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Abstract
When planning rock-based projects, the brittleness index (BI) may play a significant role in the success of various projects,

such as tunnel boring machines and road headers. Lack of accurate BI prediction of the rock sample may result in

numerous disastrous incidents associated with rock mechanics. Adaptive neuro-fuzzy inference system (ANFIS) is a model

for predicting the rock’s BI. However, the performance of this model mainly depends on its parameter values and tuning

these values requires knowledge and time. This study improves the performance of ANFIS modeling using an Artificial

Bee Colony (ABC) optimization algorithm to automatically optimize the parameters of ANFIS, called ANFIS_ABC. Three

versions of ANFIS_ABC algorithms were proposed to predict the BI of rock, in which the ABC algorithm was applied in

different model development stages. The performance of the proposed predictive models was evaluated using the rock

samples collected from a tunneling project in Malaysia comprising 113 samples. The Schmidt hammer rebound number

(Rn) (ranging from 20 to 61), P-wave velocity (Vp) (ranging from 2870 to 7702 m/s), and Point load index (IS50) (ranging

from 0.89 to 7.1 MPa) were used as input parameters. According to the results obtained by the various performance

indices, the proposed model (i.e., ANFIS_ABC_PC) was able to receive the highest accuracy level in predicting rock BI

among all constructed models. The developed model may be applied with caution to relevant areas of rock mechanics.

Keywords Adaptive Neuro-Fuzzy Inference System (ANFIS) � Artificial Bee Colony (ABC) � Brittleness index �
Optimized ANFIS-based model

Abbreviations
ANFIS Adaptive neuro-fuzzy inference system

UCS Uniaxial compressive strength

TBM Tunnel boring machine

Gbell Generalized Bell

ANN Artificial neural network

TS Tensile strength

AI Artificial intelligence

ML Machine learning

PSO Particle swarm optimization

ABC Artificial bee colony

BI Brittleness index

FA Firefly algorithm

DE Differential evolution

GA Genetic algorithm

ICA Imperialism competitive algorithm

X Inertia weight

FIS Fuzzy inference system

c1 and c2 Acceleration coefficients

ACO Ant colony optimization

Rn Schmidt hammer rebound number

RMSE Root mean square error

Vp P-wave velocity

Is50 Point load index

R2 Coefficient of determination

MAE Mean absolute error
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SI Scatter index

VAF Variance account for

SVM Support vector machine

FS Feature selection

BTS Brazilian tensile strength

1 Introduction

The brittleness of rock, which may defined as the ratio of

Uniaxial Compressive Strength (UCS) to Tensile Strength

(TS) [1], is a key property of rock mass that should be

considered in all excavation and tunneling projects. In

addition, it is considered an important property in different

civil and mining work applications. For example, an in

depth understanding of rock brittleness is critical in the

areas of oil and gas projects. This may assist in the eval-

uation of the performance and stability of possible

hydraulic failures. Moreover, the brittleness index (BI) can

control mechanical characteristics of the rocks. It is

important to note that the rock strength can be calculated

by the volumetric fraction of weak constituents, strong

minerals, and carbonates [2]. Rocks with a higher brittle-

ness index can break easily at small strains.

Different studies introduced empirical and computa-

tional techniques to determine rock brittleness [3–9]. The

empirical approaches are usually based on the tensile and

compressive strength, and the applied proposals are based

on different relationships of TS and UCS [10, 11]. How-

ever, there are some additional parameters such as the

Poisson’s ratio, rock density, plastic strain, applied load at

failure, penetration depth at the maximum force, and elastic

modulus in other published empirical equations [4, 12–14].

It is important to mention that the widely-used empirical

relationship used to calculate the BI calculates the ratio of

compression strength values to tensile strength values [15].

Tensile and compression strengths are often assessed using

the Brazilian tensile strength (BTS) and UCS tests,

respectively. When calculating the BI using these tests, the

computation is overwhelmingly expensive and time-con-

suming [6]. In addition, sample preparation for these tests

based on the available guidelines, is a difficult task as

mentioned by many researchers [16, 17]. Therefore, the use

of rock index tests for BI prediction is of importance. In

addition to tensile and compression strengths, other char-

acteristics, such as frictional strength, rock density, elas-

ticity modulus, are used for formulating different heuristics

in order to predict BI in different conditions and rock types

[11]. Although these heuristics processes or methods can

be used for predicting BI, developing more computational

techniques with higher degree of accuracy is required to

solve rock BI problem.

