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Abstract
Tourist arrivals forecasting has become an increasingly hot issue due to its important role in the tourism industry and hence

the whole economy of a country. However, owing to the complex characteristics of tourist arrivals series, such as

seasonality, randomness, and non-linearity, forecasting tourist arrivals remains a challenging task. In this paper, a hybrid

model of dual decomposition and an improved fuzzy time series method is proposed for tourist arrivals forecasting. In the

novel model, two stages are mainly involved, i.e., dual decomposition and integrated forecasting. In the first stage, a dual

decomposition strategy, which can overcome the potential defects of individual decomposition approaches, is designed to

fully extract the main features of the tourist arrivals series and reduce the data complexity. In the second stage, a fuzzy time

series method with fuzzy C-means algorithm as the discretization method is developed for prediction. In the empirical

study, the proposed model is implemented to predict the monthly tourist arrivals to Hong Kong from USA, UK, and

Germany. The results show that our hybrid model can obtain more accurate and more robust prediction results than

benchmark models. Relative to the benchmark fuzzy time series models, the hybrid models using traditional decomposition

methods and strategies, as well as the traditional single prediction models, our proposed model shows a significant

improvement, with the improvement percentages at about 80, 70, and 50%, respectively. Therefore, we can conclude that

the proposed model is a very promising tool for forecasting future tourist arrivals or other related fields with complex time

series.
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1 Introduction

From a worldwide perspective, tourism makes a great

contribution to economic growth [1, 2]. Take the case of

China, according to China National Tourism Administra-

tion, the total revenue of China’s tourism industry was 6.63

trillion yuan in 2019, which raises 11 percent compared

with 2018 and accounts for more than 11% of China’s

GDP. Therefore, forecasting tourist arrivals plays an

important role in forecasting future economic growth.

Moreover, tourist arrivals forecasting can provide valuable

reference for subsequent strategic planning and policy

formulation [3, 4]. Accurate forecast of tourist arrivals can

make the operation of travel agencies more effective and

help tourist destinations to be better managed, which is

very important to the sustainable development of the whole

tourism industry and even the entire economy. In general,

the study of tourist arrivals forecasting is of great signifi-

cance to the whole society, both politically and economi-

cally. However, due to the complex characteristics of

tourist arrivals series (e.g., seasonality, randomness, and

non-linearity), tourist arrivals forecasting is still a difficult

problem.

To solve this problem, a growing number of researchers

are paying attention to the analysis and prediction of tourist

arrivals. Meanwhile, numerous models have been formu-

lated and designed to forecast tourist arrivals. According to

related literature [5], single forecasting models that were

widely used to forecast tourist arrivals can fall into two

main types, i.e., econometric models and artificial intelli-

gence (AI) models. The econometric models, such as
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autoregressive moving average (ARMA) [6], autoregres-

sive integrated moving average (ARIMA) [7], exponential

smoothing (ES) [8], and generalized autoregressive con-

ditional heteroskedasticity (GARCH) [9], are more suit-

able for forecasting a relatively stable time series [10].

When forecasting data such as tourist arrivals with non-

linear characteristic and rapid changes, it has been pointed

out that econometric models perform poorly in achieving

effective prediction results [11]. As for the AI models, the

development of AI techniques has greatly promoted their

application in various fields, including air quality early

warning [12], the prediction of crude oil price [13], and

electricity price [14]. The commonly used AI models for

forecasting tourist arrivals include artificial neural net-

works (ANNs) [15], extreme learning machine (ELM) [16],

and support vector machine (SVM) [17]. Compared with

the econometric models, AI models are more effective due

to their strong robustness and fault tolerance. All these

forecasting methods have significantly promoted the sus-

tainable development of world tourism industry.

However, almost every single forecasting model has its

pros and cons, and even AI models are unlikely to achieve

satisfactory performance in all scenarios. For example, due

to the poor effect of extrapolation, narrow prediction scale,

and high requirement on data quantity and quality,

econometric models are unsuitable for data with high

fluctuation and noise [18]; for ANNs, the prediction per-

formance of the models will be affected by the initial

weights and thresholds which are generated randomly [19].

For this reason, researchers started to turn their attention to

developing hybrid forecasting models by incorporating

some existing single methods. Numerous studies have

shown that hybrid forecasting model can achieve relatively

ideal effect and has become the current mainstream fore-

casting method [20].

In order to develop hybrid models for forecasting, some

decomposition methods, such as variational mode decom-

position (VMD) [21], empirical mode decomposition

(EMD) [22], and wavelet transform (WT) [23], have been

employed to extract the main features of raw series. Our

previous work [24] has proved that data preprocessing with

an effective decomposition method can significantly

improve prediction performance. Specifically, data pre-

processing strategies can fall into two types. One refers to

‘‘decomposition & de-noising’’ strategy [25]. Under this

strategy, the noisy information of the original series is first

removed, then the forecasting model is established by using

the filtered time series. The other refers to ‘‘divide &

conquer’’ strategy [26]. Under this strategy, raw series is

first decomposed into several components, which then can

be predicted using a determined prediction model respec-

tively, and finally, the predicted values of all components

are integrated to get the final results. In terms of tourist

arrivals forecasting, Jiang and Ma [27] used fast ensemble

EMD (FEEMD) method for data preprocessing to build a

hybrid model, which performs well in forecasting future

tourist arrivals. Similarly, by using WT for data prepro-

cessing and kernel-based ELM and ARMA for forecasting,

Yang et al. [28] developed a hybrid model for daily tourist

arrivals forecasting, and the empirical results based on

three real tourism markets show that the developed model

has good linear and non-linear prediction abilities. In the

above studies, the hybrid forecasting models can improve

the prediction accuracy and thus perform better than all the

considered benchmark models. Nevertheless, data prepro-

cessing only using a single decomposition method in the

hybrid model may not be able to fully extract the main

features of the tourist arrivals series. Furthermore, inherent

defects existed in some data decomposition methods, such

as mode mixing and endpoint effect, may also limit their

application in feature extraction [29]. In fact, problems

such as incomplete data feature extraction and the inherent

defects existed in decomposition methods will make it

difficult for the hybrid model to achieve satisfactory pre-

diction results. Therefore, to improve the prediction per-

formance, it is worth further improve the data

preprocessing techniques in future work.

In addition, there is a problem that the commonly used

single forecasting models have a poor interpretation of the

prediction results. The fuzzy time series (FTS) model

which divides the universe of discourse based on historical

data features can solve this problem well. However, most

of the traditional FTS models divide the universe of dis-

course with equal widths and ignore the potential features

of the data, which makes the prediction results still

unsatisfactory [30]. To address this issue, scholars devel-

oped some novel methods for dividing the universe of

discourse, such as genetic algorithms and clustering algo-

rithms. Therefore, from the perspective of strengthening

the interpretation of the results and improving model

accuracy, it is of great value to further explore how to

divide the universe of discourse of FTS by fuzzy C-means

(FCM) algorithm.

To sum up, the above analysis shows that the existing

studies are insufficient to comprehensively improve the

forecasting effectiveness. Thus, it is very urgent for sus-

tainable economic and social development to develop a

novel forecasting model of tourist arrivals for the tourism

industry and significantly improve the forecasting

effectiveness.

This paper proposes a novel hybrid forecasting model of

tourist arrivals using dual decomposition strategy and an

improved fuzzy time series method. Two stages are

included in this hybrid model: dual decomposition, and

integrated forecasting. In the first stage, the seasonal

adjustment method (i.e., X12-ARIMA [31]) is employed to

7162 Neural Computing and Applications (2023) 35:7161–7183

123



decompose the tourist arrivals data to extract its significant

seasonal characteristics, and then an improved empirical

mode decomposition method (i.e., ICEEMDAN [29]) is

applied to decompose the remaining component sequences

for reducing data complexity. Then in the second stage, the

FTS model with the universe of discourse divided by the

FCM algorithm, i.e., FCM-FTS method, is used to model

and predict each component sequence after the second

decomposition, and the predicted values of all the com-

ponents are linearly summed up to get the final results.

The main contributions of this paper can be summarized

as below:

(1) Most importantly, we develop a hybrid forecasting

model with high accuracy and high robustness, and

its effectiveness has been verified in forecasting

Hong Kong’s inbound tourist arrivals. According to

the experimental results, our hybrid model can

decompose and extract the complex features of the

raw series, thus obtaining more accurate and more

robust prediction results. Hence, it is a very effective

tool to predict real tourism markets and can provide

valuable reference for tourism decision-making.

(2) Our hybrid forecasting model has two major differ-

ences from the traditional hybrid approaches. Firstly,

a different strategy for data preprocessing is pre-

sented. In most of the former research, individual

decomposition approaches have been adopted gen-

erally to decompose the raw series, of which the

main features may not be fully extracted by such data

preprocessing strategy. Therefore, this paper presents

a dual decomposition strategy based on X12-ARIMA

and ICEEMDAN, which can overcome the draw-

backs of the traditional data preprocessing strategies

and further improve the prediction performance.

Secondly, an effective clustering algorithm, i.e.,

FCM, is adopted to optimize the domain partition

module of FTS model, of which the performance has

been successfully improved.

