
S.I. : LSNC & OUAI

DFE: efficient IoT network intrusion detection using deep feature
extraction

Amir Basati1 • Mohammad Mehdi Faghih1

Received: 24 June 2021 / Accepted: 4 December 2021 / Published online: 29 January 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
In recent years, the Internet of Things (IoT) has received a lot of attention. It has been used in many applications such as the

control industry, industrial plants, and medicine. In this regard, a fundamental necessity is to implement security in IoT. To

this end, Network intrusion detection systems (NIDSs) have been recently in the detection of network attacks and threats.

Currently, these systems use a variety of deep learning (DL) models such as the convolutional neural networks to improve

the detection of attacks. However, almost all current DL-based NIDSs are made up of many layers, and therefore, they need

a lot of processing resources because of their high number of parameters. On the other hand, due to the lack of processing

resources, such inefficient DL models are unusable in IoT devices. This paper presents a very accurate NIDS that is named

DFE, and it uses a very lightweight and efficient neural network based on the idea of deep feature extraction. In this model,

the input vector of the network is permuted in a 3D space, and its individual values are brought close together. This allows

the model to extract highly discriminative features using a small number of layers without the need to use large 2D or 3D

convolution filters. As a result, the network can achieve an accurate classification using a significantly small number of

required calculations. This makes the DFE ideal for real-time intrusion detection by IoT devices with limited processing

capabilities. The efficacy of the DFE has been evaluated using three popular public datasets named UNSW-NB15,

CICIDS2017, and KDDCup99, and the results show the superiority of the proposed model over the state-of-the-art

algorithms

Keywords Internet of things � IoT � NIDS � Deep learning � Network intrusion detection � Anomaly detection �
Convolution neural network � CNN � DFE

1 Introduction

In recent years, the Internet of Things (IoT) has been used

in many industries, such as agriculture industries [1], home

equipment [2], medical industry [3], and urban develop-

ment [4]. However, a major issue in IoT networks is to

keep the network secure by early detection of cyber-at-

tacks. Network intrusion detection systems (NIDSs) can

fulfill this goal by monitoring the network traffic and

detecting malicious traffic by applying intelligent

algorithms such as machine learning algorithms [5–8].

However, the choice of the proper algorithm is very

important as it directly influences the attack detection

accuracy and computational complexity of the model. For

example, the reference [9] has shown that deep-learning-

based NIDS methodologies are preferred nowadays over

machine learning methodologies due to their efficiency in

learning from large datasets in raw form. On the other

hand, there is a trade-off between model computational

complexity and the deep structure of deep learning meth-

ods. The deeper the algorithm is, the more complex the

model will be and hence it will consume more time and

computing resources. Another major challenge facing most

of the methodologies is their inefficiency in detecting the

attack having fewer samples for the training dataset [9].

This class imbalance problem affects the detection rate and

accuracy for these minority attack classes, which needs

& Mohammad Mehdi Faghih

m.faghih@kgut.ac.ir

Amir Basati

a.basati@student.kgut.ac.ir

1 Department of Electrical and Computer Engineering,

Graduate University of Advanced Technology, Kerman, Iran

123

Neural Computing and Applications (2022) 34:15175–15195
https://doi.org/10.1007/s00521-021-06826-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-5011-3703
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06826-6&domain=pdf
https://doi.org/10.1007/s00521-021-06826-6

further attention. Recently, many deep learning models

have been used in NIDSs, including convolutional neural

networks (CNNs) [10], auto-encoders [11], deep belief

networks (DBNs) [12, 13], recurrent neural networks

(RNNs) [14], and long short-term memory networks

(LSTMs) [15]. However, in these models, a necessity is

that the network should be deep and should have many

consecutive layers. Therefore, the memory footprint of

these models is very high, and they need a lot of processing

resources to achieve good accuracy [16]. Consequently,

they are not suitable for use in IoT devices in which

memory and processing resources are very scarce [17].

Some methods were recently used to lower the computa-

tional complexity of a deep model, including convolution

factorization [18] and network compression [19]. A com-

bination of various techniques is also used in our previous

work [20] to decrease the computational complexity of the

network without losing the classification accuracy.

Although current NIDSs have used various methods to

reduce their computational complexity and increase their

classification performance, they have still many limita-

tions, and there are still room for improvement in multiple

aspects, especially in efficiency.

This paper presents a novel and highly efficient network

intrusion detection system that can be easily used by IoT

devices with limited capabilities. It provides a technique

named deep feature extraction (DFE) to extract information

from long-range values in an input vector using only a few

convolution layers. It also has very high accuracy and a

low error rate that makes it suitable for real-time detection

of malicious network packets in IoT networks.

In summary, the main proposal and contribution of this

paper is to provide a network intrusion detection system for

IoT devices that has three main characteristics:

1) It uses deep learning technology.

2) It has a drastically low computational complexity.

3) It provides good attack detection.

To this end, the main idea is to reduce the computational

complexity of the network by changing the viewpoint of

the network over its input data. Currently, the dominant

approach in state-of-the-art methods is to feed the network

with 1D or 2D input vectors. Because of this approach, the

network should have filters of large sizes or many con-

secutive layers of small size filters in order to be able to

extract discriminant information from distant values in the

input vector. On the other hand, the use of a 3D vector as

the network input brings the distant values closer together

and allows extracting discriminant information using 3D

convolution filters. However, the 3D convolution filters

make the network more complex and increase its compu-

tational needs. Therefore, the main proposal of this paper is

to have 2D input vectors for the network, change the 2D

input vector to an equivalent 3D one using a clever per-

mutation, and efficiently extract highly discriminant fea-

tures using only small size 2D convolution filters. In this

way, the proposed network is super lightweight and can yet

detect the attack types based on the highly discriminant

information extracted from all the values in the input

vector using a minimal number of learnable parameters.

The rest of the paper is organized as follows: Sect. 2

presents related background information and reviews the

existing research. Section 3 represents the proposed

method that is consequently evaluated using various mea-

sures in Sect. 4. Finally, the paper concludes in Sect. 6.

2 Background

2.1 Deep learning

Deep learning [21] is one of the advanced fields in machine

learning that can automatically extract features and model

their complex relationships using multiple levels of hier-

archical abstractions. It recently becomes prevalent due to

its excellence over traditional machine learning algorithms

in terms of accuracy. Convolutional Neural Networks

(CNNs) are a subset of deep neural network algo-

rithms[22]. Each convolution layer has a set of kernels as

learnable weights. Each kernel is convolved with the input

of the layer, and the weights in each kernel are reused

across the entire input.

In deep neural networks, the problem of vanishing

gradient [23] occurs with increasing network depth. It

causes convergence issues and reduces the network per-

formance in the CNNs [24]. Residual connection is a

technique to overcome the gradient vanishing problem. It is

used to allow gradients to flow through a network directly,

without passing through non-linear activation functions.

2.2 Related works

Reference [25] presents an IDS named KPCA-DEGSA-

HKELM. It uses an extreme learning machine with a

hybrid kernel called HKELM. The system uses the Grav-

itational Search Algorithm combined with the Differential

Evolution algorithm to optimize the HKELM parameters. It

also introduced the Kernel Principal Component Analysis

algorithm for dimensionality reduction and feature

extraction of the intrusion detection data. The authors have

used the KDDCup99 and UNSW-NB15 datasets to evalu-

ate their work and showed that it has relatively good

accuracy in attack detection.

Reference[26] proposed the MSCNN-LSTM integration

model that uses a Multiscale Convolutional Neural Net-

work (MSCNN) and Long Short-Term Memory (LSTM)

15176 Neural Computing and Applications (2022) 34:15175–15195

123

together. The MSCNN is used to analyze spatial features,

and the LSTM is used to extract temporal features. Using

these two types of extracted features, intrusion detection is

performed, and the famous UNSW-NB15 dataset was used

to evaluate the efficiency of the model. The model has been

able to reach an accuracy of 89.8% on this dataset.

Reference [27] proposed a method that includes two

types of deep and shallow learning. It uses a stacked auto-

encoder as a deep learning tool to reduce the dimensions of

feature vectors. Then an SVM classifier optimized with the

bee colony algorithm is used for attack classification. This

paper also used the UNSWNB15 dataset for evaluation,

and it has shown that the model can achieve an accuracy of

more than 89.62% on this dataset.

In reference [28], a modified Gated Recurrent Unit

(GRU) model is used with an SVM classifier as the

replacement for the Softmax in the final output layer. Also,

the L2-SVM loss function is used instead of the conven-

tional cross-entropy function to improve the efficiency of

the model. In order to evaluate the efficiency of the model,

a binary classification experiment on the obtained data

from the honeypot systems of the Kyoto University was

used. The results have shown that the model was able to

reach an accuracy of 84.15% on test data and outperforms

the conventional GRU-softmax model.

