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Abstract
We demonstrate several techniques to encourage practical uses of neural networks for fluid flow estimation. In the present

paper, three perspectives which are remaining challenges for applications of machine learning to fluid dynamics are

considered: 1. interpretability of machine-learned results, 2. bulking out of training data, and 3. generalizability of neural

networks. For the interpretability, we first demonstrate two methods to observe the internal procedure of neural networks,

i.e., visualization of hidden layers and application of gradient-weighted class activation mapping (Grad-CAM), applied to

canonical fluid flow estimation problems—(1) drag coefficient estimation of a cylinder wake and (2) velocity estimation

from particle images. It is exemplified that both approaches can successfully tell us evidences of the great capability of

machine learning-based estimations. We then utilize some techniques to bulk out training data for super-resolution analysis

and temporal prediction for cylinder wake and NOAA sea surface temperature data to demonstrate that sufficient training

of neural networks with limited amount of training data can be achieved for fluid flow problems. The generalizability of

machine learning model is also discussed by accounting for the perspectives of inter/extrapolation of training data,

considering super-resolution of wakes behind two parallel cylinders. We find that various flow patterns generated by

complex interaction between two cylinders can be reconstructed well, even for the test configurations regarding the

distance factor. The present paper can be a significant step toward practical uses of neural networks for both laminar and

turbulent flow problems.
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1 Introduction

A modern big wave of machine learning has propagated to

fluid dynamics community. In particular, neural networks,

which have a great potential as an universal approximator

[1–4], have acquired strong attentions from fluid

mechanicians for various extensions [5]. Fundamental

studies for closure modeling in large-eddy simulation

(LES) and Reynolds Averaged Navier–Stokes (RANS)

simulation can be regarded as one of enthusiastic topics in

neural networks and fluid dynamics [6]. Gamahara and

Hattori [7] applied a multi-layer perceptron (MLP) with

only one hidden layer to LES closure and compared its

ability to conventional models, considering a turbulent

channel flow. An extension of a similar idea was performed

by Maulik and San [8] with a deconvolution approach.

Following these pieces of seminal work, various studies

have tackled to neural network-based LES modeling so as

to establish the universal closure that can be applied to a

wide range of flows [9–12]. For RANS modeling, a

notable work here is that of Ling et al. [13]. They proposed

a tensor-basis neural network (TBNN), which can guar-

antee a Galilean invariance, and tested the model for flows

in a duct and over a wavy-wall. The TBNN have been

extended to various flow configurations [14] and more

practical issues, e.g., uncertainty quantification [15]. In

addition to the aforementioned supervised methods, Novati

et al. [16] have recently proposed a reinforcement learning-

based closure by considering a homogeneous isotropic
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turbulent flow, which enables us to expect new methods of

machine learning-based turbulence modeling.

One of the outstanding characteristics in the neural

network operation is the use of nonlinear activation func-

tions. It is widely known that neural networks can establish

efficient reduced order models thanks to the nonlinearity

caused herein [17]. Wang et al. [18] proposed a framework

to predict the temporal evolution of proper orthogonal

decomposition (POD) coefficients using the long short-

term memory (LSTM) by considering an ocean gyre and a

flow past a cylinder. As an extension to turbulence, Srini-

vasan et al. [19] used the LSTM to predict the temporal

evolution of the coefficients of the nine equation model for

a turbulent shear flow and reported its great potential.

Focusing on spatial order reduction, neural network-based

low dimensionalization, i.e., autoencoder (AE), is also one

of the promising candidates [20, 21]. The great role of

nonlinear activation functions in neural networks was well

summarized in Murata et al. [22], who compared AE-based

modes to POD modes considering a laminar cylinder wake

and its transient. More recently, the customized AE refer-

red to as a hierarchical AE was proposed by Fukami et al.

[23] to handle turbulent flows efficiently.

While information of high-resolution flow fields have

allowed us to understand complex flow physics, uses of

neural networks which account for nonlinearity into its

regression procedure can also be found for data recon-

struction and estimation [24]. For instance, Fukami et al.

[25] used a combination of convolutional neural network

(CNN) and MLP to predict the temporal evolution of a

cross-sectional field in a turbulent channel flow and applied

the unified model as an inflow turbulence generator. The

CNN-based model was also presented by Salehipour and

Peltier [26] to predict the small-scale motions in the ocean

turbulence referred to as atoms. From the perspective of

image processing, super-resolution analysis, in which high-

resolution data are recovered from its low-resolution

counter part, was applied to turbulent flows by Fukami

et al. [27, 28]. The extension of this idea to higher Rey-

nolds number flows [29], experimental data [30], and three-

dimensional turbulence [31] can also be found. In addition,

a CNN-based velocity estimator for particle image

velocimetry (PIV) was proposed by Cai et al. [32]. They

examined its ability considering various flows. The appli-

cability of a similar method to deteriorated experimental

images was recently investigated by Morimoto et al. [33].

To sum up, various methods for neural network-based fluid

data enrichment were proposed for both numerical and

experimental studies.

Furthermore, neural networks have played a significant

role in the flow control community [34]. The first attempt

of supervised machine learning-based flow control was

performed in 1997 by Lee et al. [35]. Their model was

trained to learn the control input of the opposition control

[36] using only the wall-sensor measurement so as to

reduce the friction drag. Many of recent efforts have been

devoted to reinforcement learning [37]. Rabault et al. [38]

applied the reinforcement learning to perform active flow

control with two jets on a cylinder surface. The extension

of the technique to different Reynolds numbers was

assessed by Tang et al. [39], which achieves significant

drag reduction in 5.7, 21.6, 32.7, and 38.7%, at ReD ¼
100; 200; 300; and 400, respectively. Although these efforts

are still limited to laminar flow cases, the success here

motivates us its extension to turbulent flows.

Although a wide range of neural network applications to

fluid dynamics problems can be seen as introduced above,

we still have some challenges toward more practical steps.

In this paper, we focus on three perspectives as follows:

1. Interpretability of machine-learned results. In the

practical sense, we should address the interpretability

of results collected from machine learning, e.g., ground

for estimations and uncertainty quantification. Also, in

fluid dynamics fields, some researchers have tackled

this issue: Maulik et al. [40] have recently demon-

strated the capability of probabilistic neural network

(PNN) with a problem setting of POD coefficient

prediction over a time of shallow water equation,

vortex shedding behind a cylinder or an airfoil, and

NOAA sea surface temperature. One of beauties in

their work is that the PNN can tell us a confidence

interval in estimating target attributes. Otherwise,

Jagodinski et al. [41] used a three-dimensional CNN

with gradient-weighted class activation mapping

(Grad-CAM) [42, 43] to identify the important area

for the prediction of ejection events in a turbulent

channel flow. In addition, Kim and Lee [44] examined

the relationship between the estimation of the wall-

normal heat flux and vortical motion of turbulent

channel flow by looking inside CNN.

