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Abstract
It is a fundamental task of computer vision to describe and express the visual content of a video in natural language, which

not only highly summarizes the video, but also presents the visual information in description sentence with reasonable

pattern, correct grammars and decent words. The task has wide potential application in early education, visual aids,

automatic interpretation and human–machine environment development. Nowadays, there are a variety of effective models

for video description with the help of deep learning. However, the visual or language semantics is frequently mined alone,

and the visual and language information cannot be complemented each other, resulting in that the accuracy and semantics

of the generated sentence are difficult to be further improved. Facing the challenge, a framework for video description with

visual and language semantic hybrid enhancing and complementary is proposed in this work. In detail, the language and

visual semantics enhancing branches are integrated with the multimodal feature-based module firstly. Then a multi-

objective jointly training strategy is employed for model optimization. Finally, the output probabilities from the three

branches are fused with the weighted average for word prediction at each time step. Additionally, the language and visual

semantics enhancing-based deep fusion modules are combined together with the same jointly training and sequential

probabilities fusion for further performance improving. The experimental results on MSVD and MSR-VTT2016 datasets

demonstrate the effectiveness of the proposed models, with the performance of proposed models outperforming the

baseline model Deep-Glove (which is denoted as E-LSC for simplification and comparison) greatly and achieving com-

petitive performance compared to the state-of-the-art methods. In particular, the BLEU4 and CIDEr reach 52.4 and 81.5,

respectively, on MSVD with the proposed HE-VLSC# model.
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1 Introduction

Video description is to translate video content including

person/object, action, scene and even relationship into

natural language with reasonable sentence pattern, correct

grammars and decent words. It belongs to the task of high-

level visual understanding and possesses broad prospect

such as early education, automatic interpretation, visual

aids and human–machine intelligent environment devel-

opment. However, the task is really challenging since the

model has to bridge the vision and language which belong

to different modal information and there is great semantic

gap. Facing the challenge, the object detection, action

recognition techniques in computer vision are usually

employed to extract the visual semantic entities or regions

firstly, and then, they are filled into a pre-designed template
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such as ‘‘S–O–V’’ for sentence [1, 2], or the detected visual

semantic concepts are composed of sentence with special

rules [3]. However, the generated sentences are frequently

with unsatisfying accuracy, coherence and flexibility

caused by the limitations of inflexibility template or rule

and weak representative ability of handcraft visual feature.

Recently, the deep convolutional neural net-

works (DCNN) are usually employed to extract visual deep

feature which often possesses a higher level of abstraction

and more powerful representation. And a number of DCNN

models like AlexNet [4], VGGNet [5], GoogLeNet [6] and

ResNet [7] are developed and applied on various visual

tasks including image classification [4–7], action recogni-

tion [8, 9] as well as image captioning [10–13]. Also, the

breakthrough of deep learning offers an opportunity to

video description for performance improvement [14–19].

Generally speaking, the ‘‘encoding–decoding’’ pipeline for

machine translation is learned and employed for the video

description. The 2D/3D DCNN models pre-trained on

large-scale dataset such as ImageNet [20] are often used to

extract video feature firstly. Then the visual feature is

usually fed into recurrent neural networks (RNN) for

motion feature encoding and language modeling. The

generated sentences are generally more accuracy and richer

semantics in the help of deep feature and flexible language

decoder. Hereafter, the attention mechanism [21–24] and

variants (e.g., Transformer) [25, 26], visual

attributes/concepts [27, 28] are employed for visual feature

selection and optimization. Additionally, advanced opti-

mization strategies such as reinforcement learning [29, 30]

and adversarial learning [31] are also applied to generate a

description of videos under different circumstances.

However, the visual semantics or language feature is

frequently mined and used alone in popular works, leading

to the insufficient available information for performance

improving. In order to solve the problem, a framework with

hybrid enhancing and complementary of visual and lan-

guage semantics is proposed in this work, where two extra

branches including visual and language semantics

enhancing are appended on a multimodal model for com-

pensation of visual and language information. In addition,

the multi-objective optimization strategy is employed to

provide more regularization information for the model

training by adding objective functions on the aforemen-

tioned three branches. During testing, the output proba-

bilities of all the branches are fused by weight average for

word prediction at each time step for further improving

sentence quality. For simplification, if the two extra visual

and language branches are fused with the multimodal

module by concatenation, the model is denoted as HE-

VLSC. And if the element-wise addition operation is

employed for the fusion, the model is abbreviated as HE-

VLSA. Besides, a variant of the proposed HE-VLSC/A is

designed to further boost performance, where the module

based on deep fusion and module based on visual seman-

tics enhancing are integrated. Two objective functions are

designed to optimize the model jointly. Similar to HE-

VLSC/A, the sequential probability fusion is employed

during the test stage with weight average. As an example,

the proposed HE-VLSA framework is presented in Fig. 1.

Experiments are conducted on two public video

description datasets including MSVD [2, 32] and MSR-

VTT2016 [33] and better performance is achieved com-

pared to the baseline model, which reveals the effective-

ness of the proposed model. Also, competitive results are

obtained compared to the other state-of-the-art methods on

a few evaluation metrics. The contributions of this work

can be concluded as below.

• A model based on visual semantics enhancing for video

description is proposed in this work, where the visual

information is modeled separately for further mining of

motion feature, and then, the module is appended on a

multimodal-based module for improving the accuracy

of word prediction.

• A framework based on hybrid enhancing and comple-

mentary of visual and language semantics is developed

for video description, in which two branches for visual

and language semantics enhancing are integrated with

the multimodal-based module for more powerful rep-

resentation, and multi-objective optimization and

sequential late fusion are employed for model training

and sentence generation.

• Two deep fusion-based modules including visual and

language semantics enhancing are combined into a

wide model for video description, where joint opti-

mization and sequential late fusion are also employed

for training and testing, respectively. And competitive

results are achieved compared to the state-of-the-art

methods on two public evaluation datasets.

The rest of this work is organized as follows: Sect. 2

introduces the related works about video description

briefly. Section 3 describes the motivation, proposed

models and related formulas of this work in detail. The

experiments and result discussion are provided in Sect. 4.

And Sect. 5 concludes all this work.

2 Related works

The task of video description has been researched for

decades. In early days, the techniques of computer vision

such as object detection, action recognition are usually

employed to extract visual semantic entities, and then, the

related words or phrases are filled into templates designed

in advance or reconstituted into the sentence in line with
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rules. Nagel et al. generate description for vehicle’s con-

dition according to composing the detected motion track

and type to phrases by a few rules [34]. Gupta et al. pro-

pose a model to generate long description for a video,

where the actions or events are detected firstly, following

that the visual entities are described as simple sentences,

and then, they are recomposed to detail description by the

relationships among the actions or events [3]. Kojima et al.

construct the mapping relationships between semantic

objects (e.g., object, action) and specific concepts, and fill

them into the templates for sentences according to corre-

sponding syntactic components [1].

Inspired by the pipeline of machine translation, the

‘‘encoder–decoder’’ framework is employed to generate

descriptions for videos, where the videos remained to be

described are treated as ‘‘source language’’ and the gen-

erated sentences are regarded as ‘‘target language.’’ Rohr-

bach et al. propose a model for video description with

flexible structure, where the conditional random

field (CRF) is employed to model the relationships of

different detected objects [35]. However, the handcraft

feature and traditional object detection method in the work

limit the performance improvement caused by the insuffi-

cient accuracy of recognition and detection. The perfor-

mance breakthrough of visual classification and

recognition with deep learning provides another inspiration

for researchers to develop advanced models for video

description. In the general pipeline, the 2D/3D DCNN is

employed to extract more abstract and representative deep

features of frames or clips in a video for visual encoding,

and then, the RNN is usually applied to generate sentence

for decoding.

