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Abstract
Deep learning (DL) techniques have been gaining ground for intelligent equipment/process fault diagnosis applications.

However, employing DL methods for such applications comes with its technical challenges. The DL methods are utilized

to extract features from raw data automatically, which leads up to its own complications in data preprocessing and/or

feature engineering phases. Moreover, another difficulty arises when DL methods are employed utilizing single type of

sensor data as the performance of a fault diagnosis application is hindered. To address these issues, we propose utilization

of a deep residual network-based multi-sensory data fusion method. The method is established on time-frequency images

obtained by short-time Fourier transform to diagnose machine faults. The experimental results demonstrate that the

proposed model combining different types of measured signals can diagnose bearing conditions on machines more

effectively compared to a single type of measured signal in terms of diagnostic accuracy.

Keywords Bearing fault diagnosis � Deep learning � Deep residual network � Predictive maintenance � Short-time Fourier

transform

1 Introduction

Intelligent fault diagnosis applications have gained con-

siderable attraction in manufacturing. These applications

are implemented via computational machine learning sys-

tems and data processing algorithms that can detect

anomalies in industrial machines and accurately predict

faults before they occur. In this way, the risk of failure can

be predicted in advance for industrial automation systems.

Diagnosed faults can be integrated into manufacturers’

predictive maintenance solutions to increase production

quality and capacity.

Data-driven methods incorporating machine learning

(ML) models are at the heart of these intelligent fault

diagnosis applications [1–3]. Having emerged as a subclass

of ML models in recent years, deep learning (DL) models

show promising results on intelligent fault detection

applications for machine parts [4]. This is primarily due to

their power features with robustness against the noise in the

data and their ability to learn features from measurement

data automatically. It bears great potential to help ease

complex feature extraction, elimination, and select proce-

dures needed while processing a large amount of historical

time-series sensor data [5].

The DL approaches for intelligent fault diagnosis

applications often utilize a single type of sensor signal

collected over a long historical time frame. A large volume

of historical data collected from a sensor is supplied to a

DL model. The fault detection and classification tasks are

performed on unobserved data with the incorporated

method. Promising results have been obtained utilizing DL

techniques; however, it is often times the case that it is not

viable to obtain such a large volume of historical data all

the time in a manufacturing environment due to various

changes in equipment baseline or process drifts. Therefore,
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developing a robust multi-sensory fusion technique is quite

advantageous where multiple sensor measurements col-

lected from different sources on a machine can be pro-

cessed and utilized in a single model [6]. In this work, we

propose a novel DL method for a fault diagnosis applica-

tion where multiple data sources can be monitored simul-

taneously. The main contributions of this study can be

listed as:

• A novel deep residual network (DRN) based on multi-

model data fusion method for intelligent fault diagnosis

is proposed.

• Time–frequency representations of simultaneously

measured non-stationary signals acquired by short-time

Fourier transform (STFT) are fed into the separate

identical DRN models and fused.

• The proposed method is tested on challenging datasets

to observe its robustness.

• The experimental results indicate that the proposed

fusion method achieves higher performance whenever

the dataset is getting complex and bigger.

The paper is organized as follows: Firstly, a literature

review on related work for DL approaches targeting similar

fault diagnosis applications is introduced. Secondly, the

details of the proposed method and model design process

are presented. Thirdly, the experimental work and the

results obtained by the novel approach are presented with a

discussion. Lastly, the conclusions and future work that

will follow this study are given.

2 Background and literature review

One of the frequently used DL models in intelligent fault

diagnosis is convolutional neural network (CNN) archi-

tecture which employs multiple processing layers to pro-

cess data in multiple arrays and extracts features. DRN, a

variant of CNN, is also used by many researchers to

diagnose rotating machinery faults. Since DRNs utilize

identity shortcuts, it is easier to optimize parameters and

decrease the possibility of overfitting in deeper models.

Zhang et al. [7] employed raw vibration signals as the input

of their proposed DRN-based method to diagnose bearing

faults. Results of the study indicate that the proposed

method obtained higher testing diagnosis accuracy than

other traditional CNN-based methods that are cross com-

pared in the literature. In [8], Ma et al. used time–fre-

quency representations and DRNs in their proposed data-

driven fault diagnosis method which is applied to planetary

gearboxes. The results show that their proposed method

outperformed the other methods compared in terms of

diagnostic accuracy. Zhao et al. [9] designed a variant of

DRN that utilized dynamically weighted wavelet

coefficients to diagnose faults of planetary gearboxes.

