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Abstract
This paper presents an efficient skull stripping method to improve the decision-making process. Extended Weiner filtering

(EWF) is used for removing the noise and enhancing the quality of images. Further, laplacian lion optimization algorithm

(LXLOA) is implemented. LXLOA utilizes the Otsu’s and Tsallis entropy fitness function to determine an optimal

solution. The implemented LXLOA provides a threshold value required for performing the segmentation on the brain MRI

images. The extracted features are selected using fuzzy weighted k-means embedding LDA (linear discriminant analysis)

method for improving training of the classification model. The proposed LXLOA is extensively tested on standard

benchmark functions CEC 2017 and outperforms the existing state-of-the-art algorithm. Rigorous statistical analysis is

conducted to determine the statistical significance. Three-fold performance comparison is performed by considering (a) the

quality of the segmented image; (b) accuracy, sensitivity, and specificity; and (c) computational cost of convergence for

finding an optimal solution. Result reveals that LXLOA gives promising results and demonstrate effective outcomes on the

standard quality measures (a) accuracy (97.37%); (b) sensitivity (85.8%); (c) specificity (90%); and (d) precision (91.92%).

Keywords Brain tumor images � Extended Weiner filter � Laplacian lion optimization algorithm � Fuzzy weighted k-means

embedding LDA � Classification

Abbreviations
EWF Extended Weiner filter

LXLOA Laplacian lion optimization algorithm

WOA Whale optimization algorithm

APSO Adaptive particle swarm optimization

DE Differential evolution

LOA Lion optimization algorithm

ACSA Adaptive cuckoo search algorithm

PSO Particle swarm optimization

GWO Grey wolf optimization

CSA Cuckoo search algorithm

CSO Cat swarm optimization

CNN Convolutional neural network

IBSR Brain segmentation repository

MRI Magnetic resonance imaging

CT Computed tomography

PSRN Peak signal-to-noise ratio

SSIM Structural similarity index measure

RMSE Root mean square error

SVM Support vector machine

ANN Artificial neural network

LDA Linear discriminant analysis

FKM Fuzzy weighted K-mean

WHO World Health Organization

3-D 3-Dimensional

CT Computed tomography

LB Lower bound

UB Upper bound

DIM Dimension
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GLCM Grey level co-occurrence matrices

GLDM Grey level difference matrix

CEC Congress on evolutionary computation

Kðx; yÞ Filter

U(d, h) Fourier transform of PSF (point spread

function)

Ps d; hð Þ Power spectrum of the processed signal

process

Pn d; hð Þ Power spectrum of processed noise

SI Dispersion index

r Standard deviation

l Mean

EWF (x,y) Extended wiener filter

Mfinal Fitness value

a,b Random values ranging from 0 to 1

MOtsu Otsu’s function

MTsallisentropy Tsallis entropy

li Laplacian distributed random ‘‘number

w Location

q Scale parameter

ui,vi Distributed random numbers having range

[0, 1]

New CubM Offspring (New cube)

ximale Male in pride

xifemale Female in pride

U Universal function

K(x,y) Factor of features

sxk Membership function showing the fuzzy

cluster

Wfb Fuzzy weighted k-means

yie Factor

cke Weighted mean

f ek Weight of feature e for cluster k.

mxy Weighted mean

gy Sample of data belonging to y

nx Count of data points reside in x

g Relative distance from the cluster

m Fuzzifier function

1 Introduction

The automatic computer-aided diagnostic procedures are

unfolding medical imaging research to explore and visu-

alize tremendously emerging patterns [1, 2]. The growing

standardization in clinical decision-making advances the

process and increases the patient’s survival rate at an early

stage. Computer vision and pattern recognition help the

radiologist, physician, pathologist, and experts in the con-

tribution of advanced techniques for the treatment of

patients [3, 4]. Medical imaging segmentation is an

essential and challenging task for improving the decision-

making process’s performance [5–7].

In their reports, WHO (World Health Organization) and

American Brain Tumor Association have classified brain

tumor as benign and malignant tumor types. Grading of

these tumor types can be done on a scale from grade I to

grade IV. However, National Brain Tumor Society report

states that over 87,000 people will be diagnosed with a

primary brain tumor in 2020 in the United States. Hence,

this estimation states that there will be 61,430 brain tumor

benign cases and 25,800 brain tumor malignant cases.

Image processing plays a crucial role in enhancing

prominent finding effectiveness and identifying the pat-

terns [8, 9]. The multidimensional image can be generated

using two modalities for radiological medical imaging

applications such as computed tomography (CT) and

magnetic resonance imaging (MRI) [10]. The most pre-

ferred non-invasive modality for acquiring human neural

activity is MRI due to high resolution, least ionizing

radiation, and soft tissue capabilities [11]. Generally, the

different MRI images are utilized for diagnosis purposes,

including T1- weighted MRI, Flair with contrast

enhancement, Flair and T2-weighted MRI [12] as shown in

Fig. 1.

The intelligent detection system helps experts, radiolo-

gists, and physicians to decide the uncertainties present in

neoplasm. Patel et al. [13] showed the study of different

segmentation techniques such (a) thresholding [14] (b) re-

gion-based segmentation [15] (c) edge-based segmentation

(d) fuzzy c-mean clustering method [16] for medical

imaging.

Metaheuristics hybridization is growing exponentially

by developing a fusion of two different search operators.

The proposed LXLOA algorithm is derived from the merits

of the laplacian crossover and lion optimization algorithm.

LXLOA is implemented for segmentation and contributes

to the skull stripping process. LXLOA algorithm provides a

new optimal solution in mating phase by producing new

offspring. LXLOA selects the best male agent (high fitness

value) to mutate with female lion for generating a new cub.

Laplacian operator explores best probable male lion to

replace with worst performing lion. Thus, the best solution

is obtained for efficient segmentation of brain MRI images.

The key contributions are highlighted as follows:

(i) An intelligent brain tumor detection and diagnosis

model is proposed for computer-aided diagnosis

systems. Extended Weiner filtering is applied for

improving the intensity of images. Further,

LXLOA algorithm is based on Otsu’s and Tsallis
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entropy function to obtain the threshold value and

perform segmentation. This process improves the

convergence speed. Thus, efficient skull stripping

of brain MRI is designed.

(ii) A fuzzy weighted k-means embedding linear

discriminant analysis algorithm is implemented

for the prominent selection of optimized features

subset. The artificial neural network (ANN) is

used for classification purposes.

(iii) Extensive computer simulations and testing are

conducted on benchmark functions to determine

the efficiency and effectiveness of the proposed

method. Moreover, statistical tests are performed

for determining the performance significance of

acquired results. Further, three-fold comparison is

performed as follows:

(a) Firstly, the quality of the segmented image

is measured using three quality metrics:

(a) fitness value; (b) peak signal-to-noise

ratio (PSRN) value; and (c) structural sim-

ilarity index measure (SSIM) value.

(b) Secondly, the classification method is

trained with acquired selected features from

the fuzzy weighted k-means embedding

LDA to compute accuracy, sensitivity, and

specificity.

(c) Thirdly, the effectiveness of the LXLOA is

evaluated in terms of the computational cost

of convergence for finding an optimal

solution.

The performance of the proposed LXLOA (Algorithm

1) is compared against the state-of-the-art metaheuristic

algorithms such as DE [17], WOA [18], PSO [19], LOA

[20], ACSA [21]. The performance of algorithm depends

on the selection of its parameter. These algorithms belong

to the family of swarm intelligence algorithms. These are

nature-inspired metaheuristic algorithm, and they get con-

verged to the optimal global solution. These algorithms

approach towards optimal solution but cannot guarantee it.

The rationale behind selecting these algorithms are as

follows: (a) DE algorithm holds good exploration ability

for optimization problem.(b) WOA [22] maintains a good

balance between exploration and exploitation stage and

avoids the premature convergence. (c) PSO iteratively

updates the position via a swarm of particles for deter-

mining the optimal solution. (d) LOA adopts different

strategies depending upon the social organization and

behavior of lions to find the optimal solution. (e) ACSA’s

functionalities are based on breeding of cuckoo birds and

works on exponentially increasing switching parameters to

provide improved solution.