It has been proved that strength-based approaches (e.g.,

UCS or TS) cannot be efficient in characterizing rock

brittleness [18, 19]. To address this weakness, some tech-

niques have been developed during past decades. For

example, punch penetration tests were used by Yagiz [4] to

derive rock BI. In another research carried out by Guo and

Chapman [20], the brittleness of shale rocks was assessed

by employing a non-strength-based rock physics template.

Tarasov and Potvin [21] used the aggregated elastic energy

and rupture energy as two important parameters to obtain

rock fragility properties under different loading conditions.

Rock brittleness was used for estimating the performance

of tunnel boring machine (TBM) as reported by Yagiz et al.

[22] and Yagiz and Karahan [23]. They mentioned that BI

is one of the important factors influencing TBM perfor-

mance. One of the major shortcomings of strength-based

approaches is that they do not consider the effect of elastic

strain and confining stress. These two parameters are nec-

essary for determining the amount of applied energy during

loading and before failure occurs [24]. On the other hand,

the majority of conventional models use one or two

dependent parameters, which fail to estimate BI values

with sufficient accuracy [25, 26]. The use of artificial

intelligence (AI), machine learning (ML), and evolutionary

computing techniques in solving problems in science and

engineering has been highlighted in many studies [27–44]

and specifically in estimating BI values [1, 5, 6, 15, 25, 26].

Unlike regression analysis techniques, AI and ML tech-

niques do not force the predicted BI value to be a mean

value; thus, they can maintain the variance of the measured

data. Recently, artificial neural network (ANN) were

employed for the prediction of rock brittleness [18]. A

fuzzy inference system (FIS) was designed for the pre-

diction of BI as reported by Yagiz and Gokceoglu [25].

Koopialipoor et al. [1] integrated a firefly algorithm (FA)

into an ANN algorithm for the prediction of BI values of

rock. Different intact rock properties, such as the p-wave

velocity and density, were considered in the development

of the model. Hussain et al. [2] optimized the weights of

the equations predicting the BI by employing a swarm-

based optimization algorithm, i.e., particle swarm opti-

mization (PSO). It is important to note that AI and ML

models have been used and introduced to solve civil and

mining problems [27, 45–54].

Strength-based techniques can be used as indirect tools

to measure/predict the brittleness of rock. Indirect use of

BTS, UCS, and fragment size distribution is considered as

a useful technique in assessing the performance of

mechanical drilling in tunneling. However, strength-based

approaches cannot evaluate the rock brittleness under

3264 Neural Computing and Applications (2022) 34:3263–3281

123



various loading conditions. Existing systems may some-

times be inconsistent with each other or may depend on

specific test and measurement conditions, resulting in

limited use. On the other hand, a system that can determine

rock brittleness under a broad scope of ductility is not

available [24].This research investigates the application of

an adaptive neuro-fuzzy inference system (ANFIS) algo-

rithm, which combines the learning ability of both neural

networks and FIS. ANFIS has been utilized in the context

of various prediction purposes. The parameters used in

ANFIS are enhanced using an optimization algorithm

applied during training stages [55]. Derivative-based and

metaheuristics-based types of algorithms have been used in

the context of ANFIS training [56, 57]. Although ANFIS

are efficient tools for engineering problems solving, it

suffers from certain shortcomings, such as slow learning

rates and entrapments in local minima [58]. These short-

comings are associated with inappropriate parameter set-

tings of ANFIS. To address these challenges, an ANFIS

system is enhanced using an artificial bee colony (ABC)

algorithm with the aim of automatically tuning the

parameter values. An ABC algorithm is employed over

different types of parameters and three versions of

improved ANFIS are proposed. The performance of the

proposed algorithms is evaluated using samples collected

from a tunneling site in Malaysia for the prediction of BI

rock.

The paper is structured as follows: Sect. 2 presents

fundamental concepts of ANFIS and ABC algorithms.

Section 3 presents the database compiled in this paper.

Section 4 presents a hybrid evolutionary ANFIS algorithm

developed by employing the ABC approach in the

parameter adjusting step of ANFIS with the aim of

improving the performance of a pre-developed ANFIS

model. Section 5 evaluates the proposed algorithm based

on different performance indices (PIs) and discusses the

results. Finally, a summary of the paper is provided in

Sect. 6.

2 Methods and material

2.1 ANFIS background

An ANFIS structure consists of the premise (antecedent)

and the consequence (conclusion) parts. In an ANFIS, a

network model is trained by optimizing the parameters

associated with these two parts. ANFIS is trained using

input–output data sets. Then, IF–THEN rules, which con-

nect two parts, are generated. Figure 1 shows a five-layer

ANFIS algorithm (1) fuzzification layer, (2) rule layer, (3)

normalization layer, (4) defuzzification layer, and (5)

summation layer [27].

