
ORIGINAL ARTICLE

Protection of image ROI using chaos-based encryption and DCNN-
based object detection

Wei Song1 • Chong Fu1,2 • Yu Zheng3 • Lin Cao4 • Ming Tie5 • Chiu-Wing Sham6

Received: 27 March 2021 / Accepted: 2 November 2021 / Published online: 12 January 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Images always contain sensitive information, e.g., a clear face on a photo, which needs to be protected. The simple way is

to encrypt the whole image for hiding ‘‘everything’’ securely, but it brings huge amounts of unnecessary encryption

operations. Considering the most sensitive regions of an image, this paper focuses on protecting the important regions, thus

reducing the redundant encryption operations. This paper employs the latest DCNN-based object detection model

(YOLOv4) for choosing regions (i.e., multiple objects) and chaos-based encryption for fast encryption. We analyze object

detection algorithm from a security perspective and modify YOLOv4 to guarantee that all areas of the detected objects are

contained in the output regions of interest (ROI). Later, we propose a multi-object-oriented encryption algorithm to protect

all the detected ROI at one go. We also encrypt the ROI coordinates and embed them into the whole image, relieving the

burden of distributing ROI coordinates separately. Experimental results and security analyses show that all the detected

objects are well protected.
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1 Introduction

With the advancement of cloud storage and social media on

the Internet, massive digital images containing sensitive

information are created and shared daily. Image encryption

protects raw images being accessed by an adversary who

tries to intercept sensitive information. Compared with

textual messages, digital images have the characteristics,

such as a large amount of redundancy and bulk data.

Popular block ciphers such as 3-DES, AES are designed to

encrypt the textual information that consists of a set of

words. Yet, they are not efficient enough to encrypt images

[1]. Recently, applying chaos theory to image encryption

has gained great attention due to the intrinsic properties of

chaos, such as extreme sensitivity to initial conditions and

pseudo-random behavior. Existing algorithms [2–8]

encrypt an entire image without considering common cases

in which only a certain region of the image is sensitive. We

employ the notion of region of interest (ROI) for repre-

senting the sensitive region to be encrypted in an image.

The ROI coordinates are referred to as ROI auxiliary

information. In this paper, our research focuses on ROI-

based encryption.

ROI-based encryption algorithms perform encryption

operation on particular regions that have multiple detected

objects. Two main problems existing in detection are (1)

how to accurately locate the objects and identify their

categories from a vast range of categories; and (2) how to

accomplish the detection process efficiently. Many object
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detection algorithms aim to solve these two problems,

which are classified into geometric representations, statis-

tical classifiers, applying handcrafted feature descriptors,

and discriminative classifiers. In 2012, a deep learning

model called AlexNet [9] achieved a qualitative leap in

classification accuracy in the Large Scale Visual Recog-

nition Challenge (ILSVRC) [10]. Since then, lots of fol-

lowing works on object detection have been proposed

[11–16]. These models are regarded as a promising tool to

provide great help for ROI encryption [17–23].

1.1 Explicit motivation

The focus of most existing ROI encryption methods is

mainly on the design of ROI encryption strategy. Albeit

their success, current usage of object detection algorithms

overlook taking care of security flaws brought by them-

selves. (a). From a security perspective, the output

bounding box does not contain the entire object in most

cases, leading to missing some edge areas of the object.

Under this circumstance, undetected edge area of ROI still

leaks some confidential information, as shown in Fig. 1.

Therefore, we need to modify existing object detection

algorithms to make the bounding box contain the entire

object as much as possible. (b). The second flaw appears in

the decryption process. To decrypt ciphered ROI correctly,

ROI auxiliary information needs to be sent to the receiver

side. Almost all the existing ROI-based encryption algo-

rithms directly send the ROI auxiliary information to the

receiver. However, any eavesdropper can easily know ROI

positions of an targeted image. We need to encrypt the ROI

auxiliary information before sending them. (c). The third

concern is that most ROI encryption algorithms are

designed for encrypting one object at one go. These

schemes cannot be extended to a multi-object scenario

since protecting multi-object in one image brings extra

difficulty in processing overlapping areas.

1.2 Our solution and contribution

To the ends aforementioned, we propose a multi-object

encryption algorithm based on chaos and coordinates hiding.

The latest object detection algorithm, YOLOv4 [24], which

has high accuracy and speed, is employed as our building

block. It is modified to contain the entire object of a ROI.

