Yoo-

choose was published in RecSys Challenge 2015. It con-

sists of click streams from an e-commerce site. Similar to

[10, 33, 37, 60], we use the most recent 1/64 and 1/4

fractions of the Yoochoose dataset in our evaluations.

In order to filter noisy data, we filter out sessions with

less than 2 items and items appearing less than 5 times in

both datasets. After filtering, 37,484 items with 7,966,257

sessions remained in the Yoochoose dataset, while the

RetailRocket dataset contains 46,874 items with 710,856

clicks. The summary of the dataset is given in Table 2.

Following [6, 9, 69] we set the data of the last day as the

test data and the remaining data for training on the Yoo-

choose 1/64 and Yoochoose 1/4 fractions. For RetailRocket

dataset, we set the data of the last week as the test data

similar to [61] and the remaining dataset for training.

4.2 Evaluation metrics

We used two accuracy metrics to evaluate the performance

of all the models. Precision (P@k) and Mean Reciprocal

Ranking (MRR@k) similar to previous [9, 10, 37, 60]. Both

metrices evaluate the accuracy of the recommended top-k

list. MRR@k additionally penalizes the ranking order of

the recommended list.

P@k: Mathematically, P@k can be defined as:

P@k ¼ nhit
N

; ð17Þ

where nhit is the number of correctly recommended items

within the top-k positions, and N is the total number of

items in the test set. It measures the proportion of the test

items that are correctly recommended in top-k positions

within the ranking list.

MRR@k: MRR@k can be defined as:

MRR@k ¼ 1

N

X

t2T

1

Rank tð Þ ; ð18Þ

where t is an item within the ranking list T : The MRR@k is

set to zero if the rank of t is above k. It is the average of the

reciprocal ranking of correctly recommended items. It is a

better metric to evaluate the accuracy of recommender

systems since the aim is to put the most relevant items at

the top of the recommended list. We evaluate P@k and

MRR@k where k ¼ 5; 10 since users are more likely to

select items that appear in the top of the recommended list

compared to the items with lower rankings [70, 71].

1 https://www.kaggle.com/retailrocket/ecommerce-dataset.
2 http://2015.recsyschallenge.com/challege.html.
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4.3 Baselines

We evaluate the performance of IC-GAR model with the

following representative state-of-the-art baselines and clo-

sely related works. We use the hyperparameters in the

initial paper for models with similar dataset and tune the

hyperparameter for the other datasets.

BPR-MF [72] cannot be directed used for session-based

recommendation because it does not consider the sequence

of interactions. To use MF for session-based recommen-

dation, latent representation of items within a session can

be used to represent the session.

FMPC3 [5] is an MC-based model for sequential rec-

ommendation. It is a state-of-the-art method for next-bas-

ket recommendation.

GRU4Rec4 [6] first introduces RNN for session-based

recommendation. It uses a GRU with pair-wise ranking and

parallel mini-batches to speed-up the performance for

recommendation.

NARM5 [10] is an encoder-decoder model for session-

based recommendation. It uses a GRU to learn both the

user’s local and global preference within each session for

recommendation.

STAMP6 [37] is an attention memory priority model

that uses MLP to capture the long term and the short term

user interest within the current session for session-based

recommendation.

SR-GNN7 [60] uses a GNN to inject the higher-order

transition between the items in each session and learns the

global and the local preference for session-based

recommendation.

CSRM8 [9] uses an inner and outer memory network for

session-based recommendation. The inner memory net-

work learns a user’s interest from current session and the

outer memory network uses a similarity function to learn a

user’s interest from the neighboring sessions.

GCE-GNN9 [66] uses epsilon neighbor and augment the

long-term user preference in SR-GNN while neglecting the

short-term user preference.

