
ORIGINAL ARTICLE

A simple and efficient rainfall–runoff model based on supervised brain
emotional learning

Sara Parvinizadeh1 • Mohammad Zakermoshfegh1 • Maryam Shakiba2

Received: 6 November 2020 / Accepted: 26 August 2021 / Published online: 9 September 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
To achieve a robust data-driven flood forecasting model, features such as fast learning, appropriate training using insuf-

ficient data and reliable prediction of flood flows are of essential importance. These models also have notable vulnera-

bilities such as decreased accuracy in forecasting peak discharges, challenging simulation of rainy events, performance

deterioration in confronting with inadequate training data and weakness due to reduced number of training epochs. In this

paper, the supervised brain emotional learning (SBEL) neural network has been used in daily rainfall–runoff modeling of

the Dez Dam watershed in the southwest of Iran, as its first application in the field of hydrology. SBEL is a supervised

neurocomputing model inspired by the limbic system in the mammalian brain. To create the right responses, the SBEL

models the processing of emotional stimuli and the inhibitory mechanism of incorrect responses to stimuli in the emotional

brain. The performance of SBEL was compared to the well-known multilayer perceptron (MLP) with 15–8–1 architecture,

through different perspectives. The SBEL outperforms MLP in peak flow prediction, limiting the training epochs, reducing

the training samples and predictions of rainy events, while improving the mean relative error by 21%, 59.4%, 74.5% and

14.4%, respectively. By placing reduced training data in dry, normal and wet periods, it has been observed that SBEL has

more generalization ability in all flow regimes. Overall, the use of this type of emotional intelligence-based model can be

of particular interest in developing reliable early flood forecasting and warning systems.

Keywords Supervised brain emotional learning � Limited training samples � Precise peak discharge forecasting �
Fast learning

1 Introduction

Over the past two decades, the data-driven watershed

runoff models have played a key role in flood forecasting

studies. Extensive efforts have been conducted to enhance

the capabilities of artificial intelligence-based methods in

the development of flood forecasting and warning systems

[1, 2]. However, due to the complex, nonlinear and

dynamic nature of the rainfall–runoff process, accurate

modeling of this process has always been challenging

[3–5]. The models presented to simulate the hydrologic

behavior of the watershed can be classified into three

general categories, including physical, conceptual and

data-driven models [6]. Where the calibration of concep-

tual models is challenging and time-consuming due to the

multiple parameters and insufficient available datasets,

data-driven models can be appropriate alternatives. The

popularity of data-driven models is due to their ability to

discover complex relationships and create a nonlinear

mapping between input and output spaces in the presence

of limited and noisy data sets [7–9]. Nowadays, artificial

intelligence including machine learning approaches, fuzzy

inference systems, evolutionary computations and com-

plementary wavelet models has been found wide applica-

tions in hydrology [10–21]. In this regard, artificial neural
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networks (ANNs) as one of the most promising machine

learning approaches have been widely used in rainfall–

runoff modeling [22–26]. An artificial neural network is a

parallel data processing system that is capable of storing

information obtained through the learning process as well

as generalizing the acquired knowledge to different events

[27, 28].

So far, many studies have been conducted to compare

different ANN models in river flow forecasting. Anctil

et al. [29], using the multilayer perceptron (MLP) neural

network in the single-step-ahead flow forecasting, showed

that this model is affected by the length of the training

dataset. Cigizoglu [30] used the generalized regression

neural network (GRNN) to estimate daily mean flows and

showed that this algorithm has fewer problems such as

trapping at the local minima and has higher accuracy

compared to the feed-forward neural network, regression

and stochastic methods. Studying different ANN models in

some cases has shown the superiority of the radial basis

function neural network (RBFNN) model to other super-

vised methods, due to features such as smaller extrapola-

tion errors, faster convergence and higher reliability

[31–36]. However, RBFNN performance is deteriorated by

inadequate training data [37]. Furthermore, to enhance the

forecasting accuracy of a neural network, the model can be

combined with other methods of artificial intelligence;

including evolutionary algorithms and wavelet-based

methods, which have shown good performance in hydrol-

ogy science [38–41]. Nourani [42] employed the emotional

backpropagation (EmBP)-based neural network for the

rainfall–runoff modeling and obtained better results than

the feed-forward neural network in multi-step-ahead fore-

casting. Yaseen et al. [43] used the extreme learning

machine (ELM) neural network to the river flow forecast-

ing and showed that the method has a simpler architecture

and more learning speed than the MLP. Yaseen et al. [44]

combined the ELM model with wavelet-based methods and

achieved higher accuracy in river flow forecasting.