2.1.1 Layer 1: fuzzification layer

In the fuzzification layer, fuzzy clusters are obtained from

input values using membership functions (MFs). The

fuzzification layer is responsible for forming membership

functions using parameters in the antecedent part, i.e., {a,

b, c}. Indeed, these parameters determine the degrees of

each MF, as expressed in Eqs. 1 and 2.

lAi
¼ gbellmf x; a; b; cð Þ ¼ 1

1þ x�c
a

�
�

�
�2b

ð1Þ

O1
i ¼ lAi

xð Þ ð2Þ

2.1.2 Layer 2: rule layer

In this layer, weights (wi) for the rules are created through

MFs calculated in the first layer. The weights are generated

by multiplying the MFs (Eq. 3).

O2
i ¼ wi ¼ lAi

xð Þ � lBi
yð Þ i ¼ 1; 2 ð3Þ

2.1.3 Layer 3: normalization layer

In this layer, normalized weights of each rule are calcu-

lated. The normalized weight is the percentage of the firing

strength of a rule to the total of all firing strengths (Eq. 4):

O3
i ¼ wi ¼

wi

w1 þ w2

i ¼ 1; 2 ð4Þ

2.1.4 Layer 4: defuzzification layer

In this layer, weights of the rules in each node are com-

puted using the first order polynomial (Eq. 5).

O4
i ¼ wifi ¼ wi pix:qixþ rið Þ ð5Þ

In this equation, wi is the output of the third layer and

the three parameters of pi; qi; and ri are conclusion

parameters (i.e., the parameters that are in the consequence

part). As a rule of thumb, the number of parameters in the

consequence part for each rule is one more than the number

of input(s).

2.1.5 Layer 5: summation layer

The predicted value in the last layer is obtained by the

accumulation of all outputs obtained for each rule in the

fourth layer (Eq. 6).

O5
i ¼ overalloutput ¼

X

i

wif i ¼
P

i wif i
P

i Wi
ð6Þ
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2.2 Artificial Bee Colony

ABC was introduced in 2005 by Karaboga [59] and sim-

ulates the foraging characteristic of honey bees [60]. There

are three groups of bees in a colony: employed, onlooker,

and scout. Employed bees occupy half of the hive, and

onlooker bees occupy another half of the hive. It is worth

mentioning that for each food source, there is only one

employed bee [61]. A scout bee is considered an employed

bee type when the bee abandons a food source. Figure 2

shows a graphical representation of the ABC algorithm.

As the first step, initial food sources are generated ran-

domly using Eq. (7). The number of food sources is a user-

defined value.

Xi;j ¼ Xmin;j þ rand 0; 1ð Þ Xmax;j � Xmin;j

� �

i ¼ 1; 2; . . .; SN; j ¼ 1; 2; . . .D
ð7Þ

where SN and D are the population size and the size of

solutions, respectively, and (0, 1) is a function that

generates a random value between 0 and 1. The notations

of Xmin;j and Xmax;j are the lowest and highest values of the

bit j, respectively.

Each solution in the bee population, is a D size vector,

which represents the number of variables for a given

problem. In the employed bee step, the solution is modified

using Eq. (8). The amount of nectar of the new food source

is then computed. If the value of the new solution is greater

than the previous one, the employed bee memorizes the

position of the new solution and moves to the new bee.

Vi;j ¼ Xi;j þ hi;j Xi;j � Xi;k

� �

ð8Þ

In this equation, hi;j is a random value between -1 and

1, j is a randomly produced integer value between 1 and D.

Vi, Xi and Xk are the new, current and the neighboring

individuals, respectively. Values i and k are the indices of

the food sources.

The onlooker bees perform a probabilistic selection

process by considering the amount of nectar and the food

sources computed by the employed bees [62]. The ith

solution, Pi, is calculated as follows:

Pi ¼
fi

PSN
n¼1 fn

ð9Þ

where, value f i is the amount of nectar of the individual i.

The computed value Pi is compared with a random value,

in the range of 0 to 1. An onlooker bee goes to the region

located at the Xi food source with the aim of determining a

new neighboring food source. After reaching the onlooker

bees in the neighborhood, each bee finds a new neighboring

bee using Eq. (8) and the new solution is generated through

a heuristic link between the new individual and the indi-

vidual selected. In this step, a termination criterion is

applied in such a way that an employed bee is converted to

a scout bee and starts to explore new individuals based on a

random search if the quality of an individual cannot

increase after a given number of cycles (i.e., ‘‘limit’’).

