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Abstract
In recent years, the ever-growing contents (movies, clothes, books, etc.) accessible and buyable via the Internet have led to

the information overload issue and therefore the item targeting problem. Indeed, the huge mass of contents complexifies the

identification of items fitting users’ expectations. As powerful filtering tools, recommender systems efficiently alleviate the

item targeting issue. Collaborative filtering-based methods are among the most influential algorithms adopted in recom-

mender systems. Among collaborative filtering-based methods, model-based approaches are widely used in recent pow-

erful recommendation methods. Due to its efficiency, the matrix factorization technique is spreadly employed in model-

based approaches. However, those methods badly deal with issues such as data sparseness and cold-start problems that

severely affect the recommendation quality. To overcome these limitations shown by state-of-the-art methods, we propose

in this paper a recommender approach that couples the effectiveness of an enhanced matrix factorization technique to the

power of a deep neural network model. In the first step, the user’s latent factors and item latent factors are extracted from a

doubly-regularized matrix factorization process. Thereafter, those latent factors are used to feed a deep learning structure in

a forward-propagation process, and a normalized cross-entropy method is used to increase the precision of the deep neural

network through a backpropagation process. The end prediction is made by combining results from the matrix factorization

step and the deep neural structure. Extensive experiments are conducted on real-world datasets and show that our proposal

outperforms other methods in terms of prediction accuracy and recommendation quality.

Keywords Deep neural network � Collaborative filtering � Matrix factorization � Twofold regularization � Recommender

system

1 Introduction

Recommender systems (RS) help to tackle the information

overload issue since they are useful to quickly and easily

identify items matching users’ needs [20]. For several

years, RS have been widely adopted by various commercial

platforms to enhance users’ experiences by providing

customers with products (movies, books, shoes, etc.) fitting

their expectations. RS are mainly organized into content-

based methods and Collaborative Filtering (CF)-based

methods [53]. Content-based approaches exploit extra

information on items and user profile to perform the rec-

ommendation. However, those approaches show poor

performances when the target user profile is sparse or when

the system does not have enough extra information (users

reviews, document content, etc.) on items. Collaborative

Filtering (CF) methods are spreadly adopted in RS since

they overcome limitations of content-based approaches by

using a recommendation model that is built on experiences

of a set of users that share similar tastes and needs [34]. For

this purpose, interactions between items and users of this

set of users help to perform the recommendation without

requiring any extra information on items. CF-based meth-

ods are categorized into memory-based approaches and

model-based approaches. Memory-based algorithms are

simple implementable but inaccurate in case of large

datasets. Meanwhile, model-based methods are hard-
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masterable but they are highly accurate even in case of

large datasets [7].

In the literature, model-based approaches appear as the

most widely used algorithms among CF-based methods.

They use machine learning techniques to model users’

interests. Model-based approaches are famous due to their

valuable recommendation performances. However, they

badly deal with issues such as data sparsity and cold-start

problems that can severely affect recommendation quality.

Among model-based methods, Matrix Factorization (MF)

is a very popular technique largely adopted in several

recent powerful RS. This technique consists in decom-

posing the original high-dimensional data matrix into low-

rank latent factors matrices [22]. However, in order to

perform the prediction, this decomposition process

involves a linear dot product between latent factors

matrices that does not accurately model complex interac-

tions that happen between users and items [1, 11]. Several

studies [7, 25, 32, 35] try to tackle this insufficiency of the

MF process by adding bias terms in the loss function also

known as the interaction function[11]. Despite the incor-

poration of bias terms in the interaction function, the lin-

earity of the inner product of the matrix factorization

remains not completely mitigated. To remedy this, the

nonlinearity property of deep neural networks shows

encouraging promises.

Thanks to their nonlinearity, deep neural networks

appear as a powerful technique to solve limitations of the

simple inner product involved in the MF process. More

recently, Deep neural networks (DNN) have proved their

effectiveness in several domains such as computer vision,

speech recognition, to text processing [8, 9, 14, 38] but

they are not enough exploited in recommender systems

(RS) comparatively to the rich literature on MF-based

recommender methods. Some recent studies have proposed

recommendation approaches based on neural networks but

these methods are built on the baseline matrix factorization

model that does not effectively alleviate the issue of the

simplicity and the linearity of the inner product of latent

factors in the interaction function. Subsequently, some

complex interactions and relationships between users and

items are not accurately modeled. To remedy these limi-

tations, we propose a model-based recommendation

approach that uses a matrix factorization technique in

which the simplicity of the inner product of latent factors is

alleviated by a twofold regularization of the interaction

function. Moreover, the nonlinearity of complex users-

items interactions is leveraged by employing deep neural

networks (DNN).

