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Abstract
Drought modelling is an important issue because it is required for curbing or mitigating its effects, alerting the people to the

its consequences, and water resources planning. This study investigates the capability of a deep learning method, long

short-term memory (LSTM), in forecasting drought calculated from monthly rainfall data obtained from four stations of

Iran. The outcomes of LSTM compared with extra-trees (ET), vector autoregressive approach (VAR) and multivariate

adaptive regression spline (MARS) methods in forecasting four drought indices, SPI-3, SPI-6, SPI-9 and SPI-12, taking

into account numerical criteria, root-mean-square errors (RMSE), Nash–Sutcliffe efficiency and correlation coefficient

together with the visual methods, time variation graphs, scatter plots and Taylor diagrams. The overall results showed that

the LSTM method performed superior to the ET, VAR and MARS in forecasting drought based on SPI-3, SPI-6, SPI-9 and

SPI-12. The RMSE of ET, VAR and MARS was improved by about 17.1%, 12.8% and 9.6% for SPI-3, by 10.5%, 6.2%

and 5% for SPI-6, by 7.3%, 4.1% and 6.2% for SPI-9 and by 22.2%, 27% and 10.6% for SPI-12 using LSTM. The MARS

method was ranked as the second best, while the ET provided the worst results in forecasting drought based on SPI.

Keywords Drought forecasting � Standard precipitation index � Deep learning � LSTM � Extra-trees � VAR �
MARS

1 Introduction

Drought as a meteorological phenomenon, relative to the

expected amount, could be described as the lack of rainfall

intensity over a certain period of time. Mathematically,

when the real rainfall rate is equal to or less than the

specified percentage of the predicted rainfall over the same

time span, this particular duration is called a drought

occurrence [41]. For example, if the rainfall rate is equal to

75% of the average long term for the given duration, the

presence of the drought might be considered, whereas

others may consider it to be about 60% or 50% [7]. In

terms of societal influences, some scientists have indicated

that drought should be established. They also argued that it

typically adversely affects the developed economy of the

region before a decrease in precipitation becomes a matter

for society [45]. Agricultural and hydrological droughts

can occur, as well as meteorological droughts, which can

contribute to disagreements as to whether a drought has

actually occurred [23, 22, 45].
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Definitions of what causes a drought will vary based on

the possibility of specific human activities requiring rain-

fall within a given area. One of the expected effects of

climate change is the possible increase in both the fre-

quency and intensity of extreme weather events, such as

hurricanes, floods and droughts. The warming of the planet

would improve ocean–atmosphere interactions that could

increase the regularity and intensity of the frequency and

status of tremendous weather and environment. Drought

research is needed to find out the likelihood of a shortfall in

the supply of water in future. It also encourages researchers

to present a study that can curb drought, minimize the

impact of drought, alert the public to the effects of drought

and plan for the future. A practical estimate and forecast of

potential drought events is also compelling.

Existing studies that have been reviewed to assess and

forecast both meteorological and hydrological droughts in

Semnan, Iran, are introduced in Sanusi et al. [46]. As a

result from this study, artificial intelligence and data-driven

models will be used to forecast future drought events. A

few suitable drought indices such as the SPI (standardized

precipitation index), RAI (rainfall anomaly index), SIAP

(standard index of annual precipitation), SDI (streamflow

drought index), SSFI (standardized streamflow index) and

SWSI (standardized water storage index) for the Semnan,

Iran, were estimated [17]. The data-driven models to be

used are traditional stochastic models for time-series

forecasting [10] and more recent machine learning models

[9].

It was established that, as opposed to a satellite-based

drought index, a data-driven drought index would be used

to predict drought for this analysis. Satellite-based drought

indices are, in reality, adaptive over a given spatial and

temporal scale to changes in vegetative land cover.

Because of the time it takes for the impact of a drought to

be noticeable on vegetative surfaces, satellite-based

drought indices are not as effective in detecting the

emergence of droughts. Of the above data-driven drought

indices discussed, the PDSI [27, 33, 34] and the SPI

[32, 43] have found widespread application in the field of

drought forecasting. The fact that they are standardized is

the principal strength of these two drought indices. The

PDSI assumes parameters such as soil characteristics are

uniform over a climatic region in view of the very complex

empirical derivations of the PDSI. The SPI, however, is

geographically independent, is relatively easy to quantify

and allows both short- and long-term droughts to be

quantified. It was determined that the SPI is the most

acceptable drought index for drought forecasting, consid-

ering these benefits [13].

The need to acquire fast and precise prediction is sig-

nificant in operation and management of water resources.

This is to make sure that an acceptable time is given to the

authorities for implementing their protection procedures. In

general, by simulating a catchment’s response to rainfall,

watershed hydrology models are optimized for these goals.