Venugopalan et al. propose a visual feature mean pool-

ing-based framework for video captioning, in which the

sampled frames are fed to a DCNN model for deep features;

hereafter, the element-wise mean feature vector is calcu-

lated and used as the visual representation to send to a

recurrent neural network named long short-term

memory (LSTM) for words prediction [36]. The method

makes use of the information of all sampled frames, but the

motion and semantic structure information in the video may

be destroyed. Afterward, they learn from the sequence to

sequence method in machine translation and propose S2VT

model [14], where the sampled frames are given to a CNN

model in sequence, and then, the extracted feature sequence

is fed to two stacked LSTM network for motion information

capturing. When all the features of the frame are exhausted,

the final visual representation is transmitted to the next time

step in the same LSTM network for decoding. The model

forces the motion feature encoding and language decoding

to share the same network and parameters, and hence, it

possesses concise architecture and good interpretability.

Additionally, they develop a Deep-Glove model for further

discover language information [37]. In the model, language

branch pre-trained on large-scale corpus is added on S2VT

to improve the accuracy and semantics of the generated

sentences. Shen et al. borrow the fully convolutional net-

work (FCN) [38] to extract CNN representation of visual

semantic regions in frames of a video. Then the motion of

the visual objects is tracked and a description is generated

[39]. Besides, the event is usually employed as the ele-

mentary semantic object and description unit in a few works

[40–42], and a number of sentences are generated to

describe a video in more detail. Mun et al. argue that dif-

ferent events in a video are often interrelated, and thus, the

independent event descriptions should be recomposed to

paragraph with reasonable logic and the redundant sen-

tences will be truncated [43]. In this work, the S2VT [14]

and Deep-Glove [37] are investigated and employed to

implement the proposed idea in consideration of the simple

architecture and excellent performance for video caption-

ing and description.

In addition to the sequence to sequence with RNN for

visual feature encoding, the 3D CNN is another solution for

visual representation for serving video description. In

general, the method is integrated with RNN, attention

Fig. 1 Overview of the

proposed HE-VLSA framework.

Two extra branches including

visual semantics enhancing and

language semantics enhancing

are appended on a multimodal

model for comprehensive

information capturing
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mechanism, hierarchical modeling, advanced memory unit

and multi-objective joint optimization for taking advantage

of visual information. Yao et al. extract local temporal

structure features of videos with a 3D CNN model. The

visual feature is then fed to LSTM for decoding. In the

process, an attention mechanism is employed to assign

different weights to different 3D CNN features at different

time steps for guiding sentence generation [16]. Pan et al.

employ the C3D model to extract visual features for clips

in a video, then they are sent to LSTM network with the 2D

CNN mean feature of all frames. Finally, the visual module

and language module are jointly training for model opti-

mization [15, 28]. Wang et al. present a hierarchical

framework based on reinforcement learning and 3D CNN

for video fine-grained description [30]. Additionally, a few

other researchers pay attention to visual objects and their

corresponding relationships in videos, and develop a series

of effective models, in which 2D and 3D visual features are

usually both employed [44–46], to complete the task of

video captioning. Different from the aforementioned

works, Park et al. adopt an adversarial learning strategy and

develop a group of discriminators to evaluate the accuracy,

relevance of candidate sentences from the generator [47].

The popular works always focus on a single aspect of

visual semantics or language feature mining separately for

better performance but ignore the use of both and the

mutual supplement between them during training and

testing. As an example, the S2VT model [14] improves the

flexibility of generated sentences, but both the visual

semantic information and language are not fully exploited.

In Deep-Glove model [37], the language information is

further discovered by an extra branch. However, the lan-

guage branch is difficult to be pre-trained since the large-

scale corpus is required. Also, the visual semantic infor-

mation is not further mined and put into full use. In this

work, a framework based on hybrid enhancement and

complementary of visual and language semantics is pro-

posed for video description. For comprehensive visual and

language information, the visual semantics enhancing and

language enhancing branches are designed and appended

on a multimodal-based module, making the three parts can

be optimized cooperatively and complementarily. During

training, besides the main objective function for the mul-

timodal-based module, the other two extra objective

functions for visual semantics enhancing branch and lan-

guage enhancing branch are designed to provide more

regularization information and hence improve the gener-

alization ability of the whole model.

3 Proposed methods

Both visual semantics and language information are

required in the task of video description. In most popular

works, the visual and language information is usually fed to

a sequential model to form multi-model representation and

map the two different modalities data into a unified feature

space. Then the RNN is employed as a language decoder

and generates a description sentence for the video. How-

ever, more noises including vision and language may be

introduced into the model if the multimodal feature is used,

leading to interference to word prediction. Additionally, a

few significant visual and language information may be

lost during multiple nonlinear transformation of feature as

the going on of time steps in RNN and other variants (e.g.,

LSTM) since the activation functions (i.e., Sigmoid and

Tanh) may be in a saturated state once the value exceeds

the sensitive interval. For richer language information and

reducing the influence of noises on the model, a single

language branch on a large-scale corpus is pre-trained and

then integrated with S2VT by fusing the two sequential

features at each time step in [37]. However, the extra

domain corpus should be constructed for the language

branch optimization. Moreover, the further mining and

discovery of visual semantic information are ignored, and

the semantics of generated sentences cannot be further

improved.

Facing the problem, the visual semantic branch is

designed based on S2VT [14] for richer visual information

capturing in this work, which is learned from the idea in

[37]. Then the branch is added on Deep-Glove [37], and the

output features of the three parts are combined with early

sequential fusion for comprehensive and complementary

representation for sentence generation, where the features

are fused before they are fed to the word predictor at each

time step. Additionally, the multi-objective optimization

strategy is employed to prevent the model to stick to over-

fitting caused by the increase of parameters in visual and

language branches. In detail, each branch of visual

semantics enhancing, language semantics enhancing and

the multimodal-based module deploys an objective func-

tion. Because there is no enough available modal infor-

mation in the extra added branches (e.g., the visual

information is missing in language enhancing branch), the

larger errors between ground truth and generated sentence

may be produced, as well as the disturbance during model

optimization, which can be treated as extra regularization

for the whole model. At test time, the late sequential fusion

is employed for word prediction, where the probabilities

from the predictors in the three modules are fused with the

weighted average.
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Suppose there are m frames in a video, and the frame

sequence is \f1; f2; � � � ; fm [ . The corresponding feature

sequence extracted from CNN model is

\v1; v2; � � � ; vm [ . The word sequence in one of the cor-

responding sentences denoted as \w1;w2; � � � ;wk [ ,

where k is the length of the sentence. During training, the

object of the model is to predict the word sequence

\w0
1;w

0
2; � � � ;w0

k0 [ under the condition of

\v1; v2; � � � ; vm [ . Afterward, the errors between the

output sequence and reference are calculated and back-

propagated through time (BPTT) for updating and opti-

mizing the parameter set H. The objective function can be

formulated as:

arg min
H

Lð\w0
1;w

0
2; � � � ;w0

k0 [ j\v1; v2; � � � ; vm [ ;HÞ;

ð1Þ

where Lð�Þ is the loss function, where the cross-entropy

strategy is usually employed. And for different models, the

function may possess different formulas (e.g., Eq. (2) and

Eq. (7) in Sects. 3.1 and 3.3, respectively). As an impor-

tant module in the backbone (Deep-Glove [37]) of the

proposed model, the S2VT is presented in Fig. 2. The

visual feature sequence \v1; v2; � � � ; vm [ is fed to the

first LSTM layer whether at the training stage or the testing

stage. As for the second LSTM, it receives \pad[ for

the following word inputting alignment. When all visual

features are exhausted, the word sequence

\w1;w2; � � � ;wk [ is fed to the second LSTM with the

output from the first LSTM for modeling language. During

training, each word will be given to the language model

and the corresponding output word at each time step will be

employed to calculate gradients with the input word, while

at testing stage, the output words are predicted one by one

but each of them has to depend on the previous word

sequence.