Layer 1:
Fuzzification 

X

Y

Layer 2:
Rule 

Layer 3:
Normalization 

Layer 4:
Defuzzification

Layer 5:
Summation

Consequences parameters
(p,q,r)

Premise parameters
(a,b,c)

Rule 1: if A=x1 and B=y1 then Z1=p1A+q1y+r1
Rule 2: if A=x2 and B=y2 then Z2=p2A+q2y+r2
Rule 3: if A=x3 and B=y3 then Z3=p3A+q3y+r3

Fig. 1 Schematic of the five-layer architecture of ANFIS

Employed 
bee

Onlooker bee

Scout bee

Food sources

Candidate 
solution

current 
solution

Fig. 2 The elements of ABC algorithm
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2.3 ANFIS_ABC

There are two types of parameters in the structure of

ANFIS: antecedent and conclusion, which are shown in the

second and forth layers of Fig. 1, respectively. Optimiza-

tion algorithms can be used in two ways: in the first case,

all the parameters of the two parts can be adjusted using

one optimization algorithm. In the second case, two dif-

ferent optimization algorithms can be employed, one

algorithm for the premise and another for the consequence

part. This research used the first case methodology, and all

parameters are optimized using the ABC algorithm.

When using evolutionary computation algorithms in

ANFIS, a considerable skill and experience is required in

defining the parameters of the optimization algorithm (such

as population size, crossover and mutation rates, and inertia

weight). The convergence speed of an evolutionary-based

ANFIS model, is associated with the metaheuristic-de-

pendent parameters. Some parameters (e.g., population

size) are common in the most evolutionary computation

algorithms. For example, the number of available moves is

limited in Differential Evolution (DE) algorithm when the

population size is too small. On the other hand, many

functions that call on nearly random explorative moves can

be wasted if the population size is very large. In addition to

common parameters, some evolutionary techniques include

their own specific parameters. For example, crossover

probability and mutation probability are two parameters in

genetic algorithm (GA) that need to be designed [63]. As

another example, three key parameters that mainly affect

convergence and efficiency of the PSO algorithms are the

inertia weight (x) and the acceleration coefficients (c1 and

c2). Overall, the parameters of evolutionary approaches

introduce different challenges to the search process such as

inappropriate exploration and exploration, slow conver-

gence, and trapping into the local minima [64].

Unlike the most well-known evolutionary algorithms

such as PSO, DE, and colony optimization (ACO), impe-

rialism competitive algorithm (ICA), FA, and GA require

different control parameters, whereas the limit is the only

control parameter in an ABC algorithm. In most of the

cases, the population size and the maximum required

iterations are two parameters to be set by the users or

researchers. In addition to being parameter-less, an ABC

algorithm can provide a balance between local exploitation

and global exploration [65]. These two characteristics are

important in any robust search process that should be

considered together. In ABC, the exploitation process is

performed by using onlooker and employed bees while the

exploration process is carried out through the scout bees

[65].

An ABC is integrated into ANFIS algorithm to optimize

the parameters of ANFIS. Figure 3 presents the proposed

ANFIS-based ABC model for the prediction of the BI of

rock. ABC is employed to tune the parameters of both

premise and consequence parts. ABC_ANFIS algorithm

consists of two main stages. Target and independent fea-

tures are determined in the preprocessing step, while ABC

algorithm is applied in the second step to optimize the

parameters values. The database used in this research

includes four input parameters: the Schmidt hammer

rebound number (Rn), p-wave velocity (Vp), point load

index (Is50), and the BI as the output parameter. The first

three attributes are independent while the last feature is

considered a target variable.

In an ABC_ANFIS algorithm, all premise and conse-

quence parameters are associated with the individuals in

the ABC algorithm. Therefore, the ABC approach is per-

formed to find the best premise and consequence parame-

ters in the search space. A representation of the food source

position is given in Fig. 4.

In order to compute the quality of individuals, Root

Mean Square Error (RMSE) is used as the fitness function.

To calculate RMSE, the predicted values and its real values

should be considered and used as given in Eq. 10:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 yi � y
i

� �

N

v
u
u
t

ð10Þ

In this equation, yi refers to the predicted BI values, y
i
is

the actual BI values and N is the size of the dataset (i.e.,

data sample number).

