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Abstract
This paper handles the issue of adaptive control and faults estimation of a class of T-S singular fractional order sys-

tems(SFOSs) with H1 performance, where the fractional order belongs to (0, 1). Firstly, a novel observer for SFOSs is

proposed, which estimate unmeasurable or partially measurable state and faults, simultaneously. Secondly, regarding to the

information obtained by the above observer and the designed adaptive parameters, an adaptive controller is proposed to

estimate actuator faults of the SFOSs. Further, it is indispensable to ensure the admissibility of the proposed fuzzy SFOSs

with H1 performance, novel sufficient conditions are obtained by linear matrix inequalities (LMIs), Finally, to illustrate

the method proposed above is available, simulation examples are presented.

Keywords T-S fuzzy singular systems � Fractional order systems � Adaptive fault-tolerant control � Robust H1

1 Introduction

In recent years, due to the description is more in line with

real life, singular systems, that is, descriptor systems or

generalised systems, have been widely conducted in vari-

ous aspects of control field, such as electromagnetic sys-

tems, biological systems, flexible structures [1–3].

Generalized systems, which are more superior to complex

phenomena than the normal system, so it has attracted the

attention of many scholars [4–6]. Nevertheless, with the

deepening of research, generalized system is far from

meeting the needs of normal applications, so the fractional

order system has slowly entered our sight. The industrial

process has been refined under the fractional derivatives

and calculus, which makes the research of fractional order

systems(FOSs) very meaningful [7–9]. For an operating

system, maintaining stable performance is the most valued

actual issue. Lots of efficient stability conditions of FOSs

have been established in [10–13]. According to LMIs, the

stability analysis of fractional commensurate order systems

with the cases of 0\a\2 was presented in [10]. As stated

in [13], a novel conceptual unified framework for fractional

neural networks was proposed because of fractional cal-

culus has been classified as artificial neural networks. Since

these two systems both play a vital role in control theory,

the two systems are combined into a complex system,

singular fractional order system, which is a new area

worthy researching and have achieved abundant research

results in recent years [14–16]. Guo et al. [14] focused on

the stabilization problem for SFOSs by LMIs and a static

output feedback controller was designed. In [15], a superior

criteria have been put forward by strict LMI approach

without equality constraints to obtain the stability of SFOS.

As we all know, in practice, most physical models are

nonlinear. The control approach based on Takagi-Sugeno

fuzzy systems is an efficient way to discuss complex

nonlinear systems. Up to now, fuzzy systems have gained
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widespread attention and significant results have been

published for T-S fuzzy systems [17–20]. With a novel

fuzzy observer and membership functions, Wang et al.

[17] designed an algorithm and a novel controller to

guarantee the asymptotically stable of the fuzzy H1 sys-

tems. Han et al. [18] addressed the application of multi-

dimensional T-S fuzzy systems to eliminate the impact of

failures. In [19], the novel descriptor observer and con-

troller were designed to estimate faults, external noise and

promoted the transformed closed-loop system to be

asymptotically stable. Afterwards, an adaptive sliding

mode controller strategy, whose sliding surface has already

been constructed to process T-S fuzzy SFOSs with

unknown constants in [21]. In order to be more realistic and

achieve better performance, Asemani et al. [22] proposed

sufficient conditions for stabilizing and designed a robust

H1 observed-based controller for T-S fuzzy systems with

uncertainty by LMI.

In fact, due to engineering and practical applications, it

is inevitable that faults always exist, which requires many

experts to spend a lot of energy to eliminate [23–26].

Compared with traditional feedback control, adaptive

control design can better deal with the uncertainties in

system dynamics and failures that may occur during system

operation. In [26], a novel way is proposed to rape with the

unknown singular systems by transforming it into the non-

singular form with faults. Furthermore, an adaptive neural

network approximation model for a nonlinear function is

given. The key to the design task is to find a suit-

able adaptive law and a matched controller, so that under

the condition of model matching, the adaptive controller

still automatically adjust the remaining controller even

though other actuators in the control system have unknown

failures, which eventually achieve the desired control

objective [27–29]. For the in-depth study, it is necessary to

research the specific system, whose development is not

completed, and there are still some aspects worth

complementing.