4.4 Parameter settings

All the weight matrices and the embeddings were initial-

ized using a Gaussian distribution with 0 mean and 0.1

standard deviation. Zero initialization was then used for all

the biases. A mini-batch of size 512 was used and the

epoch is set to 10. Grid search was used on all the datasets

for hyperparameter selections based on MRR@10 score on

the validation set. Hyperparameters in the grid search

includes: learning rate g in {0.01, 0.05, 0.001, 0.005,

0.0001}, learning rate decay k in {0.1, 0.3, 0.5, 0.7},

embedding dimension d in {50, 100, 150, 200}. Based on

the average performance, we used the following hyperpa-

rameter settings in the test data: {g = 0.001, k = 0.1,

d = 100}. We set the number of GNN layers to 2 with the

message dropout in each layer set to 20%. The node

dropout is set to 40% to overcome overfitting. IC-GAR was

implemented using Tensorflow.10 Our implementation will

be made available for reproducibility.11

4.5 Performance comparison

To evaluate the performance of the proposed IC-GAR

model, we start with comparing the performance against

the state-of-the-art models. We further compare the train-

ing time of the proposed model with other RNN-based

state-of-the-art models.

4.5.1 Overall performance

Table 3 shows the of performance comparison with best

performance shown in bold face. The following observa-

tions can be made:

• BPR-MF shows the worst performance on all the three

datasets. It shows that the traditional MF methods are

not sufficient for modeling user dynamic preference.

FMPC is a first-order MC sequential model that only

considers the last item for recommendation. FMPC

outperforms BR-MF on all the three datasets, demon-

strating the necessity of modeling user sequential

pattern for performance enhancement.

Table 2 Statistics of datasets

used for evaluation
Datasets Training sessions Test sessions Items Average length

RetailRocket 433,648 15,132 46,874 5.43

Yoochose 1/4 1,991,562 15,324 37,484 5.71

Yoochose 1/64 124,472 15,324 37,484 6.16

3 https://github.com/khesui/FPMC.
4 https://github.com/hidasib/GRU4Rec.
5 https://github.com/lijingsdu/sessionRec_NARM..
6 https://github.com/uestcnlp/STAMP
7 https://github.com/CRIPAC-DIG/SR-GNN.
8 https://github.com/wmeirui/CSRM_SIGIR2019

9 https://github.com/CCIIPLab/GCE-GNN.
10 https://www.tensorflow.org.
11 https://github.com/Taj-Gwadabe/IC-GAR.

7588 Neural Computing and Applications (2022) 34:7581–7596

123

https://github.com/khesui/FPMC
https://github.com/hidasib/GRU4Rec
https://github.com/lijingsdu/sessionRec_NARM
https://github.com/uestcnlp/STAMP
https://github.com/CRIPAC-DIG/SR-GNN
https://github.com/wmeirui/CSRM_SIGIR2019
https://github.com/CCIIPLab/GCE-GNN
https://www.tensorflow.org
https://github.com/Taj-Gwadabe/IC-GAR


• GRU4Rec is an RNN-based model that is able to model

longer sequence for recommendation. It outperforms

both FMPC and BPR-MF on all the datasets demon-

strating the necessity of longer sequence modeling.

However, it only uses the last hidden state of the GRU

for recommendation.

• NARM and STAMP both outperformed GRU4Rec on

all the three datasets. It demonstrates the necessity of

learning both a user’s local preference and global

preference for recommendation. Particularly, STAMP

slightly outperforms NARM on RetailRocket dataset.

On both Yoochoose datasets, NARM outperforms

STAMP. This might be the result of the nature of the

dataset. It also shows that RNN-based models are

sufficient for session-based recommendation in most

settings.

• CSRM is an RNN-based model that performed better

than NARM and STMAP on all the three datasets. In

addition to the local and the global preference, CSRM

utilizes the neighboring sessions for improved

recommendation

• SR-GNN and GCE-GNN are GNN-based models that

also performed better than NARM and STAMP on all

the three datasets. In addition to the local and global

preference, SR-GNN utilizes the transition interaction

between the items in the same session to improve the

performance of the recommendation. GCE-GNN on the

other hand, utilizes item level information from epsilon

neighbors to augment the global preference. GCE-GNN

does not consider the local preference as in the other

models. Compared with CSRM, the two GNN-based

models (SR-GNN and GCE-GNN) performed better on

the Yoochoose 1/64 and Yoochoose 1/4 datasets.