2.4 Established database

In this study, the data obtained from a tunneling project in

Pahang state, Malaysia were used. This project was

developed with the aim of transferring water between two

states (i.e., Pahang and Selangor) in Malaysia. The exca-

vated tunnel is 44.6 km long and has a 5.2 m diameter. The

first 35 km of the tunnel were excavated by means of three

TBMs, while the remaining tunnel was delved by the

drilling and blasting mechanisms. In the lower half of the

downstream of the tunnel, several quartz veins were found

[66]. Rock sampling for the experiments was performed by

conducting geotechnical research in the tunnel, and a total

of 145 block rock samples were gathered from different

locations of the tunnel. A series of laboratory tests were

performed to correlate with the BI of the rock. The results

show that Rn ranged from 20 to 61, Vp ranged from 2870 to

7702 m/s, and Is50 ranged from 0.89 to 7.1 MPa. There-

fore, after sample preparation for each parameter, p-wave,

point load, BTS, UCS, and Schmidt hammer tests were

conducted on the samples in accordance with international
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society for rock mechanics guidelines [67]. It is important

to mention that all BI results were calculated by dividing

the UCS with BTS. Minimum, maximum, and average BI

values of 8.90, 24.01, and 15.51, were obtained in order to

be used in the advanced data modeling part of this research.

In this study, after conducting sample preparation and the

mentioned tests, a number of 113 data rows were provided

to evaluate further the behavior of BI values using some

rock index tests.

2.5 Evaluation measures

Different measures and performance indexes (PIs),

including RMSE, Mean Absolute Error (MAE), coefficient

of determination (R2), and scatter index (SI), were utilized

to evaluate the prediction performance of the proposed

models [68, 69]. The equations of these PIs are presented

below:

RSME ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1

yi � y0ið Þ2
s

ð12Þ

SI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

RSME
p

yi
ð13Þ

MAE ¼ 1

n

Xn

i¼1

yi � y0i
�
�

�
� ð14Þ

R2 ¼
Pn

i¼1 yi � ymeanð Þ2
h i

�
Pn

i¼1 yi � y0i
� �2

h i

Pn
i¼1 yi � ymeanð Þ2

h i ð15Þ

In the above-mentioned equations, n, y, and y0 are the

number of samples, actual BI values, and predicted BI

values, respectively.

2.6 Research methodology

The research methodology can be divided into four

essential steps: problem definition, initial analysis, pro-

posed method, and analysis, as depicted in Fig. 5.

The research area is to predict BI values using AI

techniques. The BI prediction problem was formulated

using ANFIS, which is a new research area in civil engi-

neering. The ANFIS model has shown a high performance
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Fig. 3 The framework of ABC_ANFIS method used in this study to predict the rock BI
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in other domains of tunneling and rock mechanics [58, 70].

However, BI prediction using ANFIS needs improvement.

At the second stage, a series of rock block samples were

collected from the tunneling site. Then, the relevant tests

were carried out on the samples and the BI was measured

in laboratory. Then, four different regression analyses,

including linear, exponential, power, and logarithmic, were

applied to estimate BI of the rock, empirically. To show

that AI techniques have a higher prediction accuracy

compared to regression analysis, an ANFIS-based BI pre-

diction model was applied. The results show that the

ANFIS algorithm is sensitive to parameters determined by

the user and the prediction cannot be reliable because

performance mainly depends on the expert knowledge.

In the third phase, an improved ANFIS system using

ABC algorithm was developed to automatically tune the

parameters of ANFIS in both the first and the fourth layers.

This algorithm requires three variables and defines their

MFs and the parameters of the rule weight computation. A

solution was designed according to these parameters to

improve the quality of solutions using ABC algorithm.

The final step includes the implementation of ANFI-

S_ABC algorithm and its two other versions using python

language in anaconda framework. The results obtained by

ANFIS_ABC were compared with the results of ANFIS

algorithm as well as two versions of ANFIS_ABC in pre-

dicting rock BI.

3 Regression analysis

In this section, the weights of the input parameters for the

estimation of the BI of rock were examined using regres-

sion analysis. The results of the regression analysis were

analyzed to establish correlations between the input vari-

ables and the BI of rock. Therefore, the physical relation-

ships between each predictor or input parameter and model

output (i.e., BI) were evaluated and discussed. In this

context, four types of regressions analysis, including linear,

exponential, power, and logarithmic were applied for the

prediction of the BI of rock. The results are presented in

Table 1, where R2 values were used for estimating the

correlations. As it is clear from this table and presented

equations that all predictors or rock index tests have direct

relations with the model output or rock BI. Rn is actually an

indicator related to the surface hardness of rock samples

which categorizes as non-destructive index test. Vp is also

considered as another non-destructive index test which is

able to estimate the state of compactness of the rock

samples. Lastly, Is50 which is a destructive test, is an

indicator for strength classification of rock samples and it

can be easily done in both field and laboratory. The entire

used non-destructive and destructive index tests are related

to the strength of rock samples, and on the other hand, BI

should be calculated by dividing two important indices

(UCS/BTS). Therefore, since the nature of all parameters
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Fig. 5 Research methodology steps used in this study
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Table 1 Proposed BI equations