(3) In terms of numerical experiments, this paper not

only compares the proposed hybrid model with five

commonly used single forecasting models but also

compares it with other six hybrid forecasting models

using different data preprocessing strategies, which

comprehensively demonstrates the superiority of our

model. In addition, the benchmark models consid-

ered can represent currently popular modeling

strategies and ideas, similar to the high-quality

papers published in international journals in recent

years. On the basis of comparative study, this paper

verifies and demonstrates the significance of the

components of our hybrid model in detail, such as

the validity of X12-ARIMA and ICEEMDAN, as

well as the superiority of dual decomposition strat-

egy and FCM method. Moreover, this paper also

verifies the robustness of our hybrid model. To sum

up, we finally demonstrate that the developed novel

tourist arrivals forecasting model has high superior-

ity and practical values for the real tourism markets.

(4) To verify the model prediction performance, this

paper provides a scientific evaluation and an in-depth

discussion of the prediction results. We use six

typical criteria, including average error (AE), mean

absolute percentage error (MAPE), root mean square

error (RMSE), mean absolute error (MAE), Theil

inequality coefficient (TIC), and index of agreement

(IA), to evaluate the performance of the forecasting

models. Moreover, we further demonstrate the supe-

riority of the proposed model through an insightful

discussion from five aspects: (a) the model robust-

ness according to the prediction performance at

different years; (b) the significance of the model

from the perspective of statistics; (c) the forecasting

effectiveness based on the comparative studies;

(d) the improvement percentage relative to the

benchmarks; and (e) the grey relational analysis of

all the models involved.

The rest of the paper is arranged as follows. Section 2

introduces the main methods involved and the overall

framework of the developed hybrid forecasting model.

Section 3 mainly describes the data, conducts the com-

parative experiments, and analyzes the prediction results.

Section 4 presents the related discussions. Finally, Sect. 5

concludes the study.

2 Methods

This section presents a hybrid model of dual decomposition

and an improved fuzzy time series method for tourist

arrivals forecasting. Specifically, Sects. 2.1–2.5 describe

the relevant methods for decomposition and prediction

respectively, and Sect. 2.6 provides the overall process of

our hybrid model. Table 3 in Appendix 1 shows the used

nomenclature in this paper.

2.1 X12-ARIMA

X12-ARIMA [31] is a popular seasonal adjustment method

developed by the United States Census Bureau, which

mainly includes two functional modules: regARIMA

module and X-11 seasonal decomposition module. In par-

ticular, the regARIMA module can carry out various types

of data preprocessing, such as outlier detection and cor-

rection, estimation, and elimination of the influence of
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calendar factors [32]. The X-11 seasonal decomposition

module decomposes the preprocessed data through multi-

ple iterations of moving average method to form a seasonal

factors series and a seasonally adjusted series. For the

purpose of this paper, we just introduce the basic algorithm

for the X-11 seasonal decomposition module.

It is assumed that the monthly series can be decomposed

into a seasonal factor (i.e., S), a trend-cycle factor (i.e.,

TC), and an irregular factor (i.e., I). Two main steps are

involved in the X-11 seasonal decomposition module:

Step 1 Estimation of the initial components

Firstly, the 2 9 12 moving average method is applied to

estimate the initial TC component sequences. Then, this

TC component is subtracted from the raw time series to

obtain the initial estimation of the seasonal-irregular

component (i.e., SI). Next, the 3 9 3 moving average

method is applied to estimate the initial seasonal compo-

nent, which then is normalized by a 2 9 12 moving

average. Finally, the normalized seasonal component is

subtracted from the raw series to obtain the initial esti-

mation of the seasonally adjusted series (i.e., SA).

Step 2 Final seasonal adjustment

Firstly, the Henderson moving average method is used

to obtain the second estimation of the TC component from

the initially estimated SA series. Then, this new TC com-

ponent is subtracted from the raw series to obtain the

second estimation of the SI component. Next, the 3 9 5

moving average method is applied to estimate a new sea-

sonal component, which then is normalized by a 2 9 12

moving average. Finally, the normalized seasonal compo-

nent is removed from the raw series to obtain the final SA

series.

It is worth noting that the selection of the number of

terms in the moving average is critical in the X-11 seasonal

decomposition module. The higher the number of terms,

the more irregular factors can be eliminated. But as the

number of terms increases, more information is lost. For

monthly series that change periodically on a 12-month

basis, a centered 12-term moving average can be consid-

ered for obtaining the initial TC component and the nor-

malized seasonal component. However, if the series to be

decomposed is also an economic flow time series (such as

the monthly tourist arrivals), a 2 9 12 moving average is

required to ensure that each element of the newly generated

sequence after using the moving average is aligned with

that of the raw series. For other parts of the module, the

number of terms in the moving average is specified with

reference to the standard X-11 procedure [33].

2.2 ICEEMDAN

Traditional empirical mode decomposition methods,

including empirical mode decomposition (EMD) [22],

ensemble EMD (EEMD) [34], and complete ensemble

EMD with adaptive noise (CEEMDAN) [35], have some

problems such as mode mixing, noise, and redundancy, and

pseudo components after decomposition. Aiming at these

problems, Colominas et al. [29] proposed an improved

complete ensemble EMD with adaptive noise (ICEEM-

DAN), which has a higher ability to extract the components

of the complex time series with different time scale fea-

tures. The following are the main steps and relevant for-

mulas of this algorithm:

Step 1 Calculate the first residue of the original series

using the following equation:

r1 ¼
1

I

XI

i¼1

M xþ b1E1 wi
� �� �

; ð1Þ

where Ek() is an operator, which uses EMD method to

decompose a series into several intrinsic mode functions

(IMFs) and one residual, with the k-th IMF component

(i.e., the k-th mode) as output; M() also represents an

operator, which produces the local mean (i.e., the mean of

the upper and lower envelopes) of a series; x represents the

original time series; wi indicates a realization of white

noise, whose mean value is zero and variance is one,

i ¼ 1; 2; :::; I, and I is the number of times that white noise

is added; bk is the parameter that controls the energy of the

white noise in each iteration, k ¼ 1; 2; :::;K, and K is the

maximum iterations. Mode mixing is defined as either a

single IMF consisting of components of widely disparate

scales or a component of a similar scale residing in dif-

ferent IMFs [34]. The purpose of including white noise in

this equation is to avoid the mode mixing problem so that

the components of the complex time series with different

time scales can be identified and extracted more accurately.

Step 2 Subtract the first residue from the original series

to get the first mode d1:

d1 ¼ x� r1: ð2Þ

Step 3 Obtain the second residue of the original time

series, i.e., r2, in the same way as in step 1, and finally

obtain the second mode d2 by the following equation:

d2 ¼ r1 � r2 ¼ r1 �
1

I

XI

i¼1

M r1 þ b2E2 wi
� �� �

: ð3Þ

Step 4 Obtain the k-th residue and k-th mode by the

following equation:

dk ¼ rk�1 � rk ¼ rk�1 �
1

I

XI

i¼1

M rk�1 þ bkEk wi
� �� �

: ð4Þ

Step 5 Return to step 4 for next k until the residue can no

longer be decomposed or K is reached.
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2.3 Fuzzy C-means clustering

The fuzzy C-means (FCM) algorithm is one of the com-

monly used clustering methods [36]. The basic idea of

FCM algorithm is to continuously update the cluster cen-

ters of all data and the membership degrees of each data

point belonging to all cluster centers through iterative

calculation, until the dissimilarity index function and the

iteration error reach the preset minimum value. The fol-

lowing are the main steps and related formulas of FCM

algorithm:

Step 1 Calculate the number of cluster centers:

c ¼ xmax � xminð Þ
,Pn1

t¼2

xt � xt�1j j

n1 � 1

2

664

3

775; ð5Þ

where xtðt ¼ 1; 2; � � � ; n1Þ 2 R is the element of the original

series x, and n1 is the number of elements in x. c is the

number of cluster centers, c 2 2; 3; :::; n1 � 1f g. xmax and

xmin represent the maximum and minimum values in the

original series, respectively; [] represents the rounding

operation.

Step 2 Initialize the cluster centers. Randomly select c

samples in x as the initial cluster centers

Vð0Þ ¼ v01; v02; :::; v0cf g.
Step 3 Calculate the membership matrix:

uij ¼
Xc

r¼1

dij
drj

 !�1

; ð6Þ

where dij is the Euclidean distance from the element xj to

the cluster center vi; i ¼ 1; 2; :::; c; j ¼ 1; 2; :::; n1.

Step 4 Iterate new cluster centers:

vi ¼
Xn1

j¼1

umij xj

,
Xn1

j¼1

umij ; ð7Þ

where m is the weighted index of membership degree,

which is used to adjust the fuzzy degree of the clustering

results, generally m ¼ 2.

Step 5 Repeat steps 3 and 4 iteratively until the condi-

tion V k þ 1ð Þ � V kð Þk k\e is satisfied (e is the iteration

stop threshold) or the maximum iterations are reached.

