
ORIGINAL ARTICLE

CFIDNet: cascaded feature interaction decoder for RGB-D salient object
detection

Tianyou Chen1 • Xiaoguang Hu1 • Jin Xiao1 • Guofeng Zhang1 • Shaojie Wang1

Received: 24 May 2021 / Accepted: 12 December 2021 / Published online: 7 January 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Compared with RGB salient object detection (SOD) methods, RGB-D SOD models show better performance in many

challenging scenarios by leveraging spatial information embedded in depth maps. However, existing RGB-D SOD models

prone to ignore the modality-specific characteristics and fuse multi-modality features by simple element-wise addition or

multiplication. Thus, they may induce noise-degraded saliency maps when encountering inaccurate or blurred depth

images. Besides, many models adopt the U-shape architecture to integrate multi-level features layer-by-layer. Despite the

fact that low-level features can be gradually polished, little attention has been paid to enhance high-level features, which

may lead to suboptimal results. In this paper, we propose a novel network named CFIDNet to tackle the above problems.

Specifically, we design the feature-enhanced module to excavate informative depth cues from depth images and enhance

the RGB features by employing complementary information between RGB and depth modalities. Besides, we propose the

feature refinement module to exploit multi-scale complementary information between multi-level features and polish these

features by applying residual connections. The cascaded feature interaction decoder (CFID) is then proposed to refine

multi-level features iteratively. Equipped with these proposed modules, our CFIDNet is capable of segmenting salient

objects accurately. Experimental results on 7 widely used benchmark datasets validate that our CFIDNet achieves highly

competitive performance over 15 state-of-the-art models in terms of 8 evaluation metrics. Our source code will be publicly

available at https://github.com/clelouch/CFIDNet.
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1 Introduction

Salient object detection (SOD) aims to locate and segment

the most visually prominent regions in an image [1, 2]. As

a widely used preprocessing technique, SOD plays an

important role in numerous computer vision tasks, such as

object recognition [3], image editing [4], visual tracking

[5–7], person reidentification [8], video analysis [9, 10],

and thumbnail creation [11]. Traditional approaches

[12–17] mainly rely on handcrafted features to excavate

low-level details for saliency prediction but cannot capture

high-level semantic knowledge. Thus, these methods are

not able to locate salient objects accurately and segment

them precisely when faced with complex scenarios (e.g.,

cluttered backgrounds).

Recently, owing to the outstanding representation ability

of convolutional neural networks (CNNs), various CNN-

based RGB SOD methods [18–34] have been proposed.
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Benefiting from the hierarchical network architecture, these

methods show promising performance in capturing multi-

level features and outperform traditional counterparts by a

significant margin. However, as pointed out in [35, 36], the

performance of RGB SOD methods may dramatically

decreases when encountering some challenging scenarios

(e.g., transparent regions, cluttered backgrounds, low con-

trast). To solve this problem, depth images are introduced

to provide geometrical information, which has been proven

to be an effective approach in improving the performance

of SOD. In the past few years, various models [35–49] have

been proposed to boost the performance of SOD by

leveraging both RGB and depth information.

Despite the superior performance of these methods,

there are two main issues remaining unsolved. First,

existing RGB-D SOD methods [35, 39, 43, 50] mainly

attach equal importance to RGB features and depth ones

and integrate these multi-modality features by simple ele-

ment-wise addition, multiplication or concatenation.

However, as shown in Fig. 1, depth maps may be easily

influenced by environment and full of noises, which can be

attributed to multiple factors during the acquisition of

depth images [37, 38], e.g., high sensor temperature,

unstable devices, bright background illumination and

reflectivity of the observed objects. As a result, these noise-

degraded depth images cannot provide useful spatial cues

to improve the performance of SOD and may even mislead

the saliency prediction. Second, as pointed out in many

previous methods [20, 24], due to the hierarchical archi-

tecture of CNN and sub-sampling operations (e.g., pooling

and convolution) applied in networks, low-level features

have larger spatial size and maintain affluent spatial details,

which are helpful to sharpen the boundaries of salient

objects. Compared with low-level features, high-level ones

are coarser in boundaries but contain more semantic

knowledge, which is beneficial to locate the salient objects

and suppress background noises embedded in low-level

features. Based on this observation, many models

[18, 23, 24, 27] adopt the U-shape architecture, where

high-level semantic knowledge is gradually transmitted to

shallower stages to better locate salient regions. However,

little attention has been paid to polish high-level features.

Consequently, the continuous accumulation of low-quality

(e.g., inaccurate or blurred) deeper features may result in

performance degradation.

To tackle the above issues, we propose a novel network

named cascaded feature interaction decoder (CFIDNet) for

RGB-D SOD.

First, we argue that the depth features are less important

and it is more favorable to use them as informative aid to

assist SOD because depth images may be of low quality

and hence pose a risk to accurate saliency prediction.

Besides, RGB features generally maintain more semantic

information. For example, a green object is much more

likely to be a plant than a red one. Thus, to better integrate

multi-modality (i.e., RGB and depth) features, we propose

a Feature-enhanced Module (FEM). In the FEM, we

employ the attention mechanism to exploit informative

cues from depth features and integrate the cross-modality

features by concatenation. A convolutional block is then

applied to excavate complementary information. After-

ward, a residual connection is adopted to enhance RGB

features by leveraging the complementary features. The

proposed FEM, though simple, is effective in generating

robust fused features.