Notably, our method is generic for applying to other DCNN-

based object detection models. In the encryption process, all

the pixels are marked in all ROI, thus enabling both over-

lapping and non-overlapping areas to be encrypted with the

same number of rounds. This step guarantees same encryp-

tion strength for all ROI. Then, we encrypt the ROI auxiliary

information and employ difference expansion to embed the

ciphered coordinates into the entire image. The embedding

positions are controlled by the data hiding key. Both the

encryption key and the data hiding key are required to

decrypt ciphered image correctly at a receiver side. The

above three parts are integrated into a hybrid-secure ROI

solution. To our best knowledge, we are the first to analyze

object detection from a security perspective and propose a

solution, protecting both ROI and its auxiliary information.

Summary of our contribution.

• From a security perspective, the bounding boxes output

by our modified YOLOv4 can contain all areas of

objects.

• We provide hybrid-protection to protect both sensitive

ROI and its auxiliary information.

• Our encryption supports to protect multiple objects at

one go, and guarantees same encryption strength to

resist various security attacks.

• Embedding ROI auxiliary information removes the

trouble of separately distributing the image and its ROI

auxiliary information.

• For completeness in practical and theoretical parts, we

conduct experimental evaluation and security analyses

and the results shows the all ROI are well-protected.

The rest of this paper is organized as follows. Section 2

provides related works of ROI encryption, YOLO’s evo-

lution, and reversible data hiding. In Sect. 3, we explain the

security concerns caused by current DCNN-based object

detection algorithms. Then, we introduce our algorithm in

details. Experimental results and security analyses are

reported in Sect. 4. Section 5 concludes this paper.

2 Background and related works

This section comprises three parts: (1) Review of ROI

encryption; (2) evolution of YOLO-based object detection

and our choice; (3) introduction to reversible data hiding

and our selected algorithm.Fig. 1 An example of leaking edge area of the detected object
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2.1 The ROI-based encryption algorithms

In [17], the target regions are detected by a geometric

active contour model. In [18], authors divide the medical

image into several blocks. They use a statistical measure on

each block to determine whether it is ROI or not. One

problem is over-broad identification of ROI caused by

involving meaningless ROI, such as date and tags. ROI

with irregular shapes are chosen and detected arbitrarily in

[19]. Yet, we need an automatic detection tool that saves

time and effort. In [20], the ROI is detected by [25]. After

encryption, steganography is utilized to protect the signif-

icant bits of encrypted pixels. In the decryption process, a

receiver obtains an encrypted image and its corresponding

ROI boundary from the sender. The concern is no protec-

tion of ROI boundaries in the distribution process. In

[21, 22], ROI is detected via a Gaussian mixture model and

HOG feature extraction. In [23], YOLOv3 [26] and UNet

[27] are used for ROI detection. But security flaws men-

tioned in Sect. 1 still remain.

For the ROI encryption, the security requirement should

not be limited to the design of encryption algorithm.

Otherwise, the encryption scheme is incomplete. Whether

the detected ROI contains the entire object and the pro-

tection of ROI auxiliary information should also be con-

sidered. In this paper, our goal is to design a complete ROI

encryption algorithm. The specific details of the proposed

algorithms are stated in Sect. 3.1.

2.2 The evolution of YOLO-based object
detection

YOLO treats object detection as a regression problem. The

features of the entire image are used to make predictions.

YOLO provides high accuracy and good generalization

ability. Given YOLO, many improved algorithms are

proposed, such as YOLOv2 [28], YOLOv3, YOLO3D [29],

and YOLO-LITE [30].

Different from the above algorithms consuming lots of

hardware resources or with unsatisfactory accuracy,

YOLOv4 can achieve a good trade-off between accuracy

and speed with only a 1080Ti GPU. Thus, we employ it as

our tool for fast detection. Its output bounding boxes are

modified to make the detected ROI contain the entire

objects as much as possible. Detailed operations are

explained in Sect. 3.2.

2.3 The reversible data hiding

Reversible data hiding means that we can embed/extract

some confidential messages losslessly into/from cover

media. In recent years, many excellent reversible data

hiding algorithms have been proposed [31–38]. These

works aim to embed as much data as possible in plain

domain or encrypted domain. Yet, our encryption algo-

rithm outputs a partially encrypted image, in which only

ciphered ROI auxiliary information needs to be embedded.

If we embed them into plain regions or encrypted regions

of image, the embedding operation must be done on the

basis of knowing the boundary information of ROI. How-

ever, a receiver cannot extract the ciphered ROI auxiliary

information without ROI boundaries, since the sender has

embedded them into the whole image.

Our goal is to design a data hiding algorithm that can

embed/extract the secret information into/from any regions

with low computation complexity. As the amount of data to

be embedded is small, we want to divide them into many

parts and randomly embed them into the whole image and

the embedding position can be controlled by the data hid-

ing key. Luckily, the reversible data hiding using a dif-

ference expansion (DE) [39] can meet our requirements.