2. Amount of training data. To extract the underlying

physics of fluid flow data, massive amount of training

data has been utilized for neural networks [45]. For

example, Fukami et al. [31] reported that approxi-

mately 15 days are required to train their neural

network to perform three-dimensional spatio-temporal

super-resolution analysis. To reduce the computational

cost and storage, a proper method to bulk out the

training data while keeping the ability of neural

networks is eagerly desired for the fluid dynamics

problems.

3. Generalizability of neural networks for fluid flows A

generalized model beyond various kinds of flows is

also one key factor toward next steps of machine

learning and fluid dynamics. Some studies have
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recently examined this point to consider inter/extrap-

olation boundary in terms of training data. Hasegawa

et al. [46] examined the Reynolds number dependence

in performing CNN-LSTM-based reduced order mod-

eling considering a laminar cylinder wake. They also

investigated the generalizability of geometric variation

using the similar form of reduced order surrogate [47].

Otherwise, Erichson et al. [48] used an MLP referred to

as shallow decoder to reconstruct fluid flows from local

sensor measurements and discussed for inter/extrapo-

lation of training data by considering two-dimensional

forced turbulence.

The aim of the present paper is to demonstrate and intro-

duce the capability of some techniques to clarify the

aforementioned challenges in neural networks and fluid

dynamics. The main contribution of this paper is to

investigate the applicability of various generalization

techniques to high-dimensional nonlinear dynamics. We

cover various canonical neural network-based applications,

i.e., force coefficient estimation, experimental velocity data

estimation, spatial super resolution, and temporal predic-

tion, using a wide range of fluid flow data and sea surface

temperature data. Although many machine learning studies

have been conducted in physical science, the choice of

used techniques highly depends on users’ experience and

intuition. Hence, providing detailed analyses on the gen-

eralization techniques should be highly beneficial in a wide

range of science and engineering. The paper is organized as

follows: the fundamental information on the fluid flow

datasets covered in this study is provided in Sect. 2. The

present machine learning models are introduced in Sect. 3.

As for the result part, we first introduce the visualization

method inside neural networks in Sect. 4 with canonical

regression problems. The generalization techniques for the

amount of training data and unseen data are then discussed

in Sect. 5. Finally, concluding remarks are given in Sect. 6.

2 Flow fields used for training

We consider various flow fields to cover a wide range of

complex fluid flow nature with several canonical problem

settings, as summarized in Fig. 1. In what follows, we

introduce the setup for the training data used in this study.

2.1 Two-dimensional circular cylinder wake
at ReD = 100

A temporally periodic wake behind a circular cylinder at

ReD ¼ 100 is mainly used for the demonstrations in this

study. The datasets are generated with a two-dimensional

direct numerical simulation (DNS). The governing

equations are the incompressible continuity and Navier–

Stokes equations, i.e.,

$ � u ¼ 0; ð1Þ

otuþ $ � ðuuÞ ¼ �$pþ 1

ReD
r2u; ð2Þ

where u and p denote the velocity vector and pressure,

respectively. All quantities are non-dimensionalized using

the fluid density, the free-stream velocity, and the cylinder

diameter. The size of the computational domain is

(Lx; Ly)=(25.6, 20.0), and the cylinder center is located at

ðx; yÞ ¼ ð9; 0Þ. The Cartesian grid system with the grid

spacing of Dx ¼ Dy ¼ 0:025 is applied to the present

simulation. A no-slip boundary condition on the cylinder

surface is imposed using an immersed boundary method

[49]. Although the number of grid points used for DNS is

ðNx;NyÞ ¼ ð1024; 800Þ, only the flow field around the

cylinder is used as the training data whose dimension is

ðN�
x ;N

�
y Þ ¼ ð384; 192Þ corresponding to a domain of

8:2� x� 17:8 and �2:4� y� 2:4. As for the data attri-

butes, the vorticity field x is considered. The time interval

of flow field data is Dt ¼ 0:25, which corresponds to

approximately 23 snapshots per period, with the Strouhal

number of 0.172.

2.2 A cross-sectional field of three-dimensional
square cylinder wake at ReD = 300 and its
particle images

A flow around a square cylinder at the Reynolds number

ReD ¼ 300 is then used for our presentation with the

machine learning-based PIV velocity estimator [33] in

Sect. 4. The training dataset is prepared by a DNS, which

has been verified against Franke et al. [50] and Robichaux

et al. [51], with numerically solving the incompressible

Navier–Stokes equations with a penalization term [52],

$ � u ¼ 0; ð3Þ

otuþ $ � uuð Þ ¼ �$pþ 1

ReD
$2uþ kv ub � uð Þ; ð4Þ

where the penalization term, which represents an object, is

expressed with a penalty parameter k, a mask value v, and a

velocity vector of a flow inside the object ub, which is zero

for the fixed object. The mask value is v ¼ 0 in the flow

domain and v ¼ 1 inside the object. The size of the com-

putational domain here is Lx; Ly; Lz
� �

¼ 20D; 20D; 4Dð Þ.
The computational time step is set to Dt ¼ 5:0 � 10�2. For

the training data of PIV example, we focus on the volume

around the square cylinder, i.e., 7D� 6D� 0:5Dð Þ. The

number of grid points of the extracted region is

ðN�
x ;N

�
y ;N

�
z Þ ¼ ð140; 120; 20Þ. To consider the three-
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dimensionality of the present flow at ReD ¼ 300 [53],

twenty x� y cross sections at different spanwise locations

are used for the training data. The details of preparation for

particle images can be found in Morimoto et al. [33].

2.3 NOAA sea surface temperature

The NOAA sea surface temperature dataset [54], obtained

from satellite and ship observations, is used to examine the

behavior of machine learning models in practical situations

which have no modeled governing equations, e.g., geo-

physical observation. We here use the weekly observation

data, which comprise of a spatial resolution of 360 � 180

based on a 1� grid. In the present study, we insert zero for

the continental portions, which are colored by white in

Fig. 1 for clarity of illustration.

2.4 Two-parallel cylinders wake at ReD = 100

A more complicated flow comprising the wake interactions

between two side-by-side uneven circular cylinders is also

considered to discuss the boundary of inter/extrapolation

for training data. A schematic view of the problem setup is

shown in Fig. 2. The two circular cylinders with a size ratio

of r are separated with a gap of gD, where g is the gap

ratio. The Reynolds number is fixed at

ReD ¼ U1D=m ¼ 100. The two cylinders are placed 20D

downstream of the inlet where a uniform flow with velocity

U1 is prescribed, and 40D upstream of the outlet with zero

pressure. The side boundaries are specified as slip and are

40D apart. The flows over the two cylinders are solved by

the open-source CFD toolbox OpenFOAM [55], using the

second-order discretization schemes in both time and

space.