2.4 Fuzzy time series algorithm

On the basis of the fuzzy set theory and other concepts

proposed by Zadeh [37], Song and Chisom [38, 39]

established the fuzzy time series (FTS) model, which was

successfully used to predict the enrollment data for the

University of Alabama. Subsequently, traditional FTS

model and its variants were widely applied in other fields

(e.g., temperature, stock index, and network traffic) to

perform forecasting and have achieved good forecasting

results [40, 41]. The basic definitions of FTS are as below:

Definition 1 It is assumed that U is a given universe of

discourse, which can be divided into n2 subintervals in

order, then U ¼ u1; u2; � � � ; un2f g. Define A as the fuzzy set

on the universe U, expressed as:

A ¼ fA u1ð Þ
u1

þ fA u2ð Þ
u2

þ � � � þ fA un2ð Þ
un2

; ð8Þ

where fAð Þ is the membership function of fuzzy set A,

fAð Þ 2 0; 1½ �; fAðuiÞ represents the membership degree of

the interval uið1� i� n2Þ with respect to the fuzzy set A.

Definition 2 Let the original time series Y ¼ ytf g ¼
YðtÞf gðt ¼ 1; 2; :::Þ be a subset of the real number field R.

Define a set of fuzzy sets fiðtÞ ði ¼ 1; 2; :::Þ on the series Y ,

and the series F tð Þ ¼ f1 tð Þ; f2 tð Þ; � � �f g,then F ¼
FðtÞf gðt ¼ 1; 2; :::Þ is a fuzzy time series defined on Y .

Definition 3 Suppose there is a fuzzy logical relationship

(FLR), i.e., Rðt; t - 1Þ, between F tð Þ and F t�1ð Þ, which
satisfies:

F tð Þ ¼ F t � 1ð Þ � R t; t � 1ð Þ; ð9Þ

then it is said that F tð Þ is obtained only by F t�1ð Þ (� is

a combination operator). And set F t�1ð Þ¼Ai and F tð Þ¼Aj,

then the FLR can also be expressed as: Ai ! Aj. Between

them, Ai and Aj are called the left-hand side (LHS) and

right-hand side (RHS) of the FLR, respectively.

Definition 4 All the single FLRs with the same LHS can be

composed into the same fuzzy logical relationship set

(FLRS). For example, the three FLRs (Al ! Ar1, Al ! Ar2,

Al ! Ar3) with the same LHS can be composed into one

FLRS, which is expressed as Al ! Ar1; Ar2;Ar3.

2.5 FCM-FTS model

For fuzzy time series, the unsupervised discretization

method was generally used to obtain the equal-width

intervals, which is simple and convenient. However, equal-

width interval partitioning method is not very inter-

pretable for the intervals and the forecasting results are not

accurate enough [42]. The FCM clustering algorithm
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partitions the universe of discourse according to data

characteristics, which is more objective. Furthermore, this

algorithm can explain the actual meaning of each sub-in-

terval by the explanation of the clustering center, which is

more scientific and reasonable than the equal-width inter-

val partitioning method. In this paper, the FTS model

optimized by Chen [43] with the FCM algorithm parti-

tioning the universe of discourse, i.e., FCM-FTS model, is

applied for prediction. The specific steps are as follows:

Step 1 Detect the stationarity of the time series to be

predicted by the augmented Dickey-Fuller (ADF) test [44].

If the series is stable, turn to step 2 directly. Otherwise,

make the series stable by preprocessing it with the differ-

ence method [7].

Step 2 Divide the universe U into n2 intervals by the

FCM clustering algorithm, then U ¼ u1; u2; :::; un2f g.
Step 3 Define the fuzzy set for the raw time series by

determining the fuzzy membership function. Then, con-

struct fuzzy set Ai based on the intervals. And the fuzzy

membership function fAi
ðujÞ can be defined as follows [45]:

fAi
ðujÞ ¼

1; i ¼ j
0:5; i ¼ jþ 1

0; others:

8
<

: ð10Þ

Step 4 Fuzzify the actual values. Fuzzify a raw value to

Ai when the highest degree of membership of that raw

value is in Ai [43].

fuzzifyðactualtÞ ¼ Ai if factualtðAiÞ
¼ max½factualtðAzÞ�; z = 1,2,:::,M, ð11Þ

where factualtðAzÞ denotes the degree of membership of the

actual value at t under Az, and M denotes the number of the

fuzzy sets.

Step 5 Establish and group the FLR. According to the

definition 3 and 4 in Sect. 2.4, the first-order FLR and

FLRS are constructed for all fuzzy sets of the fuzzy time

series.

Step 6 Determine and standardize the weight matrix.

The weights can be calculated and standardized based on

step 5, and then the centroid defuzzification method can be

used to further calculate the defuzzification matrix.

W sðtÞ ¼ ðW 0
1;W

0
2; :::;W

0
kÞ;

W 0
i ¼ Wi=

Xk

i¼1

Wi;
ð12Þ

where Wi is the unstandardized weighting matrix element,

and W 0
i denotes the standardized one. W s represents the

standardized weighting matrix.

Step 7 Obtain the forecasting results. Multiply the

defuzzified matrix by standardized weighting matrices to

obtain the rudimentary forecasting results:

F̂ðtÞ ¼ Dðt � 1Þ �W sðt � 1Þ; ð13Þ

where F̂ðtÞ denotes the forecasting result and D denotes the

defuzzified matrix.

2.6 Overall process of the proposed model

To forecast tourist arrivals, we propose a novel hybrid

model of X12-ARIMA, ICEEMDAN, FCM, and FTS,

namely X12-ARIMA-ICEEMDAN-FCM-FTS model. This

hybrid model includes two stages, i.e., dual decomposition

and integrated forecasting. Figure 1 shows the overall

process of our hybrid forecasting model, with four main

steps involved as follows:

2.6.1 Stage 1: Dual decomposition

Step1: Considering the seasonal characteristics of the tourist

arrivals data, first the original time series is decomposed by

X12-ARIMA method, extracting the seasonal component

and obtaining the seasonally adjusted series.

Step 2: ICEEMDAN is then used to decompose the

seasonally adjusted series into n-1 intrinsic mode functions

(IMF1, IMF2,…, IMFn�1) with different time scale features

and one smooth residual series (Residue), in order to

reduce the data complexity.

2.6.2 Stage 2: Integrated forecasting

Step 3 The FCM-FTS method is used to model and predict

the seasonal factors series, n-1 IMFs component series, and

the residual series, respectively.

Step 4 Finally, the predicted values for all the compo-

nents, respectively noted as SEA’, IMF1’, IMF2’,…,

IMFn�1’, and Residue’, are linearly summed up to get the

final prediction results.

3 Experiment

In this section, we used the developed hybrid model to

forecast Hong Kong’s inbound tourist arrivals from three

countries (i.e., USA, UK, and Germany) for illustration and

verification purposes. In particular, several related experi-

ments were carried out with multiple control groups set up,
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and comparison and analysis were made from various

aspects to verify the performance of our proposed model, in

which the main parameters involved can be seen in Table 4

(in Appendix 1). Furthermore, final prediction results were

taken as the average of 100 runs to avoid the influence of

random factors.

3.1 Data description

The monthly tourist arrivals to Hong Kong from USA, UK,

and Germany (simply noted as GER) are selected as data

samples, as shown in Fig. 2. For each series, there are 168

observations, covering the period from January 2006 to

December 2019, which can be obtained from Wind Data-

base (http://www.wind.com.cn/). Meanwhile, to evaluate

the model robustness, the samples are rolled backward for

one year at a time, thus each sample can produce three

subsamples with the same number of observations,

Fig. 1 Overall process of the

proposed hybrid forecasting

model

Fig. 2 The monthly tourist

arrivals to Hong Kong from

USA, UK and GER
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covering the periods from January 2006 to December 2017,

January 2007 to December 2018, and January 2008 to

December 2019, respectively. The sample data are shown

in detail in Table 5 (in Appendix 1). In addition, a link to

the supplementary material related to this article (including

the data and the code) can be found in Appendix 2.

In addition, the experiments conducted in this paper all

perform one-step-ahead predictions. The data of each

subsample can be divided into training set for model

training and testing set for evaluating model performance.

In particular, the data of the preceding 11 years (132

observations) are used as training set, while the following

year (12 observations) as testing set. Finally, the monthly

tourist arrivals in 2017, 2018, and 2019 are predicted,

respectively. According to the results of the three fore-

casting years, the final prediction performance of the pro-

posed model is evaluated.

3.2 Evaluation criteria

Considering that there is no universally applicable standard

for prediction model error evaluation [46], we choose six

popular criteria (i.e., AE, MAPE, RMSE, MAE, TIC, and

IA) to evaluate the model prediction performance, as listed

in Table 1. Obviously, except for the IA criterion, a smaller

evaluation criterion means that the prediction is more

accurate.