In reference [29], an intrusion detection system is pro-

posed using feature selection and ensemble classifier. In

this approach, a dimensional reduction is performed by a

heuristic algorithm named CFS-BA, and the optimal fea-

ture subset is obtained based on the maximum correlation

between features. Then the authors proposed an ensemble

approach that combines C4.5, Random Forest, and Forest

by Penalizing Attributes algorithms, and at the end, the

voting technique is used to combine the probability dis-

tributions of the base learners for attack recognition.

a Dew Computing as a Service (DaaS) for improving the

performance of intrusion detection in Edge of Things

(EoT) ecosystems has been proposed in [30]. It acts as a

cloud in the local environment that collaborates with the

public cloud to reduce the communication delay and cloud

server workload. The paper improved Deep Belief Network

(DBN) by a modified Restricted Boltzmann Machine

(RBF) and applied it in the real-time classification of

attacks. The authors used the UNSW-NB15 dataset to

evaluate their work and showed that their proposed method

gives good classification accuracy while improving com-

munication latency and reducing the workload of the cloud.

Reference [31] proposed a method named AE-IDS,

which is a random forest-based auto-encoder algorithm for

network intrusion detection. The technique first constructs

the training set with feature selection and feature grouping.

After training, an auto-encoder is used for attack detection.

In order to evaluate the efficiency of the model, The CSE-

CIC-IDS2018 dataset is used, and the results showed that

the model is efficient and lightweight as it was able to

reduce the amount of computation cost through feature

grouping operation as well as the feature selection.

Reference [32] presents the Non-symmetric Deep Auto-

Encoder (NDAE) model, which uses shallow learning and

a deep neural network in combination. It uses an asym-

metric auto-encoder for dimensionality reduction and a

random forest classifier for the classification of the network

traffic. In order to evaluate the NDAE model, KDDCup99

and NSL-KDD datasets were used, and according to the

results, the NDAE model has a lightweight structure suit-

able for IoT networks.

A multi-stage machine-learning-based NIDS is pre-

sented in [33] that tries to reduce computational complexity

while maintaining detection accuracy. The paper proposed

and compared two feature selection techniques named

IGBFS and CBFS and explored their impact on the feature

set size, the training sample size, and the detection accu-

racy. It has shown that the two feature selection methods

were able to reduce the feature set size and the training

sample size. It has also investigated the impact of machine

learning hyper-parameter optimization techniques on the

classification performance of K-nearest neighbors (KNN)

and the Random Forest (RF) classifiers.

The reference [34] developed an improved deep auto-

encoder named Memory-Augmented Auto-Encoder

(MemAE) that incorporates a memory module. The idea

here is that a normal auto-encoder may generalize so well

that it can reconstruct anomalies with small errors, leading

to miss-detection of anomalies. In order to mitigate this

drawback, this method augments the auto-encoder with a

memory module to capture the prototypical elements of the

normal data in the training stage. Then at the test stage, the

learned memory will be fixed, and the reconstruction is

obtained from a few selected memory records of the nor-

mal data. The reconstruction will thus tend to be close to

normal samples, and the reconstructed errors on anomalies

will be strengthened for anomaly detection.

Reference [35] proposed a multi-layer classification

approach to identify minority-class intrusions in highly

imbalanced data. The method first classifies an input data

into normal or attack class. If the data point is an attack, the

method then tries to classify it into sub-attack types. The

method used a random forest classifier together with a

cluster-based under-sampling technique to deal with the

class-imbalanced problem.

Reference [20] presents our newly previous work named

APAE, based on an Asymmetric Parallel Auto-Encoder.

The encoder part of the APAE has a lightweight architec-

ture that contains two encoders in parallel, each one having

three successive layers of convolutional filters. The first

encoder is for extracting local features using standard

Neural Computing and Applications (2022) 34:15175–15195 15177

123

convolutional layers and a positional attention module. The

second encoder also extracts the long-range information

using dilated convolutional layers and a channel attention

module. The decoder part of APAE is different from its

encoder and has eight successive transposed convolution

layers. The APAE approach has a lightweight and suit-

able architecture for real-time attack detection and provides

outstanding generalization performance even after training

using minimal training records. The efficacy of the APAE

has been evaluated using three popular public datasets, and

the results have shown its superiority over the other

algorithms.

Despite existing various NIDSs, they still suffer from

two weaknesses: the heavy need for processing resources

and poor performance in minority classes. For example,

although current deep-learning-based NIDSs provide very

good overall classification accuracy, yet they are deep

networks that have many successive layers. Therefore, they

have many learnable parameters and need a lot of floating-

point operations to classify a single input vector. This

makes them unsuitable for real-time attack detection in IoT

devices with low computing power. In addition, almost all

of the existing methods have poor classification accuracy

for classes with a small number of records. These minority

classes are present in almost all standard datasets, and since

they have very few records compared to the entire dataset,

existing NIDSs fail to provide accurate classification on

them.

3 Proposed approach

This section presents various aspects of the proposed

approach. In the following, Sect. 3.1 explains the data

preprocessing and the idea behind using 2D data repre-

sentation. After that, Sect. 3.2 presents the proposed idea

of permuting the input vector in 3D space and extracting

deep features by regular 2D convolutions.

3.1 Data preprocessing

NIDSs detect intrusion by monitoring data obtained from

network traffic. Therefore, they usually capture network

traffic and decide to raise the intrusion alarm based on

some 1-Dimensional feature vector extracted from network

packets. This feature vector usually includes parameters

like protocol type, service type, number of failed logins,

etc. Current public datasets like KDDCup’99 [36] and

CICIDS2017 [37] are also of this form. However, in our

previous work [20], we have shown that this 1D repre-

sentation prevents the convolutional neural networks from

achieving high classification accuracy. We have also

shown that the order of individual parameters in the input

vector of a CNN-based NIDS is important and can highly

affect the network computational complexity and classifi-

cation accuracy. This is because the convolution filters can

only extract information from neighboring parameters in

the feature vector. In a 1D feature vector, each parameter

has only two direct neighbors, while in a 2-Dimensional

feature vector, each parameter has eight direct neighbors.

Therefore, a 2D filter can extract more neighborhood

information than a 1D filter. Thus, the proposed approach

uses a 2D representation of vectors as network input. The

equivalent 2D form of a 1D input vector with the length L

is a square matrix of the size n� n where n ¼ d
ffiffiffi

L
p

e.
Hence, the transformation from the 1D vector to its

equivalent 2D matrix can be done by selecting successive

groups of n elements from the start of the 1D vector, and

placing each group as a row in the 2D matrix. Finally and if

needed, the last row of the 2D matrix should be filled with

the necessary number of zeros. In addition, some extracted

parameters from network packets (like protocol type) are in

categorical form, and they should be encoded to integer

numbers in order to be possible to use them as network

input. To this end, the proposed approach uses ‘‘Label

Encoding’’, in which each parameter of categorical type is

replaced by its corresponding integer index in an array

containing all unique values of that parameter.

3.2 DFE: Deep Feature Extraction

The classification accuracy and computational complexity

of a deep learning model highly depend on the structure of

that model. The more information the model can extract

from its input, the higher the classification accuracy for that

model. In contrast, based on the current state-of-the-art

approaches, increasing the information extraction capabil-

ity of the model is possible by deepening the network,

which leads to an increase in the computational complexity

of the model. Therefore, according to current state-of-the-

art approaches, there is a tradeoff between the computa-

tional complexity of the network and its capability to

extract more information. However, this tradeoff can be

overcome to some extent by improving the current state-of-

the-art approaches. This fundamental change is the main

idea of the proposed approach: changing the viewpoint of

the network and forcing it to look at its input data from a

different perspective. As explained in our previous work

[20], bringing the individual parameters of the input vector

by switching from 1D vectors to 2D vectors highly

decreases the network computational complexity and

improves its classification accuracy. However, in the 2D

representation, some parameters are still too far from each

other, and the 2D filters cannot extract useful correlation

information from them. On the other hand, we can achieve

15178 Neural Computing and Applications (2022) 34:15175–15195

123

a much simpler network if we further extend the idea of

bringing individual parameters closer together in a 3D

space. Consider Fig. 1; if we have 64 features aligned in a

1D vector, an individual parameter has only two direct

neighbors. The same individual parameter can have up to

eight direct neighbors if we use a 2D alignment and a

3 9 3 filter. On the other hand, if we use a 3*3*3 convo-

lution filter in the 3D space, that individual parameter can

have up to 26 direct neighbors. Therefore, the convolution

filters can extract correlation information more effectively

in the 3D space, and thus, the proposed approach uses the

idea of Deep Feature Extraction (DFE): permuting the

individual parameters, bringing them closer together in a

3D space, and extracting the correlation information in

depth.

Note that it is possible to use 3D convolution filters;

however, DFE uses a more straightforward technique based

on the standard 2D convolution filters. To explain that, it is

necessary to have a brief review of a 2D convolution layer

structure. Consider a 2D convolution layer shown in Fig. 2;

it has C = 3 channels, each one producing an activation

map by applying a convolution filter of the size 3 9 3x2

(the 3rd dimension is equal to the number of channels of

the previous layer) on a copy of the layer input. The acti-

vation maps together form the output of the layer, which is

a 3D structure with the 3rd dimension equal to the number

of channels of the layer.