As the size ratio r and gap ratio g are varied, the flow

over the two cylinders exhibits various wake patterns,

which will be discussed in more detail in our coming paper.

For the present study, we fix the size ratio r to 1.15 and

vary the gap ratio g from 0.5 to 2.5. The wake patterns and

the corresponding Lissajous plots (CL;1–CL;2) are shown in

Fig. 3. At low gap ratios (g ¼ 0:5; 0:7; and 1.0), the wakes

are characterized by irregular interactions of the two vortex

streets. The phase spaces spanned by the two lift coeffi-

cients feature their chaotic trajectories. As the gap ratio is

increased to g ¼ 1:5, the two vortex streets in the near

wake merge into one in far wake. This is also accompanied

by the frequency lock-in among the two nonlinear oscil-

lators. Further increasing the gap ratio to g ¼ 2:0 and 2.5,

the vortex shedding of the two cylinders takes place

independently with their respective natural frequencies,

and the wake is featured by complex vortex interactions.

3 Machine learning models

Machine learning models used in the present study are

constructed by a multi-layer perceptron (MLP) and/or

convolutional neural network (CNN). We consider several

combinations of them depending on the problem setting,

i.e., the size of dimension of the handled data. Here, let us

briefly introduce the fundamental theories of MLP (Sect.

3.1) and CNN (Sect. 3.2), then explain the present models,

which are comprised of them in Sect. 3.3.

Fig. 1 Flow fields used in the present study. In the table, blue boxes indicate the use of the flow field
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3.1 Multi-layer perceptron

A multi-layer perceptron (MLP) [56] was inspired by the

structure of biological neural circuits. The MLP has suc-

cessfully been applied to not only computer science field

[57], but also fluid dynamics community for turbulence

modeling, reduced order modeling, and data estimation

[10, 58, 59].

The MLP illustrated in Fig. 4b is constructed by a lot of

perceptrons, which is a minimum unit as shown in Fig. 4a.

In the perceptron, the output data at the ðl� 1Þth layer are

fed into the next layer (l) while taking a weight W.

Notable characteristics of MLP is that the linear

Fig. 2 Computational setup for

flow over two side-by-side

cylinders

Fig. 3 Vorticity fields with Lissajous plot for CL;1 and CL;2 of two-parallel cylinders wake
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superposition is then passed through a nonlinear activation

function u such that

q
ðlÞ
i ¼ u

X

j

W
ðlÞ
ij q

ðl�1Þ
j

 !

: ð5Þ

Weights on all connections Wij are optimized to minimize a

cost function E with a back propagation [60], i.e.,

w ¼ argminw½Eðy;Fðx;wÞÞ�. In the MLP formulation, we

use ReLU activation function [61], which works well for

weight update issue of deep neural networks.

3.2 Convolutional neural network

Convolutional neural networks (CNN) [62] have mainly

been utilized for image recognition tasks since the filter

operation inside the CNN enables us to handle high-di-

mensional data without encountering the curse of dimen-

sionality. The capability of CNN has also encouraged uses

of CNN in the field of fluid dynamics [25, 26, 63–65].

In this study, we use a two-dimensional CNN illustrated

in Fig. 5. An input data x ¼ qð0Þ, which has L� L pixels, is

fed into the layer (l) – and then repeating manner from

layer qðl�1Þ to layer qðlÞ, where lð0� l� lmaxÞ, is applied.

The procedure of CNN for qðlÞ can be mathematically given

as

q
ðlÞ
ijm ¼ u

�
bðlÞm þ

XK�1

k¼0

XH�1

p¼0

XH�1

s¼0

h
ðlÞ
pskmq

ðl�1Þ
iþp�C;jþs�C;k

�
; ð6Þ

where C ¼ floorðH=2Þ, bðlÞm is the bias, qðlmaxÞ ¼ FðxÞ, and

K is the number of input data channels. The pink square of

H � H in Fig. 5 represents the filter h. Similar to the weight

update in MLP formulated as Eq. (5), weights in CNNs,

i.e., the filtering coefficients, are also obtained through an

optimization manner. As the filter of size H � H is shared

for whole image of L� L, the filter operation in CNN is

generally called weight sharing, which allows us to handle

big data with significantly lower computational costs

compared to the fully-connected MLP. A max pooling

layer is utilized for dimensional reduction. Also, an up-

sampling layer, which copies the values in the lower

dimensional space into a higher dimension, is applied for

dimensional extension.

3.3 Unified models in this study with problem
setting

We use some different structures of neural network suited

for each problem setting in this study. Each model is

comprised of convolutional neural network (CNN) and/or

multi layer perceptron (MLP). Problem settings and illus-

tration of models covered in this study are summarized in

Fig. 6.

For the visualization inside machine-learned models

(Sect. 4) and the demonstration of data bulking techniques

(Sect. 5.2.1), the drag coefficient CD estimation for two-

dimensional cylinder wake at ReD ¼ 100 is performed

[24]. Since the input–output relationship here is a two-

dimensional input with a scalar output as can be seen in

Fig. 4 a A perceptron. b Multi-

layer perceptron is an aggregate

of perceptrons

Fig. 5 Two-dimensional

convolutional neural network
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Fig. 6 Problem settings with machine learning models in this study.

a CNN-MLP model used for scalar output example. b Autoencoder-

type CNN used for PIV velocity estimation. c Up-sampling CNN for

super-resolution analysis. d Regular CNN for the temporal prediction

of cylinder wake. e Multi-scale CNN for the temporal prediction of

NOAA sea surface temperature
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Fig. 6a, we first capitalize on the CNN with the pooling

operations and then the MLP is inserted for low-dimen-

sional vectors.

We also consider an experimental data estimation for

PIV images, which is described in our previous work [33],

to demonstrate the visualization techniques inside machine

learned models. As illustrated in Fig. 6b, an autoencoder

(AE)-type CNN is trained to estimate a velocity field from

the corresponding particle image. Note in passing that we

adopt the AE-like structure, which is robust for noise and

spatial sensitivity, to meet the requirement in handling

experimental images properly [33].

To examine the possibility of a data augmentation

technique, we also consider super-resolution analysis [27].

We here examine two methods of training, global data and

local data, as shown in Fig. 6c. We utilize the same net-

work structure for both training processes, which is an up-

sampling-based CNN. In the model, the input low-resolu-

tion data is extended up to the dimension in which it

matches with the data size of high-resolution data, and then

the data are convolved to output section.

