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Abstract
Owing to the nonlinear and non-stationary nature of the suspended sediment transport in rivers, suspended sediment

concentration (SSC) modeling is a challenging task in environmental engineering. Investigation of SSC is of paramount

importance in river morphology and hydraulic structures operation. To this end, for SSC modeling, first random forest (RF)

and multi-layer perceptron (MLP) standalone models were developed, and then, they were optimized with genetic algo-

rithm (GA) and stochastic gradient descent (SGD) to develop GA-MLP, GA-RF, SGD-MLP, and SGD-RF hybrid models.

Variety of input scenarios are implemented for SSC prediction to find the best input combination. The streamflow and SSC

data collected from two stations of Minnesota and San Joaquin rivers, respectively, located at South Dakota and California

are utilized in the current study. Accuracies of the developed models are examined by means of three performance criteria

of correlation coefficient (CC), scattered index (SI), and Willmott’s index of agreement (WI). A significant promotion in

accuracy of hybrid models has been seen in contrast to their standalone counterparts. As can be deduced from the results,

GA-MLP-5 and GA-RF-5 models with CC of 0.950 and 0.944, SI of 0.290 and 0.308, and WI of 0.974 and 0.971,

respectively, were found as best models for prediction of SSC at Minnesota river. The developed SGD-MLP-5 and SGD-

RF-5 models with CC of 0.900 and 0.901, SI of 0.339 and 0.339, and WI of 0.945 and 0.946, respectively, gave accurate

results at San Joaquin river. Through the application of SGD algorithm, the adaptive learning rate, epochs, rho, L1 and L2

were activated and presumed as 0.004, 10, 1, 0.000009 and 0, respectively. The ExpRectifier was considered as san

activation operation due to its better efficiency in comparison with its alternatives for predicting SSC in SGD-MLP model.

According to the results, the fifth scenario that incorporates SSCt–1, SSCt–2, Qt, Qt–1, and Qt–2 were found superior for SSC

modeling in the studied rivers. The recommended hybrid algorithms based on GA and SGD optimization algorithms are

proposed as practical tools for solving complex environmental problems.

Keywords Genetic algorithm � Stochastic gradient descent � Hybrid model � Prediction � Random forest �
River � Suspended sediment

1 Introduction

Linked to the hydrological and environmental evolutionary

modeling, there exists a significant progress in suspended

sediment transport modeling in recent years. Understand-

ing the sediment transport process and modeling such a

complex phenomenon are of importance in water resources

management [29, 30]. The suspended sediment concen-

tration (SSC) in the river is a crucial problem in

environmental, hydraulic, and water resources engineering.

Sediments change several features of river systems such as

quality and health of water (transport pollutants), geogra-

phy and navigability of river and channel [20, 44]. Sedi-

ments conveyed within the flow remain in suspension for a

considerable length of river and time referred to the sus-

pended load, and its prediction is a challenging task due to

the effect of several hydrological and metrological

parameters in a particular watershed [14, 47]. Conven-

tionally, sediment rating curve method is widely applied

for SSC computation. It shows the exponential relationshipExtended author information available on the last page of the article
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between the river discharge and SSC through a regression

analysis. As an exponential regression equation is over-

fitted on entire data set, it may generate poor results on

alternative data set. Therefore, a precise modeling

approach is needed to solve such a complex problem [27].

Modeling of the sediment transport in rivers considering

theoretical equations and mathematical models needs a

wide range of data, but due to the lack of such an extensive

data range, these models do not provide accurate estima-

tions [47, 48].

Recently, numerous studies have been conducted for

sediment transport modeling applying variety of machine

learning methods. For example, Rajaee et al. [33] applied

four methods of neuro-fuzzy (NF), artificial neural net-

works (ANNs) and multi-liner regression (MLR) to simu-

late the daily SSC in the USA. Based on the outcomes of

this study, both ANN and NF models generated high per-

formance in predicting SSC. Cobaner et al. [8] developed

adaptive neuro-fuzzy model for SSC computation consid-

ering streamflow, rainfall, and suspended sediment data.

The outperformance of adaptive neuro-fuzzy model is

reported in contrast to the different types of ANN such as

generalized regression neural network (GRNN), radial

basis function neural network (RBNN) and multi-layer

perceptron (MLP). Altunkaynak [2] and Zhang et al. [50]

applied genetic algorithm (GA) and found out that its better

accuracy in comparison with other approaches. Using

neural differential evolution (NDE), NF and ANN and

sediment rating curve (SRC) methods, Kisi [20] modeled

daily SSC and found out that the NDE outperforms the

other techniques in daily SSC estimation. Comparing the

performance of linear genetic programming (LGP) to

adaptive neuro-fuzzy inference system (ANFIS) and SRC

methods for SSC estimation, Kisi and Guven [21] reported

that the LGP model provides more accurate results than the

other mentioned models. Singh and Chakrapani [43]

examined the capability of feed-forward backpropagation

(FFBP) ANN method for simulating the SSC considering

rainfall, temperature, and discharge as model parameters. It

was determined that increasing the number of input

parameters improves the developed model’s accuracy. The

classification and regression tree (CART), RBNN, MLR,

ANN, M5 model tree, and least square support vector

regression (LSSVR) were used to estimate the suspended

sediment at a basin of rive in India by Kumar et al. [23]. It

was found that both ANN and LSSVR models generated

accurate results.