Therefore, the output of a 2D convolution layer is often

a 3D structure containing C number of 2D matrices (acti-

vation maps), each of which can be seen as a representation

of the values in the layer input. As a result, instead of

permuting the input vector of the network in a 3D space

and applying 3D convolution filters on them, DFE first

applies a transfer layer (a 2D convolution layer with the

filter size of 1 9 1) on the input vector to obtain a 3D

representation. Next, it permutes this 3D representation to

obtain a new representation. Then, it applies 2D convolu-

tion filters to this new representation. This way, the 2D

convolution filters can effectively extract useful correlation

information from representatives of the long-range

parameters. The proposed model uses two types of per-

mutations to extract the most useful correlation informa-

tion. The first type of permutation, which is shown in

Fig. 3-(a), accepts an input of the size 8 9 8x2 to the size

8 9 2x8. In other words, it takes the corresponding rows of

each channel in its input, transposes them, and places them

as a channel in its output. The second type of permutation

is shown the Fig. 3-(b). It produces the 2 9 8x8 output by

taking the corresponding columns of each channel in its

input, transposing them, and placing them as a channel in

its output.

Using the two mentioned types of permutations, the

proposed model brings the long-range features closer

together in the channel space. As a result, as shown in

Fig. 4, small convolution filters can extract correlation

information from long-range parameters in the permuted

data.

Figure 5 shows the overall structure of the proposed

approach. As you can see, the input to the proposed model

is the 2D representation of the input vector obtained by

applying the preprocessing procedure described in

Sect. 3.1. The proposed approach then transfers the input to

four (color-coded) representation channels by applying a

transfer layer that has four standard convolution filters of

the size 1 9 1. These channels then split into two equal

parts to feed the two branches of the model (the blue and

yellow channels go to the first branch and the gray and

orange channels go to the second branch). Each branch

uses one of the permutation types (mentioned in the pre-

vious paragraphs) to extract the most useful correlation

information. After permutation, a convolution layer with

the filters of the size 2 9 2x8 and the stride of 2 is applied

on the permutated data in each channel. The result of his

convolution in the first branch is of the size 4 9 1x2, and

the size of the output of the convolution layer in the second

branch is 1 9 4x2. After the convolution layer, another

permutation in each branch is applied, and the results of

these permutations are concatenated to obtain a new feature

(c)(b)

(a)

Fig. 1 Direct neighbors in a 1D

feature vector, b 2D feature

vector, and c 3D feature vector

Neural Computing and Applications (2022) 34:15175–15195 15179

123

representation. Finally, a booster module is applied to these

new features to generate an enhanced feature representa-

tion that the classifier uses to perform the attack detection.

The structure of the booster module is shown in Fig. 6.

As can be seen, this module augments its input by adding

the result of applying four consecutive layers of asym-

metric convolutions with the filter sizes of 1 9 2 and

2 9 1. The aim of this module is to enhance the features

generated with the previous convolution layers and pro-

duce a comprehensive feature representation using the least

number of learnable network parameters. Because these

features are obtained based on the correlation information

between nearby and distant values in the input vector, they

are very discriminative. They can highly boost the classi-

fication accuracy of the classifier.

Convolution Layer

Activation MapsInputs

Fig. 2 The general structure of

2D convolution layer

64
63

57

56
55

88
77
66
55
44
33
22
11

6457
49
41
33
25

2423222120191817
161514131211109
87654321

6457
49
41
33
25
17

161514131211109
87654321

6456168

5848

57494133251791
574941332517

102
91

(a)

(b)

Fig. 3 Two types of

permutation in the proposed

model. The numbers on the

small squares are to show the

relative position of the

individual parameters

15180 Neural Computing and Applications (2022) 34:15175–15195

123

Modern deep learning research has established remark-

able achievements in many fields. Yet, the theory behind

deep neural networks remains poorly understood. Sure, we

understand the math of what individual neurons are doing,

but we are lacking a mathematical theory of the developing

behavior of the entire network. Lacking a complete theory,

we have to rely on intuition. Actually, as stated in the

reference [32], researchers are currently unable to explain

what makes a successful deep learning structure. In fact,

most of the current deep learning models are the result of

experiments with numerous structural compositions to

achieve the best results. However, the structure of the

proposed model has resulted from rational decisions toge-

ther with experimenting with several structural composi-

tions to achieve the best results. As stated in the first

paragraph of this section, the proposed method has a fun-

damental change in the viewpoint of the network compared

to the state-of-the-art methods. This change in viewpoint

highly increases the capability of the network to extract

discriminant information from its input vector using only a

small number of convolution layers. As a result, the pro-

posed approach can provide the same or somewhat better

attack detection accuracy than the state-of-the-art methods,

while having a fraction of their computational complexity.

The proposed approach has significant advantages over the

existing NIDSs. First, the proposed approach uses the

clever idea of permuting the values of the input vector in

the 3D channel space, which allows a single convolution

layer with a set of small-size filters to extract strong and

discriminative features. This leads to the ability of the

classifier to distinguish between various classes of attacks

accurately. On the other hand, the permutation operation

does not have any learnable parameter, and therefore, it

does not add any learnable parameter to the network. The

result is a highly compact and efficient network with a

small number of parameters that, based on the results of the

evaluations in the next section, is highly superior compared

to the current state-of-the-art NIDSs. It can accurately

discern normal network traffic and different classes of

attacks from each other, even in minority classes.

(a)

(b)

Fig. 4 a The application of convolution filters of the size 2 9 2 9 2

on the original data, b The application of convolution filters of the

size 2 9 2 9 8 on the permuted data. The 2 9 2 9 8 filters can extract

correlation information from long-range features in the permuted

data. Each colored cube represents a convolution filter

64
63

57

56
55

88
77
66
55
44
33
22
11

6457
49
41
33
25

2423222120191817
161514131211109
87654321

6457
49
41
33
25
17

161514131211109
87654321

6456168

5848

57494133251791
574941332517102 91

6457
49
41
33
25

2423222120191817
161514131211109
87654321

Booster Module

C
lassifier

Perm
ute

Perm
ute

Convolu�on

Channel
Spliter

Transfer

Convolution

56 57

48 49

40 41

32 33

24 25

16 17

8 9

0 1

58

18

10

2

59 60 61

19 20 21

11 12 13

3 4 5

62 63

55

47

39

31

22 23

14 15

6 7

Fig. 5 The overall structure of the proposed model. The numbers on the small squares are to show the relative position of the individual

parameters

Neural Computing and Applications (2022) 34:15175–15195 15181

123

4 Results and experiments

The proposed model is implemented with python using the

Pytorch library. The Google Colab infrastructure is used

for training, and various optimizers have been tested to

train the proposed model in 40 epochs. This section pre-

sents the results of experiments and compares the proposed

approach with the works presented in work

[20, 30, 32, 33, 38, 39] and [40] using three public datasets:

CICIDS2017, UNSW-NB15, and KDDCup99. Two types

of experiments have been done on each dataset. In the first

type of experiment (Sects. 4.2 and 4.3), the proposed

model has been used as an anomaly detector (binary clas-

sification) on each dataset, and in the second type of

experiment (Sect. 4.4), the proposed method is used to

distinguish between different classes of attack (multiclass

classification) in each dataset. Note that the authors of the

compared related works did not provide all the needed

information for the comparisons with the proposed

approach. However, some of them (MemAE [38]) made the

source code of their works publicly available (MemAE

source code [41]). We also have the source code for our

previous approach, which is called the APAE [20].

Therefore, we used these source codes to obtain the

required results for the MemAE and APAE algorithms

while comparing the proposed approach with other algo-

rithms using only the provided results in their corre-

sponding papers. Note that in the following sections, the

‘‘N/A’’ (Not Available) symbol is used in cases that the

source code for a method is not available and the required

results for that method have not been provided in the

companion paper.

4.1 Datasets

Various datasets exist for the evaluation of network intru-

sion detection systems. Among existing datasets, the

KDDCUP99, CICIDS2017, and UNSW-NB15 datasets are

very popular, and many researchers use them for the

assessment of their works. Therefore, these datasets are

used in this paper for evaluation of the proposed approach,

and they are explained in the following three sub-sections.

4.2 KDDCup99

KDDCup99 dataset is a known benchmark dataset in IDS

research [40, 42]. This dataset is obtained by processing

about 4 gigabytes of compressed tcpdump data collected

from 7 weeks of DARPA network traffic. It contains about

5 million feature vectors, and each one represents a single

connection record with 41 features, including numeric and

categorical features. From these 41 features, three of them

are in categorical form and require to be preprocessed with

‘‘Label Encoding’’, as described in Sect. 3.1. After

encoding, the feature vectors are padded with zeros and

reshaped (as explained in Sect. 3.1 to produce the 2D

representation of the size 8 9 8. The anatomy of this

dataset is shown in Fig. 7. As you can see, each vector in

this dataset is labeled as Normal or as one of four attack

types: Dos, Probe, R2L, U2R. There are also 22 sub-attack

types, and each record has labeled with one of them.