We also consider the temporal prediction of cylinder

wake and NOAA sea surface temperature in this study

using CNN without any pooling or up-sampling layers,

since dimensions of both input and output are same as each

other. The model utilized for temporal prediction of

cylinder wake is illustrated in Fig. 6d. We use only the

convolutional layers with filter size of ð5 � 5Þ. In contrast,

for the NOAA SST dataset, we utilize a multi-scale CNN

[66] since we can suspect that the flow field contains a wide

nature of scales. In our preliminary test, we have checked

that the regular CNN does not work for the NOAA SST

data, while the multi-scale CNN performs well. As pre-

sented in Fig. 6e, the multi-scale CNN used in this study

includes four different filter sizes, i.e., ð3 � 3Þ; ð5 �
5Þ; ð7 � 7Þ; and ð9 � 9Þ.

4 Observing internal procedure of machine
learning models

Considering the practical uses of neural network for vari-

ous purposes, the interpretability is one of the significant

requirements. Since the internal states of neural networks

can be visualized with some techniques, we can expect that

we may be able to find some physical insights or evidence

of their estimations by observing the internal procedure.

Here, let us introduce two methods in observing the inside

neural networks, i.e., visualization of hidden layers (Sect.

4.1) and gradient-weighted class activation mapping [41]

(Sect. 4.2).

4.1 Output of each hidden layer in convolutional
neural networks

As the first technique for visualizing inside the model, we

focus on hidden layers of neural networks. As an example,

let us present in Fig. 7 the output of each convolutional

layer of drag coefficient estimation [24] and experimental

data estimation [33]. These are canonical problem settings

in fluid dynamics. Since a force coefficient estimation plays

a crucial role in fluid engineering, there is a demand in

obtaining the force coefficients in less computational cost,

i.e., without numerically solving the flow. For instance,

Zhang et al. [67] utilized a CNN to estimate a force

coefficient of an airfoil from flow characteristics and

geometry information. Similar studies can also be found in

Refs. [24, 68]. In contrast, neural network-based experi-

mental velocity data estimation addresses the various

experimental constraints, e.g., obtaining denser flow

motion [32], and inpainting the data missing region of an

experimental image [33].

As presented in Sect. 3.3 and Fig. 6a, the CNN-MLP

model is applied to the estimation of drag coefficient CD.

The convolutional part of the model, which comprises of

six convolutional layers and five pooling layers, is first

utilized and then the MLP part with four hidden layers is

combined for the scalar output. As the representative out-

put at each layer, we only extract the hidden output which

reports largest average value over all channels per a layer

based on the assumption that the outputs with larger

weights have a significant contribution for the estimation,

as presented in Fig. 7. As explicitly shown in Fig. 7a, the

region around the cylinder has the larger intensity at every

layer, which is reasonable since the drag coefficient is

determined by the variables on the cylinder surface.

For the task of experimental data estimation, the CNN

model attempts to output a velocity field from artificial

particle image as is detailed in Morimoto et al. [33]. As

stated in Sect. 3.3, we use an autoencoder (AE)-like CNN

which comprises of 14 convolutional layers and 6 pooling/

up-sampling layers. In this case, it is able to estimate the

role of each layer by extracting the output value of each

hidden layer. For the upper-stream layers, e.g., the 1st and

4th convolutional layers, the region around the square

cylinder has larger values. On the other hand, it is obvious

that the downstream layers, e.g., the 12th and 13th layers,

have relatively large intensities on the region with velocity

fluctuation. It implies that the upper-stream layers are

responsible for recognizing the alignment of bluff body

while the downstream layers attempts to output the velocity

fluctuations.
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4.2 Gradient-weighted class activation mapping
(Grad-CAM)

As we demonstrated in the previous section, we can esti-

mate a role of each layer by observing the outputs at each

hidden layer. However, the weakness of the method is that

it is unclear whether the large intensity output directly

represents the contribution for the estimation and we need

to speculate the meaning of each output field. As for more

interpretable tool to observe the internal procedure, we

here apply a gradient-weighted class activation mapping

(Grad-CAM) [42, 43] to our problem settings. A Grad-

CAM has been widely used on the field of image recog-

nition, thanks to its capability in telling us the region with

higher interest for the estimation of the trained model.

Other than the image classification, Jagodinski et al. [41]

has recently demonstrated the ability of the Grad-CAM for

the probability estimation of ejection events in a turbulent

channel flow. In our study, the ability of Grad-CAM is

demonstrated with canonical regression problems, i.e., CD

estimation of a two-dimensional cylinder wake [24] and

experimental data estimation [33] as shown in Fig.s

6(a) and (b). For the problem setting of experimental data

estimation, we particularly choose the machine learned

model trained by artificial particle images with data lacked

region. The model is originally trained to estimate the

velocity field from lacked artificial particle images of flow

around both single and double square cylinders. For more

details on this procedure, we refer readers to Morimoto

et al. [33].

Basis of the Grad-CAM is a calculation of the gradient

of output and designated convolutional layer. For image

classification problems, the model is generally consisted

with convolutional layers and multi-layer perceptrons [69].

To obtain an intensity map of the interest, the gradient

between the output value and last convolutional layer

which corresponds to the layer just before the multi-layer

perceptron, needs to be calculated. The model used in the

CD estimation of a cylinder wake has a similar structure to

those image classification networks since the output is a

scalar value as presented in Fig. 6a. Hence, we use the

gradient oy=oAk
ij just as the classification problems, where y

denotes the estimated CD value and Ak
ij explains the output

of channel k at the last convolutional layer, respectively.

The weight ak for each channel can be then obtained taking

the average of the gradients for each value as,

ak ¼ 1

Z

X

i

X

j

oy

oAk
ij

; ð7Þ

where (i, j) is the index of field Aij and Z is a number of

dimension of output field. We then get the the Grad-CAM

map L as a superposition of weighted channels,

Lij ¼ ReLU
X

k

akAk
ij

 !

: ð8Þ

Note that the ReLU function is applied here in order to

consider only the positive influence. As for the PIV data

estimation, whose CNN model has a two-dimensional

input–output relationship as shown in Fig. 6b, we examine

the gradient calculation on the first and the last

Fig. 7 Output of each

convolutional layer of a
machine learning-based CD

estimation and b PIV velocity

estimation
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convolutional layers to observe the difference of the role of

each layer.