Studies mentioned above applied standalone machine

learning algorithms for SSC modeling. Due to the com-

plexity of the problem and deficiencies of the standalone

models in terms of adjusting the variety of model param-

eters, hybrid algorithms can be reliable approaches for

modeling the SSC in rivers. As examples from the

literature, because of the complication of the relationship

of SSC and streamflow (Q), the wavelet-artificial neural

network model (W-ANN) was utilized in predicting the

SSC factor in the Kuye River by the Liu et al. [24]. They

decomposed the daily time series of SSC and Q into sub-

series at different scales as inputs for the model. It was

pointed out that the W-ANN model had the best perfor-

mance, which has higher forecasting precision than other

models like SRC and ANN. ANFIS-FCM (fuzzy c-means

clustering model) was suggested by Kisi and Zounemat-

Kermani [22] to estimate the SSC in the USA. Based on the

obtained results, the ANFIS-FCM gave better results than

other models, including ANFIS, ANN, and SRC. Zoune-

mat-Kermani et al. [52] utilized the data of hydrometric

stations that placed in different part of the USA, such as

Arkansas, Delaware and Idaho to assess four different

models of support vector regression (SVR) and three dif-

ferent ANN methods in daily SSC prediction/approxima-

tion and compared to that of MLR and SRC methods.

Statistical parameters indicated the superior performance

of SVR and ANN models in comparison with the tradi-

tional methods. Malik et al. [26] reported the outperfor-

mance of co-active neuro-fuzzy inference system (C-

ANFIS) technique in comparison with the MLR, multiple

nonlinear regression (MNLR), MLP and SRC. Ghose and

Samantaray [16] used ANN-FFBP and regression approa-

ches together with their hybridized versions as GA-BPNN

and GA-regression for the same purpose at various basins

of the Suktel River to realize their sensitivity at regional

scale. Liu et al. [25] modeled SSC time series for Kuye

River watershed, China using hybrid ensemble empirical

mode decomposition (EEMD-ANN), EEMD-MLR, ANN,

and MLR methods. The performance of EEMD-ANN and

EEMD-MLR models were improved by a factor of 52.9%

and 41.0%, in contrast to the ANN and MLR methods.

Advanced hybrid machine leaning algorithms were

implemented for river suspended sediment estimations as

an evolutionary hydrological modeling. For instance, [40]

appraised impression of a hybrid model merging support

vector machine (SVM) with whale optimization algorithm

(SVM-WOA) and compared to SVM-PSO and conven-

tional SVM and RBFN models for estimating SSC at

Sundargarh and Salebhata stations in Mahanadi River,

India. The results showed that SVM-WOA accomplished

superiorly in comparison with SVM-PSO, SVM and RBFN

models for five various input scenarios. Roushangar et al.

[36] modeled SSC and river discharge of two stations of

Mississippi river and improved performance of the imple-

mented models using wavelet transform (WT) and

ensemble empirical mode decomposition (EEMD)

approaches. Results indicated that data processing with WT

was more suitable than the EEMD in enhancement of the

models’ performance. Data processing improved the
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models’ performance by a factor of up to 15%. It was found

that using the merged kernel extreme learning machine

(KELM) method, the previous stations data could be

applied successfully for SSC and river discharge modeling

when the stations’ own data were not available. Dang [10]

improved coupled models of discrete wavelet transform

(DWT) with ANFIS, named DWT-ANFIS, and principal

component analysis (PCA) with ANFIS, named PCA-

ANFIS, for SSC simulation. The merged and single ANFIS

models were trained and tested utilizing long-term daily

SSC and river discharge which were measured on the

Schuylkill and Iowa Rivers in the United States. The results

revealed that the PCA-ANFIS accomplished better than the

single ANFIS and the coupled DWT-ANFIS. Mehri et al.

[28] utilized four intelligent methods of ANFIS-PSO,

ANFIS-GA, ANFIS, and group method of data handling

(GMDH) to estimate the sediment concentration distribu-

tion. Since both GA and PSO optimization approaches

were utilized to improve the ANFIS model, the efficiency

of these models was improved. The results showed that the

performance of the ANFIS-PSO was better than ANFIS-

GA, ANFIS, and GMDH models for estimation of sus-

pended sediment distribution.

While the outperformance of RF and MLP has been

already reported in the relevant literature, this study is

designed to enhance the RF and MLP models’ accuracy for

SSC modeling through hybridization with GA and SGD to

develop novel MLP-GA, RF-GA, MLP-SGD and RF-SGD

models. The weakness in accurate estimation of suspended

sediment using conventional regression formulas was

already reported in the literature. To this end, in this study,

an attempt was made to make an accurate estimation of the

suspended sediment concentration using efficient methods

such as MLP and RF and to improve the results using GA

and SGD methods. Through the modeling, historical SSC

and river discharge values of two stations were used for the

modeling. Still, to the best of our knowledge, hybrid SGD-

MLP and SGD-RF models have not been used for SSC

estimation.

2 Materials and methods

2.1 Study area

Daily discharge (Q) and SSC data of the Minnesota and San

Joaquin Rivers (Fig. 1) for the time period of 2000–2017

were acquired from the United States Geological Survey

(USGS). The Minnesota River is one of the Mississippi

Rivers tributaries having almost 534 km long, in the USA

state of Minnesota. The station name is Minnesota with

station number of 05,325,000, basin area of 35,065 km2,

latitude of 37� 4003400 and longitude of 121� 1505500. The

studied river in Joaquin River is located at central Cali-

fornia. The correspondent USGS station name is San Joa-

quin with station number of 11,303,500, basin area of

38,590 km2, latitude of 44� 10008’’ and longitude of 94�
0001100. Table 1 shows the statistical characteristics of SSC

and Q parameters in both Minnesota and San Joaquin

stations. It can be seen from Table 1 that SSC and Q pa-

rameters presented skewed distributions.