Their proposed method achieves better training and testing

accuracy (in both noisy and noiseless environments) as

opposed to the methods incorporating shallow and/or deep

learning algorithms.

Many researchers employ signal processing techniques

to transform a measured signal between different domains

like time, frequency, or time–frequency to utilize time-

series sensor data better. Even if there is no exact answer to

which domain would be more suitable for intelligent

diagnosis, many studies show that time–frequency repre-

sentations have better performance since they include

much more information than only time or frequency-do-

main representations. For example, Pandhare et al. [10]

used time, frequency, and time–frequency domain repre-

sentations as inputs to train the CNN model to diagnose

bearing faults. Their experiment results have shown that

the model fed by time–frequency inputs obtained by STFT

had better accuracy than other models. Wang et al. [11]

preprocessed raw vibration signals by STFT to acquire

corresponding time–frequency maps and fed their CNN

model to diagnose motor faults. Results of the work

demonstrate that CNN with time–frequency map inputs

show better performance than other methods compared in

the literature in terms of diagnostic accuracy. In [12],

Zhang et al. used STFT to obtain input images of their

proposed LeNet-5 CNN model to diagnose bearing faults.

Their proposed method achieves better training and testing

accuracy compared to both time domain and fre-

quency domain methods.

The multi-sensor data fusion in an intelligent diagnosis

application is considered a promising technique since the

information obtained from multi-sensors can be much more

meaningful than a single source [13]. Therefore, using

more than one measured signal helps develop a more

effective and robust fault diagnosis approach. For example,

Jing et al. [14] constructed an adaptive multi-sensor data

fusion method based on deep CNN (DCNN) for intelligent

planetary gearbox fault detection, which takes raw signal

data as input. In this work, they used four types of mea-

sured signals like vibration, acoustics, current, and

instantaneous angular speed. According to the results, their

proposed model that employs data fusion achieved better

testing accuracy than the other methods evaluated in their

experiments. Wei et al. [15] have recently proposed a data

fusion method that takes advantage of data measured from

multi-sensors to detect incipient faults. The experiments

performed on aircraft engines show that their proposed data

fusion method can detect occurrences of incipient faults

more accurately and robustly. Xu et al. [16] developed a

novel integrated model named parallel CNN (PCNN),

which benefits from multi-sensory feature fusion and

popular DL algorithms to monitor cutting tools and
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diagnose bearing faults. Their results on two different

experiments indicate that the proposed approach provides

more accuracy and effectiveness on both pattern classifi-

cation and regression prediction problems. Even if signals

measured from multiple sensors have more meaning than

single-sensor signals, most of the literature studies cannot

use multiple sensors effectively. Some of the studies

focused on only one type of signal obtained by multiple

sensors or combined different types of raw signals before

feeding their models. Alternatively, we propose a novel

DRN-based, multi-sensory data fusion method, which takes

time–frequency representations generated by means of

gathering different types of measured signals as input, and

fuses relevant features extracted prior to classification

process.

3 Proposed method

This section describes the components and structure of our

proposed method. We first briefly explain the multi-sensory

data fusion approach. Then we provide an overview of

deep residual learning, which constitutes the building

blocks of our convolutional neural network structure.

Finally, we introduce the proposed DRN-based multi-

model data fusion method.

3.1 Multi-sensory data fusion

A system is a combination of many components that work

in harmony. Each component has different characteristics

and status that represent overall system conditions.

Therefore, analyzing system conditions based on only a

single type of measured signal will potentially lead to

inadequate analyses in certain situations, where near miss

or miss occurrences are present. To address this issue, one

can expand the diagnosis step and start to monitor multiple

types of sensors. Fusing information gathered by multiple

measurement sources concurrently might help monitor a

system better and increase the fault diagnosis model

capacity [17]. Since different sensors have different

advantages (or drawbacks), a multi-sensor fusion approach

can strengthen the evidence on failure modes as opposed to

single-sensor monitoring cases.