Let us present in Fig. 8 the Grad-CAM maps L of both

problem settings. As shown in Fig. 8a, the Grad-CAM map

indicates that the region around body is highly responsible

for the CD estimation — this observation is similar to the

result of hidden layer visualization. For the experimental

data estimation shown in Fig. 8b, the observable trend is

also akin to the layer visualization in Fig. 7, that the upper-

stream layer has higher interest on the body alignment and

the downstream layer is responsible for the velocity fluc-

tuation—but notable here is its clarity compared to the

layer visualization. The Grad-CAM map at the first layer

shows that the network is obviously recognizing the

alignment of square cylinders to classify the flow type

between single and double square cylinder flow. As

demonstrated here, the Grad-CAM can be a simple but the

powerful tool for observing the grounds of the estimation

and it can be applied to not only classification problems but

also regression problems, which are common in various

demands of fluid dynamics community.

5 Generalization technique for machine
learning models

In this section, we apply several well-known methods of

training data bulking to canonical fluid flow problems to

achieve a low-error level with a small amount of training

data. In what follows, the covered methods are briefly

introduced with expected benefits for each problem setting.

5.1 Method

5.1.1 Flip in horizontal axis

One of the simplest techniques to increase the amount of

training data is to flip the field around proper axis. Hase-

gawa et al. [47] used the flipping technique for their

training data, which is a laminar periodic shedding behind

a bluff body. Analogous to this study, we also apply the

technique to the cylinder wake as shown in Fig. 9. Since

the cylinder wake data is statistically symmetrical with the

horizontal axis, we can simply get the snapshot of half-

cycle ahead (or ago), meaning that we could double the

number of training snapshots such that,

nflip ¼ 2nDNS; ð9Þ

where nDNS is the amount of the reference DNS data and

nflip is the number of overall training snapshots obtained

through data flipping, respectively. Note that users have to

care ergodicity depending on the target dataset and flipping

axis [70], i.e., the statistical features of flipped data and

original DNS data are common with each other in this

particular example.

5.1.2 Noise addition

Another feasible technique is to add noise to the training

data. Neural networks can be generalized, i.e., to avoid

overfitting, by utilizing non-physical noisy measurement,

since the test data can be generally regarded as ‘noisy’ data

against the training data [71]. We can increase the training

data infinitely such that,

nnoise ¼ cnDNS; c ¼ 2; 3; 4; � � � ; ð10Þ

where c is an increasing rate of data amount and nnoise is the

number of training snapshots increased by random noise

addition. Although several kinds of artificial noises can be

Fig. 8 Grad-CAM-based

visualization.a CD estimation of

two-dimensional cylinder

wake.b PIV velocity estimation

for both single and staggered

square cylinders

Fig. 9 Original and flipped data of two-dimensional cylinder wake.

The dotted line located on center region in the original field is a

flipping axis
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considered [72], e.g., Gaussian, speckle, and salt & pepper,

for training data, we here use the uniformly distributed

random noise among �0:1 to 0.1 for bulking out the

training data as an example.

5.1.3 Transfer learning with spatial local data

Another well-known technique to bulk out the training data

in image recognition is to zoom-in and/or -out the training

image [73]. We here borrow the zoom-in/out concept for

the fluid flow estimation. In this study, for the demon-

stration of super-resolution analysis, we combine the con-

cept of zoom-in augmentation to transfer learning (or fine

tuning), which has also been known as a good candidate to

ease the training process by setting proper initial weights

[70]. To prepare the zoomed-in image, we simply divide

the original training data into several sub-domains as

shown in Fig. 10.

Supervised transfer learning process utilized in this

study can be implemented as follows. We first train the

neural network F pre with local sub-domains qlocal,

qOut;local ¼ FpreðqIn;local;wpreÞ; ð11Þ

where the subscripts Out and In stand for output and input

data realizations, respectively. Since we will consider the

super-resolution analysis for transfer learning, the local

model F pre learns the relationship between local low-res-

olution data and local high-resolution counterpart, as

shown in Fig. 10. The weights wpre obtained through a

minimization manner, wpre ¼ argminwpre
jjqOut;local�

FpreðqIn;local;wpreÞjj2, will be then set as initial weights of

posteriori network F post. Hence, the training process can be

mathematically written as

wpost ¼ argminwpost
jjqOut;global � FpostðqIn;global;wpostÞjj2;

ð12Þ

where wpost;init ¼ wpre. Again, we can expect the improve-

ment of reconstruction accuracy through the learning pro-

cess for both local and global fields.

5.2 Demonstration

5.2.1 CD estimation of a flow around cylinder

Here, let us demonstrate the data bulking techniques by

considering the drag coefficient estimation of two-dimen-

sional cylinder wake. We cover two methods for this CD

estimation: 1. data flipping (Sect. 5.1.1) and 2. noise

addition (Sect. 5.1.2). Note that we skip the use of transfer

learning since it was clearly observed in the previous

section that the region around cylinder is highly responsi-

ble for the accuracy of estimation, which indicates that sub-

domain meshing is likely not helpful for this problem

setting. The numbers of original snapshots used for training

nDNS are set to nDNS ¼ f2; 4; 16; 64; 1000g so as to inves-

tigate the dependence of estimation ability on number of

training snapshots. Hence, the numbers of bulked out data

via data flipping are nflip ¼ 2 � nDNS ¼ f4; 8; 32;

128; 2000g. In addition, we set the increasing rate c in

Eq. 10 to c ¼ 8 for the noise-based data augmentation such

that nnoise ¼ 8 � nDNS ¼ f16; 32; 128; 512; 8000g.

The L2 error norm of estimated CD for the covered

bulking techniques is shown in Fig. 11a. Note that the

horizontal axis is arranged by the number of the original

DNS data used for the training process ðnDNSÞ to check the

influence on each bulking technique. Hence, the actual

numbers of snapshots used for a training with data flipping

ðnflipÞ and noise addition ðnnoiseÞ are 2 and 8 folds more

than the present values on the horizontal axis as mentioned

above.

The basic trend here is that both mean L2 error norm and

standard deviation (colored surface) decrease as the num-

ber of training snapshots increases. Although the cylinder

wake data we used is governed by a periodic nature, large

amount of training data is required for the sufficient

accuracy. Since we do not sample the original DNS data

continuously for training data preparation, i.e., randomly

extracted from 1000 snapshots with the time interval of

0.25 dimensionless time, the snapshots in various cycles

are contained in the training dataset as the number of

original snapshots nDNS increases. Fukami et al.[24] had

observed in detail that even with the periodic data, the

estimation accuracy is improved by feeding larger amount

of training data since there may be a slight offset in phase

among training data. Especially through out bulking out

techniques, the estimation ability is drastically improved at

smaller number of snapshots—the training data could be

Fig. 10 Zoom-in concept of two-dimensional cylinder wake for

spatial super-resolution reconstruction. The original domain is

meshed into 64 sub-domains
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successfully augmented to generalize the neural network,

as seen in Figs. 11b and c.