The paper is structured in different sections as follows:

Sect. 2 presents related work and standard lion optimiza-

tion algorithm; Sect. 3 discusses the proposed methodol-

ogy; Sect. 4 describes experimental setup, results, and

discussion; and Sect. 5 shows the conclusions and future

research directions.

2 Related work

Bio-inspired algorithms and swarm intelligence are nature-

inspired techniques that help to solve real optimization

problems [23]. Various metaheuristic algorithms are

applied in image segmentation to obtain refined results and

effective performance [24]. Few popular optimization

algorithms are artificial bee colony (ABC) [25–28], particle

swarm optimization (PSO) [29], whale optimization algo-

rithm (WOA) [30], genetic algorithm (GA) [31], adaptive

particle swarm optimization [32], cuckoo search algorithm

[33, 34], grey wolf optimization [35], cat swarm opti-

mization [36], and lion optimization algorithm [37]. These

optimization algorithms provide the optimal global solu-

tion for the selected set of features through exploitation and

exploration [34, 38, 39]. A comparative analysis of dif-

ferent existing algorithms is summarized and presented in

Table 1.

Manic et al. [48] stated the approach for segmenting the

grayscale image based on firefly optimization algorithm

using multi-level thresholding. The Kapur’s and Tsallis

functions were selected for determining the optimal

Fig. 1 Representative of a T1-

Weighted MRI b Flair c Flair

with Contrast Enhancement

d T2-Weighted MRI
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threshold value for segmenting the images. Thus, the

simulation results were evaluated and tested; the algorithm

gave better outcomes on comparative analysis. However,

the quality metrics of the image were determined using

parameters like (a) peak-signal-to-noise-ratio (PSNR);

(b) root mean square error (RMSE); (c) structural similarity

index matrix (SSIM); and (d) normalized absolute error.

Soleimani et al. [49] implemented the ABC optimization

algorithm for segmentation of brain tumor to perform

diagnosis and improve the model’s accuracy. Jafari et al.

[50] proposed a hybrid method for the detection and

prognosis of brain tumor MRI imaging. The simulated

steps were performed utilizing thresholding, post-process-

ing fast Fourier transform, feature selection through the

genetic algorithm, classification using a support vector

machine. The performance measures were computed by

determining the accuracy of 83.22%.

Yin et al. [51] proposed a novel approach by applying

the multilevel thresholding using differential evolution

(DE) optimization algorithm for producing a segmented

image. Pugalenthi et al. [52] presented the method in which

preprocessing is performed by applying social group opti-

mization and fuzzy Tsallis thresholding for improving the

intensity of the brain tumor section so that the region can

adequately be segmented. The features were extracted by

considering the GLCM technique and analyzing the clas-

sification using the SVM-RBF kernel for benign and

malignant tumors. The evaluated accuracy for the model

was estimated at 94% on the MRI brain image dataset.

Natarajan et al. [53] stated the techniques for efficient

brain tumor segmentation by implementing preprocessing,

segmentation, and post-processing on MRI images.

Manogaran et al. [54] presented the approach for identi-

fying the abnormalities present in brain image using

orthogonal gamma distribution for determining the under

and over segment region on 994 MRI brain images of 30

patients. The wavelet and GLCM based features are

extracted from the segmented image, and morphological-

based operation was applied for the post-processing of

brain MRI tumor image. Further, the image quality was

measured using quality metrics as PSNR and MSE

parameters.

Havaei et al. [55] implemented the convolutional neural

network (CNN) for automatic brain tumor segmentation on

the BRATS (2013) benchmark dataset. Bansal et al. [56]

proposed multilayer perceptron architecture using lion

optimization algorithm (MLP-LOA) for classification pur-

pose. The different stages of the LOA were implemented

for determining the optimal solution. The MLP-LOA

algorithm efficiency was evaluated by comparing with

different existing classification algorithm.

2.1 Lion optimization algorithm

Swarm intelligence and evolutionally computational-based

metaheuristics algorithms have been successfully imple-

mented for solving various real-time complex optimization

problem. Lion optimization algorithm (LOA) [57] is a

popular metaheuristics algorithm inspired by the social

organization and behavior of the lion. The formation of

initial population is consisting of randomly generated

solutions. The social organization of lions is categorized

namely as nomads and residents, respectively. Resident

lion also referred to pride consisting majority (75–90%) of

female lion and remaining as male lion. The pride territory

members contain the best-visited position in the region. In

LOA, the different procedures and strategies are followed

by each specific gender to search for optimal solution.

Table 1 Comparative analysis of existing algorithms with respect to brain MRI dataset, approaches used, and performance

Author Dataset Approach Performance

Wang et al. [40] BRATS 2017 Anisotropic and Cascaded CNN model –

Kumar et al. [41] T1 weighted MRI -55 patient PCA –ANN, Gradient vector flow boundary 95.37%

Sharma et al.

[42]

T1 weighted MRI Global thresholding, Post-processing using anisotropic diffusion

filtering, DE ? ANN

94.3%

El Abbadi et al.

[43]

65 MRI weighted brain

image

Probabilistic neural network 98%

Lashkari et al.

[44]

T1 & T2 weighted MRI—

210 case

Histogram equalization, MLP model- ANN 98%

Vijh et. al [45] T1 weighted MRI—61

sample case

Hybrid of Otsu and Adaptive particle swarm optimization 98%

Chao et al. [46] MNIST CaRENets Overall (0.925)

accuracy

Zhao et al. [47] 2013 benchmark BRATS

data

Patch-wise Convolutional neural network Overall (0.81)

Accuracy
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Typically, lion forms the coordinated group to encircle and

hunt the prey. Furthermore, in the region of pride territory,

randomly some females are selected for hunting, however

the remaining female moves in different location of terri-

tory. In pride, each male resident lion roams in its own

territory. During roaming, resident male lion updates their

position if lion reaches a new position which is finer than

the current position. The roaming behavior of lion enables

strong local search and provides improved solution. Mating

process increments the growth in population of lion and

helps in exchanging information among the members in

pride. In each pride, % Xmt of female lions intimate with

one or more randomly selected male resident lion from the

same pride to produce offspring [58]. However, the nomad

female lion mates with one of the randomly selected male

among the nomads. During mating, the produced offspring

is randomly chosen as female and male. Further, defense

operation of lion is performed to retain the best male lions

as solution playing a vital role in LOA. So, the defense

operation is two-stage process: (i) defense against newly

developed mature resident male’s lion in pride; and (ii)

defense against nomad males. The migration behavior of

lion is inspired by the switch lifestyle, where lions

exchange from one pride to another pride territory. The

migration characteristic helps in improving the diversity of

pride and exchanging information. Thus, lion optimization

algorithm introduces various operators that help in

achieving the optimal solutions.

3 Material and methods

This section shade light on the proposed methodology for

the development of intelligent brain tumor detection. The

working of the proposed system is divided into six stages

are discussed in subsections as follows: (a) brain MRI

acquisition; (b) skull stripping of brain MRI (i) image pre-

processing using proposed extended Weiner filtering; (ii)

image segmentation using proposed LXLOA algorithm;

(iii) morphological mathematical operations; and (iv)

eliminating cerebral tissue); (c) applying anisotropic dif-

fusion; (d) feature extraction; (e) feature selection; and

(f) classification. The flow process of proposed methodol-

ogy is depicted in Fig. 2.

Series of simulations have been conducted to evaluate

the performance of the proposed LXLOA algorithm. All

simulations were performed on Intel core i7 with 2.2 GHz

speed, 16 GB RAM, NVIDIA Geforce GTX1080 ti 4 GB,

and Windows 10 operating system. MATLAB 2018b was

used for implementing the proposed algorithm. Extensive

parameters tuning was performed for developing the robust

simulation model for the implementation of the proposed

system (see Fig. 2). LXLOA was implemented using the

parameters presented in Table 2, while Table 3 shows the

ANN’s parameters selected for training the network.