2.2 Multi-layer perceptron (MLP)

Multi-layer perceptron (MLP) neural network is considered

as the most common neural networks for the nonlinear

fitting with higher accuracy. In order to acquire that per-

formance with high precision, this method selects an

appropriate number of neurons and layers at its structure.

The training process is used to find the suitable amount of

weight for the connections between neurons. The back-

propagation network is a common algorithm for the feed-

forward neural network in which the output of each layer is

considered as the input of the next one [13]. The MLP

involves three layers of input, hidden, and output layers. In

order to train the MLP neural networks, several algorithms

are applied and the selection of each one can affect its

accuracy and the learning rate of the network [6]. Figure 2

illustrates the flowchart of the MLP model. In this process,

the number of the hidden layers and neurons of each hidden

layer should be designated in a way to model give high

performance. In structure of MLP, Levenberg–Marquardt

(LM) algorithm is mostly utilized for calculation of output

signals. Variety of hidden layers can be adopted for MLP

structure design; however, one hidden layer provides sat-

isfactory results in hydrological problems [38].

2.3 Random forest (RF)

The random forest (RF) is an ensemble learning method

proposed by Breiman [5]. In order to acquire better gen-

eralization abilities, ensemble learning builds multiple base

learners or combines several trees at its structure [31, 37].

Among various rule generation approaches, a RF method is

an effective and practical approach. The RF uses the

algorithms of the decision tree (classification and regres-

sion tree (CART)) as the base algorithm. It is notable that

the RF is a more robust approach in comparison with other

decision tree ensembles [9]. The RF method has ability in

defining the appropriate predictor and re-scaling the data

like other techniques is not required. The conventional

regression tree has weak performance due to its tendency to

over-fit on the training data set. The RF method uses ran-

domness characteristics to overcome this problem [42]. In

this method, each decision tree is made up of a bootstrap

sample from the calibration dataset, which comprises about
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two-thirds of the sample. The rest of the elements are

considered as out-of-bag data. Variables are designated in

random and based on the lowest Gini index and then, the

best split is selected. According to the repetition at each

bootstrap, the value for out-of-bag data is acquired. In this

process, the repetition in each tree is continued until

reaching the stop condition defined previously. In RF

method, parameters are optimized by the usage of mean

square error (MSE) and calibration dataset: confidence,

number of trees, minimal leaf size, maximal depth, mini-

mal size for split, subset ratio, and number of prepruning

alternatives [12]. A RF method is effectively utilized for

the broad datasets analysis. Figure 3 illustrates the struc-

ture of the RF method.

2.4 Genetic algorithm (GA)

Holland [18] and Goldberg [17] developed the genetic

algorithm (GA). GA is a powerful method for the

exploratory development of large-scale hybrid optimiza-

tion problems. GA encodes the problem as a set of strands

that contain fine particles, and then, it changes the strands

to stimulate the process of gradual evolution. Compared to

the local search algorithms, in public search where there is

only one acceptable solution, GAs consider a community

Fig. 1 Geographical location of the Minnesota and San Joaquin Rivers

Table 1 Statistical features of the applied data

Station Variable Mean Minimum Maximum Standard deviation Coefficient of variation Skewness

Minnesota SSC 171.150 5.000 2030.000 163.250 0.954 3.524

Q 170.239 5.380 2361.625 239.801 1.408 3.597

San Joaquin SSC 51.950 2.000 453.000 34.022 0.655 3.500

Q 98.635 2.376 1138.337 147.681 1.497 3.496
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of individuals. Working with a group of people makes it

possible to study the main structures and characteristics of

different people, which leads to the identification and dis-

covery of more efficient solutions [15]. In this study, GA

selects the most relevant disciplines and eliminates those

disciplines that are less relevant to the study population.

Each member of the population, which is an approximation

of the final answer, is coded as strings of letters or mergers.

These strands are called chromosomes. The most common

mode is the display with the digits zero and one. Other

modes of using three digits, real numbers and integers are

also used. The values on the chromosomes alone do not

have a specific meaning, but must be decoded and have

meaning and result only as decision variables. It should be

noted that the search process is performed on encrypted

information unless it is from genes with real values. Once

the chromosomes have been encoded, the efficiency or fit

of each member of the population can be calculated. Fit is a

relative scale that indicates the suitability of individuals to

produce the next generation. In the nature, fit is equivalent

to one’s ability to survive. The objective function plays a

decisive role in determining the fit of individuals. During

reproduction, the fit of each individual is determined with

the help of the primary information obtained from the

objective function. These values are used in the selection

process to lead it to select the right people. The higher the

fit of the individual in relation to the population has a more

chance to be elected. The lower the relative fit, the less

likely it is to be selected for the next-generation produc-

tion. The act of replication in a GA is used to exchange

genetic information between a pair or more individuals.