3.3 Experiment design

In this paper, three experiments were designed for com-

parison purpose. In Experiment I, the proposed model is

compared with other six hybrid models based on different

decomposition methods to prove the superiority of the

proposed dual decomposition strategy. Specifically, the six

hybrid models selected as benchmarks are as follows: X12-

ARIMA-FCM-FTS, ICEEMDAN-FCM-FTS, CEEMDAN-

FCM-FTS, EEMD-FCM-FTS, WD-FCM-FTS, and

ICEEMDAN(R)-FCM-FTS. In Experiment II, from a lon-

gitudinal perspective, the proposed model is compared with

several partial hybrid models which only use some of the

single methods involved in our model. On the basis of this

experiment, we try to demonstrate the importance of the

components of our model, including the effectiveness of

X12-ARIMA and ICEEMDAN methods, as well as the

superiority of FCM algorithm and dual decomposition

strategy. In Experiment III, we further compare the pro-

posed model with some popular single models, such as

typical econometric models and ANNs, to prove the

superiority of our model.

3.4 Experiment I

To fully verify the forecasting superiority of our proposed

dual decomposition strategy, two types of comparative

analysis were carried out. In Comparison I, we compare the

performance of five hybrid models using different

decomposition methods (including X12 -ARIMA, WD,

EEMD, CEEMDAN, ICEEMDAN) and the same

Table 1 Evaluation criteria

Criterion Definition Equation

AE Average error of n3 prediction results
AE ¼ 1

n3

Pn3

t¼1

ðyt � ŷtÞ

MAPE Average of n3 absolute percentage errors
MAPE ¼ 1

n3

Pn3
t¼1

yt�ŷtj j
yt

� 100%

RMSE Square root of average of the error squares
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n3

Pn3

t¼1

yt � ŷtð Þ2
s

MAE Mean absolute error of n3 prediction results
MAE ¼ 1

n3

Pn3

t¼1

yt � ŷtj j

TIC Theil inequality coefficient
TIC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n3

Pn3
t¼1

ðyt � ŷtÞ2
s , ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n3
�
Pn3
t¼1

y2t

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n3
�
Pn3
t¼1

ŷ2t

s !

IA Index of agreement

IA ¼ 1�
Xn3

t¼1

ðyt � ŷtÞ2=
Xn3

t¼1

ð ŷt � yj j þ yt � yj jÞ2

yt and ŷt are the actual and predicted values at time t respectively, n3 is the size of the testing set, and y is the mean of the actual values.
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forecasting method (i.e., FCM-FTS model) to demonstrate

the effectiveness of the individual decomposition methods

used in our model. Tables 6 and 7 in Appendix 1 show the

main parameters of the compared decomposition methods

and the corresponding prediction results, respectively. In

Comparison II, we compare our hybrid model with

ICEEMDAN-FCM-FTS, X12-ARIMA-FCM-FTS, and

ICEEMDAN(R)-FCM-FTS models to further prove the

superiority of the proposed dual decomposition strategy,

with the corresponding experimental results shown in

Table 8 in Appendix 1. In detail, the ICEEMDAN(R)-

FCM-FTS model is performed under the decomposition &

de-noising strategy [25], while other compared hybrid

models in this subsection are performed under the divide &

conquer strategy [26]. Generally speaking, the two data

preprocessing strategies are widely used for forecasting

complex data with high volatility and irregularity and can

represent currently popular modeling strategies.

The detailed comparison and analysis are as below:

(1) In Comparison I, by comparing the prediction

performance of four hybrid models, including

ICEEMDAN-FCM-FTS, CEEMDAN-FCM-FTS,

EEMD-FCM-FTS, and WD-FCM-FTS, we can find

that the FCM-FTS forecasting model combined with

the ICEEMDAN is superior to that combined with

CEEMDAN, EEMD, and WD, which shows the

advantages of ICEEMDAN when compared with

other traditional decomposition methods. Moreover,

it can be found that the X12-ARIMA-FCM-FTS

performs better than the above-mentioned four

hybrid models in all cases. Taking case 1 as an

example, the value of MAPE in the X12-ARIMA-

FCM-FTS model is the lowest (9.5122%), in the

ICEEMDAN-FCM-FTS model is the second lowest

(11.8851%), while in the CEEMDAN-FCM-FTS,

EEMD-FCM-FTS and WD-FCM-FTS models are,

respectively 12.6937%, 13.2176%, and 14.0263%.

Similar results can be obtained in other two cases,

which fully prove the superiority of ICEEMDAN

and the necessity of seasonal decomposition for

tourist arrivals series forecasting. Moreover, for the

data (such as Hong Kong’s tourist arrivals) with

significant seasonal characteristics, using X12-

ARIMA for seasonal decomposition can effectively

improve the model prediction performance.

(2) In Comparison II, by comparing the proposed model

with other three hybrid models, including ICEEM-

DAN-FCM-FTS, X12-ARIMA-FCM-FTS, and

ICEEMDAN(R)-FCM-FTS, we can see that our

model, i.e., X12-ARIMA-ICEEMDAN-FCM-FTS,

has the best prediction performance. In general, the

proposed dual decomposition strategy in this paper

has more advantages than the above-mentioned

traditional decomposition strategies and can achieve

better prediction performance. It can be seen from

Table 8 (in Appendix 1) that except for the AE

criterion in case 2, the X12-ARIMA-ICEEMDAN-

FCM-FTS model performs best in all evaluation

criteria in all cases. Obviously, the proposed dual

decomposition strategy plays a significant role in

improving the model prediction performance.

Remark 1 Based on the comparative analysis of the values

of AE, MAPE, RMSE, MAE, TIC, and IA criteria, it can be

found that compared with other traditional decomposition

methods (such as WD and EEMD), ICEEMDAN is more

effective when combined with the prediction model,

reflecting the superiority of ICEEMDAN. Meanwhile, the

X12-ARIMA-FCM-FTS model performs best among all

the hybrid models in Comparison I, which again verifies

the rationality and necessity of adopting targeted data

preprocessing strategy for tourist arrivals data with sig-

nificant seasonal characteristics. Furthermore, in Compar-

ison II, we also successfully prove the effectiveness of the

proposed dual decomposition strategy compared with the

traditional data preprocessing strategies. To sum up, by

applying the divide & conquer strategy to both the raw

series with seasonal patterns and the seasonally adjusted

series, the proposed dual decomposition strategy can suc-

cessfully overcome the potential disadvantages of indi-

vidual decomposition approaches and plays an important

role in improving the model prediction performance.

3.5 Experiment II

Experiment II was designed mainly to verify the effec-

tiveness of the hybrid modeling strategy based on X12-

ARIMA, ICEEMDAN, FTS, and FCM. Thus, Experiment

II consists of Comparison I and Comparison II for longi-

tudinal comparison purpose. Generally speaking, the dis-

cretization method is important to the prediction

performance of an FTS method. In the related studies, as

the most commonly used unsupervised discretization

methods, the equal frequency (EF) and equal width (EW)

interval algorithms cannot always achieve satisfactory

forecasting results. Therefore, we use FCM algorithm as

the discretization method for a fuzzy time series. Accord-

ingly, in Comparison I set in this subsection, the FTS

model with FCM method dividing the universe of discourse
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(i.e., FCM-FTS model) is compared with that with EW and

EF methods dividing the universe of discourse (i.e., EW-

FTS and EF-FTS models) to prove the effectiveness of

FCM algorithm. In Comparison II, we compare our model,

i.e., X12-ARIMA-ICEEMDAN-FCM-FTS, with other

three models, including FCM-FTS, X12-ARIMA-FCM-

FTS, and ICEEMDAN-FCM-FTS models, which are par-

tial hybrid models only using some of the single methods

involved in the proposed model, to fully illustrate the

rationality of our hybrid modeling strategy. The detailed

comparison and analysis are shown below:

(1) As demonstrated in Table 9 (in Appendix 1), we can

observe that compared with EW-FTS model and EF-

FTS model, the FCM-FTS model has almost all the

best evaluation criterion values in all three cases.

Taking case 1 as an example, except for the AE

criterion, the values of MAE, RMSE, MAPE, TIC,

and IA of the FCM-FTS model are 16,127.6028,

20,978.7502, 15.8852%, 0.1013, and 0.9910, respec-

tively, which are all smaller than that of the EW-FTS

and EF-FTS models. This fully demonstrates that

using FCM algorithm as the discretization method

can improve the performance of the fuzzy time series

model more effectively.

(2) Table 10 in Appendix 1 shows the experimental

results of Comparison II. Obviously, the X12-

ARIMA-FCM-FTS and ICEEMDAN-FCM-FTS,

models perform better than the FCM-FTS model,

which once again shows the importance and neces-

sity of using data preprocessing to the data with

complex characteristics. By comparing the proposed

hybrid model with the FCM-FTS, X12-ARIMA-

FCM-FTS and ICEEMDAN-FCM-FTS models, we

can see that our model, i.e., X12-ARIMA-

ICEEMDAN-FCM-FTS, has the best prediction

performance. For example, the MAPE values of

our proposed model in the three cases are 4.2343%,

3.4946%, and 4.7533% respectively, evidently lower

than that of the other three models. Moreover,

focusing on the IA criterion, the criterion values of

our model in the three cases are all greater than

0.999, while the three compared models’ criterion

values are all below 0.999.