3.1 Brain MRI data and normalized image

T1-weighted brain MRI data consist of 250 samples

attained from IBSR (brain segmentation repository)

(IBSR), and 150 sample images of MS free data are col-

lected from the Laboratory of eHealth at the University of

Cyprus [59] and Institute of neurology and genetics, at

Nicosia Cyprus. The obtained sample images are normal-

ized for improving the intensity of images so that effective

segmentation and pattern recognition can be visualized.

3.2 Skull stripping

Skull stripping plays an essential role in brain MRI medical

imaging for enhancing the clinical research and decision-

making process [60, 61]. It is a crucial preprocessing phase

for removing cerebral tissue and improving the analysis of

brain magnetic resonance images. In the proposed work,

the automatic skull stripped algorithm is developed by

contributing the two major processes (i) applying extended

wiener filtering technique to enhance the quality of images

(ii) LXLOA algorithm to obtain fitness value for segmen-

tation of brain MRI image.

3.2.1 Extended Weiner filtering (EWF)

After normalizing the image, the statistical approach of

proposed extended Weiner filtering (EWF) is applied to

remove noise and enhance brain MRI quality. The math-

ematical equation of Weiner filtering [62] in Fourier

transform is shown in Eq. (1). EWF utilizes the dispersion

index which ensures whether the set of obtained occur-

rences are dispersed or clustered. Dispersion index (SI) is

the ratio of variance and mean for noise estimation as

shown in Eq. (2). The filter reduces the mean squared error

criteria and smoothens the image. The mathematical for-

mation of extended Weiner filtering is depicted in Eq. (3).

K x; yð Þ ¼ U � d; hð ÞPs d; hð Þ
U d; hð Þj j2Ps d; hð Þ þ Pn d; hð Þ

ð1Þ

SI ¼ r2

l
ð2Þ

EWF x; yð Þ ¼ K x; yð Þ þ SI� r2

SI
K x; yð Þ ð3Þ

Here, Kðx; yÞ represents the filter, image U(d, h) shows the

Fourier transform of PSF (point spread function), Ps d; hð Þ
is the power spectrum of the processed signal process,

Pn d; hð Þ is the power spectrum of processed noise. SI
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Shows the dispersion index, r and l shows the standard

deviation and mean, EWF (x,y) is extended wiener filter.

3.2.2 Laplacian lion optimization algorithm

Image segmentation is a necessary and challenging task for

image analysis and diagnosis of disease. The fitness values

are generated with combination of otsu’s function and

tsallis entropy as shown in Eq. (4). Fitness value is con-

sidered as optimal threshold value for segmentation. In

LXLOA algorithm, mating process increments the growth

in population of lion and helps in exchanging information

among the members in pride. In each pride, % Xmt of

female lions intimate with one or more resident male lion

having high fitness value (best agent) from the same pride

to produce the offspring. However, the nomad female lion

mates with one of the best male agent among the nomads.

A mutation with probability is applied on each gene of

generated offspring for enhancing the inherited character-

istics of new cub and balancing the computation cost. The

laplacian crossover operator [63] is referred to as linear

combination of parents for generating pair of new best

Fig. 2 Flow daigram of the proposed methodology

Table 2 Parameters and values

Parameter Value

Number of prides 4

Sex ratio 0.8

Percent of nomad lions 0.2

Mating probability 0.3

Roaming percent 0.2

Immigrate rate 0.4

Mutation probability 0.2

Population size 200

Table 3 Parameters and values used in the ANN

Parameters Values

Number of layer 3

Learning rate 0.1

Activation function tanh, sigmoid

Optimizer Adam

Batch size 2

Epochs 50

Loss Categorical crossentropy

Validation split 0.8/0.2

Training and testing set 7:3
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offspring as depicted in Eq. (5). The offspring are produced

using Eqs. (6) and (7) respectively. The parameters and

their respective values are presented in Table 2. The

parameters are selected on the basis of permutation and

combination and best values are considered. The detailed

proposed LXLOA is depicted in Algorithm 1.

Mfinal ¼ aMOtsu þ bMTsallisentropy ð4Þ

li ¼
w� q loge uið Þ; vi �

1

2

wþ q loge uið Þ; vi\
1

2

8
><

>:
ð5Þ

New CubM ¼ ximale þ li x
i
male � xifemale

�
�

�
� ð6Þ

New CubMs ¼ xifemale þ li x
i
male � xifemale

�
�

�
� ð7Þ

Here,Mfinal is the fitness value,a, b are the random values

ranging from 0 to 1, MOtsu and MTsallisentropy represents the

Otsu’s function and Tsallis entropy.li shows the laplacian

distributed random number, w and q (q[ 0) represents the

location and scale parameters. uið Þ andðvi) are the two

distributed random numbers having range

[0,1].New CubM and New CubMs are obtained offspring.

If produced offspring doesn’t belong to search space, in

that case, New cubi is kept to as random number in interval

[New cubilow,New cubiup�, ximale represents the male in

pride, xifemale shows the female in pride.

Algorithm 1 presents the proposed laplacian lion opti-

mization algorithm (LXLOA). It takes image as an input

and producsed a final processed image for feature

extraction.
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Algorithm 1: Laplacian Lion Optimization Algorithm (LXLOA)

Term used: L: Lion, F: Resident rate of lion, RP: Roaming percentage of pride, Xmt: Mutation 

probability, IR: immigration rate of LOA, ffinal: Best optimal value, O: extracted features , i: no of 

iteration, P: population generated randomly, No_Iteration: maximum number of iterations, 

Female_Lion: Random female lion to go on hunting, R_Female_Lion: Remaining female lion that 

move toward the best visited from pride territory, IRFL:  Immigrate resident female lion,

New_CubC: New cubs are generated after crossover operation, New_CubM: New cubs are 

generated after mutation operation, New_Cubupp: New cub after replacing worst performing lion in 

pride, New_Cubupn: New cub after replacing worst performing lion in nomade, FV: Fitness Value, 

Imagebestvalue:The optimal best value for image is generated at ffinal

Input: Image E(x,y). 

Output:  Final processed image for feature extraction (O).

1. Begin

2. Set P ← Generation of random population upto L of lion over the solution of image.

3. Perform pass the generated values with FV using  Eq. (4).  

4. While i < =No_Iteration do

5. For begin nomad and pride lion do. 

6. Set L ← Select L of nomad lion from P.  

7. Set (1-L) ←Remaining (1-L) forms the pride territory.

8.    For each pride do 

9. Set F ← Rate of resident population as female and remaining as males. 

10.    End For  

11. For each pride do

12. Set Female_Lion ← Selection of random female lion to go on hunting.  

13. Set R_Female_Lion ← Move towards the best explored from pride territory. 

14. Set RP ← Randomly selected for each resident lion. 

15. Apply laplacian crossover over best selected lion (using Eq. (6) and (7)) 

16. Set New_CubC ← R_Female_Lions intimate with resident male lion.

17. Set New_Cubupp ← New_Cub (Replacing worst performing lion in pride).  

18.    End For  
19. For each nomad lion do

20. New_CubM ← Nomad female lion mutate with one of the best male agent. 

21. Apply laplacian crossover over best selected lion.

22. New_Cubupn ← Replaces the worst performing lion in nomad. 

23. Nomad male randomly attacks the prides. 

24.    End For  

25. For each lion pride do

26. Set IRFL ← IRFL from territory and becomes nomad lion.

27.    End For  

28. Perform migratory operation using steps (29) – (31).

29. Select (R_Female_Lion) ← R_Female_Lion with the lower FV in pride. 

30. Set Nomad ← R_Female_Lion. 

31. Set Prideupdate ← Nomade female with the best FV.  

32. Balance lion’s population equilibrium at the end of each iteration. 

33. Set FV ← Update FV.

34. Set i ← i + 1. 

35.    End While 

36. Generate Imagebestvalue ← Optimal best value for image is generated .

37. Perform morphologyical and skull stripping operations on segmented image (O). 

38. End. 
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Step-by-step working of Algorithm-1 Algorithm 1 pre-

sents the proposed LXLOA. It accepts image E(x, y) as

inputs and produces final processed image for feature

extraction (O). Algorithm 1 begins at step-2 by generating

a random population (P) up to L of lion from the input

images E(x, y). Step-3 is responsible for evaluating fitness

value by combining both Otsu’s function and Tsallis

entropy as indicated in Eq. (4). The main functionality of

Algorithm 1 is in a while loop which runs from steps 4–35.