However, on the RetailRocket dataset, CSRM and

GCE-GNN outperformed SR-GNN. It showed the

significance of utilizing the additional information from

neighboring sessions in session-based recommendation.

• IC-GAR significantly outperforms all the baseline

models on MRR@5, 10 and P@5. In particular, on

Yoochoose 1/64 dataset, IC-GAR outperforms the best

baseline by 17.9, 15.4 and 5.9% on MRR@5, MRR@10

and P@5, respectively. On Yoochoose 1/4, IC-GAR

performs better than the best baseline by 11.6, 9.7 and

4.2% on MRR@5, MRR@10 and P@5, respectively.

IC-GAR outperforms all the baselines on the Retail-

Rocket. It outperforms the best baseline by 21.1, 19.6,

13.1 and 7.1% on MRR@5, MRR@10, P@5 and

P@10, respectively. Of particular importance is the

performance of IC-GAR in terms on MRR@5,10. It

outperforms the best baseline by 9.7–21.1% on all

datasets. It clearly shows that considering the item co-

occurrence patterns can significantly improve the

ordering of the recommended list. IC-GAR slightly

performs worse than the best baseline on both 1/64 and

1/4 Yoochoose datasets on P@10. It may be due to the

fact that IC-GAR model only constructs one graph for

all sessions and some local patterns may not be fully

exploited with only one graph. However, GNN models

are slow in training, especially when the size and

number of graphs are large. The training time is reduced

as only one graph is used for all the sessions.

4.5.2 Performance w.r.t to session length

The performance of session-based recommendation models

may differ as the length of sessions increases or decreases.

We compare the performance of IC-GAR on different

session lengths. Particularly, we compare the performance

Table 3 Overall performance comparison with the state-of-the-art models (values are in percentages)

Yoochoose 1/64 Yoochoose 1/4 RetailRocket

MRR Precision MRR Precision MRR Precision

@5 @10 @5 @10 @5 @10 @5 @10 @5 @10 @5 @10

BPR-MF 17.65 18.89 24.16 31.30 15.37 16.24 21.77 22.93 13.56 14.07 21.06 27.19

FMPC 19.28 20.05 28.91 37.44 17.33 18.54 27.09 36.12 10.13 11.52 17.32 23.19

GRU4Rec 22.82 24.53 39.67 52.42 23.29 26.05 42.38 55.49 12.86 14.89 21.96 28.69

NARM 25.73 27.42 45.21 57.83 26.77 28.51 45.09 57.98 22.09 23.23 31.97 38.65

STAMP 23.55 25.17 40.09 52.96 25.26 28.32 43.16 57.67 22.41 23.34 32.87 39.72

SR-GNN 27.26 28.92 45.39 58.01 29.34 31.08 48.15 61.06 24.22 25.25 35.02 42.68

CSRM 27.13 28.24 45.82 57.96 28.64 29.14 48.09 60.54 31.92 33.05 44.44 52.70

GCE-GNN 27.27 28.98 47.58 58.03 29.82 31.10 48.28 61.09 32.06 33.13 45.27 53.25

IC-GAR 32.13 33.38 48.55 57.84 32.74 34.09 50.17 60.16 38.67 39.52 50.26 56.44

Bold values indicate the best performance

Neural Computing and Applications (2022) 34:7581–7596 7589

123



of SR-GNN, CSRM, GCE-GNN and IC-GAR for short

session and long sessions on the Yoochoose 1/64 and

RetailRocket datasets with P@10 and MRR@10. Similar

to SR-GNN, we divide sessions into ‘‘short’’ and ‘‘long’’

based on the average length of the session. On both data-

sets, we use sessions with length greater than 5 as ‘‘long’’

session, while the rest is used as ‘‘short’’ sessions. Table 4

shows the performance of SR-GNN, CSRM, GCE-GNN

and IC-GAR on Yoochoose 1/64 and RetailRocket datasets

for ‘‘short’’ and ‘‘long’’ session. It can be seen that across

all models, the performance significantly drops for ‘‘long’’

session. GCE-GNN significantly outperformed other

models on the Yoochoose 1/64 dataset on P@10 metrics.