Remark 2 It is necessary to find a reasonable and effective

discretization method for the fuzzy time series model. In

Comparison I, the FTS model with FCM as the dis-

cretization method performs better than that with EW and

EF as the discretization method. In addition, the proposed

forecasting model performs best in Comparison II, which

intuitively shows that the proposed hybrid modeling strat-

egy can significantly improve the performance of the

benchmark FTS model by integrating the advantages of

every single method greatly.

3.6 Experiment III

In Experiment III, by taking some commonly used single

forecasting models as benchmarks, including traditional

econometric models, typical ANNs, and other popular

models, we further test the prediction performance of our

model. Specifically, the extreme learning machine (ELM)

and backpropagation neural network (BPNN) are chosen

for comparison as typical ANNs, while seasonal ARIMA

(SARIMA) and double exponential smoothing (DES) as

typical traditional econometric models. Meanwhile, sup-

port vector regression (SVR), which is popular in fore-

casting, is also chosen for comparison in this experiment.

Fig. 3 The training set and testing set of ANN models
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Accordingly, two standard models of the ANNs, i.e.,

BPNN (5–1-1) and ELM (5–1-1) are established respec-

tively, of which the training set and testing set are pre-

sented in Fig. 3. For the SARIMA model, the parameters

are determined based on a stability test and the Akaike

Information Criterion (AIC) [47]. For the SVR model,

radial basis function (RBF) as the most popular kernel

function is chosen. The main parameters of the comparison

models are shown in Table 11 (in Appendix 1), and

Table 12 in Appendix 1 presents the corresponding results.

According to Table 12 (in Appendix 1), the detailed

experimental results and comparative analysis are shown

below:

(1) The proposed X12-ARIMA-ICEEMDAN-FCM-FTS

model performs best in all three cases. Since the AE

criterion is not sufficient to reflect the prediction

accuracy, more attention should be paid to MAPE,

RMSE, and MAE criteria when evaluating the model

prediction performance. Taking MAPE criterion as

an example, the propose forecasting model has the

lowest MAPE values in all three cases, even reaching

3.4946% in case 2, which fully reflects its superior

prediction performance.

(2) Moreover, the BPNN performs slightly better than

the ELM in the ANN models. In the traditional

econometric models, the DES model performs

worse, even with the MAPE value as high as

25.5657% in case 3. Comparatively speaking, the

SARIMA performs better, only worse than our

proposed model, which again shows that for data

such as tourist arrivals series with significant

seasonal characteristics, the targeted use of certain

seasonal forecasting methods can achieve better

prediction results.

Remark 3 Compared with the five commonly used single

forecasting models, our hybrid model performs best.

Among all the single models selected, the SARIMA per-

forms best, and the DES performs worst.

4 Discussion

This section presents an in-depth comparative analysis for

the prediction results of all models at different years of

2017, 2018, and 2019. Moreover, we further analyze the

prediction performance of all the models involved from

several different perspectives, including the DM statistics,

forecasting effectiveness, improvement percentage, and

grey relational degree.

4.1 Forecasting results at different years

As we all know, tourist arrivals data has complex charac-

teristics, and is extremely vulnerable to abnormal events,

resulting in abnormal fluctuations, which greatly increases

the difficulty in prediction. Therefore, it is particularly

important for the model to maintain a stable and great

prediction performance when abnormal events occur. In

view of this concern, based on three basic evaluation cri-

teria of prediction accuracy, i.e., MAE, RMSE, and MAPE,

this subsection compares and analyzes the prediction

results of all the involved models at different years of 2017,

2018, and 2019. It should be noted that Hong Kong’s

tourism industry was severely affected in 2019 due to the

outbreak of some social events, which made the data of

tourist arrivals to Hong Kong in that year showing a very

irregular pattern compared with the previous years. It can

also be found from the experimental results that the pre-

diction performances of each model in these three years are

very different.

As demonstrated in Table 13 (in Appendix 1), we can

observe that: (a) In all three cases, the proposed model

performs best in all three years. Taking the prediction of

2017 in case 1 as an example, the MAPE value of our

Table 2 Improvement

percentage criteria
Criterion Definition Equation

REMAE The decreased relative error of MAE REMAE ¼ MAEi�MAEj

MAEi
� 100%

RERMSE The decreased relative error of RMSE RERMSE ¼ RMSEi�RMSEj

RMSEi
� 100%

REMAPE The decreased relative error of MAPE REMAPE ¼ MAPEi�MAPEj

MAPEi
� 100%
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proposed model is as low as 2.30%, showing a very

excellent prediction performance. (b) Compared with 2019,

most of the prediction models perform better in 2017 and

2018. For example, the SARIMA model has a good per-

formance in predicting the tourist arrivals to Hong Kong in

2017 and 2018 in case 2, where the MAE, RMSE, and

MAPE values are 2440.96, 3057.41, and 4.93% in 2017 as

well as 1241.60, 1952.32, and 2.44% in 2018, respectively.

In 2019, the values of these three criteria are as high as

5997.63, 8297.25, and 15.69% respectively, which are

several times the criterion values of the previous two years.

This result verifies that the tourist arrivals to Hong Kong in

2019 have undergone extremely irregular changes com-

pared with the previous years due to social events.

Therefore, models which are built based on historical data

are difficult to capture the trend variation of the data in

2019. (c) Some models show little change in the prediction

results of the three years, and even their prediction per-

formances of 2019 are better than that of the previous two

years, such as the EEMD-FCM-FTS and WD-FCM-FTS

models in case 2 and case 3, which indicates that these

models are relatively stable and almost immune from the

influence of the abnormal events in 2019. Nevertheless, the

comprehensive prediction performances of these models

are still poor, and the proposed model performs best among

all the comparison models. Even for the data of 2019 which

were affected by the abnormal events, our proposed model

can still show a superior prediction performance.

4.2 Statistical hypothesis testing: Diebold-
Mariano test

From a statistical perspective, Diebold and Marino [48]

used the Diebold-Mariano (DM) statistic to test the dif-

ference in the significance of prediction performances

between different models. For the DM test, the null

hypothesis is that there is no significant difference in the

prediction performances of two comparison models. If the

test result rejects the null hypothesis at a certain level of

significance, it indicates that the prediction performances

of the two comparison models are significantly different.

For further comparison, the DM test is implemented to

test the different significance of the performances between

our proposed model and all the fourteen benchmark models

involved in the previous designed experiments. Using

mean square error as the loss function, the corresponding

statistics are shown in Table 14 (in Appendix 1). For all

cases and the average level, we can observe that: (a) almost

all benchmark models’ DM statistics are greater than the

upper limit at the 1% significance level, which once again

reflects the remarkable superiority of our model; (b) among

all benchmark models, the DM statistics of SARIMA and

X12-ARIMA-FCM-FTS models are almost the lowest,

showing that for tourist arrivals data with seasonal char-

acteristics, specifically using some seasonal forecasting

methods can achieve better forecasting results, and also

proving that the seasonal decomposition method chosen in

this paper is scientific and reasonable.

4.3 Forecasting effectiveness

Furthermore, we use forecasting effectiveness (FE) [12] to

measure the model prediction accuracy. The higher the

value of FE, the better is the prediction performance.

Specifically, the first-order and second-order FE values are

calculated by the expected value of the prediction accuracy

sequences as well as the difference between its expected

value and standard deviation, respectively. To further

compare the prediction accuracy, we calculate the first-

order and second-order FE values for all the involved

models in this paper, as shown in Table 15 (in Appendix 1).

We can observe that: (a) in all the three cases, the FE

values of our hybrid model are always the highest, which

are 0.957657, 0.965054, and 0.952467 as well as 0.905740,

0.928907, and 0.903511 for the first-order and second-

order FE, respectively, meaning that our model performs

best; (b) among all the comparison models, the FE values

of the EF-FTS model are the lowest, which means that the

traditional equal frequency division method (EF) is not

suitable for data such as the tourist arrivals to Hong Kong.

4.4 Improvement percentage

In this subsection, we use three criteria to measure the

improvement percentages of our hybrid model relative to

all the comparison models. Accordingly, the improvement

percentage criteria are denoted as REMAE,RERMSE and

REMAPE, representing the decreased relative error (RE) of

MAE, RMSE and MAPE, respectively, of which the cal-

culation formulas can be seen in Table 2. Table 16 in

Appendix 1 shows the corresponding results, and further

comparisons and analyses are as below.

As reported in Table 16 in Appendix 1: (a) Our proposed

model has the greatest improvement relative to the

benchmark FTS models (i.e., EW-FTS, EF-FTS), with the

improvement percentages at about 80%. Meanwhile, the

improvement percentages of our model relative to the

hybrid models using traditional decomposition methods
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and strategies are also high, which are around 70%. The

above results once again verify the rationality for our

model using hybrid modeling strategy and dual decompo-

sition strategy, which greatly improves the model predic-

tion performance by integrating the advantages of each

method involved. (b) Relative to the traditional single

prediction models, our proposed model shows a significant

improvement, with almost all of the values of the three

improvement percentage criteria above 50%. Obviously, it

can achieve a satisfactory prediction performance in tourist

arrivals forecasting.