The while loop at step-4 runs until it reaches the maximum

number of iteratirons (No_Iteration). From steps 5–10 a for

loop is implemented which is responsible for selection of

nomad pride and pride territory. At step-6, lion (L) is

selected as nomad lion from the total population (P), while

the remaining (1-L) forms the pride territory as indicated at

step-7. At steps 8–9, a for loop is implemented for each

pride to set the percent of F (resident rate of lion) popu-

lation as female and remaining as males. This rate percent

gets inversed in the nomad lions. Another for loop is

implemented from steps 11–18. This for loop deals with

female lions is selected randomly for hunting (step 12) and

exploring the pride territory (step 13). After that, in pride,

the roaming percentage (RP) of pride territory are ran-

domly selected for each resident lion as shown at step 14.

Steps 15–17 are given to present the crossover operation

and replacement of the worst-performing lion in pride. We

have used Eqs. (6–7) to perform crossover operation.

Mutation operation is performed from steps 19–24. Here,

nomad female lion mutates with one of the best male

agents among the nomads to produce new offspring

(New_CubM) as shown in step 20. Then, apply laplacian

crossover over the best-selected lion (step 21). At step 22,

new cub (New_Cubupn) replaces the worst-performing lion

in nomad. And then, nomad male randomly attacks the

pride (step 23). A for loop at steps 25–27 is presented for

the percentage of immigrates resident female lion (IRFL).

Here, IRFL indicates the percentage of female lion immi-

grates from territory and becomes nomad lion. Migration

operation is performed from steps 29–31. It is performed

by selecting the resident female lion (R_Female_Lion)

having the lower fitness value in pride (step 29) and con-

verting them to nomad (step 30). Further, the vacant places

in each pride are fulfilled, by migrating or distributing the

nomad female having best fitness value as indicated in step

31. Lion’s population equilibrium is balanced at the end of

each iteration, so, considering the maximum population of

gender in nomad category, the lions having least fitness

value are removed (step 32). Thus, the control is

maintained on number of live lions. At this stage, update

the fitness value as shown in step 33 and move to the next

iteration (step 34). The while loop terminates at step 35.

Step 36 and 37 are respectively for generation the optimal

best value for images and to perform morphological and

skull stripping operations on segmented image.

3.2.3 Mathematical morphological operations and skull
stripping

The mathematical morphological operations are post-pro-

cessing functionalities performed on images using the

structuring element. The transformation operations are

implemented on segmented images using erosion and

dilation to perform the analysis.

The skull stripping is achieved by eliminating the

extracerebral tissue and visualizing the extracted mask for

conducting exploration and region of interest.

3.3 Anisotropic diffusion filtering and feature
extraction

It is implemented for denoising purpose, i.e., removing the

noise and enhancing the contrast as well intensity among

the different brain MRI sections. The filtering maintains the

balance for existing different levels of noise in the image.

It is crucial for identifying the pattern and determining

the texture, statistical analysis. Grey level co-occurrence

matrices (GLCM) [64–66] and grey level difference matrix

(GLDM) are the second-order statistical measures that are

applied to extract the 23 features from brain MRI seg-

mented image. There is general applicability of grey level-

based texture features spatial dependencies or relationship

in image classification. The 23 extracted statistical features

in the proposed work namely are contrast, entropy, dif-

ference entropy, autocorrelation, homogeneity, cluster

prominence, inverse difference, information measure of

correlation 1 (Imc 1), cluster shade, information measure of

correlation 2 (Imc 2), sum entropy, sum variance, sum of

square variance, sum average, horizontal weighted sum,

maximum probability, grid weighted, diagonal weighted

sum, vertical weighted sum, energy, correlation,

dissimilarity.

3.4 Feature selection

It is achieved using fuzzy weighted k-means (FKM)

embedded LDA (Algorithm 2) for determining the
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optimized set of features. The FKM embedding LDA is

applied for providing the solution to the multidimensional

pattern recognition problem. The mathematical formulation

of fuzzy weighted k-means is expressed through Eqs. (8),

(9,) and (10), respectively. The calculation of the weighted

mean is performed using Eq. (11). The modification in the

membership matrix and Bayes rule of LDA is depicted in

Eq. (12).

U ¼ ½Kðx;yÞ� 1� x� e; 1 � y � e ð8Þ
Xn

k¼0

kxy ¼ 1; y ¼ 1; 2; 3:::n ð9Þ

Wfb ¼
Xk

k¼1

X

i21

Xm

ðe¼1Þ
saxkf

b
ek yie � ckej j2 ð10Þ

Here, U represents the universal function,K(x,y) shows the

factor of features, sxk is the membership function showing

the fuzzy cluster, Wfb is the fuzzy weighted k-means, yie
and cke represents factor and unsupervised weighted mean,

f ek shows the weight of feature e for cluster k.

mxy ¼
Pn

x¼1 u
m
xy

Pn
x¼1 s

m
xk

Pn
x¼1 s

m
xk

Pn
y¼1 s

m
xk
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In Eq. (12), mxy shows the weighted mean,gy is the sample

of data belonging to y, nx is the count of data points reside

in x, g is the relative distance from the cluster, m is the

fuzzifier function.

In Algorithm 2, the fuzzy weighted k-means embedding

LDA is applied on acquired statistical features for selecting

the finest features to obtain precise accuracy. The mem-

bership matrix is initialized (Step-1), and the random value

[0, 1] is determined (Step-2). A while loop is executed

from steps 3–7, considering the average of the square dif-

ferences between the membership matrixes. Within the

while loop, two tasks are accomplished: (a) fuzzy weighted

k-means embedding LDA is calculated through Eq. (10)

and Eq. (11); and (b) membership matrix (membership

functionf xy) is updated using Eq. (12). Finally, the related

features are extracted at step-7, and a further classification

technique is implemented.

3.5 Artificial neural network

ANN classifies the tumored and non-tumored brain MRI

images [67–69]. ANN consists of computational multilayer

interconnected neurons stimulated from biological neural

networks to predict outputs based on specific inputs for

training the network. The backpropagation neural network

approach is a computationally effective method for

updating the weights, therefore the backpropagation

architecture is used. The testing was conducted for iden-

tifying the best permutation and combination of parameters

that determine the robustness. The parameters considered

are as follows: (a) layer: [2–6]; (b) learning rate: [0.01, 0.1,

0.2, 0.4]; (c) batch size: [1–3]; (d) epochs: [10, 20, 30, 35,

40, 45, 50, 60, 70, 80]; (e) activation function: [tanh, sig-

moid, relu]; and loss function: [categorical_crossentropy,

mean squared error]. Parameters that gave the best results

for training the ANN are summarized in Table 3.

Algorithm 2: Fuzzy weighted k-means embedding LDA   

Term used: 
 
: elements of features, K: Clusters

Input: Extracted Features from GLCM and GLDM technique.

Output: Selected feature for next processing. 

1. Initialization of the membership matrix using Eq.8. 

2. Generate the random values from [0, 1] such that the elements  of K satisfies using 

Eq.9. 