3.2 Deep residual learning

Deep residual learning is a learning process that benefits

from residual networks. The residual networks consist of

residual learning blocks and shortcut connections. Each

residual learning block uses some weight layers, batch

normalization (BN), and nonlinearity functions to learn

from inputs. Moreover, each shortcut connection is used to

skip some of the layers and add input to the output of the

learning block element-wise before the last nonlinearity

function. Figure 1 demonstrates a residual building block

of a DRN model, consisting of double weight layers, BN,

and ReLU nonlinearity function.

As shown in the figure, the input of the first weight layer

is added to the output of the last layer before ReLU

function is applied. In addition, if input and output

dimensions are different, a projection operation should be

inserted to match them at the identity shortcut connection.

This approach helps the model recall inputs and solves the

degradation problem of deep networks [18].

3.3 Model design

In the field of intelligent fault diagnosis, most of the studies

have been focusing on a single type of measured signal

such as vibration, temperature, or current alone. However,

each different type of measured signal might carry finger-

prints that present discriminative information about

machinery parts being monitored. In this paper, we propose

a multi-model structure that is able to use more than one

type of measured signal simultaneously as separate inputs

for separate DRNs and then fuse them before classification.

In an effort to accomplish our goal, we utilize DRN

structures as a building block [18]. As shown in Fig. 2, the

proposed multi-model approach consists of multiple

ResNet-18 models. Each model takes time–frequency

representations of a single type of measured signal as an

input and then all of the features generated by multiple

models are combined before classification. Each ResNet-18

model has 18 layers. The first layer is 3 9 3 convolutions

Fig. 1 Structure of a residual learning block
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with a stride of 1 and 16 filters. Then, there is a stack of 4

layers with 3 9 3 convolutions 4 times. Each of the layers

in a stack consists of a convolution, BN, and activation

steps. At the end of each stack, the size of the feature maps

is halved, and the number of filters is doubled. The down-

sampling is done by convolutions with a stride of 2. After

those layers, a global average pooling with the size of 8 is

applied for flattening. As the last step, outputs of each

model are combined with concatenation operation and

connected to the same classification layer for the final

prediction. All activation functions used in residual learn-

ing blocks are ReLU function and Softmax function is used

as the classification function at the output layer.

Figure 3 shows a flowchart of the proposed method.

4 Experimental results and analysis

4.1 Dataset descriptions

A publicly available dataset called Paderborn University

(PU) bearing dataset [19, 20], which is provided by KAt-

DataCenter of Paderborn University, is used in this study.

The modular test rig of the PU bearing dataset is presented

in Fig. 4. The dataset has 32 sets of motor current and

vibration signals. Each set has different aspects; (a) six of

them are measured from healthy bearings, (b) 12 of them

are measured from artificially damaged bearings and (c) 14

of them are measured from actually damaged bearings. In

addition to this, the test rig is operated under four different

operating conditions; (1) runs at 1500 rpm with a load

torque of 0.7 Nm and a radial force on the bearing of

1000 N, (2) runs at 900 rpm with a load torque of 0.7 Nm

and a radial force on the bearing of 1000 N, (3) runs at

1500 rpm with a load torque of 0.1 Nm and a radial force

on the bearing of 1000 N and (4) runs at 1500 rpm with a

load torque of 0.7 Nm and a radial force on the bearing of

400 N. Each set has 20 measurements of 4 s for each

aforementioned operating condition. Therefore, each of the

32 sets has 80 different files for four conditions.

In this work, four datasets are organized and used to test

the proposed method’s efficiency, effectiveness, and per-

formance. The datasets are carefully chosen in accordance

with the number of bearings from which the signals are

collected with specific conditions. Since the proposed

method can learn effectively from multiple signals, we aim

to benchmark it on relatively more challenging tasks.

Therefore, dataset A, B, and C are composed of measured

signals obtained from similarly conditioned bearings as six

healthy, 12 artificially damaged, and 14 actually damaged.