4.5 Grey relational degree

In this subsection, the correlation degree between the

prediction results and the actual time series is measured by

the grey relational degree (GRD) [49], of which a higher

value means a better prediction performance. The corre-

sponding results are shown in Table 17 (in Appendix 1),

with the detailed analysis as follows: (a) the prediction

results of our model have the strongest correlation to the

actual series, with the values of GRD greater than 0.9 in all

three cases, and the average is 0.924274; (b) the SARIMA

model and X12-ARIMA-FCM-FTS model also perform

very well, with the average GRD being 0.858878 and

0.871148 respectively, which once again reflects the

rationality of using seasonal data preprocessing method for

tourist arrivals series with significant seasonal character-

istics. Therefore, we can reasonably conclude that our

hybrid forecasting model has significant differences from

the benchmark models in the level of prediction accuracy.

5 Conclusions

Accurate prediction of tourist arrivals is important for the

whole tourism industry and also the entire economy.

Meanwhile, it is of reference value to both travel agencies

and tourist destinations. Unfortunately, due to its complex

characteristics, tourist arrivals forecasting remains a chal-

lenging task. Thus, a hybrid model using dual decompo-

sition strategy and an improved FTS method is proposed to

predict tourist arrivals.

In the empirical study, experiments are designed using

Hong Kong’s tourist arrivals from USA, UK, and Germany

as data samples. The results demonstrate that: (a) The

novel dual decomposition strategy based on X12-ARIMA

and ICEEMDAN methods proposed in this study can not

only overcome the inherent defects of individual decom-

position methods, such as mode mixing, noise, and

redundancy but also fully extract the complex features of

the original time series at different time scales. Compared

with traditional decomposition strategies used in hybrid

forecasting models, the proposed dual decomposition

strategy is more significant and effective in improving the

model prediction performance. (b) The combination of the

X12-ARIMA-ICEEMDAN decomposition strategy and

FCM-FTS forecasting model is very effective, which rea-

sonably integrates the advantages of every single method

involved. Our model performs better than benchmark

models in all three cases, indicating that it is a promising

tool for tourist arrivals forecasting.

The current results have important practical implica-

tions. The findings imply that more accurate predicted

values of the monthly tourist arrivals to a country or region

from other countries or regions can be obtained via the

proposed model, which can bring about at least two ben-

efits: (a) Taking the monthly dynamics of the future tourist

arrivals as a reference for decision-making, travel agencies

and other tourism-related enterprises can operate more

effectively, and tourist destinations can also be managed

more efficiently. (b) Based on the accurate monthly fore-

casts of the tourist arrivals, we can monitor the perfor-

mance of the whole tourism industry and the entire

economy in a real-life environment. The findings also

imply that the proposed model can maintain a stable and

great prediction performance when abnormal events occur.

This is important in practical applications, as it is common

for the data to be affected by abnormal events. Thus, the

proposed model is also applicable to other fields with

similar data characteristics to tourist arrivals.

In addition, our proposed hybrid model is still inade-

quate in qualitative research. Meanwhile, the factors rela-

ted to tourism demand (such as per capita GDP, the number

of air routes opened) can be considered adding into the

forecasting model. In future research, qualitative analysis

and quantitative prediction can be combined organically so

as to achieve better prediction performance.

Appendix 1

See Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and

17.
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Table 3 Nomenclature
Acronyms/Symbols Description

ARMA Autoregressive moving average

ARIMA Autoregressive integrated moving average

SARIMA Seasonal ARIMA

X12-ARIMA A seasonal adjustment method developed by the United States Census Bureau

ES Exponential smoothing

DES Double exponential smoothing

GARCH Generalized autoregressive conditional heteroskedasticity

ANNs Artificial neural networks

BPNN Backpropagation neural network

ELM Extreme learning machine

RBF Radial basis function

SVM Support vector machine

SVR Support vector regression

VMD Variational mode decomposition

EMD Empirical mode decomposition

EEMD Ensemble EMD

FEEMD Fast ensemble EMD

CEEMDAN Complete ensemble EMD with adaptive noise

ICEEMDAN Improved complete ensemble EMD with adaptive noise

WD Wavelet decomposition

WT Wavelet transform

FTS Fuzzy time series

FCM Fuzzy C-means

EF Equal frequency

EW Equal width

FLR Fuzzy logical relationship

FLRS Fuzzy logical relationship set

LHS Left-hand side

RHS Right-hand side

AE Average error

MAPE Mean absolute percentage error

RMSE Root mean square error

MAE Mean absolute error

TIC Theil inequality coefficient

IA Index of agreement

ADF Augmented Dickey-Fuller

AIC Akaike information criterion

DM Diebold-Mariano

FE Forecasting effectiveness

RE Decreased relative error

GRD Grey relational degree

rk The k-th residue

dk The k-th mode

Ek() An operator which produces the k-th IMF component obtained by EMD

M() An operator which produces the local mean of a series

[] An operator which represents the rounding operation

� Combination operator

x, Y Original time series

F Fuzzy time series
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Table 3 continued
Acronyms/Symbols Description

wi White noise

I Number of times that white noise is added

bk A parameter that controls the energy of the white noise

K Maximum iterations

c Number of cluster centers

xt , yðtÞ Element of the original time series

n1 Number of elements in the original time series

xmax,xmin Maximum and minimum values in the original series respectively

v0i, vi Initial cluster center and new cluster center respectively

uij Element of the membership matrix

dij Euclidean distance from the element xj to the cluster center vi

m Weighted index of membership degree

e Iteration stop threshold

U Universe of discourse

n2 Number of subintervals

ui The i-th subinterval

A, fi tð Þ,Ai Fuzzy set

fAð Þ Membership function of fuzzy set A

Rðt; t - 1Þ Fuzzy logical relationship

fuzzify() An operator which fuzzifies a raw value to a fuzzy set

factualt ðAzÞ Degree of membership of the actual value at t under Az

M Number of the fuzzy sets

Wi, W
0
i Unstandardized and standardized weighting matrix elements respectively

W s Standardized weighting matrix

D Defuzzified matrix

yt ,ŷt Actual and predicted values at time t respectively

n3 Size of the testing set

y Mean of the actual values

Table 4 Experimental

parameter settings of the

proposed model

Method Parameter Value

X12-ARIMA X-11 Method Additive

Trend Filter 12

ICEEMDAN Noise Standard Deviation 0.05

Number of Realizations 100

Maximum Iterations 1000

FCM Membership Weighted Index 2

FTS Number of Intervals Number of FCM’s cluster centers

Order 1
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Table 5 Detailed description of

the three cases used in the

experiment

Dataset Training set Testing set Statistical description

Dataset A Jan,2006-Dec,2016 Jan,2017-Dec,2017 Maximum Value:137,397

Remark: Case 1, USA Jan,2007-Dec,2017 Jan,2018-Dec,2018 Minimum Value:60,642

Jan,2008-Dec,2018 Jan,2019-Dec,2019 Mean Value:97,826.77

Median Value:98,495

Std. Dev:14,827.75

Dataset B Jan,2006-Dec,2016 Jan,2017-Dec,2017 Maximum Value:70,102

Remark: Case 2, UK Jan,2007-Dec,2017 Jan,2018-Dec,2018 Minimum Value:29,933

Jan,2008-Dec,2018 Jan,2019-Dec,2019 Mean Value:44,722.08

Median Value:41,454.5

Std. Dev:9084.64

Dataset C Jan,2006-Dec,2016 Jan,2017-Dec,2017 Maximum Value:30,158

Remark: Case 3, GER Jan,2007-Dec,2017 Jan,2018-Dec,2018 Minimum Value:12,447

Jan,2008-Dec,2018 Jan,2019-Dec,2019 Mean Value:18,513.12

Median Value:17,060.5

Std. Dev:4217.83

Table 6 Experimental parameter settings in different decomposition methods

Method Parameter Value

EEMD Noise standard deviation 0.05

Number of realizations 100

Maximum iterations 1000

CEEMDAN Noise standard deviation 0.05

Number of realizations 100

Maximum iterations 1000

WD Wavelet dmey

Level 6

Table 7 Forecasting results of Experiment I-Comparison I

Dataset Model AE MAE RMSE MAPE TIC IA

Case 1 X12-ARIMA-FCM-FTS 1149.4451 8523.0354 11,846.1432 9.5122 0.0584 0.9969

ICEEMDAN-FCM-FTS - 1518.9370 11,244.5504 13,726.4787 11.8851 0.0667 0.9959

CEEMDAN-FCM-FTS - 300.9934 12,408.9138 15,364.3685 12.6937 0.0754 0.9949

EEMD-FCM-FTS - 5.2026 12,927.8342 15,262.0174 13.2176 0.0746 0.9950

WD-FCM-FTS - 527.3479 13,881.3243 17,077.9316 14.0263 0.0830 0.9939

Case 2 X12-ARIMA-FCM-FTS 468.5103 3140.3127 4236.1895 7.2118 0.0456 0.9982

ICEEMDAN-FCM-FTS - 183.1214 6994.2978 9109.4909 15.4440 0.0975 0.9916

CEEMDAN-FCM-FTS - 421.9069 7257.1410 9354.1485 16.0508 0.0998 0.9911

EEMD-FCM-FTS - 820.5788 7803.0203 10,133.5340 16.7886 0.1073 0.9898

WD-FCM-FTS 508.3707 7707.5955 10,090.4242 16.6652 0.1079 0.9903

Case 3 X12-ARIMA-FCM-FTS 95.3236 1146.7366 1763.3747 6.1537 0.0460 0.9982

ICEEMDAN-FCM-FTS 141.9265 3860.3597 5284.7449 20.5614 0.1378 0.9839

CEEMDAN-FCM-FTS - 322.4869 4267.4133 5340.7023 23.6512 0.1385 0.9826

EEMD-FCM-FTS - 292.9302 4239.5373 5330.8620 23.4188 0.1383 0.9826

WD-FCM-FTS 700.3850 5121.4097 6488.1702 25.8458 0.1700 0.9770

The symbol ‘‘%’’ after the values of MAPE criterion is omitted for all the tables
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Table 8 Forecasting results of Experiment I-Comparison II