In contrast, for the larger number of training snapshots,

it is striking that noise addition causes negative influence

on the estimation accuracy. The mean L2 error norm,

averaged among the threefold cross-validation, of the

estimation through noise addition (red triangle plots) shows

larger value comparing to other cases and also the range of

standard deviation (red-colored surface) is getting wider as

the nnoise increases. The finding here suggests that it is

likely inappropriate to add the synthetic noise to sufficient

amount of training data since the neural network can

already acquire the nature of dataset.

Similar observation can also be found in the use of data

flipping. The error of the estimation through data flipping

(blue square plots) approximately converges to that of

standard training (grey circle plots). This suggests that the

amount of original training data for flipping is sufficient to

learn the given input–output relationship.

5.2.2 Super-resolution analysis

To observe the behavior for high-dimensional output

regressions, we then consider the super-resolution task

qHR ¼ FðqLRÞ of two-dimensional cylinder wake. Super-

resolution analysis, originally developed in the field of

image processing, aims to estimate high-resolution data

from its low-resolution counterpart. The idea had been

applied to the fluid flow data by Fukami et al. [27] in 2019.

The similar idea can also be applied to the universal clo-

sure modeling for LES and RANS [74, 75]. Moreover,

considering that the low-resolution data corresponds to

sparse sensor measurements, it can be applied to a global

field reconstruction task from the limited data [48, 76].

These applications also encourage us to obtain detailed

information of the weather or ocean data [77], which is

crucial for disaster prevention. Here, the low-resolution

data qLR are generated by average pooling operation for

original DNS data qHR to become 1/8 resolution of the

original data.

The L2 error dependence on the number of training

snapshots is presented in Fig. 12a. In this particular

example, the data flipping (blue plots) has no clear

advantage against the standard training process. In contrast,

the estimation can be improved by adding the Gaussian

noise to the training data (red plots), especially at the

smaller number of training snapshots. The observation for

the smaller nsnapshot is analogous to the CD estimation in

Fig. 11. The trend can also be observed from the mean

vorticity profile at certain x positions, as shown in

Figs. 12b and c. The results of standard process and data

flipping slightly disagree with the reference vorticity,

shown in black solid line, where the magnitude of vorticity

is relatively large. On the other hand, the results with noise

addition and fine tuning show great agreement, as can be

expected from Fig. 12a.

We also consider the application of transfer learning to

this task. The input and output data here are low-resolution

(LR) and high-resolution (HR) data. The training process,

generally explained in Sect. 5.1.3, for this particular super-

resolution task can be expressed as,

wpre ¼ argminwpre
jjqHR;local �F preðqLR;local;wpreÞjj2

wpost ¼ argminwpost
jjqHR;global � F postðqLR;global;wpostÞjj2;

where the initial weights for the posteriori model

wpost;init ¼ wpre, qHR and qLR are high-resolution and low-

resolution data.

The super-resolved fields estimated by the transfer

learned model F post, the regular CNN, and the pre-trained

model F pre are summarized in Fig. 13. All models are

trained at nDNS ¼ 2. Compared to the regular CNN trained

with only global data, the transfer learned model reports

approximately 5% lower error. This result demonstrates the

strength of the transfer learning for fluid flow regression. In

addition, notable point here is that the pre-trained model

F pre can reconstruct the whole field in reasonable accuracy

Fig. 11 CD estimation of cylinder wake at ReD ¼ 100. a Dependence of L2 error norm on number of training DNS snapshots for each data

augmentation. b True-predicted plot and c time series of CD at nsnapshot ¼ 2
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despite that the model was trained with only local sub-

domains. This is because the CNN-based super-resolution

reconstruction is scale invariant thanks to filter sharing

over a whole domain in images. It implies that the locally

trained model F pre has acquired the generalized function of

super-resolution over the spatial domain. This feature of

CNN may be utilized for the situation where the local data

can only be handled due to users’ CPU limitation.

For further investigation, we test the model F pre to a

flow with different alignment of the cylinder as shown in

Fig. 14, i.e., cylinder at (a) downstream and (b) inverse

flow. Both test data are prepared from the original DNS

data. As it can been seen, the model F pre successfully super

resolves the wake region while the error concentrates on

region around the body. From these observations, we find

that the model trained with local sub-domains had acquired

the general function of super-resolution and it is invariant

Fig. 12 a L2 error dependence of super-resolution reconstruction for two-dimensional cylinder wake on the number of used DNS snapshots and

data augmentation techniques. Mean vorticity profile of models trained with 4 training snapshots at b x ¼ 13:2 and c x ¼ 15:7

Fig. 13 Super-resolved field estimated by the transfer learned model, the regular CNN and the pre-trained model. The values underneath each

figure indicate the normalized L2 error norm to the reference

Fig. 14 Application of trained machine learning model to unlearned alignment of bluff body for super-resolution analysis with a two-dimensional

cylinder flow. a downstream and b inverse flow
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not only to the scale, but also to the different alignment of

the cylinder.

5.2.3 Temporal prediction

The applicability of the present data augmentation tech-

niques to machine learning-based temporal prediction is

further investigated considering a cylinder wake and the

NOAA sea surface temperature data. Neural network-based

surrogate modeling for a numerical simulation is one of the

promising uses in nonlinear dynamical systems. Thanks to

its rapid estimation, a neural network-based method can

estimate the future state of the dynamics with significantly

shorter computational time compared to the traditional

numerical approach. For instance, Fukami et al. [25] pro-

posed an inflow driver for numerical simulation of turbu-

lence using neural networks. Another approaches consisted

with long short-term memory [19, 46, 47, 78] and sparse

identification of nonlinear dynamics [79, 80] are also

promising techniques in estimating the temporal evolution

of the flows.

For the cylinder wake example, we train a machine

learning model to estimate the field of next time step t ¼
ðnþ 1ÞDt from the current state t ¼ nDt, where the interval

Dt is 0.25 dimensionless time,

qðnþ1ÞDt ¼ FðqnDtÞ: ð13Þ

As the techniques for training data augmentation, we

consider the all three techniques introduced in Sect. 5.1.

Note again that the amount of data is twice with the data

flipping and it is eight times more with noise addition,

similarly to the previous section. For the transfer learning,

the training process can be written as,

wpre ¼ argminwpre
jjqðnþ1ÞDt

local �F preðqnDtlocal;wpreÞjj2
wpost ¼ argminwpost

jjqðnþ1ÞDt
global � F postðqnDtglobal;wpostÞjj2;

ð14Þ

where wpost;init ¼ wpre.