Simulating the answer using mathematical models, how-

ever, is not a straightforward job as the hydrological pro-

cesses are complicated and the effect on them is not well

known by geomorphological conditions and climatic

influences [7]. Consequently, one of the most optimistic

subjects of hydrology is now the pursuit of specific,

accurate and scientifically realistic models [8, 26]. Since

the earliest statistical simulation, the logical approach for

peak discharge, many hydrologic models have been

accounted for, was developed by Arvind et al. [6]. These

hydrological models may be grouped as knowledge-driven

or data-driven by their internal definition of the hydrolog-

ical processes and, according to the spatial representation

of managed watersheds, as lumped or dispersed [28, 35].

Physically based or processed-based, mechanistic models

and conceptual models are created through knowledge-

driven models.

The internal parameters of the model are only related to

the model configuration, while the physical parameters of

the hydrological routes (i.e. run-off generation) are not

taken into account by model structure, making data-driven

models appear simple and easy to create. Likewise,

because of the adversity of data processing or the lack of

hydrometeorological networks, the scarcity of hydrological

data creates rational difficulties for the use of knowledge-

driven models [44]. In this case, data-driven modelling

appears to be the only other option where model inputs can

only be easily obtained from previous documents. Con-

versely, in some real-world situations, the greatest diffi-

culty is to make precise and timely estimates in certain

regions. A rational data-driven model is enough to establish

a direct plot between inputs and outputs. At present, the

data-driven model is becoming increasingly popular in the

worldwide hydrological society. Scientists also remain

very uncertain about the intent of the acceptable modelling

style and adequate model structure. No modelling method

triumphs over others, as each modelling method demon-

strates advantages and disadvantages. It was not possible

for a global data-driven model to relate all hydrological

conditions accurately. Hybrid models are then proposed in

which, first of all, several classifications subdivide hydro-

logical conditions and then isolated models are created for

each of them [11, 36].

Using various and assemblages of historical rainfall

events, the efficient drought index (EDI) and the normal

precipitation index (SPI), they estimated quantitative val-

ues for drought indices [24, 25]. Direct multistep neural

network (DMSNN) and linear stochastic models of recur-

sive multistep neural network (RMSNN) were evaluated

for drought forecasting by Mishra and Desai [32] and
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Quilty et al. [37]. In the hydrological area, data-driven

models have proven to be effective, but there is still a

position available to develop better methods of forecasting

[38]. By simply applying such models to an initial time

series, the specifics of adjustment are overlooked,

decreasing the accuracy of estimation [42]. The original

time series decomposed with discrete wavelet transforma-

tion (DWT) enhances a forecasting model by providing

useful information on various degrees of resolution [27];

however, there has not been much research on using a

wavelet for drought prediction. Shabri [40] proposed a

hybrid wavelet and adaptive neuro-fuzzy inference

approach for SPI-based drought prediction in an analysis

(WANFIS). The study showed that the SPI values are very

sensitive to parametric distribution feature selection, and

most drought indices DIs have been developed for partic-

ular areas, and some DIs are better suited for specific uses

than others [13]. Therefore, owing to varying hydro-cli-

matic conditions and many other considerations, any of the

current DIs might not be specifically applicable to other

areas. In fact, drought index tracking in geographic areas

may be dependent on the accessibility of hydrometeoro-

logical information data and the aptitude of the drought

index to accurately track the temporal and spatial pattern

variations [1]. Various climate and water quality parame-

ters are applied to describe the severity of a drought event.

Although, in all cases, none of the key indices are inher-

ently superior to the others, for some reasons, some indices

are better suited than others.

As can be seen from the above, there are various forms

of machine learning (ML) models that can be used for

drought forecasting. However, the existing ML models that

can memorize the pattern of inputs–outputs within the

model structure are the most suitable. Recurrent neural

networks are the most appropriate form of neural network

(RNN) [39]. In reality, there are different RNNs from

traditional neural feed-forward networks. This disparity in

the integration of complexity comes with the promise of

new habits that traditional methods cannot achieve. RNN

also has an internal state which can reflect contextual

awareness [18]. Furthermore, it retains information about

previous inputs for a period of time that is not set a priori,

instead depending on its weights and the input data. RNNs

whose inputs are not fixed but represent an input sequence

may be used to transform an input sequence into an output

sequence if contextual information is flexibly taken into

account first, in order to be able to retain information for an

unspecified time in the method. Second, the model archi-

tecture should be noise immune (i.e. input variations that

are unpredictable or unrelated to estimating a correct out-

put). Third, the parameters of model architecture can be

learned (in a short period of time).

RNNs must use context when making predictions, but

the relevant context must be learned to some extent. RNNs

include loops which feed network activations from a pre-

vious time point as inputs to the network to affect forecasts

at the current time point. Internal network states, which are

capable of maintaining long-term transient contextual

information in principle, maintain these activations. RNNs

may use this approach to control a contextual window that

shifts over the course of the input sequence.