Because training a network with this large number of

records requires a lot of computational time and resources,

it is a common practice to use 10% of the full-size dataset

that contains 494,021 training records and 311,029 testing

records. However, these sets have a very different distri-

bution of records, i.e. the test set has many records with

labels that do not exist in the train set. Therefore, we have

split the 494,021 records of the training set into two subsets

of 321,113 and 172,908 records, and in the experiments,

we have used these new subsets as the train set and the test

set, respectively.

4.2.1 CICIDS2017

The CICIDS2017 dataset [37] is one of the most popular

databases of IDS research that has been collected at the

Canadian Cyber Security Institute. This dataset contains

2,830,473 records that each one has 80 features. 80.30% of

the data in this dataset represent benign network

Booster Module

Fig. 6 The structure of the

Booster module

15182 Neural Computing and Applications (2022) 34:15175–15195

123

connections, and the remaining 19.70% of dataset records

are network flows that represent six types of common

attacks (Dos, Portscan, Infiltration, Web attack, Bot, Brute

force) and 14 types of sub-attacks as shown in Fig. 8.

The dataset includes two networks: attack network and

victim network. The attack network is a separated infras-

tructure that has a router, a switch, and a set of attacker PCs

with different operating systems executing the attack sce-

narios. The victim network is a secured network with a

firewall, router, switches, and some PCs that each one

executes a benign behavior agent. The records of this

dataset also need preprocessing, and after applying the

mentioned preprocessing in Sect. 3.1, each record is rep-

resented by a 2D matrix of the size 9 9 9. In the experi-

ments of the next sections, a random subset of this dataset

with the size of about 65% of the dataset has been used as

the train set, and the remaining 35% has been used as the

test set.

4.2.2 UNSW-NB15

The UNSW-NB15 dataset [43, 44] has been created in the

Cyber Range Lab of the Australian Centre for Cyber

Security (ACCS) by generating a hybrid of real normal

activities and synthetic contemporary attack behaviors.

This dataset has 257,673 records that 175,341 of these

records are in the training set, and the remaining 82,332

records are in the testing set. This train and test split

configuration is used for the experiments in this paper in

order for the results of our work on this dataset to be

compatible with the results of previous works. Figure 9

shows the anatomy of this dataset. Among the records in

this dataset, 63.9% belong to network flows that represent

nine types of attacks (Generic, Exploits, Fuzzers, DoS,

Reconnaissance, Analysis, Backdoor, ShellCode, Worms),

and the remaining 37.1% of the dataset records represent

normal network connections.

Each record of this dataset contains 49 features that two

of which are for multiclass and binary labels. From the

Fig. 7 The anatomy of the KDDCup99 dataset

Fig. 8 The anatomy of the CICIDS2017 dataset Fig. 9 The anatomy of the UNSW-NB15 dataset

Neural Computing and Applications (2022) 34:15175–15195 15183

123

remaining 47 features, 42 features are numeric, and five

features are categorical. After applying the preprocessing

that has been explained in Sect. 3.1, each record of this

dataset can be represented by a 2D matrix of the size

8 9 8.

4.3 The proposed model trainability

This section is for evaluating the trainability of the pro-

posed model. To this end, three optimizers, each with two

different learning rates, have been used to train the pro-

posed model on the three datasets mentioned in Sect. 4.1.

Figure 10 shows the results of charts for the training

accuracy of the proposed model on three datasets. As you

can see, the proposed model can be easily trained to

achieve high accuracy with any optimizer within just 40

epochs. However, of the three optimizers, the proposed

model can be trained by the ADAM optimizer to achieve

an accuracy of near 100% in almost less than five epochs.

Therefore, the ADAM optimizer with a learning rate of

0.001 is used for the evaluations in the following sections

of the paper.

4.4 Anomaly detection

In this section, the results of the anomaly detection

experiment are presented. In this experiment, each record

of the three datasets is labeled as either Normal or Attack

by combining all attack types into a single attack class for

each dataset. Section 4.3.1 shows the results of this

experiment on the KDDCUP99 dataset, and the corre-

sponding results for the CDCIDS2017 dataset are also

presented in Sect. 4.3.2. Section 4.3.3 also presents the

results of this experiment on the UNSW-NB15 dataset.

4.4.1 KDDCup99 dataset

In this section, the anomaly detection performance of the

proposed model against other methods is evaluated using

the KddCup99 dataset outlined in Sect. 4.3.1. The results

of this experiment are presented in Table 1. As you can see,

in terms of overall and class-wise classification accuracy,

the accuracy of the proposed model is far better than the

reference [40]. This is while the accuracy of the proposed

method is almost comparable to the APAE and MemAE

algorithms. However, the proposed approach significantly

Fig. 10 The accuracy of different optimizers for training the proposed model on different datasets: a KDDCUP99 dataset, b CICIDS2017

dataset, c UNSW-NB15 dataset

15184 Neural Computing and Applications (2022) 34:15175–15195

123

outperforms all algorithms in terms of the number of

learnable parameters and floating-point operations. As you

can see in Fig. 11, in terms of the number of learnable

parameters, the proposed approach has only 266 learnable

parameters which shows about 92% and 97% decrease in

computational complexity compared to the APAE and

MemAE, respectively. This confirms that the proposed

approach can be trained with significantly lower training

resources than the APAE and MemAE. In addition, the

number of floating-point operations of the proposed

approach is also considerably lower than other methods.

The proposed method can determine the class of an input

vector with only 1792 floating-point operations, which are

about 92% and 80% lower than the APAE and MemAE,

respectively. All of this shows that the proposed approach

can provide excellent classification accuracy with a slight

computational complexity, and therefore, it is suitable for

IoT networks and can be run directly with IoT devices that

have minimal computational resources.

4.4.2 CICIDS2017 dataset

Table 2 presents the evaluation results of anomaly detec-

tion performance of the proposed approach against other

algorithms using the CICIDA2017 dataset outlined in

Sect. 4.1.2. The results on this dataset also confirm the

superiority of the proposed approach over almost all other

methods. The overall classification accuracy of the

proposed approach is slightly higher than the APAE and

MemAE algorithms. It is a little lower than the accuracy of

the presented method in reference [33].

In terms of computational efficiency, the proposed

method is again highly superior to the other two methods.

Figure 12 compares the performance of the proposed DFE

with the other two techniques. As you can see, the number

of parameters of the proposed method is about 91% and

98% lower than the number of parameters in APAE and

MemAE algorithms, respectively, which shows that the

training of the proposed approach needs considerably lower

computational resources. The number of floating-point

operations for the proposed approach is also significantly

lower than the two other methods. The proposed approach

only needs 2128 floating-point operations for determining

the class of an input vector, which shows about 92% and

84% decrease in computational complexity compared to

the APAE and MemAE respectively. This again shows that

the proposed method is more suitable for anomaly detec-

tion in IoT networks compared to the other two algorithms.

It should be noted that in order to obtain the results shown

in Table 2, the dataset has been split into two parts. The

first part is a random subset of the dataset containing 65%

of the total data and has been used for training all three

algorithms. The second part also includes the remaining

35% of the data and has been used as the test set for the

evaluation of all algorithms.

Table 1 The results of anomaly

detection for KDDCup99

dataset

Precision (%) Recall (%) F-Score (%)

DFE APAE MemAE DFE APAE MemAE DFE APAE MemAE

Normal 99.76 99.86 99.30 99.81 99.94 99.91 99.78 99.86 99.90

Attack 99.95 99.98 99.98 99.94 99.97 99.83 99.95 99.97 99.97

Overall Accuracy

DFE APAE MemAE [40] [39] [30] [33] [32]

Accuracy (%) 99.915 99.94 99.84 93.8 N/A N/A N/A N/A

0 5000 10000 15000 20000 25000

Learnable Parameters

Floating-point operations

Learnable Parameters Floating-point operations
DFE 266 1,792
APAE 3274 22,656
MemAE 9996 9,279

DFE

APAE

MemAE

Fig. 11 Performance

comparison results for anomaly

detection on KDDCup99 dataset

Neural Computing and Applications (2022) 34:15175–15195 15185

123

4.4.3 UNSW-NB15 dataset

The anomaly detection results of the proposed approach

against the other algorithms using the UNSW-NB15 data-

set are shown in Table 3. As you can see, all algorithms

(the ones whose corresponding papers have provided the

anomaly detection results on this dataset or their source

codes are available) have good binary classification accu-

racy on this dataset. The reason is that the binary classifi-

cation on this dataset is easy. The reference [33] has

calculated the first and second principal components of this

dataset and showed that the level of intertwining between

the two classes of this dataset is very low, which makes the

binary classification of this dataset very easy.

Figure 13 shows the performance comparison for the

proposed approach and the other two methods. As it can be

seen, the proposed DFE is again highly superior to both

APAE and MemAE in terms of efficiency and perfor-

mance. The proposed model has only 266 learnable

parameters that show about 77% and 98% decrease in

network computational complexity compared to APAE and

MemAE, respectively. The number of floating-point oper-

ations of the proposed approach is again considerably

lower than the two other methods. It is about 92% and 83%

lower than the APAE and MemAE, respectively. This is

very important as it again shows that the proposed model

can be used in devices with low computational resources,

and hence, it better suits IoT networks compared to other

NIDSs.