Moreover, dataset D also comprises measured signals from

32 bearings as a combination of six healthy, 12 artificially

damaged, and 14 actually damaged ones. Besides, to test

the method’s performance on different data sizes, the

number of bearing conditions in each dataset is specified

unequally. Since each dataset contains a different number

of samples and conditions, it is possible to evaluate the

performance of the proposed method on both small and

large datasets.

Additionally, each dataset includes measured signals

from the setting that runs at 1500 rpm with a load torque of

0.7 Nm and a radial force of 1000 N on the bearing.

Dataset A includes 4 s of measured signal from 6 of the

healthy bearings. Dataset B contains 4 s of measured sig-

nals from 12 artificially damaged bearings. Dataset C

includes 4 s of measured signals from 14 actually damaged

bearings. Dataset D contains 4 s of measured signals from

32 different bearings. Each dataset mentioned above has

Fig. 2 Structure of the proposed method
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800 samples (400 for current signals and 400 for vibration

signals) with a length of 512 for each bearing included.

Therefore, dataset A contains 4800, dataset B contains

9600, dataset C contains 11200, and dataset D contains

25600 samples in total. Detailed information about datasets

is given in Table 1.

4.2 Experimental setting

The four bearing datasets described in the previous section

include both current and vibration signals, which are used

to test the performance of the proposed model. Since input

image size selection is a critical process of any CNN

model, we used these parameters and tested them, which

resulted in high accuracy and optimal time complexity as

defined in [12, 21]. However, the number of overlapping

points is excluded such that time–frequency representa-

tions for STFT are obtained.

In the preparation stage, each measured signal from

bearings was divided into samples with a length of 512,

measured in 8 ms. A sliding window accomplished the

dividing process, and there were no overlapping points.

After taking 400 samples from each measured signal, all of

the samples were converted to the time–frequency resolu-

tions with the parameters given in Table 2. By such

parameters, each 512 points was converted to a 65 9 65

spectrogram. To make the convolutions easier with the

proposed model, we truncated each spectrogram’s last row

and column. Therefore, this operation determined our input

image size as 64 9 64, and there were 400 of them for

each measured signal. After the preparation stage, each

bearing dataset was randomly divided into training, vali-

dation, and test sets with the ratio of 0.6, 0.2, and 0.2,

respectively. In deep models, training and validation sets

were used for the learning and test sets for the prediction

phase. Considering time consumption and overtraining

issues, we specified the size of each batch as 32 and the

number of the epoch as 200. Moreover, the Adam

stochastic optimization algorithm [22] was used with step-

based learning rate scheduling that decreased after every

few epochs [23]. In this experiment, for the step-based

learning rate function, the parameters initial learning rate,

base drop rate, and step size were specified as 0.01, 0.1, and

40, respectively. In addition, the learning rate is specified

as 0.001 for the first 40 epochs.

The code is written with Python 3.6.9 and TensorFlow

(version 2.3.0) library is used to build deep models. The

computer also has a Tesla T4 14.64 GB GPU and

12.72 GB RAM.

4.3 Classification performance

The experiments performed in this study consist of three

sequential steps. In the first two steps, we performed our

diagnosis model for only a single type of measured signal,

and as the last step, we applied the proposed multi-model

approach to two types of different signals. Then, we

Fig. 3 Flowchart of the proposed method

Fig. 4 Modular test rig of PU bearing dataset
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compared obtained results in terms of testing accuracy and

classification performance. To test the robustness and

generalization capability of the proposed method, we per-

formed each step for 15 times on each dataset and took the

average of the results as final results. The diagnosis results

of these three steps are given in Fig. 5. Furthermore, the

proposed DRN structure details are also given in Table 3

for a better understanding of the proposed method.

In the first step, we implemented our model for only

vibration signals from dataset A-D to diagnose bearings’

conditions. Diagnostic accuracies obtained from 15 trials

were greater than 85.62%, 93.65%, 96.52%, and 90.98%

for dataset A, B, C, and D, respectively. Also, maximum

accuracies acquired from the vibration signals were

89.58%, 95.83%, 98.12%, and 92.77% for dataset A, B, C,

and D, respectively. In addition, the calculated standard

Table 1 Description of datasets

Dataset Data description Bearing codes Data type Number of STFT samples for

each bearing code (current/

vibration)