using Is50, Rn, and Vp
Regression model Predictor Regression function R2

Linear Vp BI = 0.001 Vp ? 7.4347 0.5648

Rn BI = 0.111 Rn ? 8.4403 0.6655

Is50 BI = 14.693*(Is50) - 24.692 0.5697

Exponential Vp BI = 8.3356.e8E�05�Vp 0.5648

Rn BI = 9.0322.e0:0087�Rn 0.6655

Is50 BI = 0.6386.e1:1725�Is50 0.5718

Power Vp 0:5318 � Vp
0:3715 0.5434

Rn 4:123 � Rn
0:3094 0.6578

Is50 0:8023 � Is502:9513 0.5556

Logarithmic Vp BI = 4.6927.ln(Vp) - 27.304 0.5276

Rn BI = 3.9137.ln(Rn) - 1.4481 0.6497

Is50 BI = 36.955.ln(Is50) - 21.804 0.5233

Fig. 6 Performance of the BI prediction using simple regression analysis
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used in this study is strength and the level of compactness,

it is expected to increase BI values by increasing Rn, Vp,

andIs50 rock index tests. However, the question is which

equation type can perform better in describing the best

relationships between these inputs and BI values. Accord-

ing to the results presented in Table 1, linear and expo-

nential relationships demonstrate a stronger correlation

between BI and (Rn and Vp). Correspondingly, exponential

equation could achieve the best R2 value for Is50. Fig-

ure 6a, b, and c shows the obtained relationships between

BI and Is50, Rn, and Vp, respectively. The results are sta-

tistically significant for the relationships, and they are in

agreement with previous investigations [5]. The results also

suggest that if all three input parameters were used in the

same relationship, the prediction of the BI of rock would be

more accurate. Hence, in the following section, steps of the

used AI models in predicting the rock BI will be described

in detail.

4 AI model development and assessment

This section explains how to carry out the experiments

using ANFIS and ANFIS_ABC predictive models. Fig-

ure 7 shows the experiment process. In the first step, the

data are normalized using the Min–Max normalization

technique. All experiments were conducted on 80% of the

dataset (i.e., 90 samples), which were randomly selected, as

the training set. Twenty percent of the dataset (i.e., 23

instances) was selected for the testing stage. It is worth

mentioning that the combination of (80–20) for training

and testing datasets was used in accordance with sugges-

tions available in the literature [71–73]. Both ANFIS and

ANFIS_ABC models were built using the training set.

Once models are generated, the testing set was used to

evaluate the performance of the developed models using

different PIs.

4.1 ANFIS

In order to predict the BI of rock samples using ANFIS,

three fuzzy input variables (i.e., Rn, Vp, IS50) were used.

The Generalized Bell (Gbell) function fuzzy membership

was chosen for these variables. It is important to express

that some other MFs such as trapezoidal and triangular

were investigated, and the best results were obtained using

the GBell MF type. The Gbell MF is defined in the fol-

lowing form:

Bell x; a; b; cð Þ ¼ 1

1þ x�c
a

�
�

�
�
2b

ð16Þ

where x is a 1D array of values and a, b, and c are used to

control width, center, and slop, respectively. The first input

variable is Is50, which its MF obtained by the proposed

ANFIS model is depicted in Fig. 8a. The linguistic vari-

ables for this fuzzy set are low, medium, and high. The

second fuzzy input variable is the Rn where MF obtained

by the proposed ANFIS model is shown in Fig. 8b. The

MFs of the third input parameter (Vp) is shown in Fig. 8c.

The only fuzzy output variable is the BI value. The fuzzy

set for competition radius is demonstrated in Fig. 8d. The

developed ANFIS model with the described structure was

constructed to predict the rock BI values, and its results

will be discussed in detail later.

Fig. 9 ANFIS_ABC model performance in terms of various numbers

of bee

Fig. 10 Average error of the developed models in terms of the

number of epoch
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Table 2 Performance prediction of the ANFIS-based models to predict the rock BI