The method uses the redundancy between pixel pairs to

embed data. As long as the embedding condition (no

overflow and underflow problems after embedding a bit

into the difference value of two adjacent pixels) is satisfied,

we can embed the data regardless of the pixel pairs posi-

tion. The detailed embedding process is described in

Sect. 3.3.

3 The proposed encryption algorithm

To our best knowledge, almost no ROI-based encryption

algorithms provide security by protecting ROI and its

auxiliary information at the meantime. Current schemes are

designed for encrypting only one object, which is not easy

to extent to multi-object settings. To solve this problems,

we design a scheme for a multi-object setting without

leaking any ROI information.

The encryption pipeline is shown in Fig. 2a. We first use

our modified YOLOv4 to get the ROI auxiliary informa-

tion. Then we use KeyROI and Keyeninfo to encrypt the ROI

and its corresponding auxiliary information, respectively.

At last, we use Keyembed to embed the ciphered ROI aux-

iliary information into the cipher-image for obtaining the

marked cipher-image. The decryption process is roughly

the reverse of encryption process as shown in Fig. 2b.

This section is organized as follows, we first analyze the

security flaws in existing algorithms and describe how we

solve them. In the second part, the multi-object-oriented

encryption algorithm is introduced. Next, we explain how

we embed the ciphered ROI auxiliary information into the

cipher-image. The last part is the decryption process.
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3.1 The modified YOLOv4

Let’s take Fig. 3 as an example. Figure 3a–d shows the

plain-image, YOLOv3’s output, YOLOv4’s output, and our

modified YOLOv4’s output, respectively. The outputs of

YOLO-based object detection model are three bounding

boxes, each of which contains five predictions. They

involve the center point coordinates, the width/height of

bounding box, and confidence scores, respectively. Here,

confidence scores indicate the probability of containing an

object in a box.

The three bounding boxes are selected from all the

bounding boxes predicted by the model. The selection uses

Non-Maximum Suppression (NMS). Suppose that there are

nc object classes, C ¼ fc0; c1; :::; cnc�1g and nb bounding

boxes B ¼ fbox0; box1; :::; boxnb�1g. For object class c0, the

model sorts these boxes in descending order according to the

probability that the object class contained in each box is c0.

Then, we get BSorted ¼ fboxSorted0; boxSorted1;

:::; boxSortednb�1g Next, we calculate the IOU between

boxSorted0 and other boxes. If the IOU is larger than a user-

defined threshold, the model determines that the two boxes

predict the same object at the same location. The smaller of

two predicted probability is set to 0, which means the cor-

responding box is deprecated. For the rest of boxes,

fboxSorted1; boxSorted2; :::; boxSortednb�1g, repeat the

above process to select the best box that predicts the same

object. And for the other classes, fc1; c2; :::; cnc�1g, repeat

the above process to get the best boxes that predict a specific

object with a specific class. As shown in Fig. 3b and c, the

three bounding boxes selected by YOLOv3 and YOLOv4 are

the best boxes that contain dog, person, and horse.

The detection results of Fig. 3b and c are acceptable in

terms of accuracy and speed. However, there is a risk of

leaking information of edge areas. The reason is that some

bounding boxes with the edge areas of object are depre-

cated when performing NMS. To solve the security prob-

lems, the NMS process is modified to obtain the bounding

box that contains entire object. We name this kind of

bounding box as a greedy box.

The detailed process is described in Alg. 1. Here,

nc, nb, thresh, and detboxes represent the number of object

classes, the number of detected bounding boxes, the value

of user-defined threshold and the array of detected

bounding boxes, respectively. The data type of each ele-

ment in detboxes is declared as a structure including two

members, a bounding box with (x, y, w, h) and the prob-

abilities of detected objects belonging to all classes. The

process in the lines of 2-7 is the same as the second

paragraph in this subsection. The core idea is to integrate

the bounding boxes that predict the same object in the same

position. For a specific object in a specific position, the gB

is the greedy box. At first, the gB is initialized as the same

size as the bounding box, which predicts the object best.

Then we traverse the other bounding boxes. When gB

meets another bounding box, b, it compares its boundary

with b to get a smaller left boundary, a larger right

boundary, a smaller top boundary, and a larger bottom

Fig. 2 The working pipeline of proposed algorithm
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boundary between itself and b. Note that the coordinate

counter starts at 0 from left to right and top to bottom, so

the coordinates values on the left and top are smaller.

According to the new boundary values, gB calculate its

new values of (x, y, w, h). Then, b is deprecated. After the

traversal is over, the model outputs the greedy bounding

box, gB, that contains the entire object. The detection result

of our greedy detection algorithm is shown in Fig. 3d.