3.1 The visual semantics enhancing-based
model

It is the basis of visual features for video description. In the

multimodal-based model, the visual features of frames are

extracted from a CNN model pre-trained on large-scale

dataset, then they are fed to LSTM by sequence for motion

feature encoding. The final visual representation is deliv-

ered to the following time steps for language decoding

when all the visual features are exhausted. In fact, the

visual and language features are combined together in the

pipeline. However, the visual feature may be compromised

as the language feature dominates the word prediction at

each time step in the decoding stage. Particularly, more and

more visual details will be lost during nonlinear transfor-

mation of visual feature as the time step advances in

LSTM, leading to increasing of cumulative error and

decreasing of accuracy and semantics of the generated

sentence. For richer language information, Venugopalan

et al. [37] develop an extra single branch to enhance lan-

guage semantics and then integrate it with S2VT [14] for

more powerful representation and the following improve-

ment of generated sentence. In this work, we learn from the

practice but add a single branch for further visual semantics

enhancing and fuse the output feature with that from S2VT

to enhance the final representation and improve the accu-

racy of word prediction.

As shown in Fig. 3, it is the architecture overview of E-

VSA. The visual CNN features are fed to the bottom LSTM

Fig. 2 Overview of the S2VT

framework, which belongs to

‘‘encoding–decoding’’ pipeline.

The a is training stage, where

the visual feature sequence

\v1; v2; � � � ; vm [ is fed to the

first LSTM during visual

encoding, and the word

sequence \w1;w2; � � � ;wk [ is

fed to the second LSTM with

the output from the first LSTM.

And the b is for testing, where

the predicted word at current

time step depends on the

previous generated word

sequence
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in multimodal-based module (the module is marked as m-

S2VT for simplification) and the single visual semantics

enhancing branch (the branch is denoted as B-VE for

simplification) at the same time. At test time, the outputs of

B-VE and m-S2VT are fused by the early sequential fusion

method. For m-S2VT, there are two stages including visual

‘‘encoding’’ and language ‘‘decoding,’’ and the number of

all time steps in the LSTM model is denoted as n. During

visual encoding, suppose the number of sampled frames in

a video is m, the time step is denoted as t1ð1� t1�mÞ. At

the decoding stage, the length of the corresponding refer-

ence sentence is n� mþ 1, and the time step is

t2ðmþ 1� t2� n). As for the extra visual semantics

enhancing branch, the time step is denoted by t3. It is worth

noting that 1� t3�m in B-VE since the branch models the

motion feature of the same video. If m � n� mþ 1, the

outputs of B-VE and m-S2VT can be fused completely at

each time step. However, when m\n� mþ 1, the

\pad[ is used as the missing output from B-VE of rest

time steps, while if m[ n� mþ 1, let m ¼ n� mþ 1,

and the extra frame features will be truncated. In practice

for feature fusing, two methods are employed, including

feature concatenation (E-VSC) and element-wise addi-

tion (E-VSA). When E-VSC is employed, the model

focuses on the balance of information including vision and

language. In particular, the generated sentence can be

further improved in accuracy and semantics if the used

CNN feature possesses weaker representative ability (e.g.,

GoogLeNet [7] feature). On the contrary, when the more

abstract feature (e.g., ResNet152 [6] feature) is used, the

corresponding sensitivity of useful information can be

enhanced when E-VSA is employed.

For E-VSC/A, the loss function is denoted as Lvs
fusion,

which can be calculated by

Lvs
fusionðV ;W ;HvsÞ ¼

1

jV j
XjV j

i¼1

Xk0

t¼1

log

�Pðw0
tjðhvs fusion

mþt�1 ;w0
1:t�1Þ;HvsÞ;

ð2Þ

where V ¼ \v1
1; � � � ; v1

m1
[ ;\v2

1; � � � ; v2
m2

[ ; � � � ;
\v

jV j
1 ; � � � ; vjV jmjV j

[ is the set of visual feature vector for the

model in one iteration, and the |V| is the size of the set. The

miði 2 f1; 2; � � � ; jV jgÞ is the number of sampled frames in

the ith video. And Hvs ¼ ðHm�s2vt;HvÞ is the parameter set,

where Hm�s2vt and Hv stand for the parameter set of m-

S2VT and B-VE, respectively. The hvs fusion
m0þt�1 denotes the

fusion state of outputs from the hidden state of LSTM in B-

VE and that from the top LSTM in m-S2VT at mþ t � 1

time step, which can be written as

hvs fusion
mþt�1 ¼ Fðh2

mþt�1; h
v
mþt�1Þ: ð3Þ

In the above equation, the h2
mþt�1 is the output of the top

LSTM in m-S2VT, while hvmþt�1 is the output from LSTM

in B-VE branch. The function Fð�Þ is fusion operation.

Take element-wise addition as an example, the formulation

is

Fðh2
mþt�1; h

v
mþt�1Þ ¼ h2

mþt�1 � hvmþt�1: ð4Þ

Afterward, the fusion feature is fed to the classification

layer for word prediction. At mþ t � 1 time step, the

output probabilities can be calculated by a Softmax func-

tion Pð�Þ with the formula as

Pðw0
t2jhvs fusion

l Þ ¼ expðWt2 � hvs fusion
l Þ

PjVOCj
i¼1 �hvs fusion

l

; ð5Þ

where l ¼ mþ t � 1, t2 2 ½1; n� m� 1� and t2 ¼ t. The

Wt denotes weight vector of the hidden layer, and |VOC| is

the size of the vocabulary. Hereafter, the word in vocab-

ulary corresponding to the maximum probability is picked

as the predicted output at this time step.

3.2 Hybrid enhancement and complementary
of visual and language semantics-based
model

The proposed E-VSC/A ignores the further mining of

language information though richer visual details and

semantics can be achieved. For comprehensive informa-

tion, the E-VSC/A and Deep-Glove framework are used for

reference, and a more effective model with richer language

and visual semantics is developed. Specifically, the B-VE

in E-VSC/A is integrated with Deep-Glove framework [37]

where an extra language enhancing branch (which is

abbreviated as B-LE (Branch for Language semantics

Enhancing) for simplification) is added on m-S2VT, to

Fig. 3 Visual semantics enhancing-based model for video descrip-

tion (E-VSA). The sequence of visual feature is fed to both LSTMv

and LSTM1 for visual motion feature modeling, and the outputs of

LSTMv and LSTM2 are fused for word prediction
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form a wide and comprehensive architecture for visual and

language complementary. The output features from B-VE,

m-S2VT and B-LE are fused together by early sequential

fusion strategy to enhance representative ability of the final

feature at the training stage. During the testing, the output

probability from the m-S2VT is used for word prediction.

The model is named HE-VLSC/A for convenience.

Figure 4 shows the overview of HE-VLSA. The previ-

ous predicted word wt2�1 will be fed to the top

LSTM (LSTM2 t2) in m-S2VT module and language

enhancing branch (B-LE) at the t2 time step. During

training, the wt2�1 is the previous word from the reference

sentence. And at test time, it is the previous predicted

word. For the three branches including B-VE, m-S2VT and

B-LE, the output features from respective hidden states are

fused with concatenation or element-wise addition at each

time step, similar to the practice in B-VSC/A. Note that the

inputs for B-LE and m-S2VT can correspond to each other

for all time steps since they share the same word

sequence (sentence).

It is similar to E-VSC/A model, the loss function of HE-

VLSC/A is denoted as Llvs
fusionðV;W ;HlvsÞ, where

Hlvs ¼ ðHm�s2vt;Hv;HlmÞ. The output state of fusion

hlvsfusion

mþt�1 can be computed by

hlvs fusion
mþt�1 ¼ Fðh2

mþt�1; h
v
mþt�1; h

lm
mþt�1Þ; ð6Þ

where h2
mþt�1, hvmþt�1 and hlmmþt�1 represent the outputs

from the top LSTM in m-S2VT, hidden states in B-VE and

B-LE at mþ t � 1 time step, respectively. As for Fð�Þ, it is

the function for fusion with the operation of feature con-

catenation or element-wise addition.