A 6 healthy bearings K001, K002, K003, K004, K005, K006 Current,

vibration

400/400 (2400/2400 in total)

B 12 artificially damaged bearings KA01, KA03, KA05, KA06, KA07, KA08,

KA09, KI01, KI03, KI05, KI07, KI08

Current,

vibration

400/400 (4800/4800 in total)

C 14 actually damaged bearings KA04, KA15, KA16, KA22, KA30, KB23,

KB24, KB27, KI04, KI14, KI16, KI17,

KI18, KI21

Current,

vibration

400/400 (5600/5600 in total)

D 32 bearings as combination of healthy,

artificially damaged and actually

damaged ones

All of the bearing codes above Current,

vibration

400/400 (12800/12800 in total)

Table 2 Selected parameters for

STFT
Window length Overlapping points FFT points Time–frequency resolution Input image size

128 120 128 65 9 65 64 3 64
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Fig. 5 Diagnosis results of 15 trials of bearing datasets using the proposed method: (a) Dataset A, (b) Dataset B, (c) Dataset C and (d) Dataset D
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deviations were 1.14%, 0.62%, 0.43% and 0.41% for

dataset A, B, C and D, respectively.

In the second step, we selected only samples generated

from current signals in each dataset. When we applied our

DRN model to the current signals in each dataset 15 times,

our diagnostic accuracies were greater than 97.92%,

97.08%, 99.11%, and 97.27% for dataset A, B, C, and D,

respectively. Maximum accuracies for the current signal

samples were 98.75%, 99.17%, 99.82%, and 98.20% for

dataset A, B, C, and D, respectively. In addition, standard

deviations of 15 trials were 0.27%, 0.61%, 0.22%, and

0.28% for dataset A, B, C, and D, respectively.

In the last step of our experiment, the proposed multi-

model method was applied to each dataset 15 times.

Samples consisting of both vibration, and current signals

were used as inputs. All of the diagnostic accuracies

acquired were greater than 97.83%, 96.77%, 99.37%, and

99.77% for dataset A, B, C, and D, respectively. Moreover,

maximum accuracies reached were 99.58%, 99.17%,

100%, and 99.92% for datasets A, B, C, and D, respec-

tively. In addition, standard deviations of 15 trials were

0.62%, 0.71%, 0.18%, and 0.04% for dataset A, B, C, and

D, respectively. These results show that our model can

achieve high fault diagnosis accuracy rate on test set,

suggesting that the model can learn more information when

both vibration and current signals are simultaneously uti-

lized along with time–frequency representations. The

average accuracies and standard deviations of 15 trials are

presented in Table 4 to help the reader compare the results

of these three processes. The average accuracies for dif-

ferent datasets demonstrate that the proposed multi-model

approach can diagnose bearing conditions with high

accuracy by benefitting from more than one type of

measured signal. In addition, low standard deviations

manifest the robustness of the proposed model as well.

Figure 6 demonstrates the diagnosis results on dataset

A-D in one of the 15 trials using confusion matrices. Each

confusion matrix manifests classification results obtained

on samples, including both vibration and current signals.

Labels on each matrix indicate the code of bearings.

Evaluating the scores presented via confusion matrices also

shows us that the proposed multi-model method can

achieve the diagnosis of each bearing condition with high

accuracy even if the number of bearings is increased.

However, we did not observe the same trend when a single

type of measured signal is used, indicating that a higher

accuracy can be obtained with the proposed multi-sensor

fusion approach.

4.4 Discussion

A method with the advantage of incorporating more than

one type of measured signal is designed in this study. The

method is benefitting from the STFT, the DRN, and data

fusion operations. The STFT provides both time and fre-

quency information of the measured signals. The DRN

extract features from the time–frequency representations

and solves the degradation problem by recalling inputs.