Dataset Model AE MAE RMSE MAPE TIC IA

Case 1 X12-ARIMA-ICEEMDAN-FCM-FTS 2 989.4194 3721.0220 5135.8629 4.2343 0.0250 0.9994

ICEEMDAN(R)-FCM-FTS 1119.0920 11,879.2617 14,225.9858 12.5937 0.0701 0.9955

X12-ARIMA-FCM-FTS 1149.4451 8523.0354 11,846.1432 9.5122 0.0584 0.9969

ICEEMDAN-FCM-FTS - 1518.9370 11,244.5504 13,726.4787 11.8851 0.0667 0.9959

Case 2 X12-ARIMA-ICEEMDAN-FCM-FTS 2 359.7931 1579.5172 2313.3581 3.4946 0.0225 0.9995

ICEEMDAN(R)-FCM-FTS - 1140.0383 7100.1776 8951.6472 15.9239 0.0949 0.9918

X12-ARIMA-FCM-FTS 468.5103 3140.3127 4236.1895 7.2118 0.0456 0.9982

ICEEMDAN-FCM-FTS - 183.1214 6994.2978 9109.4909 15.4440 0.0975 0.9916

Case 3 X12-ARIMA-ICEEMDAN-FCM-FTS 2 24.8857 828.1133 1237.3211 4.7533 0.0321 0.9991

ICEEMDAN(R)-FCM-FTS - 523.9565 4601.4322 5422.4168 25.7785 0.1402 0.9816

X12-ARIMA-FCM-FTS 95.3236 1146.7366 1763.3747 6.1537 0.0460 0.9982

ICEEMDAN-FCM-FTS 141.9265 3860.3597 5284.7449 20.5614 0.1378 0.9839

The results of the proposed model are highlighted in boldface for all the tables, indicating that the proposed model performs best among all the

comparison models

Table 10 Forecasting results of Experiment II—Comparison II

Dataset Model AE MAE RMSE MAPE TIC IA

Case 1 X12-ARIMA-ICEEMDAN-FCM-FTS 2 989.4194 3721.0220 5135.8629 4.2343 0.0250 0.9994

X12-ARIMA-FCM-FTS 1149.4451 8523.0354 11,846.1432 9.5122 0.0584 0.9969

ICEEMDAN-FCM-FTS - 1598.4213 11,358.3383 13,819.6565 12.0104 0.0671 0.9959

FCM-FTS - 1500.0093 16,127.6028 20,978.7502 15.8852 0.1013 0.9910

Case 2 X12-ARIMA-ICEEMDAN-FCM-FTS 2 359.7931 1579.5172 2313.3581 3.4946 0.0225 0.9995

X12-ARIMA-FCM-FTS 468.5103 3140.3127 4236.1895 7.2118 0.0456 0.9982

ICEEMDAN-FCM-FTS - 183.1214 6994.2978 9109.4909 15.4440 0.0975 0.9916

FCM-FTS 43.8379 9099.4754 11,810.1853 18.9994 0.1254 0.9869

Case 3 X12-ARIMA-ICEEMDAN-FCM-FTS 2 24.8857 828.1133 1237.3211 4.7533 0.0321 0.9991

X12-ARIMA-FCM-FTS 95.3236 1146.7366 1763.3747 6.1537 0.0460 0.9982

ICEEMDAN-FCM-FTS 141.9265 3860.3597 5284.7449 20.5614 0.1378 0.9839

FCM-FTS - 42.3331 4670.0855 6087.1866 23.5757 0.1565 0.9798

The results of the proposed model are highlighted in boldface for all the tables, indicating that the proposed model performs best among all the

comparison models

Table 9 Forecasting results of

Experiment II—Comparison I
Dataset Model AE MAE RMSE MAPE TIC IA

Case 1 FCM-FTS - 1500.0093 16,127.6028 20,978.7502 15.8852 0.1013 0.9910

EW-FTS 2976.0361 17,606.6944 23,782.5447 16.8206 0.1166 0.9888

EF-FTS - 364.1944 22,522.1944 28,815.3491 22.3950 0.1388 0.9838

Case 2 FCM-FTS 43.8379 9099.4754 11,810.1853 18.9994 0.1254 0.9869

EW-FTS 2967.2886 10,764.2758 13,585.2486 22.5976 0.1477 0.9833

EF-FTS 236.2222 10,838.3889 13,522.3921 23.3413 0.1430 0.9832

Case 3 FCM-FTS - 42.3331 4670.0855 6087.1866 23.5757 0.1565 0.9798

EW-FTS 1360.6389 5079.5653 6839.1927 24.8739 0.1802 0.9757

EF-FTS 246.7778 5382.5000 7055.6294 27.3935 0.1809 0.9739
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Table 11 Experimental parameter settings in different models

Model Parameter Value

SARIMA Autoregressive term (p) 3

Difference times (d) 1

Moving average number (q) 0/1/1 a

Seasonal autoregressive term (sp) 3

Seasonal difference times (sd) 1

Seasonal moving average number (sq) 0/1/0 a

Seasonal order (s) 12

DES Smoothing coefficient 0.05

BPNN Maximum iterations 500

Learning rate 0.001

Activation function Relu

Number of input nodes 5

Number of hidden nodes 10

Number of output nodes 1

ELM Number of input nodes 5

Number of hidden nodes 10

Number of output nodes 1

SVR Number of input nodes 5

Number of output nodes 1

Gamma 0.1

Parameter of epsilon-SVR 3

Kernel function RBF

aIndicates the values in Dataset A, B and C, respectively

Table 12 Forecasting results of Experiment III

Dataset Proposed model ANN SVR Econometric model

BPNN ELM DES SARIMA

Case 1 AE 2 989.4194 1633.2399 3270.1033 - 1300.9627 - 3597.6576 - 4164.2103

MAE 3721.0220 12,138.6848 14,324.6576 12,742.8694 15,520.7834 9331.9107

RMSE 5135.8629 16,362.1426 16,764.6552 19,203.7714 19,193.7148 12,673.9610

MAPE 4.2343 13.1258 15.0937 14.6676 17.3961 10.3133

TIC 0.0250 0.0810 0.0838 0.0854 0.0928 0.0608

IA 0.9994 0.9939 0.9935 0.9921 0.9914 0.9965

Case 2 AE 2 359.7931 883.4170 678.3240 - 840.4879 - 1229.5550 - 1829.1168

MAE 1579.5172 5421.2523 6218.0035 4414.8844 8727.1745 3226.7306

RMSE 2313.3581 6705.6725 7884.2968 5601.2438 10,105.3109 5228.2462

MAPE 3.4946 12.0677 13.5149 10.0298 19.6042 7.6860

TIC 0.0225 0.0728 0.0857 0.0596 0.1078 0.0549

IA 0.9995 0.9953 0.9932 0.9968 0.9883 0.9973

Case 3 AE 2 24.8857 - 91.5313 4.0849 - 330.2530 - 341.5007 - 340.0379

MAE 828.1133 2692.3110 2952.8525 2000.4840 4600.0830 1583.0440

RMSE 1237.3211 3436.2223 3783.9989 2699.5990 5303.7222 2418.5184

MAPE 4.7533 14.9194 16.0448 11.9964 25.5657 8.8485

TIC 0.0321 0.0896 0.0993 0.0695 0.1387 0.0624

IA 0.9991 0.9929 0.9910 0.9958 0.9807 0.9966

The results of the proposed model are highlighted in boldface for all the tables, indicating that the proposed model performs best among all the

comparison models
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Table 13 Forecasting results at different years

Dataset Model 2017 2018 2019

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Case 1 X12-ARIMA-ICEEMDAN-FCM-