The error plot of all cases are shown in Fig. 15. Anal-

ogous to the previous problem settings, i.e., CD estimation

in Fig. 11 and super-resolution in Fig. 12, the basic trend

shows that mean L2 error norm and standard deviation,

among the threefold cross-validation, decrease as the

number of training snapshot increases. As for the data

flipping, it is observed that it shows no clear improvement

against the standard process except for nDNS ¼ 4. In con-

trast, the lower errors are reported on every nDNS by adding

the Gaussian noise to the training data. This trend is unique

among the other problem settings, i.e., CD estimation

(Fig. 11), super-resolution task (Fig. 12), and temporal

estimation for sea surface temperature data, which will be

discussed later. The common trend observed through these

other problem settings is that the estimation ability is

improved with smaller number of snapshots while no sig-

nificant difference (or even worse results) would be

reported with larger number of snapshots comparing to the

standard procedure. This variation of trends among these

cases suggests that care should be taken whether noise

addition would be suitable for their particular situations or

not, by considering target flows, problem settings, number

of original snapshots, etc.

Furthermore, the model trained through the transfer

learning shows striking results. For the smaller number of

snapshots, the transfer learned model shows no significant

advantage to the standard process, although the error

becomes even lower than the result of noise addition for the

larger number of snapshots. Unlike the other techniques,

the difference between the standard process and the

transfer learning is only the training process. The input/

output realization for the posteriori model F post is the same

as that of standard process. In other words, the only dif-

ference is whether the initial weight was set randomly or

obtained through pre-training with local data. Analogous to

the super-resolution task (Sect. 5.2.2), we find that the pre-

training using locally divided data can be one of the con-

siderable tools to augment the generalizability of neural

networks for fluid flow regression. Moreover, the model

Fig. 15 L2 error dependence of temporal prediction for two-dimensional cylinder wake on the number of used DNS snapshots and data

augmentation techniques. Representative fields with time-ensemble averaged root mean squared error at nDNS ¼ 64 are shown in the right
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trained via transfer learning reports slightly narrower range

of standard deviation compared to the result with noise

addition, indicating the training process is more stable over

the cross-validations. The detailed observations for each

method are summarized in Fig. 16. The clear advantage of

the transfer learning can also be found from the comparison

of estimated mean vorticity at x ¼ 10:7 and x ¼ 11:5

shown in Fig. 16a. The zoomed-in figures exhibit that the

model with transfer learning shows better agreement with

the reference data compared to the other cases. The prob-

ability density function, shown in Fig. 16b of the vorticity

field also shows the great capability of transfer learning.

While the distributions estimated with data flipping and

noise addition slightly mismatch with the reference data,

the model trained via transfer learning shows almost per-

fect estimations on high probability components.

Similar trends can also been seen with the result of

temporal prediction of sea surface temperature data. For

the temporal prediction of sea surface temperature data, the

model is trained to estimate the state of one week ahead

thorough standard process, noise addition, and transfer

learning. Note that we do not use the data flipping since the

Fig. 16 Results of the temporal prediction model with 64 training snapshots of cylinder wake. a Mean vorticity profile at x ¼ 10:7 and 11.5 and

b Probability density function of the vorticity field for each method

Fig. 17 The dependence of the L2 error on the number of used snapshots with the covered augmentation techniques of temporal prediction for sea

surface temperature. Representative fields at nDNS ¼ 64 are shown in the right
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geographical data here are asymmetric in both longitude

and latitude axes. Let us present in Fig. 17 the dependence

of the L2 error on the number of used snapshots with the

covered augmentation techniques. With the most cases, the

error can be successfully decreased utilizing both noise

addition and transfer learning. Similar to the temporal

prediction of the cylinder wake, the result with noise

addition marks lower error for smaller number of snap-

shots, while the result of transfer learning becomes superior

as the training snapshots increases. The result of noise

addition shows the similar trend to that of CD estimation on

cylinder wake (Fig. 11). Among nDNS ¼ 16 to 64, the error

becomes larger despite the increase in training snapshots.

As discussed in Sect. 5.2.1, this is likely a demarcation

where the influence of synthetic noise turns to be negative

as the amount of original training data becomes sufficient.

On the other hand, the model trained through transfer

learning shows notably lower error for all nDNS cases. Also,

the standard deviation of L2 error norm becomes signifi-

cantly narrower comparing to not only the result of noise

addition, but also the standard process. What is striking

here is that significant improvement can be observed on

region around the continents. As shown in Fig. 18, the root

mean squared error around the continents are smoothed via

transfer learning compared to the standard training process,

i.e., trained with global data only. Since the transfer learned

model F post is first trained with local data, the model might

be able to acquire the better estimation ability for local

manner, e.g., influence of the continents.

The improvement in the estimation with noise addition

and fine tuning can also be found from the probability

density function, as shown in Fig. 19. We here consider

three different latitudinal band, i.e., 1. �90� to �30�, 2.

�30� to 30�, and 3. 30� to 90�. While the result of standard

training process reports the apparent mismatch on low-

probability components for the area between �30� and 30�,

the models trained with noisy data and fine tuning show

nice agreement with the reference distribution.

5.2.4 Generalization for unlearned data

We demonstrated several data augmentation methods

above while considering canonical flows, i.e., two-dimen-

sional cylinder wake and sea surface temperature data. In

this section, let us investigate the applicability of machine

learned models to unlearned state of the flow utilizing a

two-parallel cylinder wake. As presented in Sect. 2.4, the

flow over the two-parallel cylinders will change drastically

by adjusting the gap ratio g. Utilizing this unique charac-

teristic of the flow, we here examine the generalizability of

the neural network via super-resolution task with the up-

sampling CNN introduced in Fig. 6c. We consider two

input coarseness, i.e., 1/8 and 1/16 resolution of original as

shown in the first and the third rows of Fig. 20. The grid

number for 1/8 and 1/16 resolution data are 30 � 56 and

15 � 28, respectively. To observe the applicability of

trained model to unlearned states of the flow, we construct

three models whose training data include only single case

in terms of g for each model, i.e, (i) g ¼ 1:5, (ii) g ¼ 0:5,

and (iii) g ¼ 2:5. For instance, the model for case (i) is

trained only using the flow regime at g ¼ 1:5 and tested

covering all cases of g.

We first select the flow at g ¼ 1:5 for the training data as

shown in Fig. 20. The estimation ability at g ¼ 1:5 is

significantly better than the other test cases since the model

is trained with the same g, although the test time range at

g ¼ 1:5 is excluding the training process. For the 1/8 res-

olution data, the trained network is able to successfully

reconstruct the low-resolution data of all cases with the L2

error rate of less than 0.35. The representative super-re-

solved flow fields are also in excellent agreement with the

reference data. On the other hand, although the trained

Fig. 18 Local root mean

squared error calculated from

the results obtained by nref ¼
1000 through a standard process

and b transfer learning for the

temporal prediction of sea

surface temperature
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model is able to catch the rough trend of data in all test

cases, the L2 error norms for the 1/16 resolution case are

relatively higher than that of 1/8 resolution cases, which

implies the influence on the coarser input data.