Second, we propose the feature refinement module

(FRM) to simultaneously refine multi-level features. The

FRM is partly inspired by DANet [50], where a pyrami-

dally attended feature extraction (PAFE) module is placed

on the top of the backbone to capture multi-scale context

for different objects. However, as pointed out in MINet

[32], each convolutional layer can only capture a specific

scale contextual information. Thus, only exploiting multi-

scale information from the highest feature may be insuffi-

cient and lead to suboptimal results. Besides, as pointed out

in S2MA [74], typical CNN-based models can hardly

model the long-range dependency. In this paper, we tackle

the above issues in a ‘‘rescaling-integrating-refining-

strengthening’’ manner [87] and focus on the ‘‘refining’’

process. Concretely, we divide the input multi-level fea-

tures into three groups and use the FRM to polish them

group by group. In the proposed FRM, we integrate multi-

level features by concatenation and employ a non-local

block [52] to capture long-range dependencies. Afterward,

we utilize a tiny U-shape block to excavate intra-layer

multi-scale information, which is then integrated with the

input multi-level features of FRM to generate features

robust to scale variation. In this way, we can effectively

refine multi-level features.Fig. 1 Several representative cases with misleading depth maps
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Third, we develop the cascaded feature interaction

decoder (CFID) to refine multi-level features iteratively.

The proposed CFID contains multiple sub-decoders, each

of which uses three FRMs to progressively polish features

of all levels. Equipped with the above-mentioned modules,

our proposed CFIDNet is able to accurately locate and

segment salient objects.

To demonstrate the superior performance of the pro-

posed CFIDNet, we conduct extensive experiments on

seven widely used RGB-D saliency detection benchmark

datasets. Besides, visualizations of feature maps are also

provided to prove the effectiveness of the proposed mod-

ules more intuitively. Those experimental results validate

that our CFIDNet is effective in generating high-quality

saliency maps. In summary, our paper makes four

contributions:

• We design the feature-enhanced module (FEM) to

integrate multi-modality features. The proposed module

is able to excavate complementary information between

RGB and depth modality and enhance RGB features to

generate robust fused ones.

• We propose the feature refinement module (FRM) to

correct and polish multi-level features and exploit

multi-scale information to make them competent to deal

with scale variation of different salient objects.

• We develop the cascaded feature interaction decoder

(CFID) to iteratively refine multi-level features. The

CFID is composed of multiple feature interaction

decoders (FIDs), each of which employs three FRMs

to progressively integrate multi-level features and refine

them. The repeatedly applied FIDs not only suppress

the background noises for low-level features but also

sharpen the boundaries for high-level features.

• Extensive experimental results on seven commonly

used RGB-D saliency detection datasets demonstrate

that the CFIDNet achieves highly competitive perfor-

mance over 15 state-of-the-art approaches under 8

standard evaluation metrics, which validates the effec-

tiveness and superiority of our proposed model.

2 Related work

2.1 Salient object detection

Over the past few years, SOD has attracted wide interest

due to its outstanding performance in various computer

vision tasks [1–11]. Traditional SOD algorithms generally

solve this problem by exploring handcrafted features, e.g.,

foreground consistency [15], center prior [14, 17], his-

tograms [16, 53] and so on. However, these heuristic sal-

iency information and low-level handcrafted features

cannot capture semantic knowledge, which makes these

algorithms not able to generate accurate saliency maps,

especially when encountering challenging scenarios.

Recently, various deep learning-based models have been

proposed to solve the problem. Benefiting from the pow-

erful CNNs, these models outperform traditional counter-

parts by a large margin.

Zhang et al. (Amulet) [54] generate saliency maps by

integrating multi-level features into various resolutions to

simultaneously incorporate global semantics and local

details. Want et al. (SRM) [55] employ the pyramid

pooling module [56] to obtain features with richer global

context information and predict saliency maps by using

multistage refinement mechanism. Zhang et al. (UCF) [22]

develop a novel hybrid upsampling method and a refor-

mulated dropout to generate accurate saliency prediction.

Luo et al. (NLDF) [21] develop a novel network to

aggregate global and local information through a grid

structure. Hou et al. (DSS) [20] introduce short connections

to the skip-layer structure to make better use of features

extracted from CNNs. Zhang et al. (BMPM) [25] develop a

bi-directional structure to pass message between multi-

level features. Liu et al. (PiCANet) [57] recurrently exca-

vate global and local contextual attention and generate

saliency prediction by incorporating it with an encoder-

decoder architecture. Feng et al. [58] implement a global

perception module to roughly capture salient objects. An

attentive feedback module is then introduced to refine the

coarse detection scale-by-scale. Qin et al. (BASNet) [27]

build a predict-refine model by stacking two U-shape net-

works sequentially. A hybrid loss function composed of a

standard binary cross-entropy loss, a structural similarity

loss and an IoU (Intersection-over-Union) loss is also

designed to obtain accurate saliency map with sharper

boundaries. Wu et al. (CPD) [28] achieve fast and accurate

saliency prediction by proposing a cascaded optimization

mechanism, where initial saliency map generated by the

first branch is utilized to refine features of the second

branch. Zhao et al. (EGNet) [23] explore the complemen-

tarity between salient contour information and salient

object cues. Zhao et al. (PFAN) [59] adopt channel-wise

attention and spatial attention modules to focus on the most

informative parts of features and design the context-aware

pyramid feature extraction module to capture rich context

information. Liu et al. (PoolNet) [24] adopt the encoder-

decoder architecture and develop a multi-scale feature

aggregation module to better fuse multi-level features. Wu

et al. [60] explore the interrelations of edge and segmen-

tation and stack multiple cross-refinement units to simul-

taneously refine multi-level features of contour detection

and saliency segmentation. Liu et al. (DFI) [61] show the

similarities shared by SOD, edge detection and skeleton

extraction and develop a novel network to solve the three
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tasks jointly. Wei et al. (F3Net) [29] propose a cascaded