The recognized effectiveness of Matrix Factorization-

based model remains limited due to the fact that complex

interactions between users and items are not accurately

modelled by the inner dot product involved during the

factorization process. We aim to address this limitation by

leverage the contribution of neural networks. Our proposal

is a recommendation method that combines the effective-

ness of an improved matrix factorization and the power of

deep neural networks. The contribution of this paper is

declined as follows:

• A matrix factorization based model is proposed and

enhanced through a twofold regularization in order to

significantly reduce the linearity impact of the inner

product of latent factors, and therefore increase the

accuracy of the user-item interactions modelling.

• A deep neural network architecture is built and made of

multilayer perceptron and single layer perceptron to

effectively solve the linearity issue proper to the dot

product of latent factor matrices from the matrix

factorization process.

• Extensive experimentations are conducted on several

real-world datasets to highlight the effectiveness of the

proposed method and the valuable contribution of deep

learning in the recommendation task.

The remainder of this paper is structured as follows: sec-

tion 2 reviews state-of-the-art recommendation methods,

Sect. 3 details the proposed recommendation approach.

Section 4 presents the conducted experiments and discusses

obtained results. Section 5 concludes this paper and shows

our perspectives.

2 Related work

According to the literature, Collaborative Filtering (CF)-

based methods are very popular in Recommender Systems

(RS). They are mainly categorized into memory-based and

model-based approaches [22]. In this section, we survey

several CF-based methods and promises of the deep

learning applied in RS.

2.1 Memory-based methods

Memory-based methods are easy-understandable and sim-

ple-implementable [53]. They are mainly based on a

neighborhood computation process that evaluates inter-user

relationships in order to identify like-minded users.

Authors in [4] propose a recommendation model that per-

forms reliable recommendations according to three views

of reliability measures such as user-based, item-based, and

rating-based reliability measures. According to the authors’

method, an initial rating prediction is made and is there-

after improved through a neighborhood improvement

mechanism for unreliable predicted ratings. Authors in [58]

propose a recommendation model that uses an adaptive

similarity measure in order to alleviate the data sparsity
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issue. For this purpose, the authors’ similarity measure

combines online context-based multiple armed bandit

mechanism. Authors in [3] propose a social collaborative

filtering based on an adaptive neighborhood selection

mechanism. A reliability measure evaluates the recom-

mendation credibility, and a confidence model drops

unreliable users from the initial neighborhood. The

neighborhood is continuously updated in order to refine the

prediction. Authors in [2] propose a social recommendation

model based on user profiles improved by using virtual

ratings. For this purpose, they compute the minimum

number of required ratings through a probabilistic mecha-

nism. The authors’ method ensures reliable recommenda-

tions thanks to reliable user rating profiles. Authors in

[16, 56] propose a recommender system that relies on inter-

user similarities computed by using the Spearman Rank

Correlation Coefficient (SRCC). They perform predictions

as average of weighted ratings from like-minded users.

Although simple and easy-affordable, memory-based

methods badly deal with large datasets. In addition, they

are highly sensitive to the data sparsity issue. Model-based

methods have been developed to overcome these

limitations.

2.2 Model-based methods

Model-based methods show the advantage of their accu-

racy and scalability. Several recent high-performant RS

[13] use them to efficiently model user-item interactions.

Those methods are most often based on Bayesian networks

[23, 33, 46, 48, 52], clustering CF [5], latent semantic CF

[42] and matrix factorization technique [30, 32, 36, 40].

Among model-based approaches, those based on matrix

factorization are the most popular [28, 57]. Matrix factor-

ization (MF) is a dimensionality reduction technique that

reduces an original high-rank matrix into low-rank latent

factor matrices. Afterwards, an optimization method helps

to minimize the interaction function. Considering user-item

interactions modeled by low-rank latent factor matrices,

authors in [22] propose MF-based methods to alleviate the

data sparsity problem while authors in [18] propose a MF-

based recommender framework for an online recommen-

dation. Authors in [28, 32, 35] propose a non-negative MF-

based model while authors [36] incorporate social infor-

mation into their recommender framework to effectively

feed the MF-based RS. In [29], to address the high com-

putational problem shown by existing recommender mod-

els, the authors propose the Nonnegative Latent Factor

Model (ANLF) based on Alternating Direction Method

(ADM). Their proposal is accurate and highly scalable

while showing a low complexity. Authors in [24] develop a

trust metric model that is incorporated in the regularization

of the matrix factorization process. Similarly, authors in

[10] develop a recommendation model that integrates trust

social information in the latent feature extraction process

performed by using the Single Value Decomposition

(SVD). The authors’ proposal is scalable and performs

reliable recommendations. Authors in [17] propose an

adaptative learning rate function that comes to improve

SVD?? recommendation algorithm. The authors’ pro-

posal enhances recommendation performances while

ensuring high scalability for large datasets.

Despite the efficiency and scalability of MF-based

methods, their performances are limited due to the linearity

of the dot product of latent factors involved in the inter-

action function that does not efficiently model complex

user-item interactions. To alleviate this limitation, most

often bias terms are added to the interaction function. This

idea is useful since a rightly defined interaction function

contributes to improve the recommendation quality.