Compared with YOLOv3 and YOLOv4, our detection

algorithm successfully contains the entire object, so the

experimental result is acceptable from a security

perspective.

3.2 The encryption of multiple objects

The encryption process comprises two stages, permutation

and diffusion. In the previous works, most encryption

structures are designed for encrypting a single object. If we

still utilize the existing algorithm to encrypt multiple

objects, for each single object, the encryption influence is

confined within itself and does not spread to other objects.

As a result, the algorithm does not have the avalanche

effect. In particular, tiny changes in a plaintext or the key

should greatly impact the ciphertext. Another problem is

that if we encrypt objects one by one, overlapping regions

of multiple objects are repeatedly encrypted. This problem

results in that the encryption strength of overlapping

regions is different from that of non-overlapping regions.

To solve the above problems, we design an encryption

algorithm for protecting multiple objects. Our permutation

strategy can swap a pixel position with another pixel in any

regions, achieving the total shuffling of pixels in all

bounding boxes. And in diffusion stage, the encryption

influence of one region can be spread to other regions .

Fig. 3 The results of object detection. a The person image, b The detection result of YOLOv3, c The detection result of YOLOv4, d The

detection result of our modified YOLOv4
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Algorithm 1 The process of generating greedy bound-
ing boxes.
Input: nc,nb, thresh, detboxes
Output: The greedy bounding boxes.
1: function getGreedyBoxes(nc,nb, thresh, detboxes)
2: for k = 0 to nc − 1 do
3: Sort the detected boxes detboxes
4: for i = 0 to nb − 1 do
5: if detboxes[i ].prob[k ] == 0 then
6: continue
7: end if
8: Bbox gB ← detboxes[i ].box
9: for j = i + 1 to nb − 1 do

10: Bbox b = detboxes[j ].box
11: gbLx ← gB .x − gB .w/2
12: gbRx ← gB .x + gB .w/2
13: gbTp ← gB .y − gB .h/2
14: gbBt ← gB .y + gB .h/2
15: if IOU(detboxes[i].box, b) > thresh then
16: minLx ← min(gbLx, b.x − b.w/2)
17: maxRx ← max(gbRx , b.x + b.w/2)
18: minTp ← min(gbTp, b.y − b.h/2)
19: maxBt ← max(gbBt , b.y + b.h/2)
20: gB .x ← (minLx + maxRx)/2
21: gB .y ← (minTp + maxBt)/2
22: gB .w ← (maxRx − minLx)/2
23: gB .h ← (maxBt − minTp)/2
24: detBoxes[j ].prob[k ] ← 0
25: end if
26: end for
27: detBoxes[i ].box = gB
28: end for
29: end for
30: end function

The encryption scheme is depicted in Fig. 4 and the

detailed encryption process is described in Alg. 2. Here

numROI represents the number of ROI, roiBoxes. ImgDat

is the 2-D image data and ðx0; y0; z0; u0Þ is the initial con-

dition of Jia system. To simplify the calculation of the

coordinates during the encryption process, we first extract

the pixels in each bounding box to a 1-D array, rdt. To

avoid the pixels in overlapping regions being processed

repeatedly, a flag for each pixel is set to record whether it

has ever been read when extracting pixels. The above

process corresponds to the lines 2-11 of Alg. 2. During

encryption process, Jia system [40] is iterated to generate

the keystreams for permutation and diffusion. Mathemati-

cally, the system is defined by,

dx

dt
¼ �aðx� yÞ þ u;

dy

dt
¼ �xzþ rx� y;

dz

dt
¼ xy� bz;

du

dt
¼ �xzþ du;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð1Þ

where a, r, b are the system parameters, and d is the con-

trol parameter. When a ¼ 10; r ¼ 28; b ¼ 8=3 and

0:85\d\1:3, the system exhibits chaotic behavior. And

Runge–Kutta fourth-order method is used to solve Eq.(1),

and the step length is 0.0005.

The whole permutation process is shown in the line 12-

20. Jia system is pre-iterated for T0 times to avoid the

harmful effect of the transitional procedure, where T0 is a

user-defined value. Then, in the 1-D array, rdt, we perform

pixel swapping strategy, which means that each pixel

swaps positions with the a random pixel behind it. The

permutation coordinates are extracted from generated

chaotic sequences. The diffusion process is shown in the

line 21-28. cdt�1 is a user-defined value, here is 128. L is

the gray level, for a 24-bit RGB color image, L ¼ 256.