3. while (the average of the square differences between the membership matrix):

4.             Calculate the fuzzy weighted k-means embedding LDA using Eq.10 an Eq.11. 

5.             Update the membership matrix with Eq.12. 

6. end while

7. Selected Feature values extracted.
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4 Simulation results, discussion,
and analysis

Extensive computer simulations have been performed to

evaluate the performance of the proposed algorithm. In the

subsections, we present the following: (a) performance

comparison on CEC2017 benchmark functions; (b) perfor-

mance analysis of brain MRI datasets and simulation

results are discussed; (c) statistical analysis; (d) discussion

on quality matrices; (e) comparison with state-of-the-art

algorithms; (f) comparative results and analysis; and

(g) discussion of results.

4.1 Performance analysis on CEC 2017
benchmark functions

The proposed algorithm LXLOA is tested on CEC 2017

standard benchmark functions problem [70]. The bench-

mark functions belong to categories namely, unimodal

function (F1-F3), multimodal function (F4-F10), hybrid

function (F11-F19), composition function (F20-F29). The

mean and best fitness values are computed for showing the

effectiveness of proposed algorithm LXLOA against the

state-of-the-art algorithms as shown in Table 4. The con-

sidered dimensions, number of iterations over 20 runs, and

population size are 50, 1000, 200 respectively. Further-

more, observations state that the proposed LXLOA out-

performs and provides a significant solution when

compared with other metaheuristic techniques.

4.2 Performance analysis on brain MRI datasets

Brain MRI data from two different databases were used

during the simulations. 400 sample images were considered

for simulations. Algorithm-1 and 2 were implemented

respectively to perform: (a) to examine skull stripping and

segmentation; and (b) selection of the prominent features.

ANN was implemented to process the sample data. Here,

sample data is divided into a 7:3 ratio for testing and

training purpose. A sample image of IBSR tumored is

depicted in Fig. 3, while Fig. 4 represents a sample image

of an MS-free dataset on non-tumored MRI.

Tables 5, 6, 7 presents the extracted 18 features obtained

by implementing from co-occurrence matrices to analyze

the spatial relationship and determine the statistical texture

features. 18 features such as cluster prominence, autocor-

relation, correlation, contrast, cluster shade, homogeneity,

entropy, energy, dissimilarity, sum entropy, sum average,

maximum probability, sum of square variance, inverse

difference, Imc 2 (information measure of correlation 2),

Imc 1, difference variance, and difference entropy are

extracted.

On the other hand, Table 8 shows the extracted 5 fea-

tures using grey level difference matrix for statistical

measures for probability density functions. The 5 features

are as follows: grid-weighted sum, diagonal-weighted sum,

vertical-weighted sum, horizontal-weighted sum, and

cluster prominence. Table 9 presents an optimized feature

subset. It presents min, max, and average values of the

IBSR and MS free sample images.

4.3 Statistical analysis

Rigorous statistical analysis was performed to determine

the statistical performance significance at 95% level of the

confidence interval. Equation (13) presents the hypotheses

(H0: null hypothesis and HA: alternative hypothesis) used

to perform the statistical tests.

H0 : lDE ¼ lWOA ¼ lLION ¼ lLXLOA ¼ lPSO ¼ lACSA
HA : lDE 6¼ lWOA 6¼ lLION 6¼ lLXLOA 6¼ lPSO 6¼ lACSA

ð13Þ

To perform the statistical tests mean and best values of the

benchmark functions are used. Sample size 30 has been

drawn from each algorithm. We have performed the

Kruskal-Wallis test to verify the hypothesis given in

Eq. (13).

Table 10 presents the hypothesis test summary of

independent samples Kruskal–Wallis test with respect to

the best fitness value for across categories of algorithms.

We can see p-value is less than 0.05. Hence, H0 is rejected.

It means that one of the other algorithms have shown dif-

ferent performance. We have conducted posthoc test to

determine which algorithms have shown different

performance.

Figure 5 shows the pairwise comparison of algorithms.

It can be noted that each node represents the sample

average rank of algorithms. The sample average of the

proposed LXLOA (= 43.90) is better than the other algo-

rithms. Total 15 pairs have been formed for pairwise

comparison of algorithms. The algorithm pairs LXLOA-

PSO, LXLOA-ACSA, LXLOA-WOA, and LXLOA-LION

showed significantly better, performance mainly because

obtained p-value is less than 0.05. The combinations have

not shown significantly better results. This result concludes

that LXLOA algorithm is more stable and showing
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Table 4 Comparative result analysis on benchmark function suite

Function Fitness DE WOA LION PSO ACSA LXLOA

f1 Best 1.93E-07 28.22753 2341.614 0.000252 0.564802 5.610218

Mean 0.005194 15,512,352 2341.614 227.4466 310,474.5 1.416315

f2 Best 5.64E-09 67,881.22 153,623 1.96E-05 1357.624 1.99E-12

Mean 1.68E-06 85,411.61 183,023 0.679315 1708.912 0.068775

f3 Best 2.61E-07 7.63E-07 3.78E-18 5.17E-24 1.53E-08 8.87E-07

Mean 9.06E-05 6963.623 0.061275 0.00144 139.2739 1.49E-06

f4 Best 3.13E-06 5.5E-07 5.5E-07 0.000208 0.000208 1.49E-17

Mean 0.000209 1353.203 2712.742 0.000913 27.06498 7.516757

f5 Best 4.19E-12 0.005024 0.478917 0.000932 0.001033 7.20E-10

Mean 1.52E-06 0.131142 0.472357 0.009354 0.011977 1.65E-09

f6 Best 1637.905 0.480504 139.496 4.875304 4.884914 1.60E-10

Mean 1252.855 950.2088 157.136 9.958886 28.96306 0.631596

f7 Best 4.67E-05 0.004733 155.0405 5.850404 5.850499 0.429481

Mean 0.000313 0.062793 139,675.8 0.9702 0.971456 1.424421

f8 Best 5.07E-08 8.39E-11 9.72E-16 1.47E-32 1.68E-12 5.19E-09

Mean 0.750191 0.209619 2.9E-15 0.000127 0.004319 5.41E-08

f9 Best 5.18E-13 10,447.23 9693.229 4067.368 4276.313 8.22E-15

Mean 6.27E-09 10,456.99 9791.229 4067.481 4276.621 2.44E-11

f10 Best 0.388201 28.35728 9,899,686 3.516534 4.08368 4.03E-05

Mean 0.388252 0.016425 1,762,870 158.5792 158.5795 0.750191

f11 Best 246.3645 5362.274 3783.848 1224.119 1331.365 5.33E-03

Mean 246.8728 5922.022 37,643.9 1224.408 1342.849 0.024381

f12 Best 0.75255 8.522189 1962.135 2.63669 2.807134 9.48E-07

Mean 0.695429 5.77E ? 08 2807.875 70.28371 11,539,415 0.158039

f13 Best 26.03428 4122.495 3812.395 870.8856 953.3355 7.17E-12

Mean 28.58031 5391.492 91,571.53 873.3859 981.2158 7.049893

f14 Best 0.492069 5682.04 571.0485 1.759394 115.4002 0.016531

Mean 2.975573 4367.468 637.6884 30.75647 118.1058 0.071366

f15 Best 0.180927 6164.711 6200.941 2457.498 2580.792 1.557302

Mean 1.096115 3.15E ? 08 67,382.34 2491.902 6,305,865 0.934786

f16 Best 86.55439 3706.789 3833.025 1231.729 1305.865 2.65E-07

Mean 86.6231 2.04E ? 08 6.1E ? 10 1331.846 4,080,172 0.00321

f17 Best 0.09995 2463.619 2565.265 4108.524 4157.796 4.05E-10

Mean 0.755612 2959.807 32,021.85 4115.572 4174.768 0.003185

f18 Best 0.285803 4935.755 5737.945 1645.049 1743.764 1.576064

Mean 0.230461 8.37E ? 08 58,653.45 1689.196 16,744,092 7.73E-07

f19 Best 84.58424 2472.14 2587.482 960.9384 1010.381 1.297055

Mean 84.587 1.07E ? 09 28,226.82 879.5446 21,367,903 1.055225

f20 Best 294.098 2.37E-05 1.55E-05 1.19E-05 1.23E-05 1.88E-06

Mean 294.139 2.9E-05 1.91E-05 0.352457 0.352457 1.35E-06

f21 Best 417.2918 2512.619 2538.59 872.9317 923.1841 2.20E-13

Mean 417.2919 3348.184 44,399.19 874.096 941.0597 1.166838

f22 Best 717.3037 3051.619 3187.129 1412.285 1473.317 0.021739

Mean 717.3881 3694.798 34,993.43 1413.852 1487.748 0.007397

f23 Best 980.6591 2.76E-05 0.000233 15.42417 15.42417 1.39E-06

Mean 981.4909 0.000559 0.000586 18.3773 18.37731 5.31E-06

f24 Best 1068.116 4.41E-06 2.24E-05 384.4512 384.4512 1.88E-07

Mean 1068.439 8.21E-06 2.83E-05 892.0024 892.0024 1.98E-07
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significantly better results than PSO, ACSA, WOA, and

LION algorithms. In addition, we can see the performance

of algorithm’s pair LXLOA-DE is not significantly better

but the proposed LXLOA showed good results over DE.