The performance may be attributed to the epsilon neigh-

borhood that GCE-GNN considers. The performance of

SR-GNN is of particular importance on the RetailRocket

dataset for ‘‘long’’ session. It can be seen there is massive

drop in performance which can be attributed to the maxi-

mum length on RetailRocket dataset. The performance

shows that SR-GNN may not be a suitable model as the

session length drastically increases. However, for ‘‘short’’

sessions, there is improvement in performance across all

models. It shows that session-based recommendation

models were designed with short sessions in mind. It also

shows that, as the session length increases, there is need to

consider other factors for improving performance.

4.5.3 Performance w.r.t to training time

We compare the training time of IC-GAR with the baseline

models in terms of performance, namely: SR-GNN, GCE-

GNN and CSRM. The training time comparison is moti-

vated by the slow nature of training GNN models as the

size and number of the graphs increases. Figure 3 shows

the average training time per epoch on all the three datasets

on the same GPU server. It can be seen that SR-GNN and

GCE-GNN take on average twice the time required to train

CSRM per epoch. The time required will significantly

increase as the length of the session increases in SR-GNN

and GCE-GNN due to the size of the resulting outgoing

and incoming adjacency matrices that the models construct

for each session. On average, IC-GAR takes less training

time per epoch than CSRM despite using GNN. It can be

attributed to the fact that IC-GAR only constructs one

graph for the whole dataset and that the graph constructed

in IC-GAR does not depend on the length of the session

rather the number of items in the catalog.

4.6 Effect of item co-occurrence graph

IC-GAR distinguishes itself from other RNN-based models

for session-based recommendation by constructing item co-

occurrence graph using GNN. Here, we investigate the

relevance of the item co-occurrence graph for session-

based recommendation. Table 5 shows the performance of

IC-GAR with and without the item-occurrence graph. We

name the model without the item co-occurrence as SRB,

while the model with item co-occurrence remains as IC-

GAR. It can be seen that on all three datasets, using item

co-occurrence graph significantly improves the perfor-

mance. On average, there is an improvement of at least

15.7, 8.5 and 36% on Yoochoose 1/64, Yoochoose 1/4 and

RetailRocket datasets, respectively. It shows that learning

co-occurrence patterns can significantly improve the per-

formance in session-based recommendation. Although, the

effect of item co-occurrence graph is more significant on

Table 4 Performance w.r.t to

session length
Metrics (%) SR-GNN CSRM GCE-GNN IC-GAR

Yoochoose 1/64 Short P@10 61.71 55.82 61.74 59.96

MRR@10 31.96 28.54 31.92 35.21

Long P@10 44.98 40.36 50.53 42.69

MRR@10 22.16 17.13 23.19 23.31

RetailRocket Short P@10 56.50 57.82 57.78 58.26

MRR@10 35.79 36.83 36.85 40.32

Long P@10 11.30 19.72 21.69 20.00

MRR@10 5.47 10.00 10.91 14.95

Fig. 3 Training time per epoch (best viewed in colour)
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RetailRocket, it significantly improves the performance on

all datasets.

4.7 Ablation study

As various components play different roles in the perfor-

mance of IC-GAR, we investigate the relevance of the

different choices in the architecture. First, we study the

effect of the embedding size of the GRU and GCN. We

then study the effect of different aggregation methods.

Finally, we study the effect of the graph type used in the

GCN.