LSTM success is one of the first implementations to

overcome technical problems and fulfil the promise of

persistent neural networks in their statement that they can

effectively memorize the historical pattern [16]. As a

result, regular RNNs fail to remember lag-times that are

between 5 and 10 s apart from the desired output. Because

of the unseen fault problem, it is unclear whether standard

RNNs can still outperform time-window-based feed-for-

ward networks in terms of functionality [16]. Graves et al.

[18] found that LSTM could adjust to a minimum lag-time

of more than 10 time-steps. The two technical challenges

LSTMs tackle are the absence of gradients and the bursting

of gradients, both linked to how the network is trained.

Unfortunately, the collection of qualitative information that

traditional RNNs can access is, in fact, rather limited. Since

it runs through the repeated interconnections of the net-

work, the effect of the selective input patterns prearranged

on the following phase within the hidden-layers and thus

on the desired output from the model, either decays or

exponentially enlarges [18]. In fact, long short-term

memory (LSTM) is an RNN architecture mainly built to

address the problem of the vanishing gradient, which is

referred to as the vanishing gradient problem in the liter-

ature. The key to the LSTM approach to technical chal-

lenges was the simple internal configuration of the units

used in the model, which is controlled by its ability to cope

with disappearing and bursting gradients, the most com-

mon difficulty in the design and training of RNNs.

With the assistance of data-driven techniques, the study

aims primarily to develop robust artificial intelligence

forecasting models that can easily and reliably predict

drought in the Semnan, Iran. This includes the develop-

ment and testing of a modern drought forecasting approach

based on time-series methods such as multivariate adaptive

regression spline (MARS) and vector autoregression

(VAR) beside the traditional ML models such as extra-

trees (ET) method. The importance of this analysis and the

overall findings will be discussed in this study. As most of

the current drought indices (DIs) have been developed for

the use in a particular area, the suitability of these DIs for

Semnan province has not been examined, although similar

studies have been undertaken in other parts of the world;

however, these studies examined different types of models.

Specifically, the objectives of the study are to estimate the
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standardized precipitation index (SPI) from the raw

monthly precipitation data for characterization of meteo-

rological droughts. In addition, develop and evaluate the

performance of deep learning method, LSTM in forecast-

ing four SPI indices, SPI-3, SPI-6, SPI-9 and SPI-12.

Furthermore, compare the outcomes of LSTM with the

three machine learning methods, ET, VAR and MARS.

2 Materials and methods

2.1 Study area

Due to specific hydrologic and climatic parameters in semi-

arid regions, it is necessary to have a wise knowledge about

them. Semnan is one of the Iran’s provinces, located in a

semi-arid area at 34� 170 to 37� 000 and 51� 580 to 57� 580

north latitude and east longitude, respectively. Its approx-

imate area is about 97,491 km2 and average high about

1630 m. Figure 1 depicts a general view of the study area

and the location of stations, which their statistics have been

evaluated in the present study.

Considering the differences between the annual precip-

itation amount, 120 mm, and the annual average evapora-

tion, 220.9, in the study area, the necessity of precise

assessment is obvious. The brief statistics of the time series

of four SPI indices are provided in Table 1.

2.2 Standard precipitation index (SPI)

As it mentioned before, the hydrologic parameters analysis

is a complex procedure in arid and semi-arid areas, due to

vast temporal and spatial diversity. Among the various

indices for drought study in these regions, SPI is one of the

most appropriate ones [29]. It has several time scales as a

meteorological drought index, e.g. 1, 3, 6, 9, 12 and

24 months. Each one of above-mentioned scales is appli-

cable for a distinct purpose [47].

Fig. 1 General view of the study area
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Since the precipitation shows a gamma probability dis-

tribution, the SPI is based on it. The gamma function can

be expressed as below based on Kisi et al. [29]:

gðxÞ ¼ 1

ba:CðaÞ x
a�1:e�

x
b For x[ 0 ð1Þ

where CðaÞ ¼
Rþ1

0
xa�1e�xdx, a

^ ¼ 1
4A ð1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4A

3

q
Þ, A ¼

lnðx�Þ �
P

lnðxÞ
n and b

^
¼ x

�

a
�.

G(x) is a cumulative probability and can be calculated

through below equation:

GðxÞ ¼
Z x

0

gðxÞ ð2Þ

In arid and semi-arid regions, the precipitation value is

zero frequently, and the cumulative probability equation,

hence, is obtained as below:

HðxÞ ¼ qþ ð1 � qÞGðxÞ ð3Þ

where q ¼ m
n , while the m and n are the amount of zero

values in precipitation, and observation number, corre-

spondingly. Lloyd Hughes and Saunders [30] proposed the

SPI calculation equation as below, considering the before

mentioned terms.