However, this approach is not enough to completely

jugulate insufficiencies of the inner product of latent fac-

tors. To address the linearity issue from the inner product

of the MF process, some researches exploit the nonlinearity

property of deep neural networks.

2.3 Deep learning in recommender systems

For several years, deep learning succeeds in solving com-

plex tasks. Applied to recommender systems, deep learning

brings tremendous opportunities by overcoming limitations

of state-of-the-art recommender models [55, 59]. Authors

in [54] propose a recommendation model based on a deep

neural network. The authors perform a matrix factorization

by using the Quadric Polynomial Regression in order to

reduce the original user data matrix into low-rank latent

features matrices. In [11, 19, 50], the authors propose a

recommender system based on a fusion of a baseline matrix

factorization based model and a deep neural architecture.

Authors in [21, 44] couple a Bayesian approach to a neural

architecture to improve recommendation performances.

Authors in [39] predict visitor shopping intent by using

multilayer perceptron and long-short term memory

(LSTM) recurrent neural networks. Their proposal is an

accurate and scalable purchasing predictor that supports

effective recommendations. Authors in [12] overcome

flaws of statistical measures such as Pearson Correlation

Coefficient (PCC) and cosine similarity by proposing a

neural attentive model that learns the relative importance

of historical items in a user profile and therefore improves

recommendation performances. In [26], the authors pro-

pose an app recommendation based on hierarchical neural

networks. To accurately model complex user interactions,

the authors’ model is developed according to different

views namely feature-level attention and view-level

attention. Authors in [41] propose a deep collaborative
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filtering based recommendation model. They use Latent

Dirichlet Allocation (LDA) for the feature extraction from

user reviews in order to compute user similarities. There-

after, they perform recommendations based on matrix

factorization coupled with deep learning. Authors in [6]

mine user sentiments from user reviews on e-commerce

websites to improve recommendation performances. For

this purpose, they model the fine-grained user-item inter-

actions by using deep neural networks via LSTM encoder

in order to enhance sentiment-aware representations.

Authors in [45] propose a hybrid neural architecture to

predict ratings. The authors’ architecture combines an

autoencoder and a multilayer perceptron. The autoencoder

extracts latent features from both users and items while the

multilayer perceptron model nonlinear and intricate user-

item interactions. Authors in [15] propose a deep hybrid

recommendation model that is consisted of a Stacked

Denoising Autoencoders- Factorization Machine (SDAE-

FM) module for the latent feature extraction, a deep neural

network module that effectively captures complex nonlin-

ear user-item interactions, and the metric learning module

that assesses the relationship between users and items.

Besides the efficiency of neural networks and deep learn-

ing, some important aspects such as security and privacy

need to be handled when using neural structures [27].

With unlimited capabilities, deep learning brings

tremendous flexibility in recommender systems since it can

be associated with various conventional models such as

matrix factorization, factorization machines, and sparse

linear models. Furthermore, its nonlinearity property

enable the modeling of intricate user-item interactions that

are not linear. Indeed, by using nonlinear activation func-

tions, deep neural networks can accurately catch complex

user-item interaction patterns and therefore significantly

enhance recommendation performances. However, the

latent feature extraction is the crucial step that is prior to

the capture of nonlinear user-item interactions, and that

therefore needs to be effectively performed. The proposed

model efficiently merges the effectiveness of an enhanced

matrix factorization with the power of deep neural net-

works in order to refine recommendations. The improved

matrix factorization performs the latent feature extraction

while the neural architecture proceeds to the modeling of

complex user-item interactions.

The next section presents the proposed method.

3 The proposed recommendation method

In this section, we present a recommendation model and its

specifications. The proposed model is an association

between an improved Matrix Factorization (MF) model

and a novel deep neural architecture.

The next subsection details specifications of our

proposal.

3.1 dualDeepMF model presentation

The proposed method lays on a doubly-regularized Matrix

Factorization (MF) model that is used for latent features

representation. This MF model is biased by including

reliable user’s neighborhood terms in order to accurately

model user-item interactions. Thereafter, we exploit the

nonlinearity property of deep neural networks in order to

alleviate limitations from the linear dot product performed

during the MF process. The latent features issued from the

MF process feed a deep neural network (see Fig. 1). This

neural network is mainly a Multilayer Perceptron (MLP)

that is consisted of an input layer Lin fed by latent features,

several hidden layers that enable the nonlinearity of the

neural architecture, and an output layer Lout. Thereafter, at

the merging layer Lmerge, outcomings of the MLP model are

combined with findings of the MF model in order to per-

form the end-prediction, and the predicted score is assessed

regarding training instances.

The next subsection details the proposed MF model.