The above process can be applied for several rounds to

obtain a satisfactory encryption effect. The encryption

effect is shown in Fig. 5, it can be seen that all parts of the

objects are protected. Figure 6 can more intuitively depict

how our encryption algorithm spreads the encryption

influence of a certain region to other regions.

Fig. 4 The encryption structure
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Algorithm 2 The proposed encryption algorithm for
multiple objects.
Input: numROI , roiBoxes, ImgDat , x0 , y0 , z0 , u0
Output: The cipher-image with encrypted ROI.
1: function roiEncryption(numROI , roiBoxes, ImgDat ,

x0 , y0 , z0 , u0 )
2: Set the rdFlg of all the pixels in imgDat to 0.
3: for i = 0 to numROI − 1 do
4: Check the rdFlg of each pixel pix in roiBoxes[i ]
5: if rdFlgpix == 0 then
6: Load it into the 1-D array rdt
7: rdFlgpix ← 1
8: else
9: continue

10: end if
11: end for
12: Iterate Jia system for lenrdt − 1 times to generate

chaotic sequences, seqPm
13: for i = 0 to lenrdt − 2 do
14: while |seqPmi| > 1 do
15: seqPmi /= 10
16: end while
17: Posi ← i + (1 + (int64) |seqPmi| × 1015) mod

((lenrdt − 1) − i)
18: end for
19: Posi+1 ← lenrdt − 1
20: Traverse the array, rdt , and for each pixel in posi-

tion px, swap the value of rdt [px ] and rdt [Pospx ], and get
shuffled data, rsfdt .

21: Iterate Jia system for lenroiDat times to generate
chaotic sequence, seqDf

22: for i = 0 to lenrdt − 1 do
23: while |seqDf i| > 1 do
24: seqDf i /= 10
25: end while
26: ksdf i ← (int64)(|seqDf i| × 1015) mod L)
27: cdti = ksdf i ⊕ {[rsfdti + ksdf i] mod L} ⊕ cdti−1
28: end for
29: Write cdt back to the image according to the ROI

coordinates information
30: end function

3.3 The protection of ROI auxiliary information
using reversible data hiding

In this subsection, we first give the basic concept of the

reversible data hiding using DE, and present the idea of

using DE to embed/extract the ROI auxiliary information.

The core idea of difference expansion is the integer Haar

wavelet transform. Assume there is a pixel pair (x, y), we

define the values of integer average, intAver and the value

of difference, diffV by

intAver ¼ bxþ y

2
c; diffV ¼ x� y: ð2Þ

The inverse of Eq. (2) is

Fig. 5 The cipher-image with encrypted ROI

Fig. 6 The process of encrypting multiple objects

Neural Computing and Applications (2022) 34:5743–5756 5749

123



x ¼ intAver þ bdiffV þ 1

2
c; y ¼ intAver � bdiffV

2
c: ð3Þ

For an 8-bit gray image, the gray scale L ¼ 256, so the

range of pixel value is [0, 255], we have

0� intAver þ bdiffV þ 1

2
c� 255;

0� intAver � bdiffV
2

c� 255:

ð4Þ

And Eq. (4) is equivalent to

diffVj j � 2ð255 � intAverÞ; if 128� intAver� 255

diffVj j � 2intAver þ 1; if 0� intAver� 127:

(

ð5Þ

Next we embed a bit b into diffV, and we get new

diffVnew ¼ 2 � diffV þ b. According to Eq. (5), if

diffVnewj j �minð2ð255 � intAverÞ; 2intAver þ 1Þ;

then we call such diffV is expandable, and we can embed

ciphered ROI auxiliary information into the difference

value of such pixel pairs. The new values of pixel pair are

x0 ¼ intAver þ bdiffVnewþ1

2
c; y0 ¼ intAver � bdiffVnew

2
c:

ð6Þ

During the extraction process, we extract the bit from the

new difference value, then we get the original difference

value. And we can use Eq.(7) to restore the original pixel

values,

x ¼ x0 � bdiffV þ 1

2
c; y0 ¼ intAver þ bdiffV þ 1

2
c: ð7Þ

The process of embedding ciphered ROI auxiliary infor-

mation is described in Alg 3. Here, roiInfo represents the

data of plain ROI auxiliary information, cimgRDat is the

cipher-image with encrypted ROI. H and W are the height

and width of image. The length of image is lenimg, whose

value is 3 � H �W . lgx0 is the initial value of logistic map

[41], which is defined by

xnþ1 ¼ lxnð4 � xnÞ; xn 2 ð0; 1Þ ð8Þ

where xn is the state variable, and l is control parameter

whose range is (0, 4]. When l ¼ 4, the logistic map has the

best pseudo-randomness.