Motivated by the above discussions, as a result of the

increase in engineering accuracy requirements, it is

inevitable to study the issue of adaptive observer for T-S

fuzzy singular FOSs, which have not been studied com-

pletely. The contributions of the paper can be summarized

as follows:

1. A new adaptive observer based on fault-tolerant

control for SFOSs is proposed by designing sliding

mode reaching law, which ensure that the stability of

T-S fuzzy SFOSs and the regular condition towards the

sliding surface has been improved.

2. A convex combination technique is developed, such

that the proposed fault-tolerant control way is valid for

the fuzzy systems with faults.

3. Due to the information obtained by the above observer

and the designed adaptive parameters, according to the

adaptive control law, an adaptive observer-based

controller is proposed, which is more practical to

estimate actuator faults of the SFOSs. The stability

conditions in this paper reduce the conservatism and

computational burden.

4. Further, novel sufficient conditions are obtained to

ensure the stability ofthe proposed T-S fuzzy SFOSs

with H1 performance in terms of LMI. Compared with

the existed references, the H1 control method is more

concise and more convenient for calculation with

faults. Finally, to illustrate the proposed method is

available, numerical examples are presented.

The rest of the paper is divided into the following sections.

Section 2 presents some basic formula expressions. Sec-

tion 3 gives an account of main results of the paper. In

Sect. 4, numerical examples are given to display the

validity of the theorem we proposed and Sect. 5 is the

conclusion of the paper.

Notation: Here, it gives the definition of the symbols

used in this paper. XT expresses the transposition of the

matrix X. symfXg means the form of X þ XT : � notes a

corresponding symmetric matrix. If there is no special

description, for the dimensions of the matrix, which should

be compatible.

2 Problem formulation and preliminaries

In this part, some preliminary for T-S fuzzy singular

fractional order systems are given.

Definition 1 [11] The Caputo derivative of f(t) is expres-

sed as follows , where a belongs (0, 1) :

cD
a
t xðtÞ ¼

daf ðtÞ
dta

¼ 1

Cð1� aÞ

Z t

0

f ð1ÞðsÞ
ðt � sÞaþ1�1 ds; ð1Þ

where 1� 1\a� 1; 1 2 Zþ; and CðxÞ ¼
R1
0

e�ttx�1dt is

gamma function. For convenience, we simplify cD
a
t xðtÞ to

DaxðtÞ:

Immediately afterwards, the continuous-time fuzzy T-S

singular fractional order systems is given as follows:

RiðtÞ : IF l1ðtÞ is D1i, l2ðtÞ is D12;..., ljðtÞ is D1j; THEN

EDaxðtÞ ¼ AixðtÞ þ BiðuðtÞ þ faðtÞÞ;
yðtÞ ¼ CixðtÞ:

�
ð2Þ

where i is the number of IF-THEN rules, i ¼ 1; 2; :::; r: Dij

are the fuzzy sets, xðtÞ 2 Rn stands state vector, uðtÞ 2 Rm

represents control input, faðtÞ means actuator faults.

Ai;Bi;Ci are constant matrices. E 2 Rn and rankðEÞ ¼
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r\n; which is singular. Afterwards, the overall T-S fuzzy

SFOSs are expressed as follows:

EDaxðtÞ ¼
Pr
i¼1

hiðlðtÞÞfAixðtÞ þ BiðuðtÞ þ faðtÞÞg;

yðtÞ ¼
Pr
i¼1

hiðlðtÞÞCixðtÞ:

8>><
>>:

ð3Þ

where hiðlðtÞÞ ¼ -iðlðtÞÞPr

i¼1
-iðlðtÞÞ

; -iðlðtÞÞ ¼
Qp

j¼1 DijðljðtÞÞ;

in which DijðljðtÞÞ are the grade of membership of ljðtÞ in
Dij: If -iðlðtÞÞ[ 0; then,

Pr
i¼1 -iðlðtÞÞ� 0: Therefore,

hiðlðtÞÞ� 0;
Pr

i¼1 hiðlðtÞÞ ¼ 1:

In addition, the fault-tolerant control problem is inves-

tigated. The next step is to devise an adaptive control law

that forces the system state to reach the sliding surface

under possible actuator fault. The detailed flow diagram of

the proposed approach is shown in Fig. 1 to clarify the

design procedure and structure.