3.2 Matrix factorization model

The system hosts the set U of m users that interact with at

most n items belonging to the set I. Users u 2 U rate items

i 2 I by assigning to them values rui that express the user’s

satisfaction intensity. We define the data matrix R ¼
rui½ �m�n that contains all ratings assigning by users on

items. The matrix factorization assume that Rmatrix can be

approximate by low-rank latent feature matrices as follows:

Fig. 1 dualDeepMF Model
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R � PQ, rui �
X

f2F
puf qfi; ð1Þ

where P ¼ puf
� �

m�f is the user latent feature matrix, Q ¼
qfi
� �

f�n is the item latent feature matrix and f � minðm; nÞ
is the number of latent features. We slightly modify the

approximation expression by adding a bias term bui that

compensates for user-interaction variations. The approxi-

mation formula is reexpressed as follows:

rui � bui þ
X

f2F
puf qfi; ð2Þ

From the factorization process, the loss function is defined

as follows:

min
P;Q

1

2
jjR� PQjj2F

, min
P;Q

1

2

X

u2U

X

i2I
Guiðrui � bui �

X

f2F
puf qfiÞ

2
; ð3Þ

where jj:jjF is the Frobenius norm, Gui is an indicator

function equal to 1 when a user rates an item and 0

otherwise.

A regularization parameter k is incorporated in the error

function in order to alleviate the overfitting problem. For

this purpose, the loss function is reexpressed as follows:

min
P;Q

1

2

X

u2U

X

i2I
Guiððrui � bui �

X

f2F
puf qfiÞ

2

þkð
P
u2U
jjPujj2 þ

P
i2I
jjQijj2 þ

P
u2U

P
i2I

b2uiÞÞ

, min
P;Q

1

2

X

u2U

X

i2I
Guiððrui � bui �

X

f2F
puf qfiÞ

2

þkð
P
u2U

P
f2F

p2uf þ
P
i2I

P
f2F

q2fi þ
P
u2U

P
i2I

b2uiÞÞ;

ð4Þ

where Pu and Qi are respective latent feature vectors of

user u and item i.

We perform a second regularization in order to refine

the modeling of user-item interactions. For this purpose,

we integrate the neighborhood effect into the loss function.

Indeed, like-minded users influence each other since they

enjoy the same items. Those users are determined after a

similarity assessment that is performed by using a weighted

Pearson Correlation Coefficient (PCC) computed as

follows:

simuv ¼
JCCuv �

P
i2Iu\Iv

ðrui � ruÞðrvi � rvÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2Iu\Iv

ðrui � ruÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2Iu\Iv
ðrvi � rvÞ2

r ; ð5Þ

where ru and rv are rating averages of both users u and v

respectively. JCCuv ¼ jIu\Ivj
jIujþjIvj�jIu\Ivj is the Jaccard

correlation coefficient that enables the impact of co-rated

items in the PCC measure.

The neighborhood Near ¼ fv 2 Ujsimuv	 cg is defined
as the set of like-minded users that share similar interests in

the same items. It can be valuable to select only users that

can effectively refine the prediction process. For this pur-

pose, we define a reliability measure that ensures strong

user profiles and therefore a reliable neighborhood.

3.2.1 Reliable neighborhood selection

Let Cuv be the reliability value between users u and v. Cuv

expresses how reliable v is according to u. It is computed as

follows:

Cuv ¼ 1�

P
i2Iu\Iv

jrui�rvij
jIu\Ivj

rmax
;

ð6Þ

where Iu and Iv are sets of items, respectively, selected by u

and v, rmax is the maximum value of rating. The reliability

between u and v decreases when the gap between rui and rvi
increases. It translates a divergence of interests of u and v.

Inversely, the reliability between u and v as the gap

between rui and rvi decreases.

We consider users and items, respectively, as nodes and

edges of a graph in which users who have co-rated items

are linked by an edge. We assume indirect reliable users

since if v is reliable to u and user w is reliable to v, then w is

indirectly reliable to u [3]. The indirect reliability evalua-

tion enables the data sparsity resilience of our system. We

assess indirect reliability scores as follows:

Cuv ¼ 1� duv þ e
dmax

; ð7Þ

where duv is the trust propagation distance [31] that refers

to the number of nodes (users) existing between u and v,

dmax is the maximum allowable distance between two

users, and e� 1 is a positive value to avoid a reliability

value equal to 0. Looking to the reliability measure in

Eq. (7), the reliability between u and v decreases when duv
increases and vice-versa.

The reliability measure is finally updated in order to

integrate both direct and indirect aspects of the reliability

between users. The reliabily measure is reexpressed as

follows:

Cuv ¼ ð1�

P
i2Iu\Iv

jrui�rvij
jIu\Ivj

rmax
Þð1� duv þ e

dmax
Þ: ð8Þ

Given the reliability measure above-computer, the reliable

neighborhood is defined as Nearrel ¼ fv 2 Ujsimuv	 c and
Cuv	 dg.
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3.2.2 Matrix factorization regularization

Like-minded users from the reliable neighborhood tend to

enjoy similar items. Since user actions on items are

described by latent feature spaces, it can be intuitively

considered that the divergence between latent vectors

needs to be minimized [51] as follows:

min
1

2

X

v2Nearrel
simuv:CuvjjPu � Pvjj2F ; ð9Þ

where Pu and Pv are respective latent feature vectors of

users u and v.