SPI ¼ � t � c0 þ c1t þ c2t
2

1 þ d1t þ d2t2 þ d3t3

� �

; 0\HðxÞ� 0:5

ð4Þ

SPI ¼ þ t � c0 þ c1t þ c2t
2

1 þ d1t þ d2t2 þ d3t3

� �

; 0:5\HðxÞ� 1:0

ð5Þ

where c0 = 2.515517, c1 = 0.802853, c2 = 0.010328,

d1 = 1.432788, d2 = 0.189269 and d3 = 0.001308 (McKee

et al., [31]). In addition, t obtained from next mentioned

equations:

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
1

ðHðxÞÞ2

s

; 0\HðxÞ� 0:5 ð6Þ

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
1

ð1 � HðxÞÞ2;

s

; 0:5\HðxÞ� 1:0 ð7Þ

2.3 Long short-term memory (LSTM)

Among the various types of recurrent neural networks

(RNNs), LSTM is recognized as an advanced form of it,

which can cover the flaws of general RNN structure

through the long-term dependency leaning. Hochreiter and

Schmidhuber proposed LSTM for the first time in 1997,

although it has improved and generalized progressively by

numerous scholars [12].

Cell state (Ct) is the main concept of LSTM and passes

the information through the gates in unaffected form. The

above-mentioned gates, which are three, control the cell

state to let information flow arbitrary.

Forget gate is known as the first gate. It selects that

which cell state vector (Ct-1) should be forgotten and

explained as below:

ft ¼ rðWf :½ht�1; xt� þ bf Þ ð8Þ

where ft is the output vector, while the Wf and bf are the

parameters that can be trained for the first gate. ft ranges

from 0 to 1 and reveals the degree of forget.

Table 1 Statistical properties of

data for each station
Station Data set Average Min. Max. St. Dev. Variation coefficient

Abrsij SPI-3 0.029 - 1.487 3.195 0.945 33

SPI-6 0.001 - 2.939 2.771 1.001 1001

SPI-9 - 0.001 - 2.409 2.866 1.001 - 1001

SPI-12 0.0 - 2.572 2.407 1.001 None

Bastam SPI-3 0.016 - 2.065 2.245 0.979 61

SPI-6 0.004 - 3.093 2.242 1.002 251

SPI-9 0.002 - 3.585 2.073 1.001 501

SPI-12 0.001 - 3.615 2.054 1.001 1001

Dorahi SPI-3 0.032 - 1.583 2.675 0.942 29

SPI-6 0.022 - 1.884 2.381 0.957 44

SPI-9 0.023 - 2.005 2.311 0.945 41

SPI-12 0.025 - 2.167 1.984 0.931 37

Rooyan SPI-3 0.095 - 0.922 2.904 0.856 9

SPI-6 0.021 - 1.787 2.108 0.963 46

SPI-9 0.018 - 2.410 1.992 0.968 54

SPI-12 0.008 - 4.582 2.104 1.003 125
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Second gate is called input gate and chooses those

values, which should be updated as below:

it ¼ rðWi � ½ht�1; xt� þ biÞ ð9Þ

where the output variable is assigned to it. It varies from

zero to one. Wi and bi are parameters which are trained, and

xt and ht-1 are the current input and last hidden state,

respectively. In the next step, a potential vector is calcu-

lated for cell state:

C
�
¼ tanhðWc:½ht�1; xt� þ bcÞ ð10Þ

where vector C ranges from zero to one, while tanh tanh is

hyperbolic. Moreover, Wc and bc are parameters that can

be trained. Old cell state, then, can be updated into a new

one called Ct:

Ct ¼ ft � Ct�1 þ it � C
�

t
ð11Þ

The third gate is output gate and selects the output, using

a sigmoid layer as below:

ot ¼ rðWo½ht�1; xt� þ b0Þ ð12Þ

where ot is an output vector and varies from zero to one. Wo

and b0 are trainable parameters. The new hidden state ht is

calculated afterwards as the final step:

ht ¼ ot � tanhðCtÞ ð13Þ

Figure 2 shows a simple architecture of a LSTM cell.

Also, Fig. 3 shows different steps of LSTM model. In this

study, during the training phase, one of the most widely

optimization techniques for deep learning approaches,

Adam algorithm, has been applied to optimize the weight

of the LSTM model, which is one of the extensions of

stochastic gradient descent (SGD). Also, it can be men-

tioned that rectified linear units (ReLU) activation function

has been used. Since the learning rate parameter has a

crucial role in training process, minimizing the loss func-

tion, and convergence of the model, it was fixed to 0.001.

2.4 Extra-trees method

In 2006, an extension of random forest model suggested by

Geurts et al. [19] called extra-trees. It is a tree-based

learning method for decision-making and performs as a

classifier and regression finder [15]. Its ability is that it can

accept high-dimensional input and outputs [3]. It generates

a set of unpruned decisions or regression trees upon to a

classic top–down method. However, it has two major dif-

ferences with other ensemble methods: at first, it separates

nodes randomly via cut-point approach and second is that it

applied all samples for learning to grow the tree in spite of

bootstrap model.