3.3 HE-VLSC/A with multi-objective optimization

In HE-VLSC/A model, the parameter scale will be

increased caused by the two added B-VE and B-LE bran-

ches visual and language semantic enhancement, which is

easy to result in over-fitting for the model. Additionally,

the errors are backpropagated not only to m-S2VT, but also

to the branches of B-VE and B-LE for parameter updating

and optimizing. However, the inputs of B-VE and B-LE are

not the complete multimodal feature (i.e., only visual fea-

ture for B-VE, while only language information for B-LE),

which may lead to insufficient optimization of the whole

model.

In this work, two extra objective functions are appended

on B-VE and B-LE branches in addition to the objective

function with fusion feature. As shown in Fig. 5, it is the

architecture overview of multi-objective-based HE-VLSA.

Besides the Lfusion which is treated as the main loss func-

tion, the B-VE and B-LE are implemented their own loss

functions of Llm and Lv, respectively. During training, the

errors from Lfusion are propagated back to the three modules

including m-S2VT, B-VE and B-LE for parameter updat-

ing. Simultaneously, the errors of Llm and Lv are fed back to

their respective branches for parameter optimizing twice in

them. For difference to HE-VLSC/A, the model is marked

as HE-VLSC	=A	.
Because there are no corresponding language features

and visual features in B-VE and B-LE, respectively, the

gradients with Llm and Lv are usually bigger than that with

Lfusion. This may be detrimental to the optimization of the

two branches, but the bigger errors can be treated as extra

regularization information for the whole model and

improve the generalization ability. In Fig. 6, the loss trend

and performance on CIDEr of HE-VLSA and HE-VLSA	

are presented. Figure 6a, b shows that the two models

possess a similar loss trend whether the GoogLeNet [6]

feature or ResNet152 [7] feature is employed, but the errors

of HE-VLSA* are higher than that with HE-VLSA on the

whole, which indicates that the multi-objective optimiza-

tion-based HE-VLSA	 is less likely to stick into the state of

over-fitting. On the other hand, the performance of

HE-VLSA	 is superior to HE-VLSCA on CIDEr [48]

metric (shown in Fig. 6c, d), which reveals that

HE-VLSA	 enhances the generalization ability effectively

and improves semantics of the generated sentences.

When the sentence is generated, the output probabilities

from the fusion branch based on m-S2VT, B-VE and B-LE

are sequentially fused by weight average for cooperative

word prediction. In practice, the output probability from

the fusion branch dominates the word selection, with the

assistance of output probabilities from branches of B-VE
Fig. 4 Framework of hybrid enhancement and complementary of

visual and language semantics (here it is an example of HE-VLSA).

The output features from LSTMv, LSTMlm and LSTM2 in m-S2VT

are fused for word prediction

Neural Computing and Applications (2022) 34:5959–5977 5965

123



and B-LE. The fusion factors can be achieved empirically

in general.

For HE-VLSC	/A	 model, there are three loss functions

including Llvs
fusionðV;W ;HlvsÞ for fusion branch,

LvðV ;W ;HvÞ for visual semantics enhancing branch B-

VE and LlmðW ;HlmÞ for language enhancing branch B-

LE. Regarding LlmðW ;HlmÞ, it is blind to visual infor-

mation but just provides gradients to the B-LE branch and

updating the parameters only by language information. The

formulation is

LvðV ;W ;HvÞ ¼
1

jVj
XjV j

i¼1

logPðw0
tjðhvt ;w0

1:t�1Þ;HvÞ; ð7Þ

where hvt is the output of hidden state in B-VE at the t time

step, and the previous input is CNN feature of the t � 1

frame. The three objective functions in HE-VLSC	/A	 are

Fig. 5 Model of multi-

objective-based HE-VLSA

(HE-VLSA	). Three objective

functions are employed for

model training. The Llm and Lv
are for language semantics

enhancing branch (i.e., B-LE)

and visual feature enhancing

branch (i.e., B-VE),

respectively, while the Lfusion is

for the multimodal model (i.e.,
m-S2VT)

Fig. 6 Comparison of the loss trend and performance on CIDEr with HE-VLSA and HE-VLSA	 (for a and c, the GoogLeNet feature is employed

in model, while the ResNet152 feature is employed in the model for b and d)
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independent of each other, but the objective function in the

fusion branch contains the information from B-VE and

B-LE, and hence, the parameters in the two auxiliary

branches are also optimized by the objective function in the

fusion branch.

At test time, the output probabilities of the three bran-

ches at the t time step are fused with

Pfusion
t ¼ aPm�s2vt

t þ bPlm
t þ cPv

t ; ð8Þ

where Pfusion
t is the fused probability vector, and Pm�s2vt

t ,

Plm
t and Pv

t stand for the probability vectors of fusion

branch, B-LE and B-VE, respectively, at t time step. And a,

b and c are the fusion factors of the three branches,

respectively, where they meet the constraint of

aþ bþ c � 1, and the weight assigned in practice follows

experimental experience.

Besides the described HE-VLSC	/A	 above, another

variant with multi-objective-based model is also investi-

gated. Specifically, the backbone of Deep-Glove is

employed as one of modules for language enhancing in the

framework (for convenience and distinction, it is renamed

as E-LSC#/A#). And the model E-VSC/A is employed as

another module for visual semantics enhancing (for con-

venience and distinction, it is renamed as E-VSC#/A#).

Then the two modules are integrated into a wider frame-

work, where the two modules share the same language

embedding layer and visual feature reduction layer, which

reduces the ‘‘one-hot’’ word feature into embedding lan-

guage representation and is to map the CNN feature to

visual representation with lower dimension, respectively.

During training, for separate E-VSC#/A# and E-LSC#/

A#, the two modules are optimized independently with

their respective objective functions. However, it is worth

noting that the two modules are actually trained jointly on

the whole in that the parameter updating and optimization

of the word embedding layer and visual feature reduction

layer depend on both of the two objective functions. At the

test stage, the late sequential fusion method is employed to

fuse the output probabilities from the two modules. The

fusion weights are assigned to be equal. For comparison

convenience, the variant is denotes as HE-VLSC#/A#, and

the architecture is shown in Fig. 7.

The optimization of HE-VLSC#/A# is similar to

HE-VLSC	/A	, and the gradients form the E-LSC#/A#

and E-VSC#/A# are fed back not only their own modules

but to each other modules according to the language

embedding layer and reduction layer, with complementary

to each other. During testing, the output probabilities are

fused with weight average too, where the fusion factors

(which are marked as a# and b#) are set to be equal

empirically.

4 Experiments

For evaluation of the proposed model, experiments are

conducted on two public datasets including MSVD [2, 32]

and MSR-VTT2016 [33]. In this section, the employed

dataset and evaluation metric are described in detail in the

first place. Then the performance of the proposed model

and comparable models are presented and discussed.

Concretely, the ablation study is carried on to reveal the

improvement of the proposed methods on performance.

Besides, the performance comparison with the popular

state-of-the-art methods is conducted to show the superi-

ority of the proposed model. Finally, a few examples

including sentences generated by the proposed model and

other comparable models are presented and discussed to

further reveal the effectiveness of the proposed model.