Next, in order to achieve our objective, some Lemmas

are needed in the sequel.

Definition 2 [30] For a generalized fractional order system

EDaðtÞ ¼ AxðtÞ; which is said to be regular if detðsaE � AÞ
is not identially zero. When degðdetðsE � AÞÞ ¼ rankðEÞ;
unforced SFOSs are impulse free, which is also stable as

the generalized eigenvalues of detðkE � AÞ ¼ 0 lying in

Da ¼ fk : jargðkÞj[ ap
2
g: SFOSs are admissibile if the

above three conditions are fulfilled.

Lemma 1 [15] The singular FOS in Definition 2 with

0\a\1 is admissible iff there exist matrices X and Y, P

satisfying

EX EY

�EY EX

� �
¼ XTET � YTET

YTET XTET

� �
� 0; ð4Þ

and

symfrATPg\0:

where r ¼ ejð1�aÞp
2:

Lemma 2 [14] Suppose SFOS in Definition 2 is regular,

and M and N are invertible matrices such that

MEN ¼
Im 0

0 Nn�m

� �
;MAN ¼

�A1 0

0 In�m

� �
; ð5Þ

where kmaxð �A1Þ[ 0; Nn�m is nilpotent matrix.

When the regularity of SFOS in definition 2 is unknown,

and M and N are invertible matrices such that

MEN ¼
Im 0

0 0

� �
;MAN ¼

A11 A12

A21 A22

� �
ð6Þ

Lemma 3 [31] A, B are known matrices and

H 2 Hn;U 2 H2;X 2 H2. Define K as follows,

KðU;XÞ ¼ k 2 Cj
k

1

� ��
U

k

1

� �
¼ 0;

k

1

� ��
W

k

1

� �
� 0

� �
:

Then, there exist P;Q[ 0 such that

A B

E 0

� ��
ðU� PþW� QÞ

A B

E 0

� �
þH\0

Lemma 4 [30] Suppose S1 and S3 are symmetric matrices

and S2 is constants matrix, then S1 þ S2S
�1
3 ST2\0 iff

S1 S2

ST2 S3

� �
\0:

Lemma 5 [9] Suppose D and E are constant matrices and

S is a symmetric matrix, which satisfy the following

inequality Sþ DFE þ ðDFEÞT\0 with F satisfying

FTF� I; if and only if for some e[ 0;

Sþ ET D
� � e�1I 0

0 eI

� �
E

DT

� �
\0

3 Main results

3.1 Adaptive observer design

First, based on the adaptive control strategy, an observer is

designed.

EDax̂ðtÞ ¼
Pr
i¼1

hiðlðtÞÞfAix̂ðtÞ þ LiðyðtÞ � ŷðtÞÞg;

ŷðtÞ ¼
Pr
i¼1

hiðlðtÞÞCix̂ðtÞ:

8>><
>>:

ð7Þ

Subsequently, eðtÞ ¼ xðtÞ � x̂ðtÞ means the error of state
Fig. 1 Flow diagram in SFOS (3)
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variable and eyðtÞ ¼ yðtÞ � ŷðtÞ represents the error of

output variable. Therefore, the above-mentioned equivalent

adaptive fuzzy controller can be rephrased into the fol-

lowing form:

uaðtÞ ¼
Pr
j¼1

hjðlðtÞÞfKix̂ðtÞ � ðHjBjÞ�1HjAjeðtÞ � faðtÞg;

ð8Þ

where Hi;Ki are constant matrices under the constraint

condition detðHiBiÞ 6¼ 0: Next, the error system is given as

follows:

EDaeðtÞ ¼
Pr
i¼1

hiðlðtÞÞfðAi � LiCiÞeðtÞ

þBiKix̂� BiðHiBiÞ�1HiAiÞeðtÞg;

eyðtÞ ¼
Pr
i¼1

hiðlðtÞÞCieðtÞ:

8>>>>><
>>>>>:

ð9Þ

Substituting the equivalent control law (8) into (3) and

defining nðtÞ ¼ xTðtÞ eTðtÞ
� �T

; the error dynamic can be

acquired as:

EDanðtÞ ¼
Xr

i¼1

hiðlðtÞÞ �AinðtÞ ð10Þ

where �Ai ¼
Ai þ BiKi � BiKi � GiAi

Ai � LiCi � BiKi � GiAi BiKi;

� �
;

Gi ¼ BiðHiBiÞ�1Hi:

3.2 Admissibility analysis

In this section, we consider the issue of the admissibility of

closed-loop error dynamic system (10). In order to sim-

plify, we make the following equivalent transformation of

the symbol. hl ¼
P

i ¼ 1rhiðlðtÞÞ; �Ah

¼ hl �Ai;Ch ¼ hlCi;Gh ¼ hlGi; Lh ¼ hlLi;Kh ¼ hlKi:

Theorem 1 T-S singular FOS (3) is asymptotically

stable with adaptive controller (8) and the fractional order

belongs to 0\a\1 if X is symmetric matrix and

P1i [ 0;P2i [ 0; Y are constant matrices and a scalar

b[ 0 satisfying the following LMIs:

EX EY

�EY EX

� �
¼ XTET � YTET

YTET XTET

� �
� 0; ð11Þ

symðrð �AT
hPÞ\0: ð12Þ

where

P ¼ P1i 0

0 bP2i

� �
; r ¼ ej

p
2
axa:

Proof Substituting �Ah; and P into (12), we can obtain the

inequality (13), then, the following results are given:

rðAh þ BhKhÞTP1i þ r�PT
1iðAh þ BhKhÞ\0: ð14Þ

As a result of lemma 1, T-S singular FOS (10) is asymp-

totically stable.

Remark 1 It is obvious that the inequality (11) in Theo-

rem 1, is not strict LMIs, which contains constraints con-

dition and make calculation difficult. To solve the problem,

matrix S is given, satisfying ES ¼ 0 and we give the fol-

lowing Theorem.

Theorem 2 T-S singular FOS (3) is asymptotically

stable with adaptive controller (8) and the fractional order

belongs to 0\a\1 if there exists real symmetric matrices

X, Y, P;Qi satisfying the following LMIs:

X Y
�Y X

� �
[ 0; ð15Þ

symfr �AT
h ðPET þ SQhÞ þ r� �AhYE

Tg\0: ð16Þ

After that, since the proof method is similar to Theo-

rem 1, it will not be explained in detail herein.

3.3 Adaptive laws design

In this part, an adaptive law is designed to guarantee the

error system reach stability state in a limited time. In order

to be necessary, we pull in the following assumption.

Assumption 1 The subsystem of the error dynamic system

(9) is bounded and satisfying

sup
0� t\1

keðtÞk� di; i ¼ 1; 2; :::; r

where di are known positive constant.

sym
rðAi þ BiKiÞTP1i rðAi � LiCi � BiKi � �GiAiÞTP2i

�rðBiKi þ �Gi
�AiÞTP1i � rbðBiKiÞTP2i rðBiKiÞTP2i

� �
\0; ð13Þ
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Subsequently, we give the adaptive control laws, whose

parameters are given below. The adaptive parameters

d̂i; ĉi1; ĉi2 to estimate di; ci1; ci2, respectively. The estima-

tion errors are expressed as follows:

~di ¼ d̂i � di; ~ci1 ¼ ĉi1 � ci1; ~ci2 ¼ ĉi2 � ci2:

Then, we propose the adaptive controller laws such that the

reachability condition is obtained.