The performance significance is represented by yellow line

in Fig. 5 connecting pair of algorithms.

Pairwise tests have been conducted and results have

been reported in Tables 11, 12, 13, 14 respectively for

Wilcoxon test on fitness values and Kruskal–Wallis test on

mean and best fitness values. Five pairs have been created:

LXLOA—ACSA, LXLOA—DE, LXLOA—LOA,

LXLOA—PSO, and LXLOA—WOA. It can be seen that

the p-value of each pair is less than 0.05. It indicates that

the performance of the proposed LXLOA is statistically

significant at a 95% level of significance. It can be noted

that the proposed LXLOA showed better performance by

achieving higher value of standard deviation as compared

to other algorithms. Therefore, based on this observation,

LXLOA is more stable and robust.

4.4 Quality metrics

Three quality metrics: (a) fitness values; (b) PSNR value;

and (c) SSIM values were chosen for evaluating the per-

formance. Fitness values to assess the optimal threshold

value of the image quantitatively. The evaluation function

Table 4 (continued)

Function Fitness DE WOA LION PSO ACSA LXLOA

f25 Best 0.003788 1.03E-05 1.64E-06 0.424411 0.424411 1.48E-07

Mean 0.005067 9.29E-05 1.77E-06 0.002573 0.002574 2.5E-07

f26 Best 1471.335 3.25E-05 8.13E-06 14.21998 14.21998 1.81E-08

Mean 1471.942 1.13E-05 8.91E-06 129.9557 129.9557 1.89E-08

f27 Best 294.1373 3.45E-08 1.08E-07 5.64E-11 7.46E-10 2.21E-15

Mean 295.2326 4.13E-08 4.44E-07 1.99E-11 8.45E-10 1.89E-14

f28 Best 2.81E-08 2.17E ? 08 2.33E-06 3.38E-08 4,344,904 4.78E-12

Mean 2.94E-08 8.59E-08 1.45E-07 3.38E-08 3.56E-08 3.68E-12

f29 Best 1912.455 6.3E ? 08 3.18E ? 10 4.69E ? 10 4.69E ? 10 480.505

Mean 1853.655 4.7E ? 10 3.22E ? 10 5,647,528 9.46E ? 08 395.05

Fig. 3 Tumored brain MRI

sample Images. a Normalization

of brain MRI image; b Extended

Weiner filtering; c Segmented

image using LXLOA d–
e Mathematical morphological

operations; f Extracted skull

stripped image; g Anisotropic

diffusion; and h Feature

extraction
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Fig. 4 Non-tumored Brain MRI

sample Images. a Normalization

of brain MRI image; b Extended

weiner filtering; c Segmented

image using LXLOA d–
e Mathematical morphological

operations; f Extracted skull

stripped image g Anisotropic

diffusion; and h Feature

extraction

Table 5 Features extracted sample IBSR data the IBSR and MS free sample images using GLCM Method

Sl. No Image Cluster prominence Auto correlation Correlation Contrast Cluster Shade Homogeneity

1 1.2454 1.4426 0.015595 0.9913 0.00218 - 0.9646

2 1.3198 1.6215 0.02815 0.9867 0.00437 - 0.9467

3 1.2777 1.514 0.04639 0.9722 0.00795 - 0.9041

4 1.2896 1.5231 0.035416 0.9801 0.00575 - 0.9271

5 1.2889 1.5027 0.018384 0.9905 0.00265 - 0.9611

6 1.3228 1.6481 0.023017 0.9898 0.00345 - 0.9572

7 1.31 1.6836 0.040468 0.9809 0.00675 - 0.927

8 1.2992 1.7636 0.021899 0.9914 0.00325 - 0.9622

9 1.3094 1.7211 0.027616 0.9883 0.00428 - 0.9512

10 1.3078 1.7348 0.023256 0.9906 0.00349 - 0.9592

11 1.3111 1.7232 0.023097 0.9905 0.00346 - 0.9592

12 1.3208 1.6873 0.0188 0.9923 0.00272 - 0.966

13 1.3164 1.7116 0.018051 0.9928 0.00259 - 0.9679

14 1.3162 1.6907 0.026926 0.9883 0.00415 - 0.9515

15 1.3194 1.6633 0.027692 0.9876 0.00429 - 0.9492

16 1.3137 1.6867 0.032938 0.9851 0.00527 - 0.9406

17 1.3143 1.7101 0.023017 0.9905 0.00345 - 0.959

18 1.3123 1.6304 0.041724 0.979 0.00700 - 0.9219

19 1.162 1.3847 0.043454 0.9674 0.00735 - 0.8949

20 1.3148 1.633 0.037642 0.9815 0.00618 - 0.9296
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Table 6 Feature extraction of sample IBSR data the IBSR and MS free sample images using GLCM Method

Entropy Energy Dissimilarity Sum entropy Sum average Maximum pobability

0.9989 0.4339 0.74576 0.126 0.4324 2.2958

0.9978 0.5384 0.66628 0.1647 0.5354 2.4158

0.996 0.5042 0.7064 0.1429 0.4987 2.3453

0.9971 0.4981 0.70511 0.1446 0.4941 2.3507

0.9987 0.4703 0.71781 0.1398 0.4685 2.336

0.9983 0.545 0.65717 0.1697 0.5426 2.4332

0.9966 0.5774 0.64018 0.1766 0.5727 2.458

0.9984 0.5893 0.61674 0.19 0.587 2.5101

0.9979 0.5793 0.62982 0.183 0.5763 2.4822

0.9983 0.5801 0.62603 0.1852 0.5777 2.4911

0.9983 0.5755 0.63005 0.1833 0.5731 2.4833

0.9986 0.5571 0.64356 0.1769 0.5552 2.4591

0.9987 0.566 0.63508 0.1812 0.5642 2.4753

0.9979 0.5666 0.64067 0.1776 0.5637 2.4618

0.9979 0.5561 0.65051 0.1726 0.5531 2.4436

0.9974 0.571 0.64079 0.177 0.5674 2.4596

0.9983 0.5704 0.63459 0.181 0.568 2.4746

0.9965 0.556 0.65975 0.1667 0.5511 2.4226

0.9963 0.4259 0.76729 0.1127 0.4208 2.2589

0.9969 0.553 0.65968 0.1671 0.5488 2.4241

Table 7 Feature extraction of sample IBSR data and MS free sample images using GLCM Method

Sum of Square Variance Inverse difference Imc 2 Imc 1 Difference variance Difference entropy