PI Algorithm RSME SI MAE R2 Total ranking

Train Test Train Test Train Test Train Test

ANFIS 0.9164 0.8849 0.0742 0.0547 0.985 0.9157 0.853 0.8613 8

Ranking 1 1 1 1 1 1 1 1

ANFIS_ABC_P 0.7488 0.7744 0.0607 0.0486 0.8098 0.8071 0.9563 0.9421 21

Ranking 3 2 3 2 3 2 3 3

ANFIS_ABC_C 0.7747 0.7618 0.0617 0.046 0.8272 0.7873 0.9478 0.9356 19

Ranking 2 3 2 3 2 3 2 2

ANFIS_ABC_PC 0.5872 0.6067 0.0537 0.041 0.7132 0.6853 0.9652 0.96 32

Ranking 4 4 4 4 4 4 4 4

Fig. 11 ANFIS model performance prediction to estimate the rock BI

Fig. 12 ANFIS_ABC_P model performance prediction to estimate the rock BI

Neural Computing and Applications (2022) 34:3263–3281 3273

123



Fig. 13 ANFIS_ABC_C model performance prediction to estimate the rock BI

Fig. 14 ANFIS_ABC_PC model performance prediction to estimate the rock BI

Fig. 15 Assessing performance

of ANFIS_ABC models in

predicting BI using testing data

on models trained with different

number of bees
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4.2 ANFIS_ABC

Before starting the ANFIS_ABC modeling to estimate the

target variables, the ANFIS and ABC parameters must be

initialized. In this paper, three improved ANFIS algorithms

were proposed according to the layer in which the ABC

algorithm is employed, including precise layer (ANFI-

S_ABC_P), consequence layer (ANFIS_ABC_C), and both

precise and consequence layers (ANFIS_ABC_PC). In

ANFIS_ABC_P, three parameters in the Fuzzification layer

(i.e., a, b, c) are encoded in terms of a population of

individuals and ABC algorithm is used as the search

mechanism for optimizing parameters values. On the other

hand, the parameters of the Defuzzification layer (i.e., p, q,

r) is represented as solutions in ANFIS_ABC_C. The ABC

algorithm is employed to find the best values for these

parameters. ANFIS_ABC_PC is the combination of two

algorithms of ANFIS_ABC_P and ANFIS_ABC_C, where

all parameters in both Fuzzification and Defuzzification

layers are encoded to be optimized using ABC algorithm.

The number of employed bee (i.e., food sources) and

maximum iteration are defined as 50 and 1000, respec-

tively. It has been proven that ABC algorithm can achieve

a high degree of performance when the limit value is

SN*D, where D represents the length of solutions and SN

represents the number of the employed bees or population

size [65]. In the following section, the constructed ANFI-

S_ABC models will be evaluated and discussed.

5 Results and discussion

This section provides the results obtained from the exper-

iments carried out using ANFIS_ABC in comparison with

the basic or pre-developed ANFIS. To assess the perfor-

mance of the ANFIS_ABC algorithm in terms of RMSE, a

parametric study was conducted. In this parametric study,

the number of iterations increases for four different popu-

lation sizes (i.e., the number of bees). Different predictors

were modeled with various number of bees (i.e., 50, 100,

150, and 200) and iterations, which the results of predictive

models construction are depicted in Fig. 9. It can be seen

that RMSE values of the developed models increase when

the number of employed bees increases. However, no

significant change in RMSE beyond the maximum cycle

number can be observed. This may be associated with the

fact that the bees are gathered in places where the best

answer exists.

Figure 10 shows the average error on the testing datasets

in terms of the number of epoch. This experiment was

carried out using 20 epochs in the modeling process. As it

can be seen, ANFIS_ABC could yield lower error com-

pared to ANFIS algorithm in predicting BI of the rock

samples. The average error for ANFIS_ABC was about 3%

lower than the ANFIS technique. According to Fig. 10, all

hybrid ANFIS models, i.e., ANFIS_ABC_P, ANFI-

S_ABC_C, and ANFIS_ABC_PC received better perfor-

mance prediction compared to a pre-developed ANFIS

model to predict the rock BI. It is because of using ABC as

Fig. 16 Assessing performance

of ANFIS_ABC models in

predicting BI using testing data
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a powerful optimization algorithm to optimize MFs of

ANFIS.

Table 2 shows the performance of the predictive models

in terms of the different PIs, including RMSE, SI, MAE,

and R2. According to this table, the ANFIS_ABC_PC

algorithm yielded a better agreement between actual and

estimated BI values and the lowest error compared with

three other developed models. To select the best predictor

with the highest performance, a ranking technique pro-

posed by Zorlu et al. [74], was utilized to assign a rank to

each model for training and testing data samples. In this

ranking method, each PI receives a value according to its

performance capability. For example, considering the R2

values of the training datasets for all developed models,

values of 1, 2, 3, and 4 were assigned to ANFIS (with R2 of

0.853), ANFIS_ABC_C (with R2 of 0.9478), ANFI-

S_ABC_P (with R2 of 0.9563), and ANFIS_ABC_PC (with

R2 of 0.9652), respectively. As shown in Table 2, ANFI-

S_ABC_PC model receives the greatest ranking value (i.e.,

32). While, ranking values of 8, 21 and 19 were obtained

for ANFIS, ANFIS_ABC_P, and ANFIS_ABC_C,

respectively in predicting BI values of the rock samples.