The simplest type of multiplication is the intersection of a

point. After this step, a mutation operator is likely to be

applied to the generated strands. In mutation, each indi-

vidual alone can change according to the laws of
Fig. 2 Flowchart of the MLP model

Fig. 3 Flowchart of the RF model
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probability. Mutation means changing the value of one of

the string cells from zero to one or from one to zero. After

the amplification and mutation steps, the chromosomes are

decoded and the value of the target function is calculated,

then a fit is assigned. If necessary, the selection and

reproduction steps, etc., are performed again. During this

process, the average efficiency of the response population

is expected to increase. The algorithm ends when a specific

goal is met. For example, if a certain number of generations

are created, the amount of merit of people reaches a certain

amount, or a certain point is reached in the search space

[4].

2.5 Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD) is an iteration-based

method for developing a derivative function called a target

function, which is a stochastic approximation of the gra-

dient descent (GD) method. In fact, the SGD is an algo-

rithm to obtain the minimum value of a function in several

iterative loops and the values for which the function takes

its minimum value. The difference between a SGD and a

standard GD is that, unlike the standard GD, which uses all

training data to develop the target function, the SGD uses a

randomly selected set of training data for optimization.

This method has many applications in statistical and

machine learning problems [34].

In the machine learning application, a problem usually

appears in which, it is important to determine a function

such as f of statistical data with one or more parameters and

then, to define these parameters in such a way that the sum

(or average) of the amounts of the function f for each piece

of data statistically cause the minimum possible amount. It

is assumed that there is a set of statistical data where the

function f is determined only on the basis of the parameter

h, in which case by giving the i data from the data set to the

function f a function of h is obtained that called #iðhÞ.
Now, the problem is streamlined to find a h that minimizes

the following expression:

Fig. 4 Flowchart of the GA-MLP model

Fig. 5 Flowchart of the GA-RF model
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# hð Þ ¼ 1

n

� �Xn
i¼1

#i hð Þ ¼ E #i hð Þj j ð1Þ

where # hð Þ is a target function. In many cases, the target

function becomes a simple function on which the appli-

cation of the SGD method is not intricate and time con-

suming. In these cases, the standard GD is used, such as the

family of exponential functions of a parameter used to

appraise economic functions. However, since the standard

or stochastic GD method requires the calculation of the

objective function gradient in each loop, in some cases

where the target function parameters are large or the

training data set is very large, the calculation accomplished

in each loop can be very time consuming and intricate. For

this reason, a SGD is used, which in each loop accomplish

this operation only for a section of the training data set that

we have. In the SGD method, in each loop, the desired

operation is not performed on only one member of the

training data set that is randomly selected in each loop, and

instead is performed on a subset of it where there are two

reasons for this:

1. Dispersion reduces the amount acquired for the

parameter in each loop and convergence is more stable.

2. Utilizing matrix operations that have a very fast

execution.

2.6 GA-MLP

Determining the number of neurons in hidden layers,

training cycles, learning rate, momentum, error epsilon,

and local random seed is one of the complicated modeling

procedures in the MLP method. For this purpose, a hybrid

algorithm including GA and MLP was utilized for mod-

eling the SSC in rivers. This process started with the

selection of a random initial population in which each

individual consists of various numbers of hidden layer

neurons. Then, the elite population with the best individ-

uals is selected. The model is run repeatedly, and for each

individual, the function is calculated and the obtained

functions are stored. In the last stage, if the termination

criteria had satisfaction results, the individual with the best

function is saved. Otherwise, this process continues to find

an appropriate population with a new function. The

Levenberg–Marquardt algorithm is used mostly in the

training stage of this process, but it has a random nature.

By the usage of GA, the model is protected against this

problem and chooses the best transfer function for the

hidden and output layers. Figure 4 displays the

flowchart presenting the GA-MLP method.

2.7 GA-RF

To promote the RF model’s productivity and accuracy, the

optimization of key parameters in the RF model structure is

a necessary task [35]. To achieve higher performance,

Zhou et al. [51] applied a novel approach where a few

number of learners were utilized with high-quality. Based

on [1], trees have different percentages in traditional RF’s

precision, for example, some of them can make incorrect

predictions and underestimate the performance and effi-

ciency of the model. Different strategies are used to

Fig. 6 SGD operation for one-input and two-input functions
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increase the model’s accuracy, including a general climb-

ing strategy, a greedy algorithm and so on; however, they

have some deficiencies. For instance, using the greedy

method to promote the performance of the RF model can

give rise to becoming confined at local optima. Therefore,

GA is implemented to solve that problem by choosing the

best subset of features that is able to improve the RF model

performance. Consequently, the RF model that is opti-

mized by the GA has high accuracy in comparison with the

traditional one. Figure 5 shows the flowchart illustrating

the GA-RF method.

2.8 SGD implementation on MLP and RF

In the general implementation of a SGD, h is the vector that
includes all the parameters of the cost function. Firstly, h is

set to the ideal vector. Then, for each update of this vector,

a member of the training data set is randomly selected, and

at the a rate, the vector of the cost function gradient at

point h is subtracted from h:

h ¼ h� arh#i h; x ið Þ; y ið Þ
� �

ð2Þ

where # is a cost function and ðx ið Þ; yðiÞÞ is a randomly

selected member of the training data, and #iðh; x ið Þ; yðiÞÞ
denotes the i sentence of the objective function. a is the rate

at which h is updated and has an experimental value that

prolongs convergence if it is too small, and convergence

may not happen if it is too large [45].