Given the reliable neighborhood-based regularization,

the loss function is updated as follows:

min
P;Q

1

2

X

u2U

X

i2I
Guiððrui � bui �

X

f2F
puf qfiÞ

2

þkð
P
u2U
jjPujj2 þ

P
i2I
jjQijj2 þ

P
u2U

P
i2I

b2uiÞ

þx
P
u2U

P
v2Nearrel

simuv:CuvjjPu � Pvjj2FÞ

, min
P;Q

1

2

X

u2U

X

i2I
Guiððrui � bui �

X

f2F
puf qfiÞ

2

þkð
P
u2U

P
f2F

p2uf þ
P
i2I

P
f2F

q2fi þ
P
u2U

P
i2I

b2uiÞÞ

þx
P
u2U

P
v2Nearrel

simuv:Cuv

P
f2F
ðpuf � pvf Þ2Þ:

ð10Þ

where x is an additional parameter that enables the control

of the effect of the neighborhood-based regularization.

The interaction function is solved by using the

Stochastic Descent of Gradient (SDG) since it is widely

adopted as optimization method [57]. This method itera-

tively updates latent feature spaces regarding the gradient

direction of the loss function. The update rules are

expressed as follows:

oD

oP
¼

X

u2U

X

i2I
Guiðð ~rui � ruiÞ

X

f2F
qfi þ k

X

u2U

X

f2F
puf

þx
P
u2U

P
v2Nearrel

simuv:Cuv

P
f2F
jpuf � pvf jÞ

;

ð11Þ

where D corresponds to the loss function,

oD

oQ
¼

X

u2U

X

i2I
Guiðð ~rui � ruiÞ

X

f2F
puf þ k

X

i2I

X

f2F
qfiÞ ;

ð12Þ
oD

ob
¼

X

u2U

X

i2I
Guiðð ~rui � ruiÞbui þ k

X

u2U

X

i2I
buiÞ ; ð13Þ

where ~rui ¼ bui þ
P
f2F

puf qfi.

The optimization process starts with the initialization of

P and Q with random positive values. The optimal latent

feature matrices that minimize the interaction function are

retrieved at the algorithm convergence. Iterations are per-

formed following update rules (in Eqs. (11,12)) and

observing a learning rate a.
Algorithm 1 summarizes the latent feature extraction

process.

3.3 Deep neural network model

The proposed model is a feedforward neural network that is

consisted of an input layer Lin, several hidden layers Lk, an

output layer Lout and a merging layer Lmerge. The neural

network is fed by latent features in order to predict z score

in a first step. Thereafter, at the merging layer Lmerge, the

prediction of the multilayer perceptron is combined to

outcomes of the doubly-regularized MF model in order to

predict ~x score that is assessed according to the training

instance x.

The input layer Lin of the neural network is fed by latent

features and the input vector is obtained as follows:
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y0 ¼ Pu 
 Qi; ð14Þ

where 
 is the dot product operator, Pu is the user latent

vector and Qi the item latent vector. The layer L1 is fed by

y0 and the output vector y1 of this first hidden layer is

computed as follows:

y1 ¼ q1ðw1y0 þ a1Þ; ð15Þ

where w1 is the set of weights contained in a matrice

between the input layer and the first hidden layer L1, a1 are

biases in L1 layer, and q1 is the activation function that

enables the nonlinearity property of the neural network. We

use Swish function proposed by Google Brain [37, 49] and

that consistently outperforms the most spreadly adopted

ReLU function [37]. Unlike ReLU function, Swish acti-

vation function is smoother and does not hastly change

direction. In addition, it efficiently deals with issues such as

vanishing gradients [43]. Swish activation function is

defined as follows:

SwishðxÞ ¼ x:sigmoidðxÞ ¼ x

1þ e�x
: ð16Þ

Generally, outputs of hidden layers Lk are denoted by yk
and obtained as follows:

yk ¼ qkðwkðqk�1ð:::q2ðw2y1 þ a2Þ:::ÞÞ þ akÞ; ð17Þ

where qk, wk and ak are, respectively, the activation

function, the weight matrix and biases of neurons in the

hidden layer Lk. For the output layer Lout of the Multilayer

Perceptron (MLP), the prediction yout is trivially computed

as follows:

yout ¼ qoutðwoutyk þ aoutÞ; ð18Þ

where qout is the activation function that is also Swish like

for hidden layers.

For the merging layer Lmerge, the output prediction is

performed as a combination between the doubly-regular-

ized MF model and the MLP model. The output at this

layer is computed as follows:

~x ¼ qmergeðwmergeðyout þ Pu 
 QiÞ þ amergeÞ; ð19Þ

where qmerge is the Softmax activation function that is

appropriated for output of neural network [8]. The pre-

diction of the proposed model is assessed by using the

normalized cross-entropy method [47] through the fol-

lowing cost function:

E ¼ �
XO

t¼1

xt
Rmax

log ext þ ð1�
xt

Rmax

Þ logð1� ext Þ; ð20Þ

where Rmax is the maximum rating values and O is the

number of neurons in the merging layer Lmerge.