feedback decoder to aggregate multi-level features gradu-

ally and refine them iteratively. Gao et al. (CSNet) [30]

propose the generalized OctConv (gOctConv) and build an

extremely light-weighted network utilizing the proposed

gOctConv. Zhou et al. (ITSD) [31] propose a two-stream

decoder to explore multiple cues of the contour and sal-

iency maps. Qin et al. (U2 � Net) develop a two-level

nested U-shape network, which is able to be trained from

scratch and shows comparable or even better performance

than models with pretrained backbones.

2.2 RGB-D salient object detection

Previous traditional methods for RGB-D SOD mainly rely

on handcrafted features [62, 63] extracted from RGB and

depth images. Basically, these algorithms exploit contrast-

based cues (e.g., color, edge, and texture) to calculate the

saliency confidence of a local region. For instance, Cheng

et al. (DES) [62] conduct pixel clustering and measure each

cluster’s saliency confidence using three cues (i.e., depth

contrast, color contrast and spatial bias). Thus, the final

saliency prediction can be generated by combining these

cues. Peng et al. [64] propose a multistage RGB-D saliency

estimation method to generate saliency prediction by

combining depth cues and appearance information. Song

et al. [65] develop a multi-scale discriminative saliency

fusion method for RGB-D SOD. Feng et al. [66] design the

local background enclosure feature to directly measure

salient structure from depth. Ju et al. [67] use the aniso-

tropic center-surround difference to define depth saliency

confidence of a point and utilize the depth and center priors

for further refinement.

Recently, various deep learning-based models have been

proposed. Compared with previous methods, these models

show better performance, hence becoming a mainstream

trend in RGB-D SOD. Hussain et al. [86] propose a novel

architecture employing densely deformable convolutions to

capture the salient objects’ regions. Zhu et al. (PDNet) [68]

develop a depth-enhanced model consisting of a master

network and a sub-network, where the sub-network is used

to process depth map and enhance the robustness of the

master network. Wang et al. (AFNet) [39] propose a two-

streamed model to generate a saliency map from each

modality separately and develop a saliency fusion module

to learn a switch map to fuse the generated saliency maps.

Zhao et al. (CPFP) [41] propose a contrast loss to leverage

the contrast prior for depth map enhancement. Besides, a

fluid pyramid integration strategy is proposed to utilize

multi-scale cross-modal features for saliency prediction.

Piao et al. (DMRA) [43] combine depth information with

multi-scale cues for saliency prediction and boost the

performance by utilizing a recurrent attention module.

Chen et al. (MMCI) [49] develop a multi-path multi-modal

fusion network. Zhang et al. (FRDT) [44] propose a top-

down multi-level fusion structure. Piao et al. (A2dele) [38]

develop a depth distiller to transfer depth knowledge from

depth features to RGB features. Zhang et al. (ATSA) [40]

consider the inherent differences between depth and RGB

modality and develop an asymmetric two-stream archi-

tecture to predict saliency map accurately. Zhai et al.

(BBSNet) [35] design a bifurcated backbone strategy net-

work to exploit multi-level features in a cascaded refine-

ment manner and suppress noises in shallower layers. Chen

et al. (DPANet) [36] design a novel network to address

unreliable depth images. Jin et al. (CDNet) [37] design a

network robust to the unstable quality of depth maps. Ji

et al. (CoNet) [69] propose a collaborative learning

framework, where saliency, edge and depth are utilized for

saliency detection. Fan et al. (D3Net) [70] design a network

to learn to automatically discard depth maps of low quality.

Zhao et al. (DANet) [50] build a single stream network

with depth-enhanced dual attention module to achieve real-

time and robust saliency prediction. Fu et al. (JL-DCF) [48]

use a Siamese network to learn from both RGB and depth

modalities. Pang et al. (HDFNet) [45] propose a hierar-

chical dynamic filtering network for RGB-D SOD. A

hybrid enhanced loss is then leveraged to effectively

improve the detection performance. Li et al. (HAINet) [51]

adopt the encoder-decoder architecture and leverage the

hierarchical alternate interaction module to effectively

highlight salient objects and mitigate distractors in depth

images.

3 Proposed method

3.1 Overview of the proposed CFIDNet

The overall pipeline of the proposed CFIDNet is illustrated

in Fig. 2. The CFIDNet consists of two kinds of modules

including the CFID and the backbone encoder. Following

many previous methods [18, 23, 24, 61], we employ the

commonly used ResNet-50 [71] as the backbone network

and discard the average pooling layer and fully connected

layer. Besides, the dilation rates of 3� 3 convolutional

layers in the last residual block are set to 2 to obtain feature

maps with larger resolution. For simplicity, the depth map

is converted to a three-channel image by replicating the

single channel image into three channels.