4.5 Multiclass classification

In this section, the results of the multiclass classification

experiment are presented. In this experiment, the

Table 2 The results of Binary

Classification for CICIDS2017

dataset

Precision (%) Recall (%) F-Score (%)

DFE APAE MemAE DFE APAE MemAE DFE APAE MemAE

Normal 99.30 99.38 99.70 98.63 98.04 96.20 98.96 98.71 97.92

Attack 98.69 98.13 96.46 99.32 99.41 99.72 99.00 98.77 98.06

Overall Accuracy

DFE APAE MemAE [33] [39] [40] [32] [30]

Accuracy (%) 98.98 99.94 98.19 99.9 N/A N/A N/A N/A

0 5000 10000 15000 20000 25000 30000

Learnable parameters

Floating-point operations

Learnable parameters Floating-point operations
DFE 282 2128
APAE 3278 25920
MemAE 14621 13739

DFE

APAE

MemAE

Fig. 12 Performance

comparison results for anomaly

detection on CICIDS2017

dataset

Table 3 The results of Binary

Classification for UNSW-NB15

dataset

Precision (%) Recall (%) F-Score (%)

DFE APAE MemAE DFE APAE MemAE DFE APAE MemAE

Normal 100 100 99.99 100 100 100 100 100 99.99

Attack 100 100 100 100 100 99.99 100 100 100

Overall Accuracy

DFE APAE MemAE [33] [39] [30] [32] [40]

Accuracy (%) 100 100 99.99 100 N/A N/A N/A N/A

15186 Neural Computing and Applications (2022) 34:15175–15195

123

algorithms are compared based on their capability to

determine the true classes of dataset records. Section 4.4.1

shows the results for the KDDCup99 dataset that has five

classes: a single class of Normal records, besides four

attack classes of U2R, Dos, R2L, and Probe. The results for

the CDCIDS2017 dataset are also presented in Sect. 4.4.2,

in which there is a total number of seven classes: a single

class of Benign records beside six attack classes of Dos,

PortScan, Infiltration, Web Attack, Bot, and Brute Force.

Section 4.4.3 also shows the results of this experiment on

the UNSW-NB15 dataset that has ten classes: a class of

Normal records and nine attack classes of Reconnaissance,

Backdoor, Dos, Exploit, Analysis, Fuzzers, Worms,

Shellcode, and Generic.

4.5.1 KDDCup99 dataset

Table 4 presents the results of the 5-class classification

experiment on the KDDCup99 dataset for DFE, APAE,

MemAE, and other algorithms. The results show that the

DFE is superior to almost all other methods in almost all

evaluated class-wise parameters. The proposed method

achieved higher values in precision, recall, and F-score for

almost all five classes. However, these values for the DFE

are almost comparable to the corresponding values for the

APAE algorithm. Nevertheless, the notable results are the

ones obtained for the minority class: the U2R class. This

class has merely 52 records at all, but other classes have

many more training records (e.g., the Dos class has

293,582 training records). Therefore, almost all previous

NIDSs (except our previous work APAE) have poor clas-

sification performance on the U2R class. As you can see in

Table 4, the classification performance for the MemAE on

the U2R class is very bad. However, the classification

performance of the proposed DFE algorithm on the U2R

class is very high compared to the MemAE. In addition, the

F-Score for the DFE on this class is about 9% higher than

the APAE, which shows the advantage of the DFE over the

APAE in the classification of classes with uneven distri-

bution. This is also observable from confusion matrixes

shown in Fig. 14. The MemAE incorrectly classified all 16

records in the test set of the U2R class, while the classifi-

cation results of the proposed DFE are correct in 10 cases

of a total of 16 test records.

The overall accuracy results on this dataset also confirm

the superiority of the proposed approach over the other

methods in Sect. 4.5. The DFE accuracy is comparable to

the APAE algorithm, while it achieved about 2% superi-

ority over the MemAE method in terms of accuracy. Its

0 5000 10000 15000 20000 25000

Learnable parameters

Floating-point operations

Learnable parameters Floating-point operations
DFE 266 1792
APAE 1162 22656
MemAE 11621 10865

DFE

APAE

MemAE

Fig. 13 Performance

comparison results for anomaly

detection on UNSW-NB15

dataset

Table 4 The results of

multiclass classification for

KDDCup99 dataset

Precision (%) Recall (%) F-Score (%)

DFE APAE MemAE DFE APAE MemAE DFE APAE MemAE

Normal 99.74 99.82 99.66 99.88 99.91 99.51 99.81 99.86 99.58

U2R 90.91 64.71 0 62.50 68.75 0 74.07 66.67 0

DoS 100 100 99.99 100 100 100 100 100 100

R2L 94.85 96.73 70.0 87.16 89.86 89.86 90.85 93.17 78.70

Probe 99.32 98.95 99.90 97.81 98.95 96.48 98.56 98.95 98.16

Overall Accuracy

DFE APAE MemAE [32] [40] [39] [30] [33]

Accuracy (%) 99.92 99.94 99.83 98.13 94.2 N/A N/A N/A

Neural Computing and Applications (2022) 34:15175–15195 15187

123

accuracy is also far better than the presented methods in

reference [32] and [40].

Compared to MemAE and APAE, the DFE again has a

significantly smaller number of parameters. As it is shown

in Fig. 15, the number of DFE parameters is about 96%

and 90% lower than the number of parameters in MemAE

and APAE, respectively, which shows the significantly

lower needed training resources for DFE compared to the

other two methods. Also, the number of floating-point

operations of the proposed DFE is again considerably

lower than the two other methods. It is about 80% and 92%

lower than the number of floating-point operations for the

MemAE and APAE, respectively, which shows the

advantage of the APAE in terms of performance and its

true effectiveness for multiclass attack detection in IoT

networks.

4.5.2 CICIDS2017 dataset

Table 5 shows the results of the 7-class attack detection

experiment on the CICIDS2017 dataset for DFE against

other algorithms. Again, the results show that the DFE is

comparable to the APAE while it has dominance over the

other methods in terms of overall accuracy. The DFE has

achieved an overall accuracy of 99.31%, which is about 1%

and 2% higher than MemAE and the reference [39],

respectively. This is while the DFE is highly efficient

compared to the APAE and MemAE algorithms, and the

number of parameters in the DFE is significantly lower

than the number of parameters in the other two. This is

shown in Fig. 16. As you can see, the DFE has only 367

parameters, which shows a 90% improvement in training

efficiency compared to the APAE that has 3599 parame-

ters. The DFE is also more train efficient than the MemAE,

and it has about 97% lower number of learnable parameters

than the MemAE, which has 15,016 parameters. The

number of floating-point operations of the DFE is again

much lower than the two other methods. It is about 91%

and 84% lower than the number of floating-point opera-

tions for the APAE and MemAE, respectively. This again

verifies the superior performance of the APAE and its true

Fig. 14 Multiclass confusion matrix for a DFE, b MemAE and c APAE algorithms on KDDCup99 dataset

0 5000 10000 15000 20000 25000

Learnable parameters

Floating-point operations

Learnable parameters Floating-point operations
DFE 317 1840
APAE 3469 22848
MemAE 10122 9402

DFE

APAE

MemAE

Fig. 15 Performance

comparison results for

multiclass classification on

KDDCup99 dataset

15188 Neural Computing and Applications (2022) 34:15175–15195

123

effectiveness for multiclass attack detection in IoT

networks.

Almost all class-wise parameters for DFE are also

comparable or higher than the other algorithms. However,

the results for Infiltration and Web Attack (which are two

minority classes) classes are considerable. Note that the

data distribution between various classes of this dataset is

also different. For example, the Infiltration class has only

36 records at all, while the Portscan class has 158,930

records. Therefore, almost all previous NIDSs, except

APAE, have poor classification accuracy on the Infiltration

class. As you can see in Table 5, the classification per-

formance of the proposed APAE algorithm on the Infil-

tration class is very high compared to the MemAE. The

shown confusion matrixes in Fig. 17 also confirm that the

MemAE incorrectly classified all 12 records in the test set

of Infiltration class while the classification results of the

DFE are correct in 5 cases of a total of 12 test records. The

case for the Web Attack class is also similar to the Infil-

tration class. In the Web Attack class, the MemAE has

better precision compared to the APAE. In addition, the

F-Score for the proposed DFE is about 9% and 11% higher

than the F-Score of the APAE and MemAE, respectively,

which shows the advantage of the DFE over the other two

algorithms in the classification of classes with uneven

distribution.

4.5.3 UNSW-NB15 dataset

The classification results for the 10-class attack detection

experiment on the UNSW-NB15 dataset are shown in

Table 6. As you can see, the DFE defeats the APAE and

MemAE in almost all criteria for individual classes. Note

that the distribution of records in this dataset is also

unbalanced. For example, the Worms and Shellcode clas-

ses are minority compared to other classes. The Exploits

class has 44,525 records, while the number of records in

the Worms class is only 130 records in the train set and 44

records in the test set. The Shellcode class also contains

only 1133 records in the train set and 378 records in the test

set. Therefore, the correct classification for these classes is

a challenging task, and as you can see from Table 6, the

MemAE has poor classification results on these classes.