The training stage of the proposed model consists to

determine optimal weights and biases that minimize the

cost function in Eq. (20). For this purpose, we use the

gradient descent method through update rules expressed as

follows:

w w� cðoE
oW
Þ;

a a� cðoE
oA
Þ;

ð21Þ

where W and A are respectively the weight and bias

matrices.

Consider the merging layer Lmerge, we compute the

gradient for weight wmerge as follows:

oE

owmerge
¼ oE

oðTmergeÞ
oðTmergeÞ
owmerge

¼ oE

oðTmergeÞ
yout; ð22Þ

where Tmerge ¼ wmergeyout þ amerge,

oE

oTmerge
¼ oE

oex
oex

oTmerge
; where

oE

oex ¼
1� x

Rmax

1� ex � x

Rmaxex
¼ Rmaxex � x

Rmaxexð1� exÞ ;

oex
oTmerge

¼ oSoftmaxðwmergeðyout þ Pu 
 QiÞ þ amergeÞ
Tmerge

¼ oSoftmaxðTmerge þ wmergeðPu 
 QiÞÞ
Tmerge

¼ exð1� exÞ; finally
oE

oTmerge
¼ Rmaxex � x

Rmax

:

ð23Þ

For hidden layers Lk, following the same analysis we have:

oE

oTk
¼ oE

oðTkþ1Þ
oðTkþ1Þ
oTk

; ð24Þ

where

Tk ¼ wkyk�1 þ ak;
Tkþ1 ¼ wkþ1yk þ akþ1
yk ¼ Swishðwkyk�1 þ akÞ ¼ SwishðTkÞ;

8
<

:

oTkþ1
oTk

¼ wkþ1ðyk þ
yk
Tk
ð1� ykÞÞ

Finally, Eq. (24) is reexpressed as follows:

oE

oTk
¼ oE

oTkþ1
½wkþ1ðyk þ

yk
Tk
ð1� ykÞÞ�: ð25Þ

The gradients for bias a are computed as follows:

oE

oak
¼ oE

oTk

oTk
oak
¼ oE

oTk
; ð26Þ

with oTk
oak
¼ oðwkyk�1þakÞ

oak
¼ 1.

Update rules of Eq. (21) are reexpressed as follows:
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wk  wk � c
oE

oTk
;

bk  bk � c
oE

oTk
;

ð27Þ

where oE
oTk

is computed in Eq. (24) for hidden layers and in

Eq. (23) for the merging layer.

3.4 The recommendation

Once the training phase achieved, by using the proposed

model, the prediction ~rui on unselected items is computed

as follows:

~rui ¼ argmaxðextÞ
t

: ð28Þ

Predicted items are ranked by decreasing order of ratings.

Thereafter, the most relevant items are returned to the end-

user.

The next section details the experiments and presents the

obtained results.

4 Experiments and results

In this section, performances of the proposed method are

assessed comparatively to competing CF-based methods.

Experiments are conducted on real-world datasets1.

described in Tab. 1.

The next subsection presents the experiment process.

4.1 Experiments setup

Experimentations are conducted on a computer that hosts

an Intel Core i7 (2.4 GHz) typed processor with 16 GB

RAM, and that runs Windows 10 Operating System. We

develop our algorithm by using TensorFlow and Keras

libraries in the Spyder environment since we use Python

3.6 language.

The used datasets contain invocations of movies rated

by users according to their relevance. Those datasets are

split into a training data part and a test data part. The test

part is gradually increased causing a decrease in the

training part. In this way, we can assess the data sparseness

impact on recommendation precision.

Parameters of the proposed model have been set in order

to maximize our proposal’s performance. The regulariza-

tion rate has been set to 0.01. The learning rate has been set

to 0.001. We set the number of latent features to 10. We set

the size of the reliable neighborhood to 15. In the input

layer, the number of units is the sum of latent features that

feed the neural network and that are used at the merging

layer. The neural architecture has 3 hidden layers. The two

first hidden layers have 32 units for each of them. The third

hidden layer has 18 neurons and the merging has 8 neurons.

The next subsection presents the metrics used to eval-

uate performances of the proposed method.

4.2 Evaluation metrics

We evaluate the prediction precision of the proposed

method by using the Mean Absolute Error (MAE) and the

Root Mean Square Error (RMSE) that are spreadly adopted

for this concern [57]. Low values of MAE and RMSE

indicators express a high prediction precision. MAE and

RMSE values are computed as follows:

MAE ¼

P
s2Srec
jrui � ~ruij

N
;

ð29Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
s2Srec
ðrui � ~ruiÞ2

N

vuut
;

ð30Þ

where rui is the true rating of u on item i, and ~rui the

predicted rating of u on item i; N is the number of rec-

ommended items and Srec is the set of recommended items.