Given a pair of input images with a spatial resolution of

H�W, we extract features at five stages from RGB and

depth modalities, respectively. Since the extracted side-

output features have different resolutions and channel
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numbers, we use 1� 1 convolutional layers to reduce the

channel number to 64, which not only facilitates various

element-wise operations but also is effective in reducing

computation and memory overhead. It is worth noting that

the 1� 1 convolutional layers are omitted in Fig. 2 for

conciseness. The extracted side-output features from RGB

and depth modalities are then denoted as fFr
i ji ¼

1; 2; 3; 4; 5g and fFd
i ji ¼ 1; 2; 3; 4; 5g, respectively. The

resolutions of these features can be obtained by computing:

H

2i
�W

2i
; i ¼ 1; 2; 3; 4

H

2i�1
� W

2i�1
; i ¼ 5

8
><

>:
ð1Þ

Each pair of multi-modality features (i.e., Fr
i and Fd

i ) is

then fed into a FEM to generate the corresponding

enhanced feature, which is denoted as F0
i i ¼ 1; 2; 3; 4; 5ð Þ:

In the FEM, the complementary information between the

multi-modality features is excavated to generate robust

fused feature. After obtaining these multi-level fused fea-

tures, a sequence of FIDs is leveraged to refine them iter-

atively. It is worth noting that the spatial resolution of an

input feature of an FID is the same as that of the corre-

sponding output one. Thus, the outputs of the former FID

can be directly utilized as the inputs of the latter one. The

CFIDNet can be trained in an end-to-end manner without

using any preprocessing (e.g., HHA [72]) or postprocessing

(e.g., CRF [73]) methods. Besides, inspired by [18, 20, 34],

aside from the dominant losses corresponding to side-out-

put features with the largest spatial resolution, other side-

output features of the last decoder are also utilized to

compute the auxiliary losses to facilitate optimization.

Experimental results show that equipped with two FIDs,

the CFIDNet is able to segment salient objects accurately

and achieves an average inference speed of 22FPS on a

single NVIDIA Titan Xp GPU.

3.2 Feature refinement module (FRM)

The structure of FRM is illustrated in Fig. 3. In the pro-

posed FRM, we first integrate multi-level features from

three adjacent layers by concatenation. Considering the

adjacent resolution, the fusion strategy is effective in

avoiding interference caused by large resolution differ-

ences. The input high-level, middle-level and low-level

features are denoted as Fh;Fm;Fl, respectively. Since the

spatial resolution of these features is different, we resize Fh

to the same size as Fm by using bilinear interpolation

operation. A convolutional layer is then applied for

refinement. Similarly, a convolutional layer with a stride of

2 pixels is applied to Fl. The fusion process of these three

features is formulated as:

fh ¼ C3 Up Fh;Fmð Þð Þ; fl ¼ Cs
3 Flð Þ; ð2Þ

fc ¼ cat fh;Fm; flð Þ; ð3Þ

Fig. 2 The overall pipeline of our proposed CFIDNet
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where C3 denotes a 3� 3 convolutional layer, Up Fh;Fmð Þ
is the bilinear interpolation operation, which is used to

resize the Fh to the same size as Fm, C
s
3 denotes a 3� 3

convolutional layer with 2 stride, and cat is the concate-

nation operation.

After obtaining the fused feature, we employ a non-local

block [52] to capture long-range dependencies. Thus, long-

range global context can be exploited for refinement. Let

the channel, width, height of fc be denoted by c; h;w. The

process can be depicted as:

fq ¼ Cm
1 fcð Þ; fk ¼ Cm

1 fcð Þ; fv ¼ Cm
1 fcð Þ; ð4Þ

fm ¼ fq�f Tk ; ð5Þ

fr ¼ softmax fm�f Tv
� �

; ð6Þ

f0 ¼ fc þ C1 frð Þ; ð7Þ

where C1 denotes a 1� 1 convolutional layer and the input

channel number is equal to the output channel number, Cm
1

is a 1� 1 convolutional layer and the output channel

number is set to 1/8 of the input channel number to reduce

computation and memory overhead, fq,fk, fv and

fm 2 Rc� hwð Þ, � is the matrix multiplication operation, and

softmax is applied in the column of fm�f Tv
� �

.

After obtaining the f0, we use a tiny U-shape block to

exploit multi-scale information. Different from [48] that

uses an inception-like structure and [51] that uses multiple

dilated convolutions with incremental dilation rates, our

proposed U-shape block is not only effective in capturing

multi-scale information but also beneficial to reduce

computation costs, since most operations are conducted on

subsampled feature maps. The multi-scale feature extrac-

tion process can be described as:

fi ¼
Cs
3 fi�1ð Þ; i ¼ 1; 2; 3
Cd
3 fi�1ð Þ; i ¼ 4

�

ð8Þ

fi ¼ C3 Up fiþ1; fi
� �

þ fi
� �

; i ¼ 1; 2
C3 f3 þ f4ð Þ; i ¼ 3

�

ð9Þ

where Cd
3 is a 3� 3 convolutional layer with the dilation

rate of 2 and stride of 1, f1 denotes the output. The f1 is then

used to refine Fh;Fm;Fl. The refinement process can be

formulated as:

F
0
h ¼ Fh þ Cs

3 f1
� �

;

F
0
m ¼ Fm þ C3 f1

� �
;

F
0
l ¼ Fl þ C3 Up f1;Fl

� �� �
;

8
<

:
ð10Þ

where F
0
h, F

0
m, F

0
l are the output features of FRM.