4.1 Evaluation dataset and metric

Two popular datasets including MSVD [2, 32] and MSR-

VTT2016 [33] are employed to evaluate the proposed

methods. For the MSVD dataset [2, 32], there are 1997

simple video clips (e.g., cooking, exercise) and corre-

sponding 80827 reference sentences in total. According to

the using protocol, 1200 videos and related 48774 refer-

ences are for training, and 100 videos and related 4290

references are for model validation and hyperparameter

discovery. The rest video–sentence pairs including 677

videos and related sentences are for the model test. The

dataset contains limited training samples and simple video–

sentence pairs. Comparatively, MSR-VTT2016 [33]

Fig. 7 Architecture of HE-VLSCA#. Two independently designed

modules (i.e., language semantics enhancing branch-based module vs
visual information enhancing branch-based module) are integrated for

comprehensive representation. During training, the two objective

functions optimize two modules jointly according to the word

embedding layer. At test time, the outputs from the two modules are

fused with sequential weight average fusion for final word prediction

at each time step
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possesses relatively larger-scale and more complex videos

and corresponding descriptions. In the dataset, 10000

videos are included and each video corresponds to 20

description sentences. In general, 6513 videos and related

references are for model training, while 497 video–sen-

tence pairs are for validation, and the rest 2990 videos are

for model evaluation.

Different from the task of classification or object

detection, the evaluation of video description is more

complicated since more factors require to be taken into

account including accuracy, coherence and semantics. For

more comprehensive evaluation of the generated sentences,

the metrics for machine translation including BLEU [49],

METEOR [50] and ROUGE L [51] are usually lent to the

video description. As for BLEU [49], it assesses the quality

of generated sentences according to measuring the match-

ing degree of n-grams (where n 2 f1; 2; 3; 4g) in references

and candidate sentences. Generally speaking, the larger the

n and the higher the BLEU-n, the better the quality of

generated sentences (for simplicity, the metric is denoted

as ‘‘B-n’’). However, the BLEU metric focuses on the

precision of word or phrase prediction but ignores the

recall. By comparison, precision and recall are both in

consideration in METEOR [50]. Specifically, three

matching alignment strategies including precise matching,

synonym matching and stem matching are employed to

build the matching alignment set of references and candi-

date sentences. Then the ratio between the set size and

candidate sentence length is treated as the precision, while

the ratio between the set size and reference sentence length

is treated as the recall. Finally, the harmonic mean of the

precision and recall is calculated as the evaluation scor-

e. (The metric is marked as ‘‘M’’ for convenience.) Dif-

ferent from METEOR, a concept of longest common

subsequence (LCS) is defined for ROUGE L [51]. The

ratio between the two lengths of LCS and candidate sen-

tence is used as the precision, and the ratio between those

of LCS and reference sentence is used as the recall (it is

abbreviated as ‘‘R’’ for convenience). Besides, for more

targeted evaluation of visual description, Vedantam et al.

develop a novel evaluation metric of CIDEr [48]. The

distribution of n-gram in all reference sentences of the

image/video remained to be described is statistically ana-

lyzed by the idea of ‘‘consensus,’’ and each n-gram is

assigned a different weight according to its frequency.

Then the similarity of references and candidate sentences is

calculated as the score. (The metric is abbreviated as ‘‘C’’

for convenience.)

In fact, an evaluation metric often focuses on one of the

aspects of the generated sentences, and thus, it is difficult to

assess the ability of a model comprehensively with a single

metric. In this work, we follow the popular practice and

employ all the metrics of BLUE [49], METEOR [50],

ROUGE L [51] and CIDEr [48] to measure the quality of

generated sentences.

4.2 Experimental setting

All our experiments are implemented on 4 GPUs (TITAN

X Pascal, 12GB) to speed model convergence. And the

popular deep learning framework Caffe [52] is employed to

conduct model configuration, training and testing. In order

to reduce redundancy and make full use of information in a

video, a frame is sampled every 10. As for the visual

features, two CNN models including GoogLeNet [6] and

ResNet152 [7] are employed to extract feature from each

sampled frame for verifying the performance of the pro-

posed model comprehensively. The two CNN models are

not only pre-trained on the large-scale classification dataset

ImageNet [4], but also fine-tuned on an image captioning

dataset MSCOCO2014 [53]. During fine-tuning, the LRCN

framework [11] is employed as the backbone where the

CNN model for visual encoding and LSTM for language

decoding are jointly optimized. The solver of stochastic

gradient descent is used, and the batch size is set to 16. As

for the learning rate, it is initially set to 0.01 and then is

gradually decreased by multiplying 0.1 in step size manner

after each of 20000 iterations. The CNN model with

490000 iterations is picked to extract visual feature of each

frame in videos since the model is in convergence and

possesses the best performance on the validation set of

MSCOCO2014.

The practice forces the CNN model to learn the category

information of objects in the first pre-training stage. Then,

the CNN model is further fine-tuned at the second stage,

where it enables the model to perceive sufficient informa-

tion in advance for visual description since there are

enough image–sentence pairs in MSCOCO2014. Conse-

quently, the two-stage pre-training strategy makes the

model sensitive to frequently used words/phrases and

sentence patterns in the following video description task.

Then the extracted CNN feature sequence of sampled

frames in a video is fed to the proposed model and com-

parable models in order for motion encoding and the fol-

lowing language decoding. During training, the number of

time steps in m-S2VT is set to 80, which is learned from

the practice in S2VT [14]. When the sum of sampled

frames and words in the corresponding reference breaks the

limitation, all the words should be fed to the model, while

the extra frames will be truncated. Regarding the visual

semantics enhancing branch, the number of time steps is

equal to that in the part of m-S2VT for language decoding.

However, the limitation will be removed at test time, which

indicates that all the sampled frames will be fed to LSTM

for visual motion encoding.
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For further improving performance, the beam search is

employed to expand the search space of words, which is

also following the practice in most popular works. How-

ever, when the proposed models except for HE-VLSC#/A#

are implemented on MSVD [2, 32], the pool of beam size is

set to 1 empirically, which means the beam search is not

working. As for all the remaining experiments, the pool of

beam search is set to 3. In HE-VLSC	/A	 model, the fac-

tors including a, b and c for probability fusion are achieved

by experimental experience. In general, when the ratio is

assigned to 8:1:1 or 6:2:2, the best performance of the

model can be obtained. (The discussion and possible rea-

sons are provided in Sect. 4.3.2.)

4.3 Experimental result and discussion

4.3.1 Ablation study

In order to evaluate the effectiveness of the proposed

methods including visual semantics enhancing, multi-ob-

jective optimization-based hybrid enhancing and comple-

mentary of visual and language semantics, ablation

experiments are conducted on MSVD [2, 32] and MSR-

VTT2016 [33]. Concretely, the Deep-Glove framework

[37] is employed as the backbone to construct the baseline

model. However, in the original Deep-Glove [37], the extra

language semantics branch is pre-trained on other large-

scale corpora for richer language semantics. And then the

whole model is trained on video captioning dataset (e.g.,

MSVD [2, 32] and MST-VTT2016 [33]) with the extra

language branch fine-tuning and the m-S2VT full training.

We abandon this strategy but train the model on video

captioning dataset directly for fair comparison. (The

baseline model is denoted as E-LSC for convenience and

distinction.) In addition, the proposed E-VSC/A, HE-

VLSC/A and HE-VLSC	/A	 are implemented on the two

datasets.

The performances of the baseline and proposed models

on MSVD dataset with GoogLeNet and ResNet152 fea-

tures are shown in Table 1. When GoogLeNet feature is in

use, it can be observed that both the proposed models E-

VSC and E-VSA perform better than the baseline mod-

el (E-LSC) on MSVD from the results. More specifically,

the performances on B-4 and CIDEr are 45.3 and 66.5,

respectively, with E-VSC, outperforming the baseline

model by 3.6 and 5.5. Note that the performance of E-VSA

is inferior to E-VSC a little on all metrics, though the

model is superior to the baseline model. This comparison

trend reveals the effectiveness of the proposed visual

semantics enhancing method. As for the proposed HE-

VLSC and HE-VLSA, the HE-VLSC/A generally performs

better on a few metrics compared to the baseline model and

E-VSC/A. In particular, the CIDEr of HE-VLSC reaches

67.2, with 0.7 points higher than the best E-VSC. However,

the B-4, METEOR and ROUGE L with HE-VLSC are not

effectively improved but declined a little. It indicates that

the B-LE branch has the ability to enhance the semantics of

generated sentences but is not good at coherence

improvement. On the contrary, the HE-VLSA concerns

more with coherence which is reflected on BLEU, but

yields to the entire semantics corresponding to CIDEr. The

reason is that the GoogLeNet feature possesses weaker

abstractness and representative ability, and more visual

noises may be introduced into the model since the further

mining of the visual semantics in the model with an extra

branch. What is more, the visual noises are further ampli-

fied with element-wise addition operation for feature

fusion, hindering the improvement of model performance.