In another implementation, in each loop, a random

member of the data set is not selected, but in each loop, the

all data set is randomly rearranged once, and then the

upgrade operation is accomplished in order of #1,#2,…,#n

where n shows the size of the training dataset. The fol-

lowing pseudocode indicates this implementation:

1. Give h and a the input value

2. Repeat until the minimum is reached

3. Randomly retrieve training data

4. Repeat for i from 1 to n: h ¼ h� arh#iðh; x ið Þ; yðiÞÞ\

Usually the update operation is not performed for #

from a single member of the training data set, but for a

subset of this data called a small set. Figure 6 shows how

GD works for the single-input and dual-input function.

SGD algorithm has advanced facilities including epochs,

rho, L1 or L2 adjustment, momentum training, adaptive

learning rate and rate annealing that enable high prediction

precision in modeling by both MLP and RF models. In

addition to optimizing MLP results using SGD, the net-

work contains many hidden layers containing neurons with

tanh (hyperbolic tangent function), rectifier (where x is the

input value, select the maximum of (0, x)), max out (select

the maximum input vector coordinates), and ExpRectifier

(exponential rectifier function) activation operations.

The size of the weight updates is described by the user

determined learning rate when adaptive learning rate is

inactivated and is a function of the difference between the

predicted value and the target value. That variance com-

monly named delta, which is only presented at the output

layer. Backpropagation is applied to accurate estimation of

the output at each hidden layer. The momentum is ramped

up slowly since redundant momentum can result in oscil-

lation. The rate annealing, momentum training, dropout

rate annealing, and momentum training parameters activate

if the adaptive learning rate is disabled.

2.9 Performance criteria

In this study, three performance indexes including corre-

lation coefficient (CC), Willmott’s index of agreement

(WI), and scattered index (SI) are utilized in order to

measure the model’s accuracy. The mathematical descrip-

tion of CC, SI, and WI can be expressed, respectively, as

follows:

Table 2 Implemented models and their input parameters

Input parameter MLP based models RF based models

SSCt—1, Qt – 1 MLP-1, GA-MLP-1, SGD-MLP-1 RF-1, GA-RF-1, SGD-RF-1

SSCt—1, SSCt—2, Qt—1, Qt – 2 MLP-2, GA-MLP-2, SGD-MLP-2 RF-2, GA-RF-2, SGD-RF-2

SSCt—1, SSCt—2, SSCt—3, Qt—1, Qt—2, Qt—3 MLP-3, GA-MLP-3, SGD-MLP-3 RF-3, GA-RF-3, SGD-RF-3

SSCt—1, Qt, Qt—1 MLP-4, GA-MLP-4, SGD-MLP-4 RF-4, GA-RF-4, SGD-RF-4

SSCt—1, SSCt—2, Qt, Qt—1, Qt—2 MLP-5, GA-MLP-5, SGD-MLP-5 RF-5, GA-RF-5, SGD-RF-5

SSCt—1, SSCt—2, SSCt—3, Qt, Qt—1, Qt—2, Qt—3 MLP-6, GA-MLP-6, SGD-MLP-6 RF-6, GA-RF-6, SGD-RF-6
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CC ¼
Pn

i¼1 OiPi � 1
n

Pn
i¼1 Oi

Pn
i¼1 Pi

� �
Pn

i¼1 O
2
i � 1

n

Pn
i¼1 Oi

� �2� � Pn
i¼1 P

2
i � 1

n

Pn
i¼1 Pi

� �2� �

ð3Þ

SI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 Pi � Oið Þ2

q
O

ð4Þ

WI ¼ 1�
Pn

i¼1 Oi � Pið Þ2Pn
i¼1 Pi � Oi

		 		þ Oi � Oi

		 		� �2
" #

ð5Þ

Table 3 Parameters of the RF and GA-RF models (Minnesota station)

Parameter RF GA-RF-1 GA-RF-2 GA-RF-3 GA-RF-4 GA-RF-5 GA-RF-6

Number of trees 100 63 27 81 78 27 94

Maximal depth 10 5 27 65 36 27 86

Confidence 0.100 0.282 0.349 0.224 0.148 0.383 0.282

Minimal leaf size 2 41 55 98 1 55 55

Minimal split size 4 49 51 13 80 51 51

Number of repruning alternatives 3 0 18 68 55 77 18

Subset ratio 0.200 0.000 0.904 0.255 0.295 0.901 0.901

Table 4 Parameters of the RF and GA-RF models (for San Joaquin station)

Parameter RF GA-RF-1 GA-RF-2 GA-RF-3 GA-RF-4 GA-RF-5 GA-RF-6

Number of trees 100 1 81 27 27 63 81

Maximal depth 10 5 36 27 27 27 36

Confidence 0.100 0.3463 0.2131 0.3826 0.3826 0.2823 0.3463

Minimal leaf size 2 41 1 1 55 23 1

Minimal split size 4 1 80 62 51 49 20

Number of prepruning alternatives 3 3 55 77 0 77 3

Subset ratio 0.200 0.1423 0.2945 0.9009 0.9009 0.9685 0.2945

Table 5 Parameters of the MLP and GA-MLP models (for Minnesota station)

Parameter MLP GA-MLP-1 GA-MLP-2 GA-MLP-3 GA-MLP-4 GA-MLP-5 GA-MLP-6

Training cycles 200 77 77 77 77 77 77

Learning rate 0.0100 0.3991 0.3991 0.3991 0.1825 0.1825 0.3991

Momentum 0.9000 0.0774 0.0 0.0 0.0 0.0774 0.0

Error epsilon 0.0001 0.0 0.0 0.0 0.0 0.0 0.0

Local random seed 1992 77 1 77 77 77 56

Table 6 Parameters of the MLP and GA-MLP models (for San Joaquin station)