The proposed FRM brings us three benefits. First, we

can exploit multi-scale information from each group to

effectively alleviate the scale variation issue. Besides, the

FRM only processes features of adjacent layers, which is

effective in avoiding the interference caused by large res-

olution differences [32]. Second, complementary informa-

tion can be excavated to enhance these multi-level features.

For example, low-level details (e.g., sharp boundaries) can

be transferred to deeper stages while high-level knowledge

(e.g., object location) can be delivered to shallower stages.

Thus, we can refine features of all levels simultaneously.

While previous works mainly focus on the refinement of

low-level features, the enhancement of high-level ones is

proven effective in our paper. Third, we focus on the

Fig. 3 Illustration of FRM
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refinement of the integrated feature, which can reduce the

computation and memory overhead.

3.3 Cascaded feature interaction decoder (CFID)

The CFID is composed of multiple FIDs and each FID

consists of three FRMs. Taking the i -th FID for example,

the input features are denoted as Fi�1
j j ¼ 1; 2; 3; 4; 5ð Þ: The

outputted features of this decoder can be obtained by

computing:

Fi�1
3;1 ;F

i�1
4;1 ;F

i�1
5;1 ¼ FRMi

1 Fi�1
3 ;Fi�1

4 ;Fi�1
5

� �

Fi�1
2;1 ;F

i�1
3;2 ;F

i�1
4;2 ¼ FRMi

2 Fi�1
2 ;Fi�1

3;1 ;F
i�1
4;1

� �

Fi�1
1;1 ;F

i�1
2;2 ;F

i�1
3;3 ¼ FRMi

3 Fi�1
1 ;Fi�1

2;1 ;F
i�1
3;2

� �

8
>><

>>:

ð11Þ

Fi
1;F

i
2;F

i
3;F

i
4;F

i
5 ¼ Fi�1

1;1 ;F
i�1
2;2 ;F

i�1
3;3 ;F

i�1
4;2 ;F

i�1
5;1 ð12Þ

where FRMi
j is the j-th FRM of the i-th decoder,

Fi
j j ¼ 1; 2; 3; 4; 5ð Þ are the output features. By using the

FID, features are progressively integrated from deeper

stages to shallower stages. The aggregated feature with the

finest spatial resolution (i.e., Fi
1) is utilized to generate a

saliency map for supervision. The outputted features of the

i-th decoder are then directly fed to (i ? 1)-th decoder for

further refinement. By continuously polishing these multi-

level features, the CFIDNet can refine features from all

levels and is able to generate finer saliency maps.

To validate the effectiveness of the proposed CFID, we

visualize feature maps at different places in CFIDNet with

two FIDs. As shown in Fig. 4, we provide the visualiza-

tions of F0
2 , F

1
2, and F2

2 feature maps. It can be clearly seen

from Fig. 4 that the CFID is not only effective in sup-

pressing background noises by leveraging high-level

semantics but also useful to sharpen the salient boundaries

by utilizing low-level details.

3.4 Feature-enhanced module (FEM)

As show in Fig. 1, depth maps may be of low quality and

hence pose a risk to saliency detection. Thus, to effectively

integrate RGB and depth features, it is desirable to exploit

useful complementary information between RGB and

depth modalities to enhance RGB features. To solve this

problem, we propose the FEM. The structure of FEM is

illustrated in Fig. 5.

The FEM is inspired by the JLDCF [48]. In JLDCF, it

has been proven that an RGB SOD model can sometimes

perform well in the depth view, which means the appear-

ance information in depth images can be also leveraged to

excavate the semantic knowledge. Therefore, we employ

the attention mechanism to exploit informative cues from

depth features. When depth images contain useful sematic

information, we can effectively excavate them to enhance

the original depth features. In this process, channels

showing higher response to salient regions are highlighted,

which implies the categories of the salient objects. Besides,

when depth images are blurred, the appearance information

can be hardly used to excavate informative cues, which

means the channels of blurred features will not be high-

lighted. Therefore, we can focus on the most informative

regions of depth images using the attention operations.

Then, we integrate the cross-modality features by con-

catenation. Afterward, a residual block is applied for fur-

ther refinement. The refined depth feature is integrated with

RGB feature via concatenation. Two 3� 3 convolutional

layers are applied to exploit complementary information

between RGB and depth modalities. Thus, we can obtain

the enhanced RGB feature by combining the complemen-

tary information and the original RGB feature using ele-

ment-wise addition. The entire process can be formulated

as:

bfd ¼ fd � sigmoid fc2 fc1 pool fdð Þð Þð Þð Þ; ð13Þ

f ed ¼ bfd þ C3
bfd

� �
; ð14Þ

f er ¼ fr þ C3 C3 cat fr; f
e
d

� �� �� �
; ð15Þ

where fd is the depth feature, fr is the RGB feature, pool is a

global average pooling layer, fc1 and fc2 are two fully

connected layers, sigmoid is the sigmoid function, f er is the

enhanced RGB feature.