The data type of each ROI coordinate value is declared

as integer, which needs 64 bits to represent. They are stored

in roiInfo in bytes. Next, a one-bit bitmap of the image with

ciphered ROI is generated. If the difference value of a pixel

pair meets the requirement for embedding a bit, the value

in its corresponding position of the bitmap is set to 1,

otherwise 0. After the encryption of roiInfo, the ciphered

data are embedded into the image bit by bit according to

the bitmap. The embedding position is determined by the

current values of logistic map and the embedding interval.

Algorithm 3 The embedding process of encrypted
ROI information.
Input: roiInfo, cimgRDat , lenimg ,W , lgx0
Output: The marked cipher-image with embedded ROI aux-
iliary information.
1: function emdInfo(roiInfo, cimgRDat , lenimg ,W , lgx0 )
2: Use “Permutation-Diffusion” network and logistic

map to encrypt roiInfo, and get cipherInfo
3: emdInter = lenimg/leninfo
4: for i = 0 to leninfo − 1 do
5: for j = 0 to 7 do
6: emdBit = (cipherInfo[i ] >> j )&0x01
7: Iterate logistic map to get a new value, lgxnew
8: emdPos = i × W + (int64)(lgxnew × 1015)

mod emdInter
9: while bitMap[emdPos]! = 1 do

10: emdPos++
11: end while
12: Embed the emdBit into the current pixel pair

using DE
13: end for
14: end for
15: end function

3.4 The decryption process

The decryption process is roughly the reverse of encryption

process as shown in Fig. 2b. The decryption result is shown

in Fig. 7. Particularly, the reverse of line 27 in Alg. 3 is

given by,

rsfdti ¼ fksdf i � cdti � cdti�1 þ L� ksdf ig mod L:

ð9Þ

Fig. 7 The decryption result of our proposed algorithm
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4 Experimental results and security analysis

4.1 Key space analysis

For the proposed algorithm, the key space comprises four

initial conditions of Jia system. Their data type is all

declared as double precision, which needs 53 bits to rep-

resent. So the key space is 253�4 ¼ 2212. It can be consid-

ered secure to resist the brute force attack as the key space

is larger than 2100 [42].

4.2 Statistical attack

4.2.1 Histogram analysis

From a qualitative perspective, we carry out histogram

analysis to evaluate the frequency distributions of pixel

values in three plain-regions and their corresponding

cipher-regions. Figure 8a–c and d–f depicts the 3D his-

tograms of three plain-regions and their corresponding

cipher-regions. We can see that, compared with plain-re-

gions, the frequency distributions of the cipher-regions are

almost uniform. It means that our algorithm has good

performance in masking the pixel distribution.

4.2.2 Information entropy analysis

From a quantitative perspective, information entropy is

used to measure the randomness and unpredictability of

three plain-regions and their corresponding cipher-regions.

Mathematically, it is defined by

HðinSÞ ¼ �
XN�1

i¼0

PðinSiÞ log
PðinSiÞ
2 ; ð10Þ

where inS represents an information source which contains

N possible values finS0; inS1; :::; inSN�1g and the proba-

bility of inSi is PðinSiÞ. If inS is a random information

source, its information entropy is logN2 . The gray level of

the test image is 256, so the information entropy of three

cipher-regions should be close to 8. Table 1 lists the

information entropy of three plain-regions and their cor-

responding cipher-regions. From this table, we can see that

the information entropy of three cipher-regions are very

close to 8, indicating that the pixel distributions of three

plain-regions are successfully hidden.

4.2.3 Correlation of adjacent pixels analysis

Pixels usually have similar values with their neighbors, this

is a sign of strong correlations among them. An effective

encryption algorithm must eliminate the correlation,

otherwise the attacker can easily predict the pixel values of

certain region by some simple predictor, such as MED

predictor and GAP predictor. The strength of correlation

can be measured by calculating the correlation coefficient

among adjacent pixels. The calculation method is defined

by

rxy ¼
1
N

PN
i¼1ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1
N

PN
i¼1ðxi � �xÞ2Þð1

N

PN
i¼1ðyi � �yÞ2Þ

q ; ð11Þ

where xi; yi represent the values of two adjacent pixels,

�x ¼ 1
N

PN
i¼1 xi, �y ¼ 1

N

PN
i¼1 yi, and N is the number of

Fig. 8 The histograms of three plain-regions and their corresponding cipher-regions. a–c are the histograms of the plain-person, plain-horse and

plain-dog, respectively. d–f are the histograms of the cipher-person, cipher-horse and cipher-dog, respectively
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sampled pixel pairs. In the three color channels of each

plain-region and its corresponding cipher-region, 5000

pairs of neighboring pixels are sampled in horizontal,

vertical, and diagonal directions. And Table 2 reports the

test results. From this table, we can see that the correlation

coefficients are close to 1 in each plain-region, while those

of each cipher-region are close to 0. It implies that our

encryption algorithm successfully decorrelates the strong

correlation in each plain-region.