The extra-trees, indeed, is more resourceful and extre-

mely randomized extended than its basic model, i.e. ran-

dom forest method. It has two spectacular distinctions,

comparing to random forest method. At first, it does not

apply the tree-bagging step in subset making. Secondly, it

chooses the finest feature along with the corresponding

value, in node splitting process. Above-mentioned con-

trasts lead to overfitting prevention and high performance

in extra-trees utilization.

2.5 Multivariate adaptive regression spline
(MARS)

MARS is a kind of nonparametric models, but works

similar to a systematic linear regression modelling. Fried-

man proposed MARS in 1991. The main domain of MARS

application is the improving and recognizing the compli-

cated phenomena amongst objective and predictor variable

[2]. A simple stepwise procedure of MARS model gener-

ation can be as below:

1. Data gathering.

2. Utilizing the basis mapping with knots in order to

assess the candidate mapping procedure.

3. Selecting the number of terms and interaction levels to

set limitations.

4. Identifying the obtained maps with minimum error in

training step.

5. Eliminating the terms of model, which have the least

effects.

6. Validating the model via choosing the best number of

terms.

Figure 4 reveals the flowchart of MARS method in a

schematic view. It should be noticed that MARS has this

ability to find the pattern of hidden data and their inter-

actions in a proficient way. MARS does that through the

selecting of variables amalgamation, represented as basis

function. MARS model can be explained as follows:

Fig. 2 Schematic architecture of LSTM cell
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f Xð Þ ¼ a0 þ
XN

n¼1

anhnðXÞ ð14Þ

where a is obtained from the minimized residual error

calculation, and hn(X) is a function from the candidate ones

and shows the importance of variable [2]. The main

excellence of MARS model is that it can evaluate the cut

points (knots). Before mentioned advantages enable the

MARS to be efficient in a vast area of sciences [4, 5].

2.6 Vector Autoregressive approach (VAR)

VAR is one of the most applicable approaches in multiple

time-series prediction. It searches the normalized time-

series data and explains their dependency and

interdependency.

A VAR approach with order p, VAR (p), can be stated

simply as below [14]:

z1;t ¼ /0 þ
Xp

i¼1

/izt�1 þ at ð15Þ

where zt is the multiple time series, /0 is a vector which is

constant, /i is a matrix for i[ 0, and at is an order of

random vectors.

A simple description of VAR can be as follows:

1. Choosing the study variables

2. Generating an arbitrary model of order p

3. Defining the p value

4. Assessing the model parameters

5. Checking of diagnosis

6. Examining that are the assessed residuals that are in

intended range or not.

7. Structure analysing

8. Final forecasting and evaluating the results.

Fig. 3 LSTM flowchart

Fig. 4 MARS schematic flowchart
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Figure 5 depicts the VAR steps in a simple way. Ljung–

Box test is often used to check the VAR model sufficiency

and is calculated as below:

QkðmÞ ¼ T2
Xm

k¼1

1

T � k
trðR̂0

kR̂
�1
0 R̂kR̂

�1
0 Þ ð16Þ

where T is the sample size, m is the number of cross-

correlation matrices of the multiple residuals, R̂0 and R̂k are

the lag zero and k sample of cross-correlation. The prime

sign, on the other hand, means the matrix transpose. The

model adequacy depends on Qk (m), if it was higher than a

considered value.

2.7 Model development

The ability of a deep learning method, LSTM, was inves-

tigated in forecasting drought using four SPI indices, SPI-3,

SPI-6, SPI-9 and SPI-12, calculated from monthly rainfall

data obtained from four stations, Abrsij, Bastam, Dorahi

and Rooyan. The outcomes of the LSTM method were

compared with three machine learning methods, extra-

trees, VAR and MARS, which were also applied to the

same data sets. Data were separated into two sets, 80% for

training and 20% for testing. The criteria used for assess-

ments are root-mean-square error (RMSE), Nash–Sutcliffe

efficiency (NSE) and correlation coefficient (R):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1ðSPIp;i � SPIo;iÞ2

N

s

½0;þ1Þ ð17Þ

NSE ¼ 1 �
PN

i¼1 SPIp;i � SPIo;i
� �2

PN
i¼1 SPIo;i � SPIo

� �2
ð�1; 1� ð18Þ

R ¼
PN

i¼1ðSPIo;i � SPIoÞðSPIp;i � SPIpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðSPIo;i � SPIo

2Þ
PN

i¼1ðSPIp;i � SPIpÞ
2

q ½0; 1�

ð19Þ

where SPIo,i and SPIp,i are the observed and predicted SPI

values, while SPIo and SPIp are the mean observed and

predicted SPI values.

Before applying LSTM, ET, VAR and MARS methods,

the optimal lagged inputs were decided according to the

correlation analysis (partial auto-correlation functions).