Fig. 4 Visualizations of feature maps at different places in CFIDNet

with two FIDs Fig. 5 Illustration of FEM
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3.5 Loss function

Our loss function consists of two parts, i.e., the standard

binary cross-entropy (BCE) loss and the IoU [27] loss. As

the most commonly used loss function in SOD task, the

BCE loss calculates the per-pixel loss independently

without paying attention to the global structure of the

image. Besides, it is not able to prevent interference caused

by imbalance ratios between foreground and background

regions. Thus, the IoU loss is introduced to emphasize the

global structure. For an generated saliency map S with a

spatial resolution H�W, the training loss can be obtained

by calculating:

LBCE ¼ �1

H �W

XH

i¼1

XW

j¼1

log Si;j
� �

� Gi;j þ log 1� Si;j
� ��

�

� 1� Gi;j

� ��
�;

ð16Þ

LIoU ¼ �
PH

i¼1

PW
j¼1 Si;j � Gi;j

� �

PH
i¼1

PW
j¼1 Si;j þ Gi;j � Si;j � Gi;j

� �þ 1; ð17Þ

L ¼ LBCE þ LIoU ; ð18Þ

where G denotes the groundtruth, Si;j is the saliency con-

fidence for pixel in (i; jÞ of the saliency map, Gi;j is the

corresponding mask label.

Inspired by [20, 29], for CFIDNet with n FIDs, we

calculate n dominant losses and 4 auxiliary losses.

Specifically, a 1� 1 convolutional layer is applied to the

side-output feature with the largest spatial resolution in

each FID to generate a saliency map, which corresponds to

a dominant loss. Besides, the rest side-output features of

the last FID are also used to facilitate optimization. Thus,

the whole process is defined as:

Sij ¼ Up sigmoid Cp
1 Fi

j

� �� �
;G

� �
; ð19Þ

Lsum ¼
Xn

i¼1

L Si1;G
� �

þ
X5

j¼2

kj � L Snj ;G
� �

; ð20Þ

kj ¼
wn
j

wn
1

; ð21Þ

where Cp
1 is a 1� 1 convolutional layer and the output

channel number is set to 1, Lsum is the final loss, and wi
j is

the width of Fi
j .

4 Experiments and results

4.1 Implementation details

We use PyTorch toolbox to implement the CFIDNet and

conduct experiments on 8 widely used RGB-D benchmark

datasets (i.e., DES [62], DUT [43], LFSD [75], NJU2K

[67], NLPR [64], SIP [70], SSD [76], STERE [77]) for fair

comparisons. We split 1485 samples from NJU2K, 800

samples from DUT, and 700 samples from NLPR for

training as done in [38, 43, 44, 50, 69, 74]. During training,

we use a batch size of 4. All training images are uniformly

resized to 320� 320 and augmented by randomly flipping.

The generated 160� 160 saliency maps are then resized

back to the original spatial resolution via bilinear interpo-

lation operation. The parameters of the backbone networks

are initialized with the weights of the pretrained ResNet-

50, and the rest ones are initialized with a truncated nor-

mal. We use the Adam optimizer [78] with a weight decay

of 5e-4, and an initial learning rate of 3e-5. The learning

rate is divided by 10 after training for 50 epochs. The

whole network converges after 70 epochs.

4.2 Datasets and evaluation metrics

We conduct extensive experiments on 8 publicly available

dataset. The DES [62], also named RGBD135, is a small-

scale RGB-D dataset only containing 135 RGB-D images

collected by using a Microsoft Kinect. DUT [43] consists

of 1200 RGB-D images containing various challenging

scenarios (e.g., complex backgrounds, transparent objects

and multiple objects). Besides, this dataset is split into a

training set of 800 samples and a test set of 400 samples.

LFSD [75] includes 100 RGB-D images collected by a

Lytro camera. NJU2K [67] is the largest RGB-D dataset

that consists of 1985 RGB-D images collected from the

Internet and 3D movies. NLPR [64] includes 1000 chal-

lenging images collected from indoor and outdoor scenar-

ios, many of which have multiple and small salient objects.

SIP [70] is a human-oriented dataset focusing on salient

persons in real-world scenarios. It contains 929 high-res-

olution image pairs captured by Huawei Mate 10. SSD [76]

contains 80 images collected from three stereo movies,

where the corresponding depth images are obtained by

using depth estimation method. STERE [77] consists of

1000 pairs of stereoscopic images downloaded from the

Internet.

To provide a comprehensively quantitative evaluation of

the performance of the proposed CFIDNet, we adopt eight

commonly used standard evaluation metrics, i.e., (1) pre-

cision–recall curves (PR-curves), (2) F-measure curves (F-

curves), (3) maximum F-measure (Fmax
b ), (4) mean F-
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measure (Favg
b ), (5) weighted F-measure (Fx

b ), (6) mean

absolute error (MAE), (7) S-measure (Sa), (8) E-measure

(En).

Basically, the groundtruth is a binary mask, where 0

indicates a background pixel and 1 indicates a salient pixel.

However, in a generated saliency map, the saliency confi-

dence of each pixel ranges from 0 to 255. Thus, we first

convert saliency maps to binary masks by using a threshold

varied from 0 to 255. Then, the average precision and recall

scores of images in a dataset can be calculated. After

sliding threshold from 0 to 255, a set of precision–recall

pairs can be obtained. Based on these pairs of precision–

recall scores, we plot the PR-curves.

F-measure is a comprehensive evaluation metric and is

defined as a harmonic mean of precision and recall. The F-

measure can be calculated as:

Fb ¼
1þ b2
� �

� Precision� Recall

b2 � Precisionþ Recall
; ð22Þ

where b2 is usually set to 0.3 to weigh precision more than

recall as suggested in many previous models [27–38]. In

this paper, we plot the F-curves and report the maximum

F-measure and mean F-measure to provide a more com-

prehensive evaluation.