This is while the DFE classification performance on these

classes is very significant. It perfectly classified all the

records in these two classes. However, in the Worms class,

the MemAE has very false positives, and therefore, its

precision is very low. In the case of the Dos class, the

Table 5 The results of

multiclass classification for

CICIDS2017 dataset

Precision (%) Recall (%) F-Score (%)

DFE APAE MemAE DFE APAE MemAE DFE APAE MemAE

Benign 99.47 99.81 99.39 99.17 99.21 97.23 99.32 99.51 98.30

DoS 99.06 99.47 98.90 99.76 99.84 99.77 99.41 99.65 99.34

PortScan 99.70 99.58 93.99 99.81 99.88 99.83 99.75 99.73 96.82

Infiltration 100 38.89 0 41.67 58.33 0 58.82 46.67 0

Web Attack 95.63 64.37 88.24 83.06 96.84 9.48 88.90 77.33 17.12

Bot 77.75 82 83.89 51.80 85.93 60.03 62.17 83.92 69.98

Brute Force 98.16 99.38 91.85 95.95 99.75 99.40 97.04 99.57 95.48

Overall Accuracy

DFE APAE MemAE [39] [33] [30] [40] [32]

Accuracy (%) 99.31 99.50 98.26 97.90 N/A N/A N/A N/A

0 5000 10000 15000 20000 25000 30000

Learnable parameters

Floating-point operations

Learnable parameters Floating-point operations
DFE 367 2208
APAE 3599 26240
MemAE 15016 14183

DFE

APAE

MemAE

Fig. 16 Performance

comparison results for

multiclass classification on

CICIDS2017 dataset

Neural Computing and Applications (2022) 34:15175–15195 15189

123

MemAE has a high number of false negatives, and as a

result, it has a very low recall. The confusion matrixes of

Fig. 18 also confirm that the MemAE has a good recall on

the Worms class: it has correctly classified 37 records from

44 test records of this class. However, MemAE has very

bad precision on this class because of its high False Posi-

tive on this class: it has incorrectly classified 415 (sum of

the Worms column in Fig. 18 minus 37) records of other

classes into the Worms class. The MemAE results for the

Shellcode class are also bad: it has correctly classified only

19 records of all 378 records in the test set of this class,

which makes it have very bad precision and recall on this

class. The DFE also outperforms all other algorithms in

terms of the overall classification accuracy. Its overall

accuracy is about 1% and 2% higher than the APAE and

MemAE, respectively. It is also far better than the overall

accuracy of the references [30] and [39].

Note that the classification results of the DFE are very

similar to the results of our previous work APAE. How-

ever, the DFE is significantly more efficient than the APAE

in terms of the number of learnable parameters and the

number of floating-point operations. Figure 19 shows the

comparison between these values for the three algorithms.

As you can see, the DFE has only 402 parameters, which

shows about 89% and 96% improvement in training effi-

ciency compared to the APAE and MemAE, respectively.

The number of floating-point operations of the DFE is also

much lower than the two other methods. The DFE has only

1920 floating-point operations, which shows about 91%

improvement in runtime efficiency compared to the APAE

Fig. 17 Multiclass confusion matrix for (a) DFE, b MemAE and c APAE algorithms on CICIDS2017 dataset

Table 6 The results of

multiclass classification for

UNSW-NB15 dataset

Precision (%) Recall (%) F-Score (%)

DFE APAE MemAE DFE APAE MemAE DFE APAE MemAE

Normal 100 99.96 99.81 100 100 100 100 99.98 99.91

Reconnaissance 100 100 100 99.97 99.80 96.28 100 99.90 98.11

Backdoor 100 98.31 88.08 100 100 91.25 100 99.15 89.64

Dos 99.42 99.46 85.84 99.98 99.56 98.26 99.70 99.51 91.63

Exploit 100 100 98.91 99.78 99.53 93.70 99.89 99.77 96.24

Analysis 99.85 96.98 90.35 100 99.56 99.56 99.93 98.25 94.73

Fuzzers 100 99.69 99.77 99.98 99.84 98.14 100 99.76 98.94

Worms 100 91.67 8.19 100 100 84.09 100 95.65 14.92

Shellcode 99.74 100 52.78 100 100 5.03 99.87 100 9.18

Generic 100 100 99.89 100 100 99.88 100 100 99.89

Overall Accuracy

DFE APAE MemAE [30] [39] [40] [33] [32]

Accuracy (%) 99.96 99.89 98.23 85.71 93.40 N/A N/A N/A

15190 Neural Computing and Applications (2022) 34:15175–15195

123

that has 23,168 floating-point operations. The DFE is also

more efficient than the MemAE, and it has about 83%

lower number of floating-point operations than the

MemAE, which has 11,297 floating-point operations.

Again, this comparison verifies the superiority of the DFE

and its true effectiveness for multiclass attack detection in

IoT networks.

4.6 Empirical performance evaluation

Theoretically, the computational cost of a method depends

on the number of needed calculations by that method. Also,

the number of required calculations for a method can be

represented by its number of Floating-Point Operations

(FLOPs). Therefore, the computational cost of two or more

methods can be compared based on their FLOPs. Hence,

we have evaluated the computational cost of the proposed

Fig. 18 Multiclass confusion matrix for a DFE, b MemAE and c APAE algorithms on UNSW-NB15 dataset

Neural Computing and Applications (2022) 34:15175–15195 15191

123

architecture by comparing its FLOPs with state-of-the-art

methods. The results have shown significant improvement

over the state-of-the-art methods, and they are shown in

Figs. 11, 12, 13, 15, 16, and 19. In addition, we have

performed an empirical performance test for the proposed

approach and other state-of-the-art methods. This section

presents the results of this test, which is performed on all

three datasets based on two criteria: the time for training

the model with a batch of 128 records, and the time for

inferring the class of a single record. Figure 20 shows the

batch training time for DFE, APAE, and MemAE models

on all three datasets. Note that the numbers are in the

Seconds unit, and they are obtained on a virtual machine

using a single-core Intel Xeon CPU with a 2.3 GHz clock.

As you can see, the results confirm the significant superi-

ority of the proposed approach over other methods in terms

of batch training time. For all three datasets, the batch

training time for the proposed approach is a fraction of the

training time for other methods. For example, the training

time for the proposed approach on the CICIDS2017 dataset

is 35 s, which is about 21% and 27% of the training time

for APAE and MemAE, respectively.

The second criterion of the empirical performance test is

the inference time for a single record, which is in direct

correlation with the number of FLOPs. It is also more

important than the first criterion, as having a high training

time for a model is not as bad as having a high inference

time for that model. This is because that the training of a

model can be done only once on a powerful machine, but,

the inference should be repeatedly done in real-time on the

target IoT device. Therefore, if a method has a high infer-

ence time, it may not be suitable for IoT devices. Figure 21

shows the single record inference time in milliseconds unit

for DFE, APAE, and MemAE on all three datasets. As can

be seen, the proposed method consistently performed better

than the other two methods in all three datasets. The infer-

ence time for the proposed method in the KDDCup99

dataset is only 2.85 ms. This is while the APAE and

MemAE inference times are 19.48 and 16.39 ms, respec-

tively. This shows at least 82% improvement in inference

time for the proposed method on this dataset compared to

the other two methods. The situation for the other two

datasets is also similar: the proposed method has at least

83% and 79% improvement in the inference time on the

CICIDS2017 and UNSW-NB15 datasets, respectively.

4.7 Real-world usability comparison

Nowadays, IoT devices are small and cheap devices that

have very limited resources. There are two main limitations

0 5000 10000 15000 20000 25000

Learnable parameters

Floating-point operations

Learnable parameters Floating-point operations
DFE 402 1920
APAE 3794 23168
MemAE 12061 11297

DFE

APAE

MemAE

Fig. 19 Performance

comparison results for

multiclass classification on

UNSW-NB15 dataset

0 20 40 60 80 100 120 140 160 180

KDDCup99

CICIDS2017

UNSW-NB15

KDDCup99 CICIDS2017 UNSW-NB15
DFE 16 35 8
APAE 78 161 41
MemAE 20 127 34.7

DFE

APAE

MemAE

Fig. 20 Batch training time in

seconds for DFE, APAE, and

MemAE on all three datasets

15192 Neural Computing and Applications (2022) 34:15175–15195

123

for these devices: processing capability, and available main

memory. For example, Table 7 shows the specification for

three common Arduino boards that are currently being used

as IoT devices. As you can see, these boards use slow

processors and have very limited main memory.