4.7.1 Effect of embedding size

For fair comparison, we used the same embedding size as

the other baseline models in Table 2 for the overall per-

formance (embedding size = 100). However, in this section

we show the effect of different embedding sizes on the

performance of IC-GAR. Table 6 shows the performance

as embedding size varies from 50 to 200 on all the three

datasets. We used the same embedding size for GCN, GRU

as well as all of the weights. It can be seen that on all

datasets, the performance deteriorates when the embedding

size is 50. However, the performance is fairly similar with

the dimensions of 100, 150 and 200. It shows that once the

embedding size is sufficient, the performance is insensitive

for any larger embedding size. However, as the embedding

size increases, the training time and the model size increase

correspondingly. Hence using embedding size of 100 was

an optimal selection.

4.7.2 Effect of aggregation

Different permutation invariant aggregation methods such

as concatenation, max pooling and mean pooling can be

used to obtain the output of GCN. Table 7 shows the effects

of concatenation, max pooling and mean pooling on the

performance of IC-GAR on all three datasets, respectively.

It can be seen that concatenation outperforms other

aggregation methods across all metrics. Concatenation may

contribute to the success of IC-GAR. We further compare

the performance of these aggregation methods as the

number of epochs increases. We specifically compare the

performance as the number of epochs increase from 1 to 10

on P@10 and MRR@10 across all datasets. Figure 4 shows

that across all the datasets, concatenation outperforms both

the mean pooling and the max pooling. However, perfor-

mance varies at lower epochs. On Yoochoose 1/4 and

RetailRocket dataset, mean pooling outperforms other

methods at 1 and 2 epochs but concatenation stabilizes to a

higher accuracy as the number of epochs increases (Fig. 4).

4.7.3 Effect of graph type

Previous studies on GNN-based session-based recommen-

dation, such as [60, 61, 73], used directed graph and

Table 5 Effect of item co-occurrence graph in IC-GAR (values are in

percentages)

Metrics (%) IC-GAR SRB % Improvement

Yoochoose 1/64 P@10 57.84 49.99 15.7

MRR@10 33.38 28.69 16.3

P@5 48.55 41.89 15.9

MRR@5 32.13 27.60 16.4

Yoochoose 1/4 P@10 60.16 55.62 8.1

MRR@10 34.09 31.28 9.0

P@5 50.17 46.25 8.5

MRR@5 32.74 30.01 9.1

RetailRocket P@10 56.44 40.55 39.2

MRR@10 39.52 28.97 36.4

P@5 50.26 36.61 37.3

MRR@5 38.67 28.44 36.0

Table 6 Effect of embedding

size on the performance of all

three datasets (values are in

percentages)

Metrics (%) d ¼ 50 d ¼ 100 d ¼ 150 d ¼ 200

Yoochoose 1/64 P@10 56.15 57.84 57.86 57.96

MRR@10 32.57 33.38 33.41 33.52

P@5 47.70 48.55 48.93 48.87

MRR@5 31.43 32.13 32.21 32.31

Yoochoose 1/4 P@10 59.49 60.16 60.06 59.93

MRR@10 33.80 34.09 34.04 34.11

P@5 50.05 50.17 49.95 49.93

MRR@5 32.55 32.74 32.69 32.78

RetailRocket P@10 54.52 56.44 56.68 56.99

MRR@10 38.65 39.52 39.35 39.22

P@5 49.09 50.26 50.30 50.35

MRR@5 37.92 38.67 38.49 38.33
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modeled both the incoming and outgoing adjacency

matrices. However, these models apply GNN on each

session. Inspired by STAMP [37] that showed the order of

interaction may not be important on online transactional

datasets such as Yoochoose, we used an undirected graph

for IC-GAR model, which may reduce the computational

complexity introduced by using both the incoming and

outgoing adjacency matrices. To show the effect of such

decision, Table 8 compares the performance between the

undirected graph and the directed graph (having both the

incoming and outgoing graphs) on IC-GAR model.

Although close performance is achieved by undirected

graph and directed graph, IC-GAR reduces the computa-

tional complexity and ensures a comparable training time

with non-GNN based models.

5 Discussion

In this section, we will discuss our results keeping in mind

the research questions we aimed to answer. The section

will discuss each of the research questions.