The weighted F-measure [79] utilizes weighted preci-

sion and weighted recall to construct the evaluation mea-

sure, which is defined as:

Fb ¼
1þ b2
� �

� Precisionx � Recallx

b2 � Precisionx þ Recallx
; ð23Þ

MAE is a simple evaluation metric that is used to reflect

the average per-pixel absolute difference between the

generated saliency map and the groundtruth. For saliency

map S and groundtruth G, the MAE between them is

computed as:

MAE ¼ 1

H �W

XH

i¼1

XW

j¼1

Si;j � Gi;j

�
�

�
�; ð24Þ

where H and W are the height and width, respectively.

S-measure [80] is a structure measure that is used to

evaluate the structural similarity between a saliency map

and the corresponding groundtruth:

Sa ¼ a� So þ 1� að Þ � Sr; ð25Þ

where a is a balance parameter to control the trade-off

between So (object-aware structural similarity) and Sr (re-

gion-aware structural similarity). We set it to 0.5 as done in

[35, 36].

E-measure [81] is an enhanced-measure that is proposed

to compare binary maps. By utilizing both image-level

statistics and local pixel-level information, the similarity

between a saliency map and the groundtruth can be

measured.

4.3 Comparison with the state-of-the-art

We compare the CFIDNet with 15 state-of-the-art methods

including three RGB saliency models (i.e., EGNet [23],

DFI [61] and PoolNet [24]) and twelve RGB-D saliency

methods including CTMF [82], PCANet [83], AFNet [39],

TANet [84], CPFP [41], DMRA [43], A2dele [38], CoNet

[69], DANet [50, 70], FRDT [44], and DCF [85]. For fair

comparisons, the saliency maps of the competing methods

are provided by their authors or generated by running the

publicly available code with pretrained models.

The F-curves and PR-curves of the proposed CFIDNet

and 10 state-of-the-art models are shown in Fig. 6 and

Fig. 7, respectively. As demonstrated in these two figures,

our CFIDNet (shown in red solid line) achieves the best

overall performance on almost all evaluation datasets.

Besides, to provide a more comprehensive evaluation, the

quantitative results of all models in terms of 6 evaluation

metrics are shown in Table 1. The table, together with the

two figures, demonstrates that the CFIDNet outperforms

other state-of-the-art methods on two datasets (i.e., LFSD

and SSD) and is also competitive on the remaining

datasets.

For a more intuitive comparison of network perfor-

mance, several representative results of the CFIDNet and

other state-of-the-art methods are illustrated in Fig. 8. As is

demonstrated in this figure, CFIDNet is able to handle

various challenging scenarios. The first row and second

row provide the results of images with large salient objects.

Compared with other models, the CFIDNet accurately

segments the whole salient regions. The third and fourth

rows demonstrate the performance of methods in seg-

menting multiple salient objects. The fifth and sixth rows

show the results of images with multi-scale salient objects.

It is worth mentioning that in the fifth row, the CFIDNet

not only correctly segments the car, but also identifies the

left small flag and the right bigger one. Besides, in the sixth

row, CFIDNet accurately segments the target that consists

of both thin and large structures. These cases validate that

the CFIDNet is capable of exploiting multi-scale infor-

mation for saliency prediction. The seventh and eighth

rows are results of images with low contrast scenes, which

demonstrate that compared with other methods, the

CFIDNet can better leverage the depth information. The

ninth and tenth rows show the results of images with

complex structures. In summary, the CFIDNet can generate

high-quality saliency maps under various complex

scenarios.
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4.4 Ablation study

We conduct ablation studies on three aspects to validate the

effectiveness of the CFIDNet. Experiments are conducted

on four datasets: LFSD, NJU2K, SIP, and SSD.

4.4.1 The number of FIDs

We evaluate the performance of CFIDNet with different

number of FIDs. The experimental results are shown in

Table 2. We use CFIDNeti to denote the variant with i

FIDs. As can be seen from Table 2, the CFIDNet2 out-

performs other variants and achieves the best performance

on four benchmark datasets. This is because that by

leveraging multiple FIDs, the multi-level features can be

iteratively refined to generate finer saliency maps. How-

ever, adding excessive number of FIDs may lead to over-

fitting due to the small number of training samples.

Consequently, we select the CFIDNet2 variant as the final

model.

4.4.2 The effectiveness of the FID

To demonstrate the effectiveness of the FID, we conduct

ablation experiments. In the baseline network, we replace

the FID with a simple decoder, where five 3� 3 convo-

lutional layers are used to refine multi-level features.

Similarly, we stack two simple decoders to process these

multi-level features iteratively. Besides, we also implement

another two variants to reveal the effectiveness of the non-

local block (see w/o NL in Table 3) and the tiny U-shape

block (see w/o U in Table 3) in FRM. As demonstrated in

Table 3, the performance degradation of w/o NL (i.e., Fmax
b :

0.7% * 4.4%, MAE: 0.001 * 0.013, Sa: 0.4% * 3.3%)

validates that the non-local block is effective in propagat-

ing long-range contextual dependencies and exploiting

complementary information between multi-level features.

The performance of w/o U is also degraded (i.e., Fmax
b :

1.0% * 1.9%, MAE: 0.003 * 0.009, Sa: 0.5% * 2.2%),

which proves that the tiny U-shape block benefits to

excavating multi-scale information.