Scatter diagram is usually used to analyze the correla-

tion among adjacent pixels from a qualitative perspective.

These pixel pairs sampled from the red channel of each

region are plotted to 3D scatter diagrams, as depicted in

Fig. 9. On the X-axis of each scatter diagram, x ¼ 0; 1; 2

represent the horizontal, vertical, and diagonal directions,

respectively. Then, each sampled pixel pair ðxi; yiÞ is

plotted as a point in the Y-Z plane. The values of xi, and yi
determine the positions on the Y-axis and Z-axis, respec-

tively. Figure 9a, c, and e depicts the scatter diagrams of

plain-person, plain-horse and plain-dog, respectively. We

can see that, in each Y-Z plane, most points lie along the

diagonal line, showing a strong correlation among neigh-

boring pixels in plain-regions. Figure 9b, d, and f depict

the scatter diagrams of their corresponding cipher-regions.

We can see that the distribution of these points is evenly

cover the entire Y-Z plane. Similar results can be obtained

for the other two color channels in each region. This

phenomenon shows the weak correlation among adjacent

pixels in three cipher-regions.

The test results in Sects. 4.2.1– 4.2.3 show that our ROI

encryption algorithm can resist statistical attack.

4.3 Differential attack

To resist differential attack, if we input two plain-images

with only 1 bit difference in one of three ROI, the corre-

sponding cipher-regions in two output cipher-images

should be completely different.

There are two criteria, NPCR (the number of pixel

change rate) and UACI (the unified average changing

intensity), for measuring the degree of difference between

two images/ROI with same size. NPCR is defined by

NPCR ¼
PW

i¼1

PH
j¼1 Dffeði; jÞ

W � H
� 100%; ð12Þ

where

Dffeði; jÞ ¼
0 if R1ði; jÞ ¼ R2ði; jÞ;
1 if R1ði; jÞ 6¼ R2ði; jÞ:

�

ð13Þ

UACI is defined by

UACI ¼
PW

i¼1

PH
j¼1

R1ði;jÞ�R2ði;jÞj j
2L�1

h i

W � H
� 100%; ð14Þ

For two random images/ROI (gray level L ¼ 256), the

theoretical values of NPCR and UACI are 99:609% and

33:464%, respectively.

We first use secret key to encrypt the three plain-re-

gions, and get their corresponding cipher-regions. Then, we

randomly select a pixel whose coordinates are (501, 70) in

plain-person, and modify the value of its red channel from

129 to 130. Next, we still use the same key to encrypt three

plain-regions and get their corresponding cipher-regions.

Finally, we calculate NPCR and UACI between two sets of

Table 1 The information entropy of the three lain-regions and their

corresponding cipher-regions

Object Name Plain-region Cipher-region

Person 7.464343 7.991828

Horse 7.205766 7.995847

Dog 7.389903 7.983977

Table 2 The correlation

coefficients of three plain-

regions and the corresponding

cipher-regions

Object name Direction Plain-region Cipher-region

R G B R G B

Person Horizontal 0.973155 0.952966 0.960383 �0:004518 �0:002726 0.013430

Vertical 0.962879 0.943667 0.967607 �0:021939 0.002643 0.031336

Diagonal 0.948099 0.917047 0.945104 �0:016485 �0:000733 �0:005509

Horse Horizontal 0.925748 0.942939 0.959856 �0:000272 0.007523 �0:025988

Vertical 0.921298 0.935037 0.954211 �0:005799 0.014574 0.000293

Diagonal 0.887695 0.904766 0.930582 �0:011644 �0:001528 0.014441

Dog Horizontal 0.962245 0.957855 0.939610 0.028987 �0:019884 �0:006741

Vertical 0.967799 0.963566 0.945931 0.019779 �0:050795 0.031677

Diagonal 0.945600 0.939755 0.913779 0.003471 �0:002232 0.014529
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cipher-regions. The test results are reported in Table 3,

from which we can see that the values of two criteria are

very close to theoretical values. It implies that the two sets

of cipher-regions are completely different, demonstrating

the strong ability of resisting differential attack. Three

rounds of encryption are used to achieve the encryption

effect.