Thus, ANFIS_ABC_PC model could provide more accu-

rate prediction results of BI compared to other built

models.

Figures 11, 12, 13, 14 show the actual BI values in

comparison with BI values predicted by the ANFIS-based

models for both train and test stages. According to these

Fig. 17 The 2D contour plots for ANFIS_ABC_P model

3276 Neural Computing and Applications (2022) 34:3263–3281

123



figures, it can be seen that the ANFIS_ABC_PC with the

R2 of 0.9652 for training data and 0.950 for testing data is

the most reliable model in predicting the BI of rock. The

ANFIS results were 0.853 and 0.861 based on R2,

according to its train and test stage, respectively. It is worth

mentioning that all hybrid-based ANFIS models received a

more accurate results in comparison with a pre-developed

ANFIS model. Form these figures, it is demonstrated that

ANFIS_ABC models, especially ANFIS_ABC_PC, pro-

vide a relatively closer prediction BI values compared to a

pre-developed ANFIS model.

Figure 15 shows RMSE values of ABC-based ANFIS

models when the number of bees varies. It has been

demonstrated that the best values are obtain when bees size

are 100 and 150.

Figure 16 compares performance prediction of the four

used predictive models (i.e., ANFIS, ANFIS_ABC_P,

ANFIS_ABC_C, and ANFIS_ABC_PC) for the testing

samples (23 data samples). This figure shows that the BI

values predicted by ANFIS-ABC_PC are much closer to

the measured BI values compared to other three proposed

models. Therefore, this model possesses superior predictive

ability than the other predictive models. In addition,

Figs. 17, 18, 19 present the 2D contour plot obtained from

the intelligent models (i.e., ANFIS_ABC_P (a), ANFI-

S_ABC_C (b), and ANFIS_ABC_PC (c)). These fig-

ures display the relationships between the two input

variables, actual BI, and the predicted BI value. Darker

regions indicate the better prediction BI values, while the

lighter areas demonstrate the worse predicted BI values.

Fig. 18 The 2D contour plots for ANFIS_ABC_C model
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Based on the figures, we can see that our proposed models

could have a better prediction for Is50 values. On the other

hand, our models achieved the worse prediction values for

the Rn values.

In comparison with the similar published studies in the

field of BI prediction, the present study provides a higher

performance prediction for estimating BI of the rock.

Armaghani et al. [5] examined hybrid support vector

machine (SVM) with feature selection (FS), i.e., SVM-FS

technique to predict BI of the rock and introduced the

mentioned model with R2 of 0.85. In another research, Sun

et al. [26] used and proposed a random forest technique

with R2 equal to 0.9 in estimating BI of the rock. A hybrid

model (i.e., FA-ANN) was developed in the study con-

ducted by Koopialipoor et al. [1] to forecast BI of the rock.

They obtained a R2 of 0.92 for their developed model. In

another relevant study, Yagiz and Gokceoglu [13] intro-

duced a FIS model with a suitable performance to predict

BI of the rock and achieved a R2 of 0.72 for their model.

These studies and their performances showed that the

developed models in this study could be introduced as a

new, powerful, and applicable approach for solving the

rock BI problem.

6 Conclusion

In this research, the accuracy of an ANFIS model was

significantly improved using an ABC algorithm. To this

end, a series of laboratory tests were performed and a

Fig. 19 The 2D contour plots for ANFIS_ABC_PC model
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database comprising 113 datasets of varying rock types was

compiled. Three different versions of ANFIS_ABC algo-

rithms were developed and ranked against a benchmark

(i.e., pre-developed) ANFIS algorithm using a variety of

model performance criteria. The results show that the

ANFIS_ABC algorithm reduced the average prediction

errors by about 2%. The developed ANFIS_ABC models

registered an R2 and RMSE of 63% and 91%, respectively.

The developed ANFIS_ABC_PC model had a higher pre-

diction accuracy compared to other ANFIS-based models,

in terms of both the accuracy R2 and system errors. The

models developed in this research can assist in the pre-

diction of the BI of rock for a range of rock construction

projects. The success of ANFIS_ABC models in predicting

the BI of rock may indicate that ANFIS_ABC models may

also be successfully used for the prediction of the tensile

strength of rock. As a next research opportunity, improving

the performance of optimization parameters using k-fold

cross-validation can be considered, where an ensemble

learning on different ANFIS models can be built. In addi-

tion, other optimization techniques such as the grasshopper

or the Harris hawks optimization algorithm can be com-

bined with ANFIS to increase the prediction accuracy of

the models.
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