As for HE-VLSC	/A	, it outperforms other comparable

models on the whole with GoogLeNet feature. Take

HE-VLSC	 as an example, it performs better than HE-

VLSC on all evaluation metrics but CIDEr. Additionally,

the HE-VLSA	 is also superior to HE-VLSA on each

metric. In particular, the CIDEr of HE-VLSA	 outperforms

HE-VLSA by 4.6. However, the comparison trend of the

two models is opposite to that of HE-VLSA and HE-VLSC

on CIDEr. It reveals that the element-wise addition has the

ability to enhance the response of features to semantic

concepts to a certain extent with multi-objective

optimization.

Furthermore, when the ResNet152 feature is employed,

the performance of E-VSC/A is inferior to the baseline

model (E-LSC) in which the language enhancing branch is

used. However, the performance of HE-VLSA in which the

hybrid enhancing of visual and language semantics is

implemented, the performance is improved greatly. Par-

ticularly, the B-4 and CIDEr outperform the baseline model

by 2.4 and 1.4, respectively. Moreover, the performance of

HE-VLSA	 on B-4 and CIDEr surpasses the baseline by

4.2 and 4.4, demonstrating the effectiveness and superiority

of the proposed methods sufficiently. Another remarkable

performance trend is that the model with element-wise

addition (i.e., HE-VLSA and HE-VLSA	) performs better

than that with concatenation (i.e., HE-VLSC and

HE-VLSC	) on most metrics. The possible reason is that

the ResNet152 feature is enough abstract compared to

GoogLeNet, and the extra visual semantics enhancing

branch cannot offer more effective information for the

whole model.

The experimental results of the baseline model (E-LSC)

and the proposed models on MSR-VTT2016 [33] with

GoogLeNet and ResNet152 features are shown in Table 2.

If the GoogLeNet feature is employed, the performance

improvement of each proposed model on MSR-VTT2016

is not as obvious as that on MSVD dataset [2, 32]
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compared to the baseline model. As an example in Table 2,

the baseline model E-LSC commonly performs better than

E-VSC/A on most of the metrics. This is rooted in that the

sentences in MSR-VTT2016 are usually longer and with

richer semantics compared to that in the MSVD dataset,

and more language information can be captured by B-LE

branch. As for HE-VLSC/A and HE-VLSC	/A	, they

achieve better performance than baseline model and pro-

posed E-VSC/A on the whole, but the best HE-VLSA

model only outperforms the baseline model by 1.3 and 2.0

on B-4 and CIDEr, respectively. Also, the better

HE-VLSA	 compared to HE-VLSC	 is superior to the

baseline by 0.9 and 1.2. On the other hand, the performance

of HE-VLSC	/A	 is inferior to HE-VLSC/A generally,

which goes the opposite of the performance trend on

MSVD. The possible reason is that the MSR-VTT2016 is

relatively clean and there are fewer visual and language

noises compared to MSVD, and the model is difficult to be

disturbed with the errors from B-LE and B-VE, limiting the

generalization ability of the model. At the test stage, the

lower prediction accuracy of the two branches will weaken

the fusion performance of the final word prediction.

And if the ResNet152 feature is employed, the perfor-

mance trend is similar to that GoogLeNet feature is

employed from the comparison between baseline model E-

LSC and E-VSC/A. Another remarkable observation is that

the HE-VLSC	 performs higher than that of HE-VLSA	

when GoogLeNet feature is the visual representation, while

Table 1 Performance

comparison of each proposed

model on MSVD dataset with

GoogLeNet and ResNet152

feature, respectively (the ‘‘M,’’

‘‘R’’ and ‘‘C’’ are the

abbreviations of ‘‘METEOR,’’

‘‘ROUGE L’’ and ‘‘CIDEr,’’

respectively, and the E-LSC is

actually the baseline model)

Feature Model B-1 B-2 B-3 B-4 M R C

GoogLeNet E-LSC 76.9 63.6 52.6 41.7 30.8 67.0 61.0

E-VSC 78.2 65.6 55.3 45.3 32.1 68.9 66.5

E-VSA 77.5 64.5 53.7 43.1 31.7 68.1 64.2

HE-VLSC 78.6 65.5 55.1 45.0 31.7 68.7 67.2

HE-VLSA 77.9 64.9 54.2 43.7 31.6 68.3 62.5

HE-VLSC	 80.6 67.9 57.1 46.2 32.5 69.6 66.4

HE-VLSA	 79.1 66.3 55.7 45.0 32.5 69.2 67.1

ResNet152 E-LSC 79.9 67.5 56.7 45.8 33.5 70.0 74.8

E-VSC 79.9 67.8 57.1 46.1 33.6 70.8 73.6

E-VSA 80.5 68.4 57.8 46.8 33.3 70.5 73.0

HE-VLSC 80.0 69.0 59.0 48.6 33.2 70.1 74.0

HE-VLSA 81.1 69.3 58.9 48.2 33.8 71.1 76.2

HE-VLSC	 82.3 69.7 59.3 48.9 33.9 71.3 76.5

HE-VLSA	 82.4 70.9 61.0 50.9 34.5 72.1 79.2

Table 2 Performance

comparison of each proposed

model on MSR-VTT2016

dataset with GoogLeNet and

ResNet152 feature, respectively

Feature Model B-1 B-2 B-3 B-4 M R C

GoogLeNet E-LSC 76.5 61.6 48.2 36.8 26.3 58.2 39.6

E-VSC 74.9 60.7 47.2 35.6 25.5 56.4 39.8

E-VSA 75.0 60.4 46.2 34.1 25.2 55.9 37.9

HE-VLSC 76.1 61.7 48.5 37.1 26.4 58.2 40.6

HE-VLSA 77.1 62.8 49.7 38.1 26.8 59.1 41.6

HE-VLSC	 76.4 62.1 48.6 36.7 26.1 57.8 40.6

HE-VLSA	 77.6 63.2 49.7 37.7 26.6 58.8 40.8

ResNet152 E-LSC 78.2 63.8 50.2 38.5 27.4 59.5 44.6

E-VSC 76.3 61.9 47.6 35.3 25.7 56.9 41.6

E-VSA 76.9 62.7 48.6 36.3 25.7 56.9 41.7

HE-VLSC 78.4 63.3 49.1 37.0 27.0 58.8 43.8

HE-VLSA 78.9 64.7 51.1 39.1 27.2 59.8 45.1

HE-VLSC	 78.8 64.4 50.5 38.5 26.9 59.2 44.6

HE-VLSA	 79.1 64.9 51.0 38.6 27.2 59.8 44.3
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the results are opposite if ResNet152 feature is in use. The

trend indicates that the performance improvement of con-

catenation of the more abstract visual feature (i.e.,

ResNet152) is limited compared to the operation of ele-

ment-wise addition.

Besides the aforementioned model evaluation and dis-

cussion, the performances of HE-VLSC#/A# on MSVD

[2, 32] and MSR-VTT2016 [33] with GoogLeNet feature

and ResNet152 feature are presented in Table 3 and

Table 4, respectively. For comparison, the E-VSC#/A#

and E-LSC#/A# are evaluated, where the output proba-

bility from only visual semantics enhancing-based module

or language enhancing-based module is used to word pre-

diction, respectively, during the testing. From the results in

Table 3, it is obvious that the performance of HE-VLSC#/

A# is greatly improved compared to E-VSC#/A# or

E-LSC#/A# on all evaluation metrics on MSVD. As an

example, the B-4 and CIDEr of HE-VLSA# reach 47.8 and

69.4, respectively, on MSVD with GoogLeNet feature.