FTS

2309.95 2751.42 2.30 3898.40 4424.40 3.57 4954.72 7210.11 6.83

X12-ARIMA-FCM-FTS 2932.12 3539.89 2.92 8294.39 9466.80 7.21 14,342.60 17,856.16 18.41

ICEEMDAN-FCM-FTS 10,198.42 11,465.65 10.23 11,259.25 14,169.58 10.66 12,275.98 15,264.68 14.76

CEEMDAN-FCM-FTS 13,050.31 15,370.93 12.97 12,113.62 14,782.26 11.07 12,062.82 15,435.98 14.04

EEMD-FCM-FTS 13,040.84 15,861.29 12.95 12,146.62 14,804.95 11.12 13,596.04 15,100.34 15.58

WD-FCM-FTS 15,955.20 19,301.00 15.54 13,085.79 16,681.83 11.78 12,602.98 14,971.82 14.76

ICEEMDAN(R)-FCM-FTS 9707.06 11,573.97 9.74 12,034.27 14,884.67 11.27 13,896.45 15,862.72 16.77

FCM-FTS 14,565.35 17,161.76 14.29 18,690.70 24,150.76 16.86 15,126.76 21,036.61 16.50

EW-FTS 15,838.33 20,814.06 14.91 19,494.87 26,625.64 16.98 17,486.88 23,551.62 18.57

EF-FTS 17,937.33 22,491.00 17.06 23,804.33 30,304.49 21.25 25,824.92 32,661.39 28.87

BPNN 7072.14 8937.18 6.78 11,820.86 15,629.30 10.38 17,523.06 21,886.32 22.22

ELM 8870.38 9958.77 8.69 15,334.78 17,742.55 13.62 18,768.81 20,716.80 22.97

SVR 8917.88 10,793.87 8.84 9742.28 11,934.61 8.87 19,568.45 29,110.34 26.29

DES 11,706.40 13,410.92 12.04 14,874.89 18,109.07 13.99 19,981.06 24,441.87 26.16

SARIMA 9307.55 10,241.46 9.48 5929.86 6864.62 5.20 12,758.32 18,162.53 16.25

Case 2 X12-ARIMA-ICEEMDAN-FCM-

FTS

2012.39 2702.36 4.08 538.96 628.39 1.11 2187.20 2890.89 5.30

X12-ARIMA-FCM-FTS 2304.59 3158.97 4.59 2285.55 2375.06 4.80 4830.80 6181.90 12.24

ICEEMDAN-FCM-FTS 7534.64 9898.32 16.11 7507.30 9488.63 16.16 5940.96 7806.25 14.06

CEEMDAN-FCM-FTS 7021.49 8888.37 15.46 7220.90 9419.79 15.03 7529.03 9734.72 17.66

EEMD-FCM-FTS 7063.85 8968.87 15.60 10,228.39 12,518.07 20.42 6116.83 8421.57 14.34

WD-FCM-FTS 8012.02 10,914.17 17.68 9517.99 11,639.27 19.11 5592.77 7131.49 13.21

ICEEMDAN(R)-FCM-FTS 7516.89 8689.47 16.82 7555.30 9796.34 16.21 6228.34 8301.85 14.74

FCM-FTS 8033.00 10,686.80 17.03 9873.43 12,864.06 19.03 9391.99 11,779.21 20.95

EW-FTS 10,697.23 12,476.35 22.42 13,349.18 17,017.74 25.92 8246.41 10,412.21 19.45

EF-FTS 9453.00 12,079.63 20.46 10,897.42 13,759.33 21.96 12,164.75 14,605.77 27.60

BPNN 4956.52 5882.51 10.78 4417.47 6109.35 8.45 6889.77 7935.36 16.97

ELM 5359.77 6427.79 11.39 5755.65 7832.13 11.10 7538.59 9155.74 18.06

SVR 4385.41 5984.61 9.26 4098.46 5006.72 8.89 4760.78 5765.33 11.94

DES 8168.12 9352.41 17.59 8568.32 10,151.88 17.82 9445.09 10,762.14 23.41

SARIMA 2440.96 3057.41 4.93 1241.60 1952.32 2.44 5997.63 8297.25 15.69

Case 3 X12-ARIMA-ICEEMDAN-FCM-

FTS

617.38 801.76 3.59 577.68 762.85 3.27 1289.28 1835.25 7.40

X12-ARIMA-FCM-FTS 669.72 911.70 3.49 723.05 886.08 3.91 2047.44 2777.07 11.07

ICEEMDAN-FCM-FTS 3664.73 5199.38 18.76 4438.67 5781.86 23.29 3477.68 4829.31 19.64

CEEMDAN-FCM-FTS 4084.57 4455.95 22.78 5066.78 6320.37 27.69 3650.89 5076.09 20.48

EEMD-FCM-FTS 4060.67 4427.71 22.57 5067.10 6331.78 27.55 3590.84 5055.52 20.14

WD-FCM-FTS 4157.27 5257.00 20.64 6274.01 7671.39 31.25 4932.94 6308.95 25.65

ICEEMDAN(R)-FCM-FTS 4575.73 4686.92 25.53 5681.43 6541.26 31.74 3547.14 4842.78 20.06

FCM-FTS 4584.01 5849.56 22.43 5293.18 6327.57 26.38 4133.06 6075.03 21.92

EW-FTS 5408.30 6666.93 26.17 6462.28 8120.19 31.34 3368.12 5471.58 17.11

EF-FTS 5204.42 6600.94 25.39 5663.92 7227.72 29.15 5279.17 7316.65 27.64

BPNN 1898.54 2316.87 9.99 2254.77 2615.17 12.49 3923.63 4818.29 22.28

ELM 2228.43 2645.36 11.82 2665.26 3118.67 14.47 3964.86 5121.71 21.85

SVR 1897.00 2288.27 11.47 1627.44 2187.32 9.63 2477.00 3441.36 14.88

DES 4470.57 4869.34 23.79 4517.03 5213.66 24.67 4812.64 5787.55 28.24

SARIMA 920.16 1171.26 4.71 974.97 1240.90 4.97 2854.00 3825.70 16.87

The results of the proposed model are highlighted in boldface for all the tables, indicating that the proposed model performs best among all the

comparison models
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Table 14 Results of the DM test
Model Case 1 Case 2 Case 3 Average

X12-ARIMA-ICEEMDAN-FCM-FTS – – – –

X12-ARIMA-FCM-FTS 2.653934*** 2.242439** 1.139425 2.507414**

ICEEMDAN-FCM-FTS 4.670291*** 4.118385*** 3.914058*** 4.214801***

CEEMDAN-FCM-FTS 4.398101*** 4.181859*** 4.498607*** 4.462569***

EEMD-FCM-FTS 4.749956*** 3.782570*** 4.433012*** 4.198911***

WD-FCM-FTS 4.158481*** 3.854672*** 4.391467*** 3.914504***

ICEEMDAN(R)-FCM-FTS 5.484243*** 4.552637*** 5.114293*** 4.993597***

FCM-FTS 3.600406*** 4.107028*** 3.931071*** 3.564915***

EW-FTS 3.504539*** 3.697898*** 3.927137*** 3.370852***

EF-FTS 3.514911*** 4.494460*** 3.841272*** 3.564836***

BPNN 3.717957*** 4.432075*** 3.408091*** 4.214143***

ELM 5.058495*** 3.826229*** 3.023245*** 4.296399***

SVR 2.084516** 4.259447*** 2.443427** 2.288896**

DES 4.705974*** 5.892422*** 5.583836*** 5.901837***

SARIMA 2.276890** 1.999582** 1.815357* 2.060152**

*Indicates the 10% significance level. Z0.1/2 = 1.64
**Indicates the 5% significance level. Z0.05/2 = 1.96
***Indicates the 1% significance level. Z0.01/2 = 2.58

Table 15 Forecasting effectiveness of different models

Model Case 1 Case 2 Case 3

1st-Order 2nd-Order 1st-Order 2nd-Order 1st-Order 2nd-Order

X12-ARIMA-ICEEMDAN-FCM-FTS 0.957657 0.905740 0.965054 0.928907 0.952467 0.903511

X12-ARIMA-FCM-FTS 0.904878 0.802250 0.927882 0.857847 0.938463 0.869447

ICEEMDAN-FCM-FTS 0.881149 0.797518 0.845560 0.732314 0.794386 0.651262

CEEMDAN-FCM-FTS 0.873063 0.787227 0.839492 0.730831 0.763488 0.631917

EEMD-FCM-FTS 0.867824 0.794830 0.832114 0.723141 0.765812 0.633374

WD-FCM-FTS 0.859737 0.778830 0.833348 0.722732 0.741542 0.610812

ICEEMDAN(R)-FCM-FTS 0.874063 0.792455 0.840761 0.730092 0.742215 0.610094

FCM-FTS 0.841148 0.735739 0.810006 0.694707 0.764243 0.635458

EW-FTS 0.831794 0.718623 0.774024 0.661364 0.751261 0.608494

EF-FTS 0.776050 0.641721 0.766587 0.640162 0.726065 0.588717

BPNN 0.868742 0.744739 0.879323 0.796119 0.850806 0.744600

ELM 0.849063 0.754211 0.864851 0.776378 0.839552 0.737863

SVR 0.858116 0.688485 0.899702 0.821050 0.880036 0.779034

DES 0.826039 0.689536 0.803958 0.708553 0.744343 0.634295

SARIMA 0.896867 0.794427 0.923140 0.820348 0.911515 0.812901

The results of the proposed model are highlighted in boldface for all the tables, indicating that the proposed model performs best among all the

comparison models
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Appendix 2: Supplementary material

Supplementary material related to this article (including the

data and the code) can be found online at https://github.

com/WuZK96/X12-ARIMA-ICEEMDAN-FCM-FTS.
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