0.50192 0.851 0.9989 0.7446 0.002189 0.0021846

0.65435 0.7899 0.9978 0.7875 0.004379 0.0043596

0.56345 0.82335 0.996 0.7515 0.007958 0.0078942

0.57259 0.8218 0.9971 0.7597 0.005754 0.005721

0.55643 0.83068 0.9987 0.7623 0.002653 0.0026455

0.67534 0.78165 0.9983 0.7952 0.003453 0.0034406

0.69949 0.76762 0.9966 0.7945 0.006751 0.006705

0.75677 0.74331 0.9984 0.8153 0.003256 0.0032454

0.72756 0.75678 0.9979 0.8064 0.004281 0.0042622

0.73748 0.75273 0.9983 0.8104 0.003495 0.0034824

0.72953 0.75663 0.9983 0.8086 0.003467 0.0034545

0.70473 0.76908 0.9986 0.8043 0.002723 0.0027153

0.72207 0.76106 0.9987 0.8087 0.002596 0.0025896

0.70622 0.76701 0.9979 0.8015 0.004154 0.004137

0.68613 0.77605 0.9979 0.7961 0.004295 0.0042761

0.70265 0.76758 0.9974 0.7983 0.005277 0.0052491

0.72048 0.76099 0.9983 0.8065 0.003453 0.0034406

0.6596 0.7852 0.9965 0.7833 0.007003 0.0069542

0.44347 0.86685 0.9963 0.7059 0.007354 0.0073

0.66214 0.78486 0.9969 0.7857 0.006189 0.0061509
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is used for determining the optimal fitness score of the

image. PSNR [71] quantifies the standard of reconstructed

segmented image quality using the minimized value of root

mean squared error as shown in Eqs. (14) and (15),

respectively. A higher value of PSNR indicates that an

improved reconstructed image is obtained with better

quality.

PSNR ¼ 20
255

RMSE

� �

ð14Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

x¼1

XQ

y¼1

B x; yð Þ � B0 x; yð Þð Þ2

P:Q

v
u
u
t ð15Þ

B is the original image, and B’ is the segmented image with

a size P*Q.

SSIM [72] determines the similarity between two

reconstructed and original images. The mathematical for-

mulation is represented in Eq. (16). A higher value of

SSIM determines the more structural similarity and edge

information of the segmented image.

SSIM B;B0ð Þ ¼ 2lB þ n1ð Þ þ 2 2rBrB0 þ n2ð Þ=ð l2B þ l2B0

þ n1Þðr2B þ r2B0 þ n2Þ
ð16Þ

Here, lBðlB0 ) shows the mean intensity and rBðrB0 Þ rep-

resents the standard deviation of brain MRI image B (B’).

The constants values of n1 and n2 taken are 6.5025 and

58.5225.

4.5 Comparative results and analysis

The comparative result computation of different metrics

measures is reported in this section. Table 15 shows the

average fitness value of the segmented image. Table 16

shows the average PSNR values for measuring the image

quality. Table 17 presents the comparative analysis of

average SSIM values estimating the structural similarity

depending on the reconstructed image intensities. Each

sample image shows the average value of 20 images. The

observation states that LXLOA provides higher PSNR and

SSIM values which gives better image quality. Table 18

computation provides the Jaccard coefficient and dice

similarity values for validation purpose. The quantitative

Table 8 Feature extraction of sample IBSR data the IBSR and MS free sample images using GLDM Method

S.N Image Grid-weighted sum Diagonal-weighted sum Vertical-weighted sum Horizontal-weighted sum Cluster prominence

1 142,000 143,000 142,000 142,000 0.70536

2 142,000 142,000 142,000 142,000 0.76196

3 141,000 142,000 141,000 142,000 0.73254

4 142,000 142,000 142,000 142,000 0.73989

5 142,000 143,000 142,000 142,000 0.7372

6 142,000 142,000 142,000 142,000 0.76354

7 141,000 142,000 141,000 142,000 0.75458

8 142,000 142,000 142,000 142,000 0.73985

9 142,000 142,000 142,000 142,000 0.75131

10 142,000 142,000 142,000 142,000 0.7489

11 142,000 142,000 142,000 142,000 0.75214

12 142,000 143,000 142,000 142,000 0.76087

13 142,000 143,000 142,000 142,000 0.75641

14 142,000 142,000 142,000 142,000 0.7579

15 142,000 142,000 142,000 142,000 0.76113

16 142,000 142,000 142,000 142,000 0.75663

17 142,000 142,000 142,000 142,000 0.7553

18 142,000 142,000 141,000 142,000 0.75767

19 141,000 142,000 141,000 142,000 0.65183

20 142,000 142,000 142,000 142,000 0.7591
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assessment performance metrics consider the similarity of

the reconstructed outcome image with a corresponding

ground image.

Table 19 depicts the comparative analysis of classifi-

cation methods (SVM and ANN) on the proposed tech-

nique’s selected features (Algorithm 2). Results reveal that

the ANN outperforms the SVM. ANN gives (a) accuracy

(97.37%), (b) sensitivity (85.8%), (c) specificity (90%) and

(d) precision (91.92%).

The computational time of the algorithms is presented in

Table 20. It can be seen that time taken by the proposed

LXLOA (181.4101) is lesser than the other meta-heuristic

algorithms. This result indicates that the LXLOA has a

higher tendency of convergence to the global optimum. We

noted that the convergence speed of the DE is worst

because it took maximum computational time to reach the

global solution. So it can be concluded that the proposed

Table 10 Independent samples Kruskal–Wallis test

S.N Null hypothesis Test Sig Decision

1 The distribution of Best_Fitness is the same across categories of

algorithms

Independent-samples Kruskal–

Wallis test

0.000 Reject the null

hypothesis

Asymptotic significances are displayed. The significance level is 0.05

Fig. 5 Pairwise comparison of algorithms

Table 11 Wilcoxon test on best fitness values

Algorithm (A) Algorithm (B) SD p-value

LXLOA ASCA 16 0

DE 64 0

LOA 5 0

PSO 21 0

WOA 15 0

SD standard deviation

Table 12 Wilcoxon test on mean fitness values

Algorithm (A) Algorithm (B) SD p-value

LXLOA ASCA 7 0

DE 58 0

LOA 1 0

PSO 18 0

WOA 21 0

SD standard deviation

Table 13 Kruskal–Wallis test on best fitness values

Algorithm (A) Algorithm (B) SD p-value

LXLOA ASCA 23 0

DE 11 0

LOA 17 0

PSO 16 0

WOA 18 0

SD standard deviation

Table 14 Kruskal-Wall Test on mean fitness values

Algorithm (A) Algorithm (B) SD p-value

LXLOA ASCA 21 0

DE 9 0

LOA 13 0

PSO 15 0

WOA 13 0

SD standard deviation
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Table 15 Comparative analysis of average fitness values on brain MRI sample images using different metaheuristics techniques

Sample image DE WOA PSO LOA ACSA LXLOA

Image 1 3.31 1.936 3.6975 4.2783 4.285695 4.332092

Image 2 1.127 3.6716 4.6968 5.79828 5.807674 5.047576

Image 3 5.093 6.242 5.7309 7.6035 7.614962 8.376435

Image 4 1.0882 4.2876 4.6976 5.98388 5.993275 8.425117

Image 5 1.2737 4.2864 4.7112 5.99712 6.006542 13.52087

Image 6 0.34316 4.287 4.7103 5.9964 6.005821 5.857293

Image 7 0.20226 4.288 4.7055 5.9919 6.001311 8.299372

Image 8 1.0333 4.3026 4.6991 5.98988 5.999278 9.316846

Image 9 0.39789 4.2911 4.7175 6.00483 6.014265 8.572981

Image 10 0.34316 4.287 4.7103 5.9964 6.005821 5.857293

Image 11 0.20226 4.288 4.7055 5.9919 6.001311 8.299372

Image 12 0.33545 4.2871 4.6995 5.98563 5.995029 7.578636

Image 13 2.2837 4.9864 4.6151 6.11102 6.12025 6.286947

Image 14 1.36116 4.2987 4.6103 5.89991 5.909131 5.958293

Image 15 1.20226 4.2955 4.9455 6.23415 6.244041 7.794372

Image 16 1.4333 4.8926 4.3191 5.78688 5.795518 8.751246

Image 17 0.46189 4.2911 4.875 6.16233 6.17208 8.724481

Image 18 0.50116 4.897 4.6103 6.0794 6.088621 5.857293

Image 19 0.69746 4.848 4.8475 6.3019 6.311595 7.289372

Image 20 0.71746 3.884 3.9465 5.1117 5.119593 5.273513

Table 16 Comparative analysis with respect to average PSNR values on brain MRI sample images