5.1 Does the proposed IC-GAR model achieve
the state-of-the-art performance?

We conducted experiments on two publicly available

datasets on two accuracy metrics to determine the perfor-

mance of IC-GAR against other state-of-the-art models.

Table 3 shows that IC-GAR can achieve state-of-the-art

performance against RNN-based models like CSRM and

GNN-based models like GCE-GNN. However, as the value

of k increases, the performance of IC-GAR deteriorates on

Yoochoose dataset. However, on the RetailRocket dataset,

across all metrics, IC-GAR outperformed the competition.

The results suggests that, performance of models differ

from one dataset to another and that for industrial

application, the bias and nature of the dataset need to be

considered before selecting any model. We also compare

the performance of IC-GAR for different session length on

the Yoochoose 1/64 and RetailRocket datasets. The results

showed similar trend in performance as when the whole

datasets were used. However, performance of SR-GNN

particularly deteriorates on ‘‘long’’ session for Retail-

Rocket dataset. It suggests that, SR-GNN may not be a

good model as the session length drastically increases.

Finally, we compare the training time for SR-GNN,

CSRM, GCE-GNN and IC-GAR on the whole sessions.

Results suggest that CSRM and IC-GAR have similar time

complexity, while time complexity for SR-GNN and GCE-

GNN more than doubles that of the other models. The

overall results suggest that IC-GAR is an efficient model

that can outperform other state-of-the-art on relevant

datasets.

5.2 What is the effect of the item co-occurrence
graph on the performance of IC-GAR?

IC-GAR comprises of local preference, global preference

and item co-occurrence graph for improved performance.

We compared the performance with and without the item

co-occurrence and the results suggested that the item co-

occurrence graph can significantly improve the perfor-

mance. The results are in line with findings of CSRM

where session-level collaborative information was used to

improve similar baseline. However, our model uses item-

level collaborative information for improved performance.

5.3 How well does IC-GAR perform with different
embedding size, the aggregation methods
and the graph type?

We also study the effect of some key components in IC-

GAR model. The results suggest that, for a small

Table 7 Effect of different

GCN aggregation methods
Metrics (%) Concatenation Mean Pooling Max Pooling

Yoochoose 1/64 P@10 57.84 57.13 57.35

MRR@10 33.38 33.13 33.22

P@5 48.55 48.35 48.46

MRR@5 32.13 31.94 32.02

Yoochoose 1/4 P@10 60.16 59.88 60.04

MRR@10 34.09 34.10 34.13

P@5 50.17 49.80 49.86

MRR@5 32.74 32.78 33.76

RetailRocket P@10 56.44 55.48 55.56

MRR@10 39.52 39.33 39.07

P@5 50.26 49.84 49.67

MRR@5 38.67 38.67 38.20
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embedding size, IC-GAR does not reach its full perfor-

mance but after reaching a sufficient embedding size,

increasing it further does not significantly improve per-

formance. Rather, as the embedding size increases, the

complexity of the model further increases and slows down

the training and inference. Also, the results showed that,

the performance of aggregation methods vary across

datasets but in our experiments, the methods (concatena-

tion, mean-pooling and max-pooling) compared relatively

have similar performances. It may be relevant to compare

the performance of the aggregation methods in terms of

time complexity. Finally, we compare two different graph

construction methods (undirected and combined directed).

The experimental results suggest that there is no significant

Fig. 4 Effect of GCN Aggregation Method
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different between these methods in terms of performance.

However, using both incoming and outgoing adjacency

matrix can increase the computation complexity

significantly.

6 Conclusion

In this paper, we proposed a novel session-based recom-

mendation model, IC-GAR that uses a trilinear decompo-

sition to model session representation from global

preference, local preference and session co-occurrence.

The session co-occurrence representation aggregates the

higher-order transition patterns of all the items in the

training sessions, while the global and the local preferences

model user interest in the current session. Experimental

results showed that IC-GAR achieved the state-of-the-art

performance for session-based recommendation by using

the item co-occurrence patterns.
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