We evaluate the recommendation quality by measuring

precision and recall indicators. High scores of precision

and recall indicators translate a high recommendation

quality. Recall measures compute the number of items

rightly recommended given the number of items expected

to be recommended. Meanwhile, precision measures assess

the number of items rightly recommended given the pro-

portion of recommendations. Precision and recall are

computed as follows:

Precision ¼ jSrec \ Ej
Srec

; ð31Þ

Recall ¼ jSrec \ Ej
E

; ð32Þ

where Srec is the set of recommendations and E the set of

expected items.

4.3 Results and analysis

The dualDeepMF method proposed in this paper is asses-

sed comparatively to state-of-the-art recommendation

methods hereafter detailed:

• IPCC is a memory-based method that is based on the

evaluation of inter-item similarities [53]. We apply on

this approach the trustworthiness evaluation in order to

enhance the recommendation quality.

• NeuMF is a neural model-based method that uses the

generalized matrix factorization combined to a neural
1 https://www.librec.net/datasets.html.
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architecture in order to perform the recommendation

[11].

• I-AutoRec is a neural model-based method that per-

forms recommendations by employing an autoencoder

to extract latent features that thereafter feed a neural

network which makes predictions of unknown items

[57].

4.3.1 Assessment of the item prediction accuracy

Using the MovieLens dataset, Figs. 2 and 3 depict MAE

and RMSE performances of the proposed method. It can be

observed that our proposal outperforms other methods in

terms of prediction precision. Using the Filmtrust dataset,

Figs. 4 and 5 show that the proposed method has a better

prediction accuracy compared to others. In addition, it can

Table 1 Datasets Specifications
Dataset Number of users Number of items Number of ratings

Movielens 1.000 1.700 100.000

Filmtrust 1.508 2.071 35.497
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Fig. 2 MAE Performances on MovieLens
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be observed that the prediction accuracy of all methods

globally decreases when the test data part increases. It

highlights the robustness and the scalability of our proposal

in challenging conditions.

4.3.2 Assessment of the recommendation quality

Using the MovieLens dataset, Figs. 6 and 7 show the

precision and recall performances of the proposed method.

It can be observed that the precision and recall measures of

our proposal are better than those of other methods. Indeed,

the recommendation quality of the proposed method is the

highest for 20 recommendations. Upper than 20 recom-

mendations, the precision and recall decrease. It can be due

to the fact that a number of recommendations upper than 20

include items with poor predicted ratings and that therefore

appear as noisy recommended items.

Using the Filmtrust dataset, Figs. 8 and 9 show that the

global precision and recall trends of the proposed method

are better than those of other methods. The recommenda-

tion quality of our proposal is highest for a number of

recommendations comprise between 10 and 15. Upper than

15 recommendations, the precision and recall trends

decrease. It can be explained by the fact that the additional

items behave as noise since they contribute with lower

ratings.
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4.3.3 Impact of the reliable neighborhood

Looking at Figs. 10 and 11, it can be observed the impact

of the size of the reliable neighborhood using both

MovieLens and Filmtrust datasets. It can be observed that

for a neighborhood size upper than 15 the prediction

accuracy is affected. It can be observed by the fact, for a

neighborhood size upper than 15, the reliability of addi-

tional users is poor. Therefore, those users are considered

as doubtful users since their contribution to the recom-

mendation process affects the prediction accuracy.

5 Conclusion and perspectives

In this paper, we have proposed a recommender system to

effectively address the information overload. The proposed

model lays on an enhanced matrix factorization (MF)

coupled to a novel deep neural architecture. The MF model

developed is doubly regularized with both biases and

reliable user’s neighborhood to accurately model user-item

interactions. Thereafter, the nonlinearity of the proposed

deep neural network is used to alleviate the limitations of

the linear dot product involved in the MF process. Series of

experiments have been performed on real-world datasets

and show the effectiveness of our proposal compared to

state-of-the-art recommendation methods in terms of

accuracy and quality of the recommendation.

In the future, to further refine the recommendation, the

proposed method could be extended by mining user’s

opinions or by analyzing user’s sentiment through users’

activities on social networks. The proposed model can be

extended by mining user’s opinions since words in users’

reviews or comments on social networks can be scored by

using a sentiment lexicon to transform words into scores

expressing the users’ appreciation level about items. The

users’ reviews expressed into scores rating users’ satis-

faction about items make ease the implementation of our

recommendation proposal to predict users’ expectations

about unknown items. The subjects on what users comment

can be correlated to items likely to be interesting for users

who left comments about them. For this purpose, recurrent

neural networks could be useful to explore in order to mine

textual reviews and comments left by users concerning

selected items. Neural networks offer tremendous promises

in the recommendation field. However, security and pri-

vacy aspects need to be also considered since some sen-

sible training data can be inferred or the system can be

vulnerable and wrongly performs predictions.