And when ResNet152 feature is employed, the perfor-

mance on the two metrics achieves to 52.4 and 81.5,

respectively, outperforming that the E-LSC# or E-VSC# is

used alone. Additionally, the proposed HE-VLSC#/A#

also performs well on MSR-VTT2016 regardless of using

GoogLeNet or ResNet152 feature, and the performance of

the model is improved greatly in comparison with E-LSC#/

A# and E-VSC#/A#: (The results are presented in

Table 4.)

In addition, it can be found that the models with dif-

ferent fusion methods perform quite different from exper-

imental results in Table 3 and Table 4. In general, the

models with the fusion method of feature concatenation

possess better performance than that with element-wise

addition. The reason can be attributed to that there is no

loss of feature with concatenation operation, and the rep-

resentation is relatively more complete and comprehensive.

However, the element-wise addition improves the sparsity

of features, retains the dimension and speeds up iteration,

but certain available information may be obliterated.

4.3.2 Example of generated sentence and discussion

The weight assigning of a, b and c belonging to m-S2VT,

B-LE and B-VE, respectively, is investigated. The perfor-

mance trends under different ratios of a : b : c on MSVD

dataset are presented in Fig. 8, where Fig. 8a, b shows the

performance trends with GoogLeNet feature, while Fig. 8c,

d shows those with ResNet152 feature. From the compar-

ison, the models including HE-VLSC* and HE-VLSA*

generally get the best performance on B-4 when the ratio of

a : b : c is 6:2:2 or 4:3:3 is employed. However, if the ratio

of 4:3:3 is employed, the performance on CIDEr is not

satisfactory when the GoogLeNet feature is used. The

possible reason is that the modules of B-LE and B-VE can

be treated as auxiliary branches for visual and language

semantics enhancing and compensation since incomplete

information is used as their input. On the contrary, the

module m-S2VT receives the complete multimodal infor-

mation and fuses the three modules outputs for word pre-

diction, and it behaves better than the above two modules.

And hence, the a is usually given bigger weights than b and

c. The ratio of a : b : c is set to 8:1:1 or 6:2:2 empirically in

our work.

In addition, a few examples of reference and generated

sentences with the baseline and proposed models are pre-

sented in Fig. 9, which are from MSVD and MSR-

VTT2016, respectively. From the examples, the generated

Table 3 Performance

comparison of E-VSC#/A#,

E-LSC#/A# and HE-VLSC#/

A# on MSVD dataset with

GoogLeNet and ResNet152

features, respectively

Feature Model B-1 B-2 B-3 B-4 M R C

GoogLeNet E-VSC# 79.1 67.0 56.5 46.2 31.2 67.7 65.9

E-LSC# 79.0 66.0 55.2 44.4 31.8 68.5 64.2

E-VSA# 79.1 67.0 56.3 45.7 31.5 67.8 66.8

E-LSA# 79.1 66.4 55.9 45.2 31.6 68.0 65.9

HE-VLSC# 79.8 67.9 57.7 47.5 32.1 69.3 67.9

HE-VLSA# 80.5 68.7 58.4 47.8 32.7 69.3 69.4

ResNet152 E-VSC# 81.0 69.8 59.4 48.4 32.0 68.5 73.9

E-LSC# 81.6 70.3 60.3 49.9 33.7 70.9 77.3

E-VSA# 81.9 71.2 61.0 50.7 33.7 70.5 78.8

E-LSA# 81.5 70.2 60.1 49.0 33.9 71.1 77.4

HE-VLSC# 83.0 72.4 62.8 52.4 34.4 71.6 81.5

HE-VLSA# 82.3 71.6 61.9 51.6 34.1 71.6 79.4
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sentences with the proposed models possess better quality

than the baseline model and E-VSC/A on the whole. Par-

ticularly, the sentences generated with HE-VLSC# are

superior to those with other comparable models in accuracy

and semantics. As an example in Fig. 9a which is from

MSVD, the visual content is described comprehensively

and accurately in the sentence generated with HE-VLSC#.

In contrast, both the grammar and logic are not correct in

the sentence with the baseline model. As for other com-

parable models, the wrong words are usually predicted

(e.g., ‘‘rice,’’ ‘‘water’’). Similarly, the used sentence ele-

ments of ‘‘A group of people’’ in the generated sentence

with HE-VLSC# is more accurate than ‘‘A woman’’ in that

with baseline model according to the video to be described

in Fig. 9c which is from MSR-VTT2016.

From Fig. 9, an interesting fact can be observed that

different models may be sensitive to different videos. Take

Fig. 9b for example, the baseline model flatly describes the

video, while the generated sentences with HE-VLSC/A and

HE-VLSC	/A	 are generally coarser. However, the

Table 4 Performance

comparison of E-VSC#/A#,

E-LSC#/A# and HE-VLSC#/

A# on MSR-VTT2016 dataset

with GoogLeNet and

ResNet152 features,

respectively

Feature Model B-1 B-2 B-3 B-4 M R C

GoogLeNet E-VSC# 77.1 62.5 48.7 36.6 26.2 58.5 40.6

E-LSC# 77.2 62.5 48.9 36.9 26.4 58.8 40.5

E-VSA# 76.7 61.9 48.3 36.5 26.0 58.2 40.1

E-LSA# 76.9 62.4 48.9 37.1 26.6 58.7 41.0

HE-VLSC# 78.4 64.1 50.7 38.7 26.9 59.6 42.4

HE-VLSA# 77.7 63.3 49.8 38.0 26.8 59.2 42.1

ResNet152 E-VSC# 78.1 63.7 49.6 37.4 26.5 58.8 43.9

E-LSC# 79.4 65.3 51.3 38.9 27.3 59.8 45.4

E-VSA# 78.5 64.1 50.0 37.6 26.7 58.9 43.9

E-LSA# 79.3 65.1 51.5 39.2 27.3 60.1 44.7

HE-VLSC# 79.6 65.8 51.8 39.4 27.4 60.2 46.1

HE-VLSA# 80.0 66.4 52.8 40.4 27.6 60.7 46.0

Fig. 8 Performance trend

comparison on B-4 and CIDEr

under different ratios of a : b : c
on MSVD dataset (a and b are

with GoogLeNet feature, while

c and d are with ResNet152

feature)
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sentences with HE-VLSC/A and HE-VLSA	 behave more

appropriately in Fig. 9d, by contrary, the description is

ambiguous in sentences with HE-VLSA# (‘‘unk’’ is used,

which stands for ‘‘unknown’’). Most important of all, there

is still a great gap to be bridged for generated sentences

compared to references in flexibility and semantics.

The average time cost (GPU time) comparison of the

baseline model and the proposed models for one sentence

generation is given in Table 5. From the results, it is

obvious that the E-VSC and E-VSA cost less time than the

baseline model (E-LSC) whether the GoogLeNet feature or

ResNet152 feature is employed. And from comparison

between the time cost of HE-VLSC and HE-VLSA, the

HE-VLSC takes more time than HE-VLSA since the ele-

ment-wise addition operation does not extend the dimen-

sion of the feature for word prediction. However, when

Fig. 9 Examples of reference,

generated sentence with

different models (the

ResNet152 is employed in all

models, and the samples of

a and b are from MSVD dataset,

while the c and d are from

MSR-VTT2016 dataset. The

‘‘Ref’’ is the selected references

of the corresponding videos)

Table 5 Average time

cost (ms) (GPU time) of each

model for one sentence

generation with GoogLeNet

feature and ResNet152 feature

Model Time cost (GoogLeNet) Time cost (ResNet152)

Baseline (E-LSC) 48.82 71.99

E-VSC 48.24 56.40

E-VSA 44.10 53.52

HE-VLSC 81.51 63.65

HE-VLSA 46.49 50.82

HE-VLSC	 140.05 146.51

HE-VLSA	 125.34 120.58

HE-VLSC# 150.00 112.64

HE-VLSA# 107.01 118.79
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HE-VLSC	/A	 is implemented, the time cost increases

significantly. The reason is that each branch (module) such

as B-LE, B-VE and m-S2VT in HE-VLSC	/A	 has to

calculate the probability vector which will be fused for

final word prediction. Additionally, similar to the trend of

HE-VLSC/A, the HE-VLSA	 possesses a lower time cost

than HE-VLSA	, which also indicates the concatenation

operation consumes more time than element-wise addition

operation.