Considering 95% confidence level, the inputs provided in

Table 2 were obtained for forecasting the SPI-3, SPI-6,

SPI-9 and SPI-12 indices. For example, for the SPI-3 of

Abrsij station, 5 lags including SPI3t-4, SPI3t-3, SPI3t-2,

SPI3t-1 and SPI3t were selected as input to the methods to

forecast SPI3t ? 1. It should be noted here that the Dorahi

and Rooyan stations have same inputs for the four indices.

A brief illustration of the model development is shown in

Fig. 6.

3 Application and results

Test results of the implemented methods are summed up in

Table 3 for the SPI-3 index of four stations. As observed

from the table, the LSTM has performed better than the

other three methods with the lowest RMSE ranging from

0.415 to 0.511 and the highest NSE ranging from 0.697 to

0.682. Compared to ET, VAR and MARS, the deep

learning method has, respectively, improved the forecast-

ing accuracy in terms of RMSE by 22.8%, 18.9% and

13.7% for Abrsij station, by 13.9%, 8.5% and 3.5% for

Bastam station, by 22.4%, 15.2% and 13.1% for Dorahi

station, by 9.4%, 8.6% and 8.2% for Rooyan station. The

MARS method has been ranked as the second best, while

the ET has provided the worst accuracy in forecasting SPI-

3 index in all stations.

Table 4 summarizes the test performances of the LSTM,

ET, VAR and MARS methods in forecasting SPI-6 of four

stations with respect to RMSE, NSE and R statistics. The

LSTM performs superior to the other methods. Its RMSE,

NSE and R value has the ranges 0.341–0.390, 0.780–0.815

and 0.889–0.909, while the corresponding values of the

second best method have the ranges 0.362–0.411,

0.748–0.805 and 0.865–0.900, respectively. The RMSE

accuracies of the ET, VAR and MARS methods were

Fig. 5 VAR schematic flowchart
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improved by 5.1%, 5.1% and 4.9% for Abrsij station, by

7%, 1.3% and 2.8% for Bastam station, by 13.7%, 8.6%

and 5.8% for Dorahi station, by 16.1%, 9.9% and 6.5% for

Rooyan station using the LSTM method. In this station

also, ET had the worst forecasts whereas it caught the same

accuracy with VAR in Abrsij station. For the Bastam sta-

tion, the VAR method performed slightly better than the

MARS in forecasting SPI-6.

Test results of the LSTM, ET, VAR and MARS methods

in forecasting SPI-9 of four stations can be seen from

Table 5. Here also the LSTM having the ranges of RMSE,

NSE and R as 0.322–0.405, 0.777–0.848 and 0.893–914,

respectively, indicated a superior accuracy compared to

other three methods. The LSTM has improved the fore-

casting performance of the ET, VAR and MARS in respect

of RMSE by 4.1%, 4.1% and 3.9% for Abrsij station, by

Table 2 Input and output

parameters used for forecasting

SPI

Station Output Inputs

Abrsij SPI-3 SPI3t-4, SPI3t-3, SPI3t-2, SPI3t-1, SPI3t

SPI-6 SPI6t-2, SPI6t-1, SPI6t

SPI-9 SPI9t-2, SPI9t-1, SPI9t

SPI-12 SPI12t-1, SPI12t

Bastam SPI-3 SPI3t-5, SPI3t-4, SPI3t-3, SPI3t-2, SPI3t-1, SPI3t

SPI-6 SPI6t-3, SPI6t-2, SPI6t-1, SPI6t

SPI-9 SPI9t-2, SPI9t-1, SPI9t

SPI-12 SPI12t

Dorahi SPI-3 SPI3t-6, SPI3t-5, SPI3t-4, SPI3t-3, SPI3t-2, SPI3t-1, SPI3t

SPI-6 SPI6t-2, SPI6t-1, SPI6t

SPI-9 SPI9t-2, SPI9t-1, SPI9t

SPI-12 SPI12t

Rooyan SPI-3 SPI3t-6, SPI3t-5, SPI3t-4, SPI3t-3, SPI3t-2, SPI3t-1, SPI3t

SPI-6 SPI6t-2, SPI6t-1, SPI6t

SPI-9 SPI9t-2, SPI9t-1, SPI9t

SPI-12 SPI12t

Fig. 6 Flowchart of the model development
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1.2%, 1.5% and 1.2% for Bastam station, by 12%, 7.5%

and 16% for Dorahi station, by 12%, 3.3% and 3.6% for

Rooyan station, respectively. In two stations (Abrsij and

Bastam), the ET, VAR and MARS have almost the same

accuracy. In Rooyan station, the VAR and MARS have

similar test results and they are superior to the ET while

VAR forecasts SPI-9 better than the MARS and ET in

Dorahi station.