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Ahamed MT, Afroge S (2019) A recommender system based on

deep neural network and matrix factorization for collaborative

filtering. pp 1–5

2. Ahmadian S, Meghdadi M, Afsharchi M (2018a) Incorporating

reliable virtual ratings into social recommendation systems. Appl

Intell 48(11):4448–4469

3. Ahmadian S, Meghdadi M, Afsharchi M (2018b) A social rec-

ommendation method based on an adaptive neighbor selection

mechanism. Inf Process Manag 54(4):707–725

4. Ahmadian S, Afsharchi M, Meghdadi M (2019) A novel

approach based on multi-view reliability measures to alleviate

3% 5% 10% 20% 30% 40% 50% 60%

0.75

0.8

0.85

0.9

0.95

1

1.05

Test Data Size

M
AE

MovieLens

dualDeepMF at K=15
dualDeepMF at K=20
dualDeepMF at K=5
dualDeepMF at K=10
dualDeepMF at K=25
dualDeepMF at K=30

Fig. 10 Impact of the Reliable Neighborhood Size on MAE

Performances on MovieLens

3% 5% 10% 20% 30% 40% 50% 60%

0.65

0.7

0.75

0.8

0.85

Test Data Size

M
AE

Filmtrust

dualDeepMF at K=15
dualDeepMF at K=10
dualDeepMF at K=5
dualDeepMF at K=20
dualDeepMF at K=25
dualDeepMF at K=30

Fig. 11 Impact of the Reliable Neighborhood Size on MAE

Performances on Filmtrust

Neural Computing and Applications (2022) 34:6991–7003 7001

123



data sparsity in recommender systems. Multimed Tools Appl

78(13):17763–17798

5. Birtolo C, Ronca D (2013) Advances in clustering collaborative

filtering by means of fuzzy c-means and trust. Expert Syst Appl

40(17):6997–7009

6. Da’u A, Salim N (2019) Sentiment-aware deep recommender

system with neural attention networks. IEEE Access

7:45472–45484

7. Du R, Lu J, Cai H (2019) Double regularization matrix factor-

ization recommendation algorithm. IEEE Access

7:139668–139677

8. Galushkin AI (2007) Neural Network Theory. Springer-Verlag,

Berlin, Heidelberg

9. Goldberg Y (2016) A primer on neural network models for nat-

ural language processing. J Artif Intell Res 57:345–420

10. Guo G, Zhang J, Yorke-Smith N (2016) A novel recommendation

model regularized with user trust and item ratings. IEEE Trans

Knowledg Data Eng 28(7):1607–1620

11. He X, Liao L, Zhang H, Nie L, Hu X, Chua TS (2017) Neural

collaborative filtering. In: Proceedings of the 26th International

conference on world wide web, international world wide web

conferences steering committee, Republic and Canton of Geneva,

CHE, WWW ’17, p 173-182, 10.1145/3038912.3052569

12. He X, He Z, Song J, Liu Z, Jiang YG, Chua TS (2018) Nais:

Neural attentive item similarity model for recommendation. IEEE

Trans Knowl Data Eng 30(12):2354–2366

13. Hernando A, Bobadilla J, Ortega F (2016) A non negative matrix

factorization for collaborative filtering recommender systems

based on a Bayesian probabilistic model. Knowl-Based Syst

97:188–202

14. Hong R, Hu Z, Liu L, Wang M, Yan S, Tian Q (2015) Under-

standing blooming human groups in social networks. IEEE Trans

Multimed 17(11):1980–1988

15. Huang Z, Yu C, Ni J, Liu H, Zeng C, Tang Y (2019) An efficient

hybrid recommendation model with deep neural networks. IEEE

Access 7:137900–137912

16. Jayapriya K, Mary NAB, Rajesh RS (2016) Cloud service rec-

ommendation based on a correlated QoS ranking prediction.

J Netw Syst Manag 24(4):916–943

17. Jiao J, Zhang X, Li F, Wang Y (2019) A novel learning rate

function and its application on the svd?? recommendation

algorithm. IEEE Access 8:14112–14122

18. Li K, Zhou X, Lin F, Zeng W, Alterovitz G (2019) Deep prob-

abilistic matrix factorization framework for online collaborative

filtering. IEEE Access 7:56117–56128. https://doi.org/10.1109/

ACCESS.2019.2900698

19. Kapetanakis S, Polatidis N, Alshammari G, Petridis M (2019) A

novel recommendation method based on general matrix factor-

ization and artificial neural networks. Neural Comp Appl

32(16):12327–34

20. Kluver D, Ekstrand MD, Konstan JA (2018) Rating-based col-

laborative filtering: algorithms and evaluation. Social Inf Access.

https://doi.org/10.1007/978-3-319-90092-6_10

21. Ko YJ, Maystre L, Grossglauser M (2016) Collaborative recur-

rent neural networks for dynamic recommender systems. In:

Journal of Machine Learning Research: Workshop and confer-

ence proceedings 63
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