As for the parameter scale of each module, there are

21.81 million and 0.51 million parameters for word

embedding and visual feature dimension reduction,

respectively (suppose the GoogLeNet feature is employed).

In m-S2VT, about 12.60 million parameters are contained.

And for B-LE and B-VE, the parameter scales are about

6.30 million and 8.40 million, respectively. Regarding the

output module, it possesses a relatively large scale gener-

ally, with about 74.40 million parameters for one branch.

Therefore, the parameter scales of HE-VLSA and HE-

VLSC are about 124.02 million and 198.42 million,

respectively, while when the multi-objective strategy is

employed, the scales increase sharply to 272.82 million and

347.22 million in the two models (HE-VLSA	 and

HE-VLSC	). Additionally, the HE-VLSC# has the largest

scale, with about 359.82 million parameters. By contrast,

the scale is only about 211.02 million in HE-VLSA#. The

comparison details are presented in Table 6.

4.3.3 Comparison with the state-of-the-art methods

Performance comparison to the popular models is made,

and the results are shown in Tables 7 and 8. It is obvious

that the proposed HE-VLSA	(R), HE-VLSA#(R) and

HE-VLSC#(R) (where the ‘‘R’’ represents that the

ResNet152 feature is used in the model) achieve compet-

itive performance on MSVD compared to the state of the

art. Especially in the HE-VLSC#(R) model, it outperforms

Table 6 Parameter scale comparison of each model

Model Parameter scale (�106)

Baseline (E-LSC) 189.51

E-VSC 170.31

E-VSA 95.91

HE-VLSC 198.42

HE-VLSA 124.02

HE-VLSC	 347.22

HE-VLSA	 272.82

HE-VLSC# 359.82

HE-VLSA# 211.02

Table 7 Performance comparison to the other popular models on

MSVD dataset

Model B-1 B-2 B-3 B-4 M C

FGM [55] – – – 13.7 23.9 –

LSTM-YT [36] – – – 33.3 29.1 –

S2VT [14] – – – – 29.8 –

ReBiLSTM [56] 79.0 60.5 48.4 37.3 30.3 –

HRNE [17] 79.2 66.3 55.1 43.8 33.1 –

SA [16] 80.0 64.7 52.6 41.9 29.6 51.7

LSTM-E [15] 78.8 66.0 55.4 45.3 31.0 –

LSTM-GAN [31] – – – 42.9 30.4 –

GRU-RCN [57] – – – 43.3 31.6 67.8

h-RNN [58] 81.5 70.4 60.4 49.9 32.6 65.8

ASTAR [59] – – – 51.7 36.4 72.2

hLSTMat [60] 82.9 72.2 63.0 53.0 33.6 73.8

aLSTMs [61] 81.8 70.8 61.1 50.8 33.3 74.8

M3-IC [62] 82.5 72.4 62.8 52.8 33.3 –

MS-RNN [63] 82.9 72.6 63.5 53.3 33.8 74.8

SCN-LSTM [64] – – – 51.1 33.5 77.7

GRU-EVEhftþsem [54] – – – 47.9 35.0 78.1

TDConvED [65] – – – 53.3 33.8 76.4

HE-VLSA	(R) 82.4 70.9 61.0 50.9 34.5 79.2

HE-VLSA#(R) 82.3 71.6 61.9 51.6 34.1 79.4

HE-VLSC#(R) 83.0 72.4 62.8 52.4 34.4 81.5

Table 8 Performance comparison to the other popular models on

MSR-VTT2016 dataset

Model B-4 M R C

ReBiLSTM [56] 33.9 26.2 – –

LSTM-GAN [31] 36.0 26.1 – –

aLSTMs [61] 38.0 26.1 – –

M3-IC [62] 38.1 26.6 – –

MS-RNN(R) [63] 39.8 26.1 59.3 40.9

RecNetlocal [66] 39.1 26.6 59.3 42.7

ruc-uva [67] 38.7 26.9 58.7 45.9

VideoLAB [61] 39.1 27.7 60.6 44.1

Aalto [68] 39.8 26.9 59.8 45.7

v2t navigator [69] 40.8 28.2 60.9 44.8

PickNet [29] 41.3 27.7 – 44.1

TDConvED [65] 39.5 27.5 – 42.8

GRU-EVEhftþsem [54] 38.3 28.4 – 48.1

HE-VLSA(R) 39.1 27.2 59.8 45.1

HE-VLSA#(R) 40.4 27.6 60.7 46.0

HE-VLSC#(R) 39.4 27.4 60.2 46.1

5974 Neural Computing and Applications (2022) 34:5959–5977

123



the popular GRU-EVEhftþsem [54] by 3.4 on the CIDEr

metric. On the MSR-VTT2016 dataset [33], the proposed

HE-VLSA(R), HE-VLSA#(R) and HE-VLSC#(R) also

possess better performance than most of the popular works.

However, the proposed model is inferior to GRU-

EVEhftþsem [54] on CIDEr, though they perform better than

GRU-EVEhftþsem [54] on B-4 metric, which indicates that

the proposed methods remains to be further improved on a

relatively large and complex dataset.

5 Conclusion

A framework with hybrid visual and language semantics

enhancing and complementary is proposed in this work,

which aims to mine and use visual information efficiently,

and compensate each other of vision and language infor-

mation. Inspired by Deep-Glove model, a visual semantics

enhancing branch is developed and appended on a multi-

modal-based module with concatenation or element-wise

addition operation to further take advantage of visual

information. On the basis, the language and visual

semantics enhancing branches, and multimodal-based

module are integrated into a wider and more effective

model. Additionally, the multi-objective optimization

strategy is employed and developed a new framework to

further optimize the proposed model and boost perfor-

mance. Experiments on MSVD and MSR-VTT2016 data-

sets are conducted, and competitive results are achieved.

From the comparison, the proposed models are more

effective and superior compared to not only the baseline

model but also the other popular methods. Specifically, if

the more abstract visual feature (e.g., ResNet152) is

employed, the visual semantics enhancing method can

effectively supplement visual information to the model and

better performance can be obtained compared to language

semantics enhancing. Alternatively, the model with a lan-

guage semantics enhancing branch performs better than

that with visual semantics enhancing branch. And when

both visual and language semantics enhancing methods are

employed, the performances are further improved gener-

ally. Particularly, the variant HE-VLSC# possesses the

competitive performance compared to the state-of-the-art

methods on both datasets.

The results indicate that the language semantics

enhancing is better for the situation that the reference

sentences are clean and with rich semantics, while the

visual semantics enhancing is more adaptable when there

are more extra noises in sentences. Naturally, the integra-

tion of the two methods facilitates to complementary of

visual and language information and further performance

improvement. Furthermore, the concatenation operation for

the feature is more sensitive to complete information in

each branch and performance balance of different modules

in that the HE-VLSC# performs more excellent than other

models. However, the accuracy and semantics of the gen-

erated sentences remain to be further improved. Actually,

the proposed methods can be introduced into other popular

and powerful frameworks to further boost performance. In

the future work, more prior knowledge such as visual

concept and attribute, the attention unit and related vari-

ant (e.g., Transformer), and reinforcement learning strat-

egy will be introduced into the proposed framework for

further performance improvement.
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