Sample image DE WOA PSO LOA ACSA LXLOA

Image 1 15.265 20.6 18.998 19.0186 19.0566 20.89488

Image 2 15.47 20.89 20.82 20.84089 20.88253 23.06032

Image 3 15.66 21.275 21.2 21.22128 21.26368 23.2098

Image 4 15.843 20.912 21 21.02091 21.06291 23.13809

Image 5 16.075 20.788 20.788 20.80879 20.85036 20.99588

Image 6 16.466 21.109 21.109 21.13011 21.17233 21.32009

Image 7 16.964 20.599 20.599 20.6196 20.6608 20.80499

Image 8 17.539 18.23 18.306 18.32423 18.36084 21.57966

Image 9 23.15 24.546 23.51 23.53455 23.58157 29.84146

Image 10 22.809 22.909 23.009 23.03191 23.07793 24.22788

Image 11 21.8 22.898 22.762 22.7849 22.83042 25.14698

Image 12 22.3 22.2 20.244 20.2662 20.30669 25.49644

Image 13 17.075 20.888 20.988 21.00889 21.05086 21.90488

Image 14 16.886 20.235 20.219 20.23924 20.27967 21.41099

Image 15 15.964 21.689 21.698 21.71969 21.76309 22.81489

Image 16 17.639 18.353 18.386 18.40435 18.44113 19.50916

Image 17 25.15 26.546 26.51 26.53655 26.58957 30.18789

Image 18 22.829 22.929 23.315 23.33793 23.38456 24.15718

Image 19 21.9 22.998 22.962 22.985 23.03092 24.94498

Image 20 15.466 20.119 20.823 20.84312 20.88477 21.58269
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LXLOA is a cost-effective computational method, and it

can converge to a global optimum solution quickly.

4.6 Discussion and analysis

Figure 2 presents the proposed methodology flow process

to detect and predict brain tumor using MRI images. The

consolidated steps of the proposed method are shown in

Algorithm 1. The simulated analysis at each successive

stage for the skull stripping technique on IBSR and MS

free dataset is shown in Figs. 3 and 4, respectively. The

extracted texture and statistical feature are depicted in

Tables 5, 6, 7, 8 respectively, and optimized features

Table 17 Comparative analysis with respect to average SSIM values on brain MRI sample images

Sample image DE WOA PSO LOA ACSA LXLOA

Image 1 0.33822 0.44141 0.44111 0.441551 0.442434 0.448612

Image 2 0.33717 0.44757 0.44735 0.447798 0.448692 0.453844

Image 3 0.33173 0.44943 0.4484 0.448849 0.449746 0.455348

Image 4 0.33054 0.45715 0.45261 0.453067 0.453972 0.463196

Image 5 0.32771 0.46507 0.46619 0.466655 0.467587 0.472569

Image 6 0.43511 0.47034 0.47665 0.47712 0.478074 0.490911

Image 7 0.357 0.47654 0.46709 0.467567 0.468501 0.572791

Image 8 0.4772 0.48483 0.50017 0.500655 0.501655 0.707172

Image 9 0.40819 0.48708 0.41066 0.411147 0.411968 0.726079

Image 10 0.41558 0.48748 0.41926 0.419748 0.420586 0.726412

Image 11 0.41733 0.69748 0.42101 0.421708 0.42255 0.73422

Image 12 0.41292 0.69412 0.63496 0.635654 0.636924 0.739482

Image 13 0.4152 0.49708 0.4906 0.491097 0.492078 0.75345

Image 14 0.4156 0.48758 0.41896 0.419448 0.420286 0.664782

Image 15 0.45143 0.74856 0.5101 0.510849 0.511869 0.777044

Image 16 0.5192 0.65693 0.6996 0.700257 0.701656 0.840482

Image 17 0.45819 0.46708 0.46066 0.461127 0.462048 0.736179

Image 18 0.4658 0.4748 0.4926 0.493075 0.49406 0.719322

Image 19 0.4156 0.6986 0.421 0.421699 0.422541 0.73326

Image 20 0.43717 0.46557 0.46535 0.465816 0.466746 0.473034

Table 18 Shows the average Jaccard Coefficient and Dice similarity

values for IBSR and MS free data images

Sample image Dice coefficient Jaccard coefficient

Image 1 0.99339 0.98686

Image 2 0.99182 0.98378

Image 3 0.99236 0.98483

Image 4 0.99233 0.98477

Image 5 0.99251 0.98512

Image 6 0.99271 0.98553

Image 7 0.9937 0.98749

Image 8 0.99154 0.98323

Image 9 0.99191 0.98395

Image 10 0.99206 0.98424

Image 11 0.99235 0.98482

Image 12 0.99092 0.98199

Image 13 0.9985 0.98414

Image 14 0.99568 0.982

Image 15 0.9964 0.99

Image 16 0.9959 0.98986

Image 17 0.99282 0.98578

Image 18 0.992436 0.984583

Image 19 0.99235 0.98677

Image 20 0.99451 0.98612

Table 19 Classification of result with respect to selected features for

determining tumored and non-tumored MRI

Parameters SVM ANN

Sensitivity 79.2 85.8

Specificity 86.625 90

Precision 91.38461 91.92857

Accuracy 92.0898 97.3269
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selected through Fuzzy weighted k-means embedding LDA

(Algorithm 2) are shown in Table 9. The visualization

analysis of average fitness function, PSNR, and SSIM are

depicted in Fig. 6a, b, c for comparative analysis of

existing metaheuristics such as DE, WOA, PSO, LOA,

ACSA, and LXLOA. The observation shows the proposed

algorithm is providing promising results compared to other

methods. The validation of the proposed algorithm is

attained by evaluating the similarity between the ground

truth image and segmented image, as depicted in Fig. 7.

Moreover, Fig. 8 presents that the artificial neural network

gives better performance measures on a comparative study

with support vector machine.

5 Conclusions

In this paper, an approach for the intelligent computer-

aided mechanism has been developed to diagnose and

detect tumor and non-tumored brain MRI images to take

preventive measures at an early stage. Extended Weiner

filtering technique is proposed for improving the quality of

image dataset needed to be analyzed. Further, LXLOA was

proposed to improve efficiency and provide the optimal

threshold value for segmentation of the tumor region. The

optimized set of features were extracted from segmented

using effective fuzzy weighted k-means embedding LDA

algorithm and, it helped in the decision-making process.

Extensive simulations were conducted to determine the

effectiveness of the proposed algorithm. To present a fair

outcome, results were validated using different parameters.

LXLOA is tested on 29 standard functions and compared

with different metaheuristics algorithms such as DE, WOA,

PSO, LOA, ACSA, and LXLOA. The performance was

measured using three quality metrics (a) fitness, (b) PSNR,

(c) SSIM and validated using different coefficient param-

eters. The observation determines that LXLOA outper-

forms the existing state of the art and generates better

computational efficiency. The best feature subset was

selected using fuzzy k-means embedding LDA algorithm

giving improved classification computation. Results

revealed that LXLOA showed promising results by

attaining accuracy of 97%. Thus, the proposed algorithm is

providing promising experimental analysis and outcomes.

The immediate future extension involves the usage of 3-

dimensional (3-D) medical data for clinical research by

incorporating the improved metaheuristics algorithms.

Table 20 Comparison of efficiency with respect to time taken by different meta-heuristic technique

Algorithm DE WOA PSO LOA ACSA LXLOA

Average time taken in seconds 200.646 186.3541 195.6152 188.568 185.648 181.4101
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