E1D
ad̂i ¼ r1ikmiðtÞkkHiAi þ TiCik;
E1D

aĉi1 ¼ r2ikmiðtÞkkHiBik;
E1D

aĉi2 ¼ r3ikmiðtÞkkHiBikkyðtÞk:

8><
>: ð18Þ

where r1i; r2i; r3i; e0 are positive scalar, E1 ¼ MEN ¼

Im 0

0 Nn�m

� �
is defined in lemma 2, miðtÞ is continuous

differentiable function, whose expression is given in (19)

below and Ti is constant known matrix.

Afterwards, in order to prove that the designed con-

troller make the system stable in a finite time, we propose a

Lyapunov functional candidate.

ViðtÞ ¼
1

2
mTi ðtÞmiðtÞ þ

1

2r1i
~d2i þ

1

2r2i
~c2i1 þ

1

2r3i
~c2i2 ð19Þ

Calculating the fractional derivative of TiðtÞ, then
E1D

aViðtÞ ¼ E1D
a

mTi ðtÞmiðtÞ þ
1

r1i
~did̂i þ

1

r2i
~ci1ĉi1 þ

1

r3i
~ci2ĉi2

� �
;

miðtÞ ¼ hl HiE1D
a�1eðtÞ � Hi

R t

0
LiCieðsÞds

� 	
:

8>>><
>>>:

ð20Þ

Substituting (17) into (19), the following inequality is

given.

E1D
aViðtÞ� k miðtÞ kT E1D

a k miðtÞ k

þE1D
a 1

r1i
~did̂i þ

1

r2i
~ci1ĉi1 þ

1

r3i
~ci2ĉi2

� �

¼k miðtÞ k kHiAi þ TiCik~di
n

þkHiBik~ci1 þ kHiBikkyðtÞk~ci2 þ e0g

þ 1

r1i
_~di
_̂di þ

1

r2i
_~ci1 _̂ci1 þ

1

r3i
_~ci2 _̂ci2

8>>>>>>>>>>><
>>>>>>>>>>>:

ð21Þ

Then, to exchange (18) into (21), it obtains,

E1D
aViðtÞ� � e0 k miðtÞ k \0: ð22Þ

After that, it prove that the designed controller make the

error system stable in a finite time.

Remark 2 In practical applications, Under normal cir-

cumstances, e(t) is unknown or difficult to obtain directly,

so we usually find eyðtÞ to obtain e(t) according to the

equation eyðtÞ ¼ CeðtÞ:

3.4 H¥ performance control of T-S singular FOS

The control problem of continuous time T-S fuzzy SFOSs

with H1 performance is considered in this section.

Definition 3 [31] The Twz is defined as the transfer func-

tion of the system (3) in the following form:

Twz ¼ CiðsaE � AiÞ�1Bi þ Di; ð23Þ

Then, in frequency domain, the H1 norm is defined as

follows:

kTwzk1 ¼ sup
x

�rðTwzðjxÞÞ;x� 0: ð24Þ

Theorem 3 Continuous time T-S singular FOS (10) is

asymptotically stable with fractional order belonging

0\a\1 and kTwzk1\c; if there exists matrices

P1i [ 0;P2i [ 0; Z1i [ 0; Z2i [ 0 and a scalar b[ 0 such

that (15) and the follow LMIs satisfied:

symfr �AT
hPg þ K r�ðZT � PTÞ �C

T

� � cI �D
T

� � � cI

2
64

3
75\0; ð25Þ

where �Ah is consistent with Theorem 1, and

Z ¼
Z1i Z2i

�bP2i bP2i

� �
;P ¼

P1i 0

0 bP2i

� �
;

�Ch ¼
Ci 0

0 Ci

� �
; �D ¼

Di 0

0 Di

� �
;K ¼

0 0

0 � cI

� �
:

ð26Þ

Proof Substituting �Ah; �Ch; Z; �D;P;K into (25), it obtains

that:

uicðtÞ ¼ KixðtÞ � ðHiBiÞ�1 �HiTiCieðtÞ þ
miðtÞ

kmiðtÞk
ðkHiAi þ TiCikd̂i þ kHiBikĉi1 þ kHiBikkyðtÞkĉi2 þ e0Þ

� �
ð17Þ
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W
r�ðZT � PTÞ

� � cI

� �
\0: ð27Þ

where_
¼ symfr �AT

i Pg þ Kþ c�1 �D
T �Dþ c�1 �C

T �C: ð28Þ

due to the inequality (27), it obtains that:
W
\0; which is

expressed in (29),
W

¼

sym

(
r

ðAi þ BiKiÞTP1i

�ðBiKi þ �Gi
�AiÞTP1i � bðBiKiÞTP2i

�

2
64

ðAi � LiCi � BiKi � �GiAiÞTP2i Z1i � P1i

ðBiKiÞTP2i � bP2i

� � cI

3
75
o
\0;

ð29Þ

H ¼ symfrcð �Ai þ BiKiÞTP1ig þ �D
T �D; ð30Þ

then,

�H� �C
T �C[ 0: ð31Þ

Since the continuous time system (10) is admissibile,

pre- and post-multiplying (31) by BT
i ðsaE � �AiÞ�T

and its

transform, respectively, we have that,

� ¼ c2I � BT
i ðsaE � �AiÞ�T �C

T �CðsaE � �AiÞBT
i ; ð32Þ

where c2I[ 0: Then, the above inequality can be con-

verted into

� � BT
i ðsaE � �AiÞ�THðsaE � �AiÞBT

i [ 0;

From lemma 3 and substitute W;X; we have that:

�Ai Bi

E 0

� �T
ðU� Z þW� PÞ

�Ai Bi

E 0

� �
þ

H 0

0 � �

� �
\0;

ð33Þ

where

U ¼ 0 ejh

e�jh 0

" #
;W ¼ 0 e�jh

ejh 0

" #
:

Further, � [ 0; it means that kTwzk1\c: The proof of

the theorem has been completed.

Theorem 4 Continuous time T-S singular fractional order

system (10) is output-feedback stabilizable if there exists

matrices P1i [ 0;P2i [ 0; and Zjiðj ¼ 1; 2; :::; 6Þ;Qjiðj ¼
1; 2; :::; 8Þ; J;M;N;K are constant matrices and a scalar

b[ 0 such that (15) and the LMI (34), which is at the top

of next page, satisfied:

where

X11 ¼ sym

frð �AT
hZ1i �KTZ1i þ bMTP2iM � bMTJ � bJTMÞg;
X21 ¼ r�ZT

2i
�Ah þ r �B

T
hZ

T
1i þ r�bJ þ rbJ;

X22 ¼ r �B
T
hZ2i þ r�ZT

2i
�Bh � rbP2i � r�bP2i;

X31 ¼ r �A
T
hZ3i þ r�ZT

1i
�Bh � rbNTJ � r�bNTJ

þrbNTP2iM þ r�bNTP2iM;

X32 ¼ r �B
T
hZ3i þ r�ZT

2i
�Bh;X42

¼ �rZ2i þ r�QT
1i
�Bh

X33 ¼ r �B
T
hZ3i þ r�ZT

3i
�Bh þ rbNTP2iN

þr�bNTP2iN � cI;

X41 ¼ rP1i � rZ1i þ r�QT
1iA;X43

¼ �rZ3i þ r�QT
1i
�Bh;

X44 ¼ �rQ1i � r�QT
1i;X61

¼ rP1i � rQ4i þ r�QT
3i
�Ah;

X62 ¼ �rZ5i þ r�QT
3i
�Bh;X63 ¼ �rZ6i

þr�QT
3i
�Bh;X64 ¼ �rQ5i � r�QT

3i:

X11 � � � � � � �
X21 X22 � � � � � �
X31 X32 X33 � � � � �
X41 X42 X43 X44 � � � �

r�QT
2i
�Ah þ rL r�QT

2i
�Bh � rP2i r�QT

2i
�Bh � r�QT

2i � rP2i � r�P2i � � �
X61 X62 X63 X64 � rQ6i � rQ7i � r�QT

7i � �
r�QT

4i
�Ah r�QT

4i
�Bh r�QT

4i
�Bh � r�QT

4i 0 � r�QT
8i � rP2i � r�P2i �

r �Ch r �D r �D 0 0 0 0 � cI

2
66666666664

3
77777777775
\0;

ð34Þ

4270 Neural Computing and Applications (2022) 34:4265–4275

123



Theorem 4 can be regarded as the extension of Theorem 3,

so the proof is not expressed in detail.
4 Simulation results

Numerical examples are given to show the validity of the

above approach in this section.