The aforementioned tren —the performance of the

model is affected by the choice of training data—can also

be observed with the model trained at g ¼ 0:5 and 2.5, as

shown in Fig. 21. For both cases, the model can reconstruct

the field from 1/8 resolution data with reasonable accuracy

even with the flow field at unlearned g. The estimation for

the 1/16 resolution data is tougher than that for the 1/8

resolution, especially for the region around cylinders,

which is likely because the location of each cylinder differs

among fields at different g. The observed sensitivity here

for the location of bluff body is analogous to our finding of

super-resolution analysis for a single cylinder in Fig. 14.

To avoid the influence on the region around cylinders

and focus on wake reconstruction, we also check the L2

error norm on only wake region, i.e., 4:38� x� 19:0, as

listed in Fig. 23. For the model trained at g ¼ 1:5, the L2

error on flows at unlearned g is relatively high. Even for

flows with close gap ratio, i.e., g ¼ 1:0 and 2.0, the error

rate is approximately same as the other cases, which is a

unique trend compared to the performance of the model

trained at g ¼ 0:5 and 2.5. This is likely because the flow at

g ¼ 1:5 is governed by synchronized vortex shedding

between the two wakes. As demonstrated by the singular

value spectrum in Fig. 24a, the energy convergence of the

flow at g ¼ 1:5 is significantly faster than that of the other

cases, meaning the flow can be represented with smaller

number of spatial modes. Since the flow at g ¼ 1:5 does

not contain complex structures as the other cases, the

estimation ability on those cases became lower, even with

the cases at similar g. In contrast, the models trained at

g ¼ 0:5 and 2.5 report smaller errors, especially on flows at

similar g. The similarity here can be found from the

amplitude spectrum of the lift coefficients in Fig. 24b),

which shows the chaotic nature of flow for g ¼ 0:5, 0.7 and

1, the synchronization at g ¼ 1:5, and the quasi-periodicity

at g ¼ 2:0 and 2.5. Summarizing above, care should be

taken for properly choosing the training data considering

various factors of target flows.

Fig. 19 Probability density function (p.d.f.) of the temperature field. The p.d.f. is shown individually in three different latitude band: (1) �90� to

�30�, (2) �30� to 30�, and (3) 30� to 90�. The reference data is shown in dark grey for comparison
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6 Concluding remarks

We demonstrated several techniques for encouraging the

practical use of neural networks on fluid flow problems.

We first focused on visualization inside neural networks

from the perspective of interpretability, considering two

techniques, i.e., layer visualization and use of Grad-CAM.

The great ability of them could be appreciated from

observing the grounds of the estimation. Especially, the

Grad-CAM offered us a clear insight of the crucial region

for the estimation. The use of various data augmentation

techniques for training dataset, i.e., data flipping, noise

addition, and transfer learning, were also considered with

canonical fluid flow regressions. Among the covered

techniques, we also found that transfer learning through

local data can be a great candidate for improving the

estimation ability drastically and stably in most of the

cases. Lastly, we investigated the generalizability of the

neural networks for unlearned data through super-resolu-

tion analysis. The trained network was able to catch the

rough structure of the flow field even with the flows that are

not included in the training data. In particular, the lower

error was reported on the flows which has similar charac-

teristics to the training data according to a singular value

spectrum. Regarding the variation in data, we investigated

the capability of the machine-learned model for unseen

data by considering the temporal evolution of a flow

around a bluff body with various different shapes in our

previous paper [47]. Moreover, the dependence of the

model performance on Reynolds number is also investi-

gated in [46]. These observations also tell us that when the

test situation is not too far from the training situation, and

the training data are sufficiently given, a machine-learning

model can hold the generalizability even for unseen data.

Since fluid flow phenomena contain highly nonlinear

and chaotic nature, the techniques applied to the fluid flow

data in the present study can be generalizable for the

applications in a wide range of mechanical engineering. In

fact, a machine learning-based temporal prediction tech-

nique proposed by our research group [46, 47, 78] has

Fig. 20 Super resolved fields of two-parallel cylinders estimated by the model trained with global data at g ¼ 1:5
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recently been applied to the field of robotics to predict soil

deformation in bucket excavation [81]. Such propagation

of techniques from fluid mechanics motivates us that our

proposed technique for highly nonlinear dynamics can be

applied to a wide range of science. Moreover, as demon-

strated in the manuscript, the methods can be applied not

only to fluid flows, but also for geophysical observation.

We can expect the applicability of our techniques to other

types of geophysical data, e.g., weather and temperature

field, as well. We refer the enthusiastic readers to our

previous paper which investigates the various parameter

settings of convolutional neural network, which are utilized

in all models covered in this study [82].

Although we focused on the processing methods to

reduce the amount of training data, other perspectives may

also be considered to achieve the same goal. For instance, a

physics-informed neural network (PINN) [83] has recently

been attracting attention since it can take a constraint based

on physical laws as a loss function. Thanks to this char-

acteristic, it is highly expected that models with the con-

cept of PINN can be trained accordingly from a small

amount of training data while satisfying the physical laws.

Fig. 21 Super-resolved fields of two-parallel cylinders estimated by the model trained with global data at g ¼ 0:5 and g ¼ 2:5. Red background

indicates flow fields that have similar g to training data, while gray background indicates flow fields that are far from training range in terms of g
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Otherwise, the use of other sophisticated neural networks,

e.g., graph neural network [84] and reservoir computing

[85], may be one of the possible candidates to improve the

interpretability and generalizability, although careful

choice is required depending on users’ problem settings.

Moreover, from the perspective of data reconstruction from

limited sensors, an optimal sensor placement derived with

the theoretical manner can also drive a practical utilization

of neural networks [86–88]. We hope that our proposed

techniques of internal procedure visualization and data

bulking are able to encourage the practical use of neural

networks in the fluid dynamics community, by combining

with these aforementioned tools.
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Fig. 22 L2 error norm of estimated fields by the model trained with global data at a g=0.5, b g=1.5 c g=2.5. The factor g used for training is

colored by blue in the horizontal axes

Fig. 23 L2 error norm calculated with wake region of estimated fields by the model trained with global data at ðaÞg ¼ 0:5; ðbÞg ¼ 1:5 and

ðcÞg ¼ 2:5. The factor used for training is colored by blue in the horizontal axes

Fig. 24 a Singular value spectrum of two-parallel cylinders wake at each g. b Amplitude spectrum of the lift coefficients. Here,

CL ¼ ðCl;1 þ rCl;2Þ=ð1 þ rÞ
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