Table 6 sums up the test accuracies of the implemented

methods in forecasting SPI-12 of four stations. As clearly

seen from Table 6, the LSTM has provided the best

accuracy with the lowest RMSE (0.233–0.309) and the

Table 3 Testing results in forecasting SPI-3

Station Model Testing phase

RMSE NSE R

Abrsij LSTM 0.511 0.690 0.856

Extra-tree 0.662 0.479 0.749

VAR 0.630 0.528 0.792

MARS 0.592 0.584 0.803

Bastam LSTM 0.495 0.697 0.836

Extra-tree 0.575 0.592 0.769

VAR 0.541 0.639 0.807

MARS 0.513 0.674 0.821

Dorahi LSTM 0.451 0.682 0.846

Extra-tree 0.581 0.473 0.770

VAR 0.532 0.558 0.791

MARS 0.519 0.580 0.805

Rooyan LSTM 0.415 0.696 0.839

Extra tree 0.458 0.631 0.796

VAR 0.454 0.636 0.825

MARS 0.452 0.640 0.808

Table 4 Testing results in forecasting SPI-6

Station Model Testing phase

RMSE NSE R

Abrsij LSTM 0.390 0.806 0.909

Extra-tree 0.411 0.784 0.898

VAR 0.411 0.784 0.900

MARS 0.410 0.785 0.900

Bastam LSTM 0.386 0.815 0.903

Extra-tree 0.415 0.787 0.888

VAR 0.391 0.811 0.900

MARS 0.397 0.805 0.898

Dorahi LSTM 0.341 0.790 0.906

Extra-tree 0.395 0.719 0.884

VAR 0.373 0.750 0.903

MARS 0.362 0.763 0.896

Rooyan LSTM 0.375 0.780 0.889

Extra-tree 0.447 0.687 0.841

VAR 0.416 0.728 0.860

MARS 0.401 0.748 0.865

Table 5 Testing results in forecasting SPI-9

Station Model Testing phase

RMSE NSE R

Abrsij LSTM 0.371 0.848 0.893

Extra-tree 0.387 0.762 0.889

VAR 0.387 0.762 0.887

MARS 0.386 0.762 0.884

Bastam LSTM 0.405 0.834 0.914

Extra-tree 0.410 0.829 0.911

VAR 0.411 0.829 0.911

MARS 0.410 0.829 0.911

Dorahi LSTM 0.331 0.777 0.891

Extra-tree 0.376 0.712 0.860

VAR 0.358 0.739 0.872

MARS 0.394 0.684 0.837

Rooyan LSTM 0.322 0.819 0.905

Extra-tree 0.366 0.766 0.875

VAR 0.333 0.806 0.898

MARS 0.334 0.806 0.898

Table 6 Testing results in forecasting SPI-12

Station Model Testing phase

RMSE NSE R

Abrsij LSTM 0.246 0.865 0.932

Extra-tree 0.269 0.838 0.921

VAR 0.355 0.718 0.859

MARS 0.274 0.832 0.926

Bastam LSTM 0.309 0.904 0.951

Extra-tree 0.393 0.846 0.923

VAR 0.336 0.887 0.950

MARS 0.325 0.894 0.946

Dorahi LSTM 0.233 0.852 0.925

Extra-tree 0.330 0.704 0.858

VAR 0.371 0.626 0.831

MARS 0.265 0.808 0.922

Rooyan LSTM 0.238 0.887 0.942

Extra-tree 0.338 0.773 0.885

VAR 0.350 0.756 0.939

MARS 0.281 0.843 0.921
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highest NSE (0.852–0.904) and R (0.925–0.951). The

RMSE of the ET, VAR and MARS was improved by 8.6%,

30.7% and 10.2% for Abrsij station, by 21.4%, 8% and

4.9% for Bastam station, by 29.4%, 37.2% and 12.1% for

Dorahi station, by 29.6%, 32% and 15.3% for Rooyan

station applying LSTM, respectively. The MARS method

has the second rank in forecasting SPI-12.

The accuracies of the applied methods in forecasting

SPI-12 are graphically compared in Figs. 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18 and 19. Time variation graphs of the

Fig. 7 Observed and forecasted time variation graphs of different models in forecasting SPI-12 at Abrsij station

(d)(c)

(b)(a)

Fig. 8 Scatter plots of

forecasted and observed SPI-12

using: a LSTM, b extra-tree,

c VAR and d MARS for Abrsij

station
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observed and forecasted SPI-12 values are illustrated in

Figs. 7, 9, 11 and 13, while Figs. 8, 10, 12 and 14 show the

scatter diagrams. It is clear from the time variation graphs

that the LSTM forecasts are closer to the corresponding

observed SPI-12 values compared to other three methods in

all stations. After the LSTM, the MARS takes the second

place, while the ET and VAR seem to be insufficient to

catch SPI-12 values. Scatterplots tell us that the LSTM has

Fig. 9 Observed and forecasted time variation graphs of different models in forecasting SPI-12 at Bastam station

(d)(c)

(b)(a)

Fig. 10 Scatter plots of

forecasted and observed SPI-12

using a LSTM, b extra-tree,

c VAR and d MARS for Bastam

station

2436 Neural Computing and Applications (2022) 34:2425–2442

123



less scattered forecasts than the other alternative methods.