(a) (b)

(c) (d)

Fig. 2 (a) x1ðtÞ and the error

estimation of x1ðtÞ(b) x2ðtÞ and
the error estimation of

x2ðtÞ(c) x3ðtÞ and the error

estimation of x3ðtÞ(d) State
trajectories of error dynamic

system (8)
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Example 1 The following fuzzy singular fractional order

systems are considered with two fuzzy rules and the

parameter matrices are described as follows.

EDaxðtÞ ¼
Pr
i¼1

hiðlðtÞÞfAixðtÞ þ BiðuðtÞ þ faðtÞÞg;

yðtÞ ¼
Pr
i¼1

hiðlðtÞÞCixðtÞ:

8>><
>>:

ð35Þ

where

a ¼ 3

4
;E ¼

1 0 0

0 1 0

0 0 0

2
64

3
75;A1 ¼

�1 3 0

1 0 � 1

�1 � 6 0

2
64

3
75;

A2 ¼
2 3 0

1 � 1 0

�1 0 � 6

2
64

3
75;B1 ¼

0

1

0

2
64

3
75;

B2 ¼
1

0

0

2
64

3
75;C1 ¼

1

1

0

2
64

3
75
T

;C2 ¼
0

1

0

2
64

3
75
T

;

h1ðlðtÞÞ ¼
1þ sin2ðx1ðtÞÞ

3
;

h2ðlðtÞÞ ¼
1þ cos2ðx1ðtÞÞ

3
; faðtÞ ¼

0; t\2

1

1þ 2�t
; t� 2

8<
: :

As a result of Theorem 3, to solve the inequalities (15) and

(25), it obtains that the following solution:

Fig. 3 The controllers m1ðtÞ and m2ðtÞ in Example 1

Fig. 5 Electrical circuit illustration in Example 2

Fig. 4 The adaptive parameters in Example 1

510150

time(s)

-3

-2

-1

0

1

2

3

4

Fig. 6 The error estimation of the system (10) in Example 2
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P1 ¼ 108 �
0:8072 � 0:4548 0

�0:4548 1:5022 1:7059

�1:7059 � 1:7059 1:7059

2
64

3
75;

P2 ¼ 108 �
�0:8187 � 0:9555 0

�0:9555 3:6438 1:5675

�1:5675 � 1:5675 1:5675

2
64

3
75;

Z1 ¼ 108 �
3:1138 � 1:6482 1:8387

�1:6482 3:7259 3:2577

1:8387 3:2577 3:9148

2
64

3
75;

Z2 ¼ 108 �
�1:1041 � 3:6205 3:1062

�3:6205 4:2988 0:0936

3:1062 0:0936 3:0042

2
64

3
75;

K1 ¼
0:0305 0 0

0 0:0305 0

0 0 0:0305

2
64

3
75;

K2 ¼
0:4100 0 0

0 0:4100 0

0 0 0:4100

2
64

3
75;

L1 ¼ 0:0152 0:0152 0½ �T ;
L2 ¼ �1:4322 0:1895 0:4176½ �T :
kTwzk1 � c1 ¼ 1:1991 � 108; b1 ¼ 3:2300 � 108;
kTwzk1 � c2 ¼ 3:6749 � 108; b2 ¼ 3:6427 � 107:

Figures 1a–c shows xiðtÞði ¼ 1; 2; 3Þ can be estimated

and tracked accurately under observer-based adaptive

fault-tolerant controller, whose curves are depicted in

Fig. 2. After that, under the effect of the adaptive

parameters, which is shown in Fig. 3, we get that the error

system in Fig. 1d converges to zero, so that dynamic

system (35) is asymptotically stable and Theorem 3 is

valid.