In addition, in real-world applications, many of these

devices run on batteries, which is why another limitation of

these devices is electrical energy. Therefore, for an attack

detection method to be usable on IoT devices, it should

have low computational complexity, low power con-

sumption, and low memory footprint. As described in the

previous section, the proposed method is very computa-

tionally efficient compared to the previous works. There-

fore, it is also more energy-efficient than previous works,

as the energy consumption of a method depends heavily on

its computational complexity. The third limitation, which is

the main memory limitation, may be more important as it

absolutely limits the usage of some algorithms on some

devices. For example, Table 8 shows the memory usage of

the proposed approach and the two other previous works

APAE and MemAE, in the KB unit. As you can see, for all

scenarios in Table 8, the proposed approach memory usage

is about one-tenth and one-percent of the memory usage in

the APAE and MemAE, respectively. This is very impor-

tant as it allows using the proposed approach on all of the

mentioned devices in Table 7. Even on the Arduino Leo-

nardo, which has the lowest amount of main memory

among the three boards, the proposed approach only uses at

most 16% of the available memory. On the other hand, it is

not possible to use APAE and MemAE in this board as the

memory usage of these methods is more than the total

available memory on this board. Also, the MemAE algo-

rithm cannot be used in Arduino MKR NB 1500 because it

consumes more memory than the total available memory

on this board.

Considering the three limiting factors of computational

complexity, power consumption, and memory usage, it is

clear that the proposed approach is highly superior to the

current state-of-the-art methods, and it is more suitable for

use in real-world IoT applications.

5 Discussion

The results of the experiments in the previous section

showed that the gap between the overall classification

accuracy of the proposed approach and the overall classi-

fication accuracy of previous works is small. However, for

the comparison of intrusion detection systems, the overall

classification accuracy is not the only important criterion.

The efficiency of these systems is also very important,

particularly in the IoT world, in which the hardware

devices have very limited processing capabilities. An

0 5 10 15 20 25

KDDCup99

CICIDS2017

UNSW-NB15

KDDCup99 CICIDS2017 UNSW-NB15
DFE 2.85 3.13 2.86
APAE 19.48 18.46 17.48
MemAE 16.39 21.94 13.6

DFE

APAE

MemAE

Fig. 21 Single record inference

time in milliseconds for DFE,

APAE, and MemAE on all three

datasets

Table 7 Specification of three

Arduino board for use as IoT

devices [45]

Processor Main Memory

Arduino Leonardo Atmel ATmega32u4 running at 16 MHz 2.5 KB

Arduino MKR NB 1500 ARM Cortex-M0 ? CPU running at up to 48 MHz 32 KB

Arduino Due Atmel AT91SAM3X8E running at 84 MHz 96 KB

Table 8 Memory usage for the proposed approach and two previous

works on three different datasets in KB unit

Binary classification Multiclass classification

DFE APAE MemAE DFE APAE MemAE

CICIDS2017 0.27 3.19 33.1 0.35 3.51 33.37

UNSW-NB15 0.26 3.19 33.19 0.39 3.70 33.48

KDDCup99 0.26 3.19 33.19 0.30 3.38 33.30

Neural Computing and Applications (2022) 34:15175–15195 15193

123

intrusion detection system may have very good overall

classification accuracy, but at the same time, it may need

many processing resources, or it may have very bad clas-

sification performance in the minority classes. Therefore, it

is necessary to look at various parameters while comparing

different intrusion detection systems. Although the pro-

posed method has slightly better overall classification

accuracy than the previous works, it has very good clas-

sification performance in the minority classes, and at the

same time, it is very lightweight compared to all the pre-

vious works. It significantly outperforms all the previous

works in terms of the number of parameters and floating-

point operations, which makes it ideal for real-time attack

detection in IoT networks.

6 conclusion and remarks

In this paper, a very accurate NIDS called DFE has been

presented. It has used a very lightweight and efficient

neural network exploiting the idea of Deep Feature

Extraction. The input vector of the network in the proposed

model has been permuted in a 3D space, and its individual

values are brought close together. This allowed the model

to extract highly discriminative features using a small

number of layers without the need to use large 2D or 3D

convolution filters. As a result, the network has achieved an

accurate classification using a significantly small number

of needed calculations. This made the DFE ideal for real-

time intrusion detection by IoT devices with limited pro-

cessing capabilities. The efficacy of the DFE had been

evaluated using KDDCup99, CICIDS2017, and UNSW-

NB15 datasets and the results showed the superiority of the

proposed model over state of the art algorithms. In the case

of the KDDCup99 dataset, the proposed approach has

provided almost the same overall classification accuracy as

APAE and MemAE. It has outperformed the APAE and

MemAE algorithms by reducing the number of required

floating-point operations by about 92% and 81% respec-

tively. For the CICIDS2017 dataset, the proposed method

accuracy was about 1% higher than MemAE, while it has

beat the APAE and MemAE algorithms in terms of the

number of floating-point operations by about 91% and

85%, respectively. Finally, the results of the evaluation on

the UNSW-NB15 dataset have shown that the proposed

method has outperformed MemAE in terms of classifica-

tion accuracy by at least 1.5%. In addition, the proposed

method has surpassed the APAE and MemAE algorithms

in terms of the number of floating-point operations by

about 92% and 83%, respectively. However, there is still

room for improvement in the proposed approach. The

proposed approach is slightly weak compared to the APAE

in terms of the classification of minority classes. This can

be seen as future work, which can be done by modeling the

problem of finding the best permutation as an optimization

problem, and solving it using an optimization algorithm.

Funding Not applicable.

Declarations

Conflicts of interest Not applicable.

References

1. Fan J, Zhang Y, Wen W, Gu S, Lu X, Guo X (2021) The future of

Internet of Things in agriculture: plant high-throughput pheno-

typic platform. J Clean Prod 280:123651

2. Philip NY, Rodrigues JJ, Wang H, Fong SJ, Chen J (2021)

Internet of Things for in-home health monitoring systems: current

advances, challenges and future directions. IEEE J Sel Areas

Commun 39(2):300–310

3. Oniani S, Marques G, Barnovi S, Pires IM, Bhoi AK (2021)

Artificial intelligence for internet of things and enhanced medical

systems. In: Bhoi Akash Kumar, Mallick Pradeep Kumar, Liu

Chuan-Ming, Balas Valentina E (eds) Bio-inspired Neurocom-

puting. Springer Singapore, Singapore, pp 43–59. https://doi.org/

10.1007/978-981-15-5495-7_3

4. Gopikumar S, Raja S, Robinson YH, Shanmuganathan V, Chang

H, Rho S (2021) A method of landfill leachate management using

internet of things for sustainable smart city development. Sustain

Cities Soc 66:102521

5. Sohi SM, Seifert J-, Ganji F (2021) RNNIDS: Enhancing network

intrusion detection systems through deep learning. Comp Secur

102:102151

6. Sahar N, Mishra R, Kalam S (2021) Deep learning approach-

based network intrusion detection system for fog-assisted IoT. In:

Tiwari S, Suryani E, Ng AK, Mishra KK, Singh N (eds) Pro-

ceedings of international conference on big data, machine

learning and their applications: ICBMA 2019. Springer Singa-

pore, Singapore, pp 39–50. https://doi.org/10.1007/978-981-15-

8377-3_4

7. Banadaki YM, Brook J, Sharifi S (2021) ‘‘Design of the network

intrusion detection systems for the internet of things infrastruc-

ture using machine learning algorithms,’’ in NDE 40 and smart

structures for industry, smart cities, communication, and energy.

Int Soc Opt Photon 11594:115940J

8. Wang F, Yang N, Shakeel M, Saravanan V (2021) Machine

learning for mobile network payment security evaluation system.

Trans Emerg Telecommun Technol. https://doi.org/10.1002/ett.

4226

9. Ahmad Z, Shahid Khan A, Wai Shiang C, Abdullah J, Ahmad F

(2021) Network intrusion detection system: a systematic study of

machine learning and deep learning approaches. Trans Emerg

Telecommun Technol 32(1):e4150. https://doi.org/10.1002/ett.

4150

10. Jeong S, Jeon B, Chung B, Kim HK (2021) Convolutional neural

network-based intrusion detection system for AVTP streams in

automotive Ethernet-based networks. Vehicular Commun

29:100338

11. Ji DJ, Park J, Cho D-H (2019) ConvAE: A new channel

autoencoder based on convolutional layers and residual connec-

tions. IEEE Commun Lett 23(10):1769–1772

15194 Neural Computing and Applications (2022) 34:15175–15195

123

https://doi.org/10.1007/978-981-15-5495-7_3
https://doi.org/10.1007/978-981-15-5495-7_3
https://doi.org/10.1007/978-981-15-8377-3_4
https://doi.org/10.1007/978-981-15-8377-3_4
https://doi.org/10.1002/ett.4226
https://doi.org/10.1002/ett.4226
https://doi.org/10.1002/ett.4150
https://doi.org/10.1002/ett.4150

12. Wang Z, Zeng Y, Liu Y, Li D (2021) Deep belief network

integrating improved kernel-based extreme learning machine for

network intrusion detection. IEEE Access 9:16062–16091

13. Süzen AA (2021) Developing a multi-level intrusion detection

system using hybrid-DBN. J Ambient Intell Humaniz Comput

12(2):1913–1923

14. Bilski J, Rutkowski L, Smoląg J, Tao D (2021) A novel method

for speed training acceleration of recurrent neural networks. Inf

Sci 553:266–279

15. Ma B, Jiang Z, Lu NL, Jiang Z (2020) Cybersecurity named

entity recognition using bidirectional long short-term memory

with conditional random fields. Tsinghua Sci Technol

26(3):259–265

16. Yuan S, Wu X (2021) Deep learning for insider threat detection:

review, challenges and opportunities. Comp Secur 104:102221

17. Sharma N, Panwar D (2021) Advance security and challenges

with intelligent IoT Devices. In: Goyal D, Chaturvedi P, Nagar

AK, Purohit SD (eds) Proceedings of second international con-

ference on smart energy and communication: ICSEC 2020.