Parameter MLP GA-MLP-1 GA-MLP-2 GA-MLP-3 GA-MLP-4 GA-MLP-5 GA-MLP-6

Training cycles 200 4 39 71 63 77 77

Learning rate 0.0100 0.1423 0.1423 0.1423 0.1825 0.1825 0.1423

Momentum 0.9000 0.5456 0.0774 0.0774 0.5646 0.5646 0.5646

Error epsilon 0.0001 0.0 0.0 0.0 0.0 0.0 0.0

Local random seed 1992 29 18 77 23 23 56
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in which Pi is predicted and Oi is the observed ith value and

n is the number of data. CC is a statistical tool to determine

the type and degree of relationship of one quantitative

variable with another quantitative variable. CC is one of

the criteria used to determine the correlation between two

variables. The CC indicates the intensity of the relationship

as well as the type of relationship (direct or inverse). This

coefficient is between 1 and -1, and if there is no rela-

tionship between the two variables, it is equal to zero. If the

range of data used is large, the amount of root mean square

error (RMSE) in the modeling error evaluation section will

also be high, which does not indicate that the model is

inaccurate. For this purpose, in this study, the SI index was

used, which is the result of dividing the RMSE index by the

average test data. The closer the SI value to zero shows that

the model is more accurate. WI is also one of the stan-

dardized indicators for calculating the model prediction

error, the value of which is between zero and one. WI = 1

indicates the highest agreement and WI = 0 indicates no

agreement. This index is also highly sensitive to limit

values due to the use of difference squares [49]. Further-

more, Taylor diagrams were implemented for additional

investigation of utilized hybrid GA-MLP, GA-RF, SGD-

MLP, and SGD-RF models performances in SSC estima-

tion [46].

Table 7 General results of the computations for the RF, GA-RF and

SGD-RF models (Minnesota station)

Model Statistical parameters

CC SI WI

RF-1 0.919 0.369 0.957

GA-RF-1 0.931 0.341 0.963

SGD-RF-1 0.928 0.347

0.34

0.960

RF-2 0.933 0.337 0.965

GA-RF-2 0.936 0.330 0.967

SGD-RF-2 0.935 0.331 0.964

RF-3 0.935 0.332 0.966

GA-RF-3 0.939 0.322 0.968

SGD-RF-3 0.939 0.324 0.966

RF-4 0.937 0.327 0.966

GA-RF-4 0.939 0.319 0.968

SGD-RF-4 0.938 0.323 0.967

RF-5 0.938 0.325 0.968

GA-RF-5 0.944 0.308 0.971

SGD-RF-5 0.943 0.308 0.971

RF-6 0.937 0.325 0.967

GA-RF-6 0.944 0.308 0.971

SGD-RF-6 0.942 0.311 0.969

Table 8 General results of the computations for the MLP, GA-MLP

and SGD-MLP models (Minnesota station)

Model Statistical parameters

CC SI WI

MLP-1 0.930 0.460 0.935

GA-MLP-1 0.932 0.338 0.963

SGD-MLP-1 0.930 0.344 0.961

MLP-2 0.941 0.321 0.968

GA-MLP-2 0.945 0.307 0.971

SGD-MLP-2 0.941 0.323 0.964

MLP-3 0.942 0.325 0.967

GA-MLP-3 0.943 0.310 0.970

SGD-MLP-3 0.940 0.318 0.968

MLP-4 0.948 0.296 0.973

GA-MLP-4 0.949 0.294 0.973

SGD-MLP-4 0.933 0.334 0.964

MLP-5 0.951 0.311 0.971

GA-MLP-5 0.950 0.290 0.974

SGD-MLP-5 0.944 0.307 0.969

MLP-6 0.952 0.303 0.972

GA-MLP-6 0.952 0.291 0.975

SGD-MLP-6 0.948 0.299 0.973

Table 9 General results of the computations for the RF, GA-RF, and

SGD-RF models (San Joaquin station)

Model Statistical parameters

CC SI WI

RF-1 0.848 0.427 0.917

GA-RF-1 0.859 0.400 0.920

SGD-RF-1 0.878 0.371 0.932

RF-2 0.872 0.393 0.931

GA-RF-2 0.878 0.384 0.934

SGD-RF-2 0.878 0.374 0.933

RF-3 0.867 0.400 0.927

GA-RF-3 0.879 0.375 0.933

SGD-RF-3 0.878 0.373 0.933

RF-4 0.884 0.366 0.938

GA-RF-4 0.892 0.353 0.942

SGD-RF-4 0.891 0.355 0.939

RF-5 0.884 0.371 0.937

GA-RF-5 0.886 0.367 0.939

SGD-RF-5 0.901 0.339 0.946

RF-6 0.876 0.380 0.932

GA-RF-6 0.880 0.377 0.934

SGD-RF-6 0.901 0.340 0.946
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3 Result and discussion

In the current study, MLP, RF, GA-MLP, GA-RF, SGD-

MLP, and SGD-RF models with different input combina-

tions were utilized for estimating the SSC in two stations

and their results are examined in terms of accurate esti-

mation. Moreover, due to the fact that there is not any

direct way for dividing the entire data to train and test data

sets in data driven methods, different proportions were

utilized in the literature, e.g., Choubin [7] implemented a

total of 63% of their data for training, whereas Qasem et al.