Example 2 Considering electrical circuit shown in Fig. 5,

which are widely used, including the following circuit

element, a load resistance R, source voltage e1; e2; and

capacitances C1;C2;C3: Then, the circuit symbols are

given , u1ðtÞ; u2ðtÞ; u3ðtÞ represent the voltage of capaci-

tances, respectively. Afterwards, the state equation is given

as follows,

RC1 0 0

C1 C2 � C3

0 0 0

2
64

3
75

Dau1ðtÞ
Dau2ðtÞ
Dau3ðtÞ

2
64

3
75

¼
0 � 1 2

1 � 2 2

0 1 0

2
64

3
75

u1ðtÞ
u2ðtÞ
u3ðtÞ

2
64

3
75þ

1 0

0 0

0 1

2
64

3
75 e1

e2

� �

where a ¼ 0:25; C1 ¼ C2 ¼ C3 ¼ 1; R ¼ 1;

faðtÞ ¼
0; t\2
1

sinð0:5t � 5Þ ; t� 2;

8<
:

h1ðlðtÞÞ ¼
1þ sinðx1ðtÞÞ

6
; h2ðlðtÞÞ ¼ 1� h1ðlðtÞÞ:

Due to Theorem 2 and solving inequalities (15) and (16), it

obtains a series of feasible solutions as follows:

0 10 20 30 40 50 60 70 80 90 100

time(s)

-50

-40

-30

-20

-10

0

10

20

Th
e 

es
tim

at
io

n 
of

 th
e 

ad
ap

tiv
e 

pa
ra

m
et

er
Adaptive parameter estimation 

Fig. 7 The adaptive parameters in Example 2

Table 1 Application range comparison of existing methods and ours

References C1 C2 C3 C4 C5

The paper Yes Yes Yes Yes No

9 No Yes Yes No Yes

15 No Yes No Yes Yes

Notations of Table 1: C1 : less conservative for stabilization

C2 : the stability interval of SFOS

C3 : whether easy to solve or not

C4 : convenient to be used in practice

C5 : computational burden
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X ¼
2:6613 � 0:8871 0:0534

�0:8871 0:2957 � 0:0178

0:0534 � 0:0178 3:1853

2
64

3
75;

Y ¼
1:1978 0:4285 0:5039

�0:4285 � 0:3406 1:2105

�0:5039 � 1:2105 � 3:0381

2
64

3
75;

P ¼
2:7778 3:9200 � 0:8296

3:9200 1:1422 0:5348

�0:8296 0:5348 � 2:7944

2
64

3
75;

Q ¼ �0:3038 0:3467 �1:2055½ �;
L ¼ 0:4854 �0:6179 �0:1441½ �T :

Further, Fig. 6 shows that the error dynamic system (10)

is asymptotically stable and the designed adaptive con-

troller (8) with the adaptive parameters shown in Fig. 7,

which means that the state variables of T-S fuzzy SFOSs

are tracked precisely with actuator faults.

Remark 3 Through the above table, We extend the sta-

bility of the SFOS to fuzzy T-S systems. Compared with

[15], our approach is easy to solve. We reduce the con-

servative for stabilization and own practical applications.

[9] constructed a sliding surface with reduced dimension

by the method of state transformation but increases the

computational burden. In general, our result is better and

stronger than the existing results.

5 Conclusion

This paper deals with the issue of adaptive control of T-S

singular FOSs with faults and H1 performance, where the

fractional order belongs to (0, 1). Firstly, according to

adaptive laws and fuzzy approximation technology, an

adaptive observer has been given to dedicate to guarantee

the preset tracking performance, which keep the estimation

of the unmeasurable or partially measurable state and

faults, simultaneously. Secondly, a controller has been

designed through constructing the sliding mode surface of

fuzzy singular fractional order systems with adaptive

sliding mode control strategy. Moreover, a convex com-

bination technique has been developed, such that it is

shown that the proposed approach is valid for the systems

with faults and unknown disturbances. Further, in order to

ensure the stability of the proposed system with H1 per-

formance, novel sufficient conditions have been obtained

by LMIs, Finally, to illustrate the availability of the pre-

sented method, numerical simulation and practical exam-

ples have been presented.
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