4.4 Key sensitivity analysis

A well-designed encryption algorithm should be extremely

sensitive to the secret key. The key sensitivity is tested

using the most extreme case. For each test case, only the

least significant bit is changed in a key component, and the

other three key components remain unchanged. Then, each

modified secret key is used to encrypt/decrypt the plain-

text/ciphertext produced by the original key. If the pro-

posed algorithm has good key sensitivity in encryption

process, the output cipher-regions corresponding to dif-

ferent keys should be completely different. And the cor-

responding case in decryption process is that the cipher-

regions cannot be correctly decrypted with the wrong key.

4.4.1 Encryption key sensitivity analysis

The initial values of encryption key are (6.13455323257449,

�6:76623087823196; 7:52223762673178; 6:2204540358

4687Þ. We use each modified key to encrypt three plain-

regions and calculate NPCR and UACI between the output

cipher-regions and the cipher-regions ciphered by the original

key. The modified key values and the corresponding test

results of NPCR and UACI are reported in Table 4. From this

table, we can see that the values of NPCR and UACI are very

close to theoretical values, showing the strong encryption key

sensitivity of our algorithm.

4.4.2 Decryption key sensitivity analysis

In decryption process, the modified keys listed in Table 4

are used to decrypt the cipher-regions encrypted by the

original key. The decryption results are shown in Fig. 10,

we can see that the cipher-regions cannot be decrypted

correctly, showing strong decryption key sensitivity.

It should be noted that the decryption process depends

on the decryption key and data hiding key. The receiver

cannot decrypt the cipher-region without the correct data

hiding key.

4.5 Comparison of proposed work and state-of-
the-art algorithms

We compare our work with some state-of-the-art similar

algorithms [18–20, 22, 23], which are reviewed in

Sect. 2.1. The automatic detection, the protection of

objects, edge area, and ROI information are the key points

of comparison. Table 5 lists the comparison results. It can

be seen that our algorithm outperform others in the pro-

tection of ROI coordinates information. And the object

detection model is modified to protect all the areas of

detected object, instead of using existing models without

change.

Fig. 9 The scatter diagrams of three detected regions in red channel. a and b are the scatter diagrams of plain-person and cipher-person. c and

d are the scatter diagrams of plain-horse and cipher-horse. e and f are the scatter diagrams of plain-dog and cipher-dog
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4.6 Limitation and discussion

Although the Jia system provides a large key space, its

iteration is time consuming when there are many images

that need to be encrypted. Recently, some 2D discrete

chaotic systems with simple structures and continuous

chaotic ranges have been developed [43, 44]. For example,

the authors proposed a 2D modular chaotification system in

[44], and proved that it significantly improves the chaos

complexity and enlarges the chaotic ranges of existing 2D

chaotic maps. And it’s very convenient to use such 2D

chaotic systems to encrypt a large number of images.

Table 3 The results of NPCR and UACI test

Object Name NPCR UACI

Person 0.994085 0.334527

Horse 0.994117 0.334208

Dog 0.993551 0.332660

Table 4 Key sensitivity analysis

of encryption process
Key component New value Person Horse Dog

NPCR UACI NPCR UACI NPCR UACI

x0 6.13455323257448 0.99394 0.33405 0.99414 0.33378 0.99360 0.33334

y0 �6:76623087823195 0.99357 0.33365 0.99464 0.33466 0.99417 0.33428

z0 7.52223762673177 0.99347 0.33445 0.99348 0.33375 0.99394 0.33519

u0 6.22045403584687 0.99358 0.33332 0.99468 0.33307 0.99366 0.33393

Fig. 10 The key sensitivity analysis in decryption process. A–D are the decrypted results using modified keys
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5 Conclusion and future work

In this paper, we protect the image ROI using chaos-

based encryption and DCNN-based object detection. We

first analyze the security problems in the object detection

process, as the existing object detection algorithm fails to

contain all parts of detected objects, we modify the

detection process to make the output bounding boxes

contain the whole objects. Then we propose an encryp-

tion algorithm for protecting multiple detected objects,

ensuring that the encryption effect of each cipher-region

can meet the security requirements. After that, we

encrypt the ROI auxiliary information and embed them

into the whole image using reversible data hiding. The

encryption and embedding of ROI auxiliary information

can be seen as a second layer of ROI protection and also

save the trouble of its distribution. The experimental

results and security analyses show that our proposed

encryption scheme is secure and very suitable for ROI

encryption.

In the future work 1, we would explore the use of access

control encryption (ACE) in object detection. ACE [45, 46]

decides not only what users are allowed to read but also

what users are allowed to write. It can be constructed by

attribute-based encryption, in a way that senders of correct

knowledge (e.g., secret key) can transmit data to a

restricted recipient with particular attributes. Object

detection supports picking regions of interests/importance/

sensitivity that should be limited in both reading and

writing. Extending ACE usage to practical life would be

promising in ROI scenarios.
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