[32] and Kargar et al. [19] used 67% of data, Dodangeh

et al. [11], Asadi et al. [3], Shabani et al. [41] and Sama-

dianfard et al. [39] utilized 70%, and Zounemat-Kermani

et al. [53] exploited 80% of whole data for model devel-

opment. Therefore, for the model development is this

study, data were split into training (70%) and testing

(30%). Accordingly, the time period of 2000–2012 was

used to train the models and the 2013–2017 data were

implemented as the test data set.

Table 2 provides the input parameters for each model

where the SSC and Q parameters are shown in the current

time (SSCt and Qt) and also with the previous daily lag

times. It can be seen from Table 2 that six different sce-

narios were considered for SSC estimation utilizing dif-

ferent input combinations of SSCt-1, SSCt-2, SSCt-3, Qt, Qt-

1, Qt-2, Qt–3 parameters. It is worthy to note that the

selected scenarios are considered based on auto correlation

of SSC and Q variables. For predicting SSC through MLP

and RF and optimizing with SGD algorithm at Minnesota

and San Joaquin rivers, the adaptive learning rate due to

better performance was activated and presumed equal to

0.004. Moreover, the amounts of epochs, rho, L1 and L2

were presumed as 10, 1, 0.000009 and 0, respectively. In

addition, the ExpRectifier was considered as activation

operation because of its better efficiency in contrast to

other activation operations for predicting SSC in SGD-

MLP model. Additionally, Tables 3and4 show the default

and optimized parameters used in RF and GA-RF models

development in estimating the SSC for two different sta-

tions, including Minnesota and San Joaquin, respectively.

Similarly, the related parameters of the MLP and GA-MLP

models are displayed in Tables 5and6 for the mentioned

stations.

Table 7 gives results of the RF, GA-RF, and SGD-RF

models in Minnesota station. Diverse combinations are

considered for these models, and the accurate estimations

with high performance were obtained from RF-5 with CC

of 0.938, SI of 0.325, and WI of 0.968 among standalone

RF models and, GA-RF-5 and SGD-RF-4 with CC of 0.944

and 0.943, SI of 0.308, and WI of 0.971 among the hybrid

RF ones. It is noticeable that the GA-RF-5 has a high

accuracy in comparison with the RF-5 model and GA

improved the model by reducing 5.2% of the SI parameter.

In the GA-RF-5, number of trees is 27, maximal depth of

27, the confidence of 0.383, minimal leaf size of 55,

minimal size for split of 51, number of prepruning alter-

natives of 77 and subset ratio of 0.9009 that are shown in

Table 3. Evident is that the GA plays a vital role as an

optimizer in SSC estimation. In Minnesota station, based

on the results in Table 8, the MLP-4 has CC of 0.948, SI of

0.296, and WI of 0.973, and the GA-MLP-5 model has CC

of 0.950, SI of 0.290, and WI of 0.974. These two models

provide more accurate results in contrast to other models.

Due to the presence of the GA, the GA-MLP-5 has more

accurate predictions and GA enhanced the model’s preci-

sion. As it is shown in Table 8, GA decreases the SI

parameter by a factor of 2%. The GA-MLP-5 model has 77

training cycle, 0.1825 learning rate with the momentum of

0.0774, 0 error epsilon, and with a local random speed of

77 (Table 5). Also, it should be noted from Table 8 that

although SGD had positive effects on increasing the pre-

diction accuracy of the standalone MLP model, but in

comparison with GA, it showed lower capability in

reducing the prediction errors. By and large, in the Min-

nesota station, the GA-MLP-5 has more accurate perfor-

mance in comparison with other optimized models. Also,

among the SGD-MLP and SGD-RF models, obtained

results indicated that SGD-MLP-6 with CC of 0.948, SI of

Table 10 General results of the computations for the MLP, GA-MLP

and SGD-MLP models (San Joaquin station)

Model Statistical parameters

CC SI WI

MLP-1 0.881 0.366 0.936

GA-MLP-1 0.881 0.364 0.934

SGD-MLP-1 0.881 0.363 0.931

MLP-2 0.882 0.443 0.909

GA-MLP-2 0.885 0.360 0.938

SGD-MLP-2 0.877 0.420 0.911

MLP-3 0.882 0.399 0.928

GA-MLP-3 0.882 0.366 0.937

SGD-MLP-3 0.880 0.371 0.936

MLP-4 0.896 0.360 0.941

GA-MLP-4 0.899 0.340 0.947

SGD-MLP-4 0.901 0.335 0.941

MLP-5 0.893 0.375 0.938

GA-MLP-5 0.897 0.343 0.944

SGD-MLP-5 0.900 0.339 0.945

MLP-6 0.892 0.362 0.941

GA-MLP-6 0.893 0.347 0.940

SGD-MLP-6 0.897 0.343 0.943

Neural Computing and Applications (2022) 34:3033–3051 3043

123



0.299, and WI of 0.973 and SGD-RF-5 with CC of 0.943,

SI of 0.308, and WI of 0.971 presented more accurate

performances.

In Table 9, the results of the RF, GA-RF, and SGD-RF

models in San Joaquin station are displayed. The RF-4 with

CC of 0.884, SI of 0.366, and WI of 0.938 is considered as

Fig. 7 Observed and estimated values with MLP, GA-MLP, SGD-MLP, RF, GA-RF, SGD-RF models at Minnesota station
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the best one among various combinations of RF, and the

GA-RF-4 with CC of 0.892, SI of 0.353, and WI of 0.942

has the highest performance among other GA-RF models.