The data fusion operation increases the number of utilized

features to diagnose machine conditions. Each sensor has

certain advantages and can reflect the machine conditions

from different perspectives. Therefore, analyzing only one

type of measured signal is insufficient to detect faults in

some cases. The results obtained from the experiments

demonstrate that it is possible to overcome the mentioned

problem by the fusion of different types of measured sig-

nals. The datasets A-C were organized such that each group

Table 3 Structure of deep

residual networks
Layer type Kernel size Stride Channel size Feature map size Number of models

Input – – – 64 9 64 m

Convolution1 3 9 3 1 16 64 9 64 9 16 m

Convolution2 3� 3

3� 3

� �
92

1, 1, 1, 1 16 64 9 64 9 16 m

Convolution3 3� 3

3� 3

� �
92

2, 1, 1, 1 32 32 9 32 9 32 m

Convolution4 3� 3

3� 3

� �
92

2, 1, 1, 1 64 16 9 16 9 64 m

Convolution5 3� 3

3� 3

� �
92

2, 1, 1, 1 128 8 9 8 9 128 m

Global Pooling 8 9 8 1 128 1 9 1 9 128 m

Flatten – – – 128 m

Concatenate – – – 128*m 1

Softmax – – – n 1

m denotes number of models and n denotes number of classes
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consists of the data from the similar bearing statuses and

characteristics such as all healthy, all artificially damaged,

or actually damaged. Therefore, diagnosing the condition

of such bearings is not straightforward. Although relative

testing accuracies were obtained for these challenging

datasets at each of the compared steps, the method pro-

vided higher testing accuracies in most of the trials uti-

lizing multiple signals. Whenever the dataset is getting

more complex and larger like dataset D, the methods’

effectiveness can be observed clearly. Our results indicate

Table 4 Comparison of average accuracy and standard deviation

Dataset Only vibration signals Only current signals Proposed method (vibration and current)

Testing accuracy

(%)

Standard deviation

(%)

Testing accuracy

(%)

Standard deviation

(%)

Testing accuracy

(%)

Standard deviation

(%)

A 87.24 1.14 98.33 0.27 98.53 0.62

B 94.84 0.62 98.27 0.61 98.35 0.71

C 97.43 0.43 99.38 0.22 99.69 0.18

D 92.01 0.41 97.88 0.28 99.86 0.04

Fig. 6 Confusion matrices generated by applying the proposed method on each dataset: (a) Dataset A, (b) Dataset B, (c) Dataset C and

(d) Dataset D
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that the model may learn better via the combination of

features extracted from different types of measured signals

and diagnose faults more accurately and robustly. Addi-

tionally, as the number of bearing fault modes increases

and the dataset size gets larger, we observe that the pro-

posed method can still diagnose the faults with higher

accuracies as opposed to when only a single type of mea-

sured signal is utilized.

5 Conclusions and future work

This paper presents a novel DRN-based multi-model

approach using time–frequency representations obtained by

STFT as inputs to diagnose faults among varying bearing

conditions. To verify the effectiveness and robustness of

the proposed method, four datasets provided by PU bearing

conditions were used in the experiments. Multiple experi-

ments have been performed to test the robustness of the

proposed method. The results demonstrate that the pro-

posed multi-model approach can produce high diagnostic

accuracies for the bearing conditions and the average

testing accuracies are more than 98.35%, with considerably

low standard deviations for challenging datasets. More-

over, when the number of fault conditions increased, the

testing accuracy acquired by a single type of measured

signal decreased dramatically, especially for 32 classes

case. As has been demonstrated, the proposed method,

which utilizes more than one type of measured signal, is

significantly robust and can diagnose bearing conditions

effectively even if the diagnosing tasks are complex and

challenging. The results mentioned above justify that the

method has a great potential for intelligent fault diagnosis.

In addition, the flexible and adaptable nature of the method

provides the opportunity for fault diagnosis of various

machines utilized in industrial environments.

In future work, the proposed method will be adapted to

other fault scenarios of different device components to test

the validation of the intelligent diagnosis approach. In

addition, similar to the testbed utilized in this study, a new

testbed is designed and manufactured to collect data from

new types of multiple signals. Similar experiments will be

carried out with new sensors and the data to evaluate the

proposed method for different fault types. Furthermore,

performing diagnoses on real-time data acquired from

industrial machines via the proposed approach will also be

focused on.

Acknowledgements This research is supported in part by the Scien-

tific and Technical Research Council of Turkey (TUBITAK) under

2232 International Fellowship for Outstanding Researchers Program

with the grant number 118C252.

Author’s contributions Conceptualization: Eyüp Çinar and Kemal
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