Fig. 6 F-measure curves of the proposed CFIDNet and 10 state-of-the-art methods

Fig. 7 Precision-Recall Curves of the proposed CFIDNet and 10 state-of-the-art methods
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4.4.3 Cross-modality feature integration strategy

To verify the effectiveness of our cross-modality feature

integration strategy, we compare it with other three

methods. The integration process of our methods can be

formulated as:

fi ¼ fr þ C3 cat fr; fdð Þð Þ; ð26Þ

where fi is the integrated feature. We implement three

models with different integration strategies. The first one is

named Add., the integration process of which is defined as:

fi ¼ fr þ C3 fr þ fdð Þ: ð27Þ

The second one is named Mul., the integration process

of which can be formulated as:

fi ¼ fr þ C3 sigmoid frð Þ � fdð Þ: ð28Þ

As demonstrated in Table 5, our integration strategy

shows better performance on these evaluation datasets,

which validates the effectiveness of the proposed integra-

tion strategy.

The third one is named Cat., where the attention block is

applied on the concatenated RGB and depth feature maps.

The quantitative experimental results are shown in Table 4.

As demonstrated in the table, CFIDNet outperforms Cat.

by a non-negligible margin. The underlying reason is that

in many cases, RGB features are more informative than

depth ones. Thus, the channel attention operation applied

on the concatenated features may only highlight channels

belonging to RGB features and makes the whole model

bias its learning toward only RGB knowledge, while

informative depth cues may be overlooked.

4.4.4 Computational complexity

To fully compare the CFIDNet with other state-of-the-art

methods, we report the computational complexities of

CFIDNet and 9 existing high-performance approaches

including A2dele, CoNet, CSNet, D3Net, DANet, DMRA,

EGNet, FRDT, PoolNet. For fair comparisons, each model

takes 320� 320 images as inputs. Experiments are con-

ducted 20 times on a machine with a NVIDIA Titan Xp

GPU. The average inference speed of these methods is

shown in Table 5.

5 Conclusion

In this paper, we design a novel deep neural network

named CFIDNet for RGB-D salient object detection. First,

we propose the FEM to excavate informative cues from

depth modality and exploit complementary information

between depth and RGB features. Thus, RGB feature canTa
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Fig. 8 Qualitative comparisons of the proposed CFIDNet and 10 state-of-the-art methods

Table 2 Comparisons of the CFIDNet with different number of FIDs on LFSD, NJU2K, SIP, and SSD datasets

Complexity LFSD NJU2K SIP SSD

Param FLOPs Time(s) Fmax
b " MAE

#
Sa " Fmax

b " MAE
#

Sa " Fmax
b " MAE

#
Sa " Fmax

b " MAE
#

Sa "

CFIDNet1 51.07 M 36.82G 0.037 0.856 0.082 0.847 0.917 0.040 0.909 0.870 0.068 0.850 0.862 0.057 0.855

CFIDNet4 59.46 M 55.11G 0.069 0.875 0.073 0.862 0.913 0.042 0.907 0.872 0.071 0.843 0.854 0.061 0.859

CFIDNet2 53.86 M 42.92G 0.046 0.884 0.070 0.870 0.923 0.038 0.914 0.891 0.060 0.864 0.882 0.050 0.879

The best results are highlighted in Boldface. The FLOPs and inference speed of different variants are calculated with 320� 320 images

Table 3 Ablation analyses for the network architecture on LFSD, NJU2K, SIP, and SSD datasets in terms of three evaluation metrics

Complexity LFSD NJU2K SIP SSD

Param FLOPs Time(s) Fmax
b " MAE

#
Sa " Fmax

b " MAE
#

Sa " Fmax
b " MAE

#
Sa " Fmax

b " MAE
#

Sa "

baseline 48.64 M 33.18G 0.025 0.629 0.211 0.667 0.771 0.126 0.786 0.352 0.312 0.478 0.518 0.241 0.568

w/o U 52.53 M 42.66G 0.040 0.872 0.073 0.865 0.913 0.041 0.908 0.873 0.069 0.856 0.863 0.059 0.857

w/o NL 51.59 M 36.57G 0.044 0.840 0.084 0.837 0.916 0.039 0.910 0.878 0.064 0.859 0.848 0.061 0.850

CFIDNet 53.86 M 42.92G 0.046 0.884 0.070 0.870 0.923 0.038 0.914 0.891 0.060 0.864 0.882 0.050 0.879

The best results are highlighted in Boldface. Baseline: replacing each FID with 5 convolutional layers; w/o U: removing the tiny U-shape block

in FRM; w/o NL: removing the non-local block in FRM. The FLOPs and inference speed of different variants are calculated with 320� 320

images

Neural Computing and Applications (2022) 34:7547–7563 7559

123



be enhanced after combined with the exploited comple-

mentary information. Besides, we take into account the

level-specific characteristics of features extracted from the

backbone, and propose the FRM. The FRM is effective in

capturing global contextual dependencies and exploiting

multi-scale information. By leveraging multiple FRMs

sequentially, our FID is able to refine multi-level features.

Afterward, CFID is proposed to refine features of all levels

iteratively. Hence, the CFIDNet can accurately segment

salient objects. Experimental results on 7 widely used

benchmark datasets validate that the CFIDNet is competi-

tive compared with 15 state-of-the-art counterparts in terms

of eight evaluation metrics.
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