GA-RF-4 has 27 trees with a maximal depth of 27, the

confidence of 0.3826, minimal leaf size of 55, minimal size

for split of 51, number of prepruning alternatives of 0 and

subset ratio of 0.9009 (Table 4). According to Table 9, the

GA and SGD improved the precision of all standalone

models. In the San Joaquin station, SGD-MLP-4 and SGD-

RF-5 have the best performance with CC of 0.901, SI of

0.335 and 0.339, WI of 0.941 and 0.941, respectively

(Table 10). In this station, SGD has reduced the SI

parameter by factors of 6.9% and 8.6% in contrast to the

RF-5 and MLP-4 models, respectively.

As it is seen from Figs. 7 and 8, GA-RF-5 and GA-

MLP-6 models provided more accurate results for SSC

estimation in comparison with other models in the Min-

nesota station. Furthermore, in the San Joaquin station,

SGD-RF-5 and SGD-MLP-4 models illustrated better per-

formances. In both Minnesota and San Joaquin stations,

hybrid optimized models gave accurate results in predict-

ing the SSC values, whereas other models state poor out-

comes. Based on the scatter plots presented at Figs. 9 and

10, in two studied stations, the most accurate MLP, RF,

GA-MLP, GA-RF, SGD-MLP, and SGD-RF models are

shown. Overall, the combination of input parameters has

no significant effects on their outcomes. For instance, in

Minnesota station, the GA-MLP-5 with SSCt-1, SSCt-2, Qt,

Qt-1, Qt–2 as input parameters and in San Joaquin station,

SGD-MLP-4 model with inputs of SSCt-1, Qt, Qt–1 were

considered as the best models.

Additionally, Taylor diagrams are utilized in order to

scrutinize standard deviation and correlation values

between observed and estimated SSC. The RF-5, GA-RF-5,

SGD-RF-5, MLP-4, GA-MLP-5 and SGD-MLP-6 models

for the Minnesota station and RF-4, GA-RF-4, SGD-RF-5,

MLP-4, GA-MLP-4 and SGD-MLP-4 models for San

Joaquin station are displayed in Fig. 11. The length of the

space from the green point (a reference point) to each point

described as centered root mean square error (RMSE).

Consequently, the minimum interval between the green

point and the correspondent point shows the most precise

model [46]. Pursuant to Fig. 11, in the Minnesota station,

the red point (GA-MLP-5) is the nearest point to the ref-

erence point, and also, the light blue point (SGD-MLP-4)

has the least distance from the green point at the San

Fig. 7 continued
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Joaquin station, thus providing the best estimates for the

SSC.

Sediment transport has complicated process, and esti-

mation of SSC is a quite difficult issue as a fundamental

hydrological problem. Numerous conventional regression

alternatives are available in the literature; however, their

applicability on rivers in different climate conditions is a

challenging task. In recent decade, runoff-suspended sedi-

ment load modeling attracts interests in implementation of

machine learning algorithms to develop robust models with

high computational ability. So, this study focused on the

applicability of MLP and RF; hybridized with GA and

SGD methods for SSC prediction. Variety of scenarios

were implemented for the modeling to find the superior

combination from historical records. It was found that

SSCt-1, Qt, Qt-1 and SSCt-1, SSCt–2, Qt, Qt-1, Qt–2, com-

binations provided more accurate results which means that

one and two days ahead records could be joined the

upcoming day’s SSC value. The results obtained in this

study showed that GA-MLP, GA-RF, SGD-MLP, and

SGD-RF models successfully estimated SSC in two dif-

ferent rivers. Extension of the present study may be

Fig. 8 Observed and estimated SSC values with MLP, GA-MLP, SGD-MLP, RF, GA-RF, and SGD-RF models at San Joaquin station
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considered as the application of the suggested algorithms in

other rivers with different climate conditions. In the current

research, GA and SGD algorithms as a metaheuristic

algorithms were implemented for optimization of the MLP

and RF models. Future studies may consider application of

the alternative optimization algorithms for SSC modeling.

4 Conclusions

The sedimentation problem is an essential issue in hydro-

logical sciences, due to its imperative role in river

hydraulic. In the current research, MLP and RF methods

and their hybrid forms with GA and SGD are proposed to

estimate SSC at of Minnesota and San Joaquin rivers. For

each method, different combinations as input parameters

were implemented for the modeling. The performance of

Fig. 8 continued
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models was examined in order to discover the best one in

this process. The results demonstrated that the accuracy of

standalone models was increased using GA and SGD

optimized models. Overall results indicated that GA-MLP

and SGD-MLP were found to be the robust techniques for

modeling SSC relying on the statistical results obtained

based on various indexes, including SI, CC, and WI.

Moreover, assessing the precision of models in estimating

SSC revealed that the standalone model’s superiority in

predicting SSC was less than their hybrid counterparts.

Conclusively, these models can be used in water resource

management and alternative fields of engineering with a

high degree of confidentiality. Additional to the streamflow

and suspended sediment load variables, incorporating the

further hydrological parameters for the modeling seems to

be worthy for improving the model credibility.

Fig. 9 The scatter plots of observed and estimated SSC values of the most accurate MLP, GA-MLP, SGD-MLP, RF, GA-RF, SGD-RF models at

Minnesota station
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Fig. 10 The scatter plots of observed and estimated SSC values of the most accurate MLP, GA-MLP, SGD-MLP, RF, GA-RF, SGD-RF models

at San Joaquin station

Fig. 11 Taylor diagrams of the studied models at both stations
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