Springer Singapore, Singapore, pp 177–189. https://doi.org/10.

1007/978-981-15-6707-0_17

18. Li T, Wu B, Yang Y, Fan Y, Zhang Y, Liu W. 2019 Compressing

convolutional neural networks via factorized convolutional fil-

ters. InProceedings of the IEEE/CVF Conference on computer

vision and pattern recognition (pp 3977-3986)

19. Deng L, Li G, Han S, Shi L, Xie Y (2020) Model compression

and hardware acceleration for neural networks: a comprehensive

survey. Proc IEEE 108(4):485–532. https://doi.org/10.1109/

JPROC.2020.2976475

20. Basati A, Faghih MM (2021) APAE: an IoT intrusion detection

system using asymmetric parallel auto-encoder. Neural Comput

Appl. https://doi.org/10.1007/s00521-021-06011-9

21. Xin Y et al (2018) Machine learning and deep learning methods

for cybersecurity. IEEE Access 6:35365–35381. https://doi.org/

10.1109/ACCESS.2018.2836950

22. Tripathi G, Singh K, Vishwakarma DK (2019) Convolutional

neural networks for crowd behaviour analysis: a survey. Vis

Comput 35(5):753–776. https://doi.org/10.1007/s00371-018-

1499-5

23. Alaeddine H, Jihene M (2021) Deep network in network. Neural

Comput Appl 33:1453–1465

24. Vijayan M, Raguraman, and R. Mohan, (2021) A fully residual

convolutional neural network for background subtraction. Pattern

Recogn Lett 146:63–69. https://doi.org/10.1016/j.patrec.2021.02.

017

25. Lv L, Wang W, Zhang Z, Liu X (2020) A novel intrusion

detection system based on an optimal hybrid kernel extreme

learning machine. Knowl-based Syst 195:105648

26. Zhang J, Ling Y, Fu X, Yang X, Xiong G, Zhang R (2020) Model

of the intrusion detection system based on the integration of

spatial-temporal features. Comp Secur 89:101681

27. Tian Q, Li J, Liu H (2019) A method for guaranteeing wireless

communication based on a combination of deep and shallow

learning. IEEE Access 7:38688–38695

28. Agarap AFM, A neural network architecture combining gated

recurrent unit (gru) and support vector machine (SVM) for

intrusion detection in network traffic data,‘‘ presented at the

Proceedings of the 2018 10th international conference on

machine learning and computing, Macau, China, 2018. [Online].

Available: https://doi.org/10.1145/3195106.3195117

29. Zhou Y, Cheng G, Jiang S, Dai M (2020) Building an efficient

intrusion detection system based on feature selection and

ensemble classifier. Comput Netw 174:107247

30. Singh A, Kaur GS, Aujla RS, Batth, and S. Kanhere, (2020)

DaaS: dew computing as a service for intelligent intrusion

detection in edge-of-things ecosystem. IEEE Internet Things J.

https://doi.org/10.1109/JIOT.2020.3029248

31. Li X, Chen W, Zhang Q, Wu L (2020) Building auto-encoder

intrusion detection system based on random forest feature

selection. Comput Secur 95:101851

32. Shone N, Ngoc TN, Phai VD, Shi Q (2018) A deep learning

approach to network intrusion detection. IEEE Trans Emerg Top

Comput Intell 2(1):41–50. https://doi.org/10.1109/TETCI.2017.

2772792

33. Injadat M, Moubayed A, Nassif AB, Shami A (2020) Multi-stage

optimized machine learning framework for network intrusion

detection. IEEE Trans Netw Serv Manage. https://doi.org/10.

1109/TNSM.2020.3014929

34. Gong D, Liu L, Le V, Saha B, Mansour MR, Venkatesh S,

Hengel AV. 2019 Memorizing normality to detect anomaly:

Memory-augmented deep autoencoder for unsupervised anomaly

detection. In: proceedings of the ieee/cvf international conference

on computer vision (pp 1705-1714).

35. Miah MO, Khan SS, Shatabda S, Farid DM (2019) Improving

detection accuracy for imbalanced network intrusion classifica-

tion using cluster-based under-sampling with random forests, in

2019 1st international conference on advances in science, engi-

neering and robotics technology (ICASERT), 1–5, doi: https://

doi.org/10.1109/ICASERT.2019.8934495.

36. Roy AG, Navab N, Wachinger C (2018) Recalibrating fully

convolutional networks with spatial and channel ‘‘squeeze and

excitation’’ blocks. IEEE Trans Med Imaging 38(2):540–549

37. Tang J, Sun D, Liu S, Gaudiot J-L (2017) Enabling deep learning

on IoT devices. Computer 50(10):92–96

38. Gong LLD, Le V, Saha B, Mansour MR, Venkatesh S, Van Den

Hengel A, (2019) Memorizing normality to detect anomaly:

memory-augmented deep autoencoder for unsupervised anomaly

detection, in IEEE/CVF International conference on computer

vision (ICCV), 1705–1714, doi: https://doi.org/10.1109/ICCV.

2019.00179

39. Andresini G, Appice A, Di Mauro N, Loglisci C, Malerba D

(2020) Multi-channel deep feature learning for intrusion detec-

tion. IEEE Access 8:53346–53359

40. Muhammad G, Hossain MS, Garg S (2020) Stacked autoencoder-

based intrusion detection system to combat financial fraudulent.

IEEE Internet Things J. https://doi.org/10.1109/JIOT.2020.

3041184

41. Peng Y, Zhang L, Liu S, Wu X, Zhang Y, Wang X (2019) Dilated

residual networks with symmetric skip connection for image

denoising. Neurocomputing 345:67–76

42. Yao H, Fu D, Zhang ML, Liu Y (2019) MSML: a novel multi-

level semi-supervised machine learning framework for intrusion

detection system. IEEE Internet Things J 6(2):1949–1959. https://

doi.org/10.1109/JIOT.2018.2873125

43. Al-Garadi MA, Mohamed A, Al-Ali AK, Du X, Ali I, Guizani M

(2020) A survey of machine and deep learning methods for

internet of things (IoT) security. IEEE Commun Surv Tutorials

22(3):1646–1685

44. Moustafa N, Slay J (2015) UNSW-NB15: a comprehensive data

set for network intrusion detection systems (UNSW-NB15 net-

work data set), in 2015 Military communications and information

systems conference (MilCIS), 1–6, doi: https://doi.org/10.1109/

MilCIS.2015.7348942.

45. ‘‘Arduino Website.’’ https://www.arduicc. Accessed 2021/11/1.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2022) 34:15175–15195 15195

123

https://doi.org/10.1007/978-981-15-6707-0_17
https://doi.org/10.1007/978-981-15-6707-0_17
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1007/s00521-021-06011-9
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1007/s00371-018-1499-5
https://doi.org/10.1007/s00371-018-1499-5
https://doi.org/10.1016/j.patrec.2021.02.017
https://doi.org/10.1016/j.patrec.2021.02.017
https://doi.org/10.1145/3195106.3195117
https://doi.org/10.1109/JIOT.2020.3029248
https://doi.org/10.1109/TETCI.2017.2772792
https://doi.org/10.1109/TETCI.2017.2772792
https://doi.org/10.1109/TNSM.2020.3014929
https://doi.org/10.1109/TNSM.2020.3014929
https://doi.org/10.1109/ICASERT.2019.8934495
https://doi.org/10.1109/ICASERT.2019.8934495
https://doi.org/10.1109/ICCV.2019.00179
https://doi.org/10.1109/ICCV.2019.00179
https://doi.org/10.1109/JIOT.2020.3041184
https://doi.org/10.1109/JIOT.2020.3041184
https://doi.org/10.1109/JIOT.2018.2873125
https://doi.org/10.1109/JIOT.2018.2873125
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1109/MilCIS.2015.7348942
https://www.arduicc

	DFE: efficient IoT network intrusion detection using deep feature extraction
	Abstract
	Introduction
	Background
	Deep learning
	Related works

	Proposed approach
	Data preprocessing
	DFE: Deep Feature Extraction

	Results and experiments
	Datasets
	KDDCup99
	CICIDS2017
	UNSW-NB15

	The proposed model trainability
	Anomaly detection
	KDDCup99 dataset
	CICIDS2017 dataset
	UNSW-NB15 dataset

	Multiclass classification
	KDDCup99 dataset
	CICIDS2017 dataset
	UNSW-NB15 dataset

	Empirical performance evaluation
	Real-world usability comparison

	Discussion
	conclusion and remarks
	Funding
	References