The RMSE and NSE values of the implemented methods

are also compared in Fig. 15. As clearly observed, the

LSTM has the lowest RMSE and the highest NSE in all

stations and its accuracy is followed by the MARS method.

Taylor diagrams in Figs. 16, 17, 18 and 19 also compare

test results of the four applied methods. As evident from

these graphs, the LSTM has the highest correlation and its

Fig. 11 Observed and forecasted time variation graphs of different models in forecasting SPI-12 at Dorahi station

(d)(c)

(b)(a)

Fig. 12 Scatter plots of

forecasted and observed SPI-12

using a LSTM, b extra-tree,

c VAR and d MARS for Dorahi

station

Neural Computing and Applications (2022) 34:2425–2442 2437

123



standard deviation is closer to the observed one in all four

stations. The less accuracy of ET and VAR compared to

MARS is clearly observed from the Taylor diagrams.

Overall, the numerical and visual assessment of the

application outcomes indicated that the LSTM is superior

to the ET, VAR and MARS methods in forecasting

droughts based on SPI index. It was observed that the

accuracy of the methods increases by the increment in the

window of SPI (from SPI-3 to SPI-9). LSTM is a deep

learning method and having some advantages to classical

methods as also mentioned before. The most important one

is the memory of its cells which is able to keep information

Fig. 13 Observed and forecasted time variation graphs of different models in forecasting SPI-12 at Rooyan station

(a) (b)

(c) (d)

Fig. 14 Scatter plots of

forecasted and observed SPI-12

using a LSTM, b extra-tree,

c VAR and d MARS for

Rooyan station
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(a)

(b)

Fig. 15 a RMSE and b NSE

values of different models in

forecasting SPI-12
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Fig. 16 Taylor diagram of different models in forecasting SPI-12 at

Abrsij station
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Fig. 17 Taylor diagram of different models in forecasting SPI-12 at

Bastam station
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of previous time step, and this causes more effective

learning process.

The presented study (LSTM model) is compared with

the existing literature in Table 7 with respect to correlation

coefficient (R). Belayneh and Adamowski [7] used wavelet

neural networks (WNN) in estimating SPI-3 and SPI-12

and obtained R of 0.883 and 0.953 for the best models,

respectively. Jalalkamali et al. [21] applied MLP ANN and

ANFIS methods in modelling SPI-3, SPI-6 and SPI-9 and

the optimal models provided the R as 0.895, 0.880 and

0.840, respectively. Kisi et al. [29] compared the ANFIS

and metaheuristic algorithms in estimation of different SPI

indices, and they found that the optimal models gave R of

0.872, 0.922, 0.878 and 0.912 for the SPI-3, SPI-6, SPI-9

and SPI-12, respectively. The R ranges of the best model

(LSTM) of the present study obtained through the four

stations clearly indicate that the proposed model success-

fully estimates four SPI indices.

4 Conclusion

The study investigated the ability of LSTM deep learning

method in forecasting four SPI indices obtained from four

stations of Iran. The outcomes produced by this method

were compared with extra-trees, VAR and MARS methods

considering numerical criteria, RMSE, NSE and R and

visual methods, time variation graphs, scatter plots and

Taylor diagrams. The overall outcomes tell us that the

LSTM method performed superior to the other methods in

forecasting droughts based on SPI-3, SPI-6, SPI-9 and

SPI012. The proposed method considerably improved the

forecasting accuracy; improvements in RMSE accuracy of

the extra-trees, VAR and MARS are by about 17.1%,

12.8% and 9.6% for SPI-3, by 10.5%, 6.2% and 5% for

SPI-6, by 7.3%, 4.1% and 6.2% for SPI-9 and by 22.2%,

27% and 10.6% for SPI-12. The accuracy rank of the

methods applied is LSTM[MARS[VAR[ET in

forecasting drought based on standard precipitation index.

The evaluation outcomes recommend the use of deep

leaning method (LSTM) in forecasting SPI-based droughts.

This can be useful for the manager of decision-makers in

planning water resources and management. The main

limitation of the presented method is having more complex

structure and training duration compared to MARS, VAR

and ET methods. By the advancement in the computer

science (advanced computers), however, this problem can

be easily coped. The generalization of the present study can

be improved by using different benchmarks from different

regions of the globe.
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Fig. 18 Taylor diagram of different models in forecasting SPI-12 at

Dorahi station
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Fig. 19 Taylor diagram of different models in forecasting SPI-12 at

Rooyan station
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