Araghinejad et al. [45] used a modified neural network that

is different in terms of activation function compared to the

MLP. Moreover, to increase the forecasting accuracy of

low and high flow values, initially, they performed the

classification of these flows using a probabilistic neural

network. Darbandi and Pourhosseini [46] used the MLP

neural network based on the firefly optimization algorithm

to river flow forecasting. The firefly optimization algorithm

is based on moving the population toward the brightest

firefly. Ni et al. [47] predicted the monthly river flow, by

developing two hybrid models based on the long short-term

memory network (LSTM). A comparison of models per-

formance showed that the LSTM-based hybrid models,

LSTM and MLP models illustrated the highest accuracy,

respectively.

Some other data-driven methods such as support vector

machines (SVMs) have also shown good performance in

various prediction problems. YU et al. [48] proposed an

algorithm to train SVMs on a bound vectors set that was

extracted based on Fisher projection. They used linear and

nonlinear problems to verify the proposed algorithm. For

each case, they selected a certain ratio samples whose

projections were adjacent to those of the other class as

bound vectors. For the first time, a two-side cross-domain

collaborate filtering model was proposed by YU et al. [49].

They assumed that there existed two auxiliary domains,

i.e., user-side domain and item-side domain, where this

two-side domain shared the same aligned users and items,

respectively. YU et al. [50] proposed a cross-domain col-

laborative filtering algorithm to overcome some drawbacks

including that most recommender systems only take

advantage of information from a two-side cross-domain,

i.e., user-side domain and item-side domain.

Despite the abilities of artificial neural networks for

rainfall–runoff modeling, these methods also shown some

challenges and problems in the previous studies. Over-

training, the challenge of predicting extreme values, local

minima, adjusting the architecture and tuning the training

parameters are some of these problems [22, 43, 51–53].

Also, inadequate and limited training data sets reduce the

accuracy of ANN prediction [54, 55]. On the other hand, in

a low number of training epochs, the accuracy of the ANN

will also be reduced. So far, various methods have been

proposed to solve these problems, such as wavelet-based

artificial neural networks [56–58]. Therefore, providing a

model with the least complexity in terms of the number of

parameters, simple structure and fast learning at the same

accuracy is very important. Recently, the study of human

psychological features, as an intelligent emotional entity,

has led to the appearance of a new class of ANNs based on

emotions [59]. Emotional ANNs can be classified into two

general categories, including ANNs based on emotional

backpropagation (EmBP) and ANNs based on brain emo-

tional learning (BEL) [60, 61]. BEL network is based on

the mammalian emotional brain, which is more like human

emotional processes than EmBP [62]. In this paper, as the

first application in hydrology, the supervised BEL (SBEL)

neural network has been used in rainfall–runoff modeling.

Biologically, when faced with a danger in which the logical

mind does not have enough time to process, the emotional

stimulus can react more quickly using short paths in the

emotional brain [63, 64]. The operation of BEL is similar

to the response of the brain to emotional stimuli. Rapid

response to stimuli due to the existence of short paths in the

emotional brain and the presence of a part that inhibits

inappropriate responses in critical situations are some

characteristics of this kind of neural network, which will

increase the accuracy of the model [65]. Therefore, the
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model is based on the interaction of emotion and cognition.

On the other hand, it has a simple architecture and, due to

the lack of hidden layers in its structure, does not encounter

the usual challenge in designing the architecture of a MLP

neural network. The special features of this class of ANNs

motivate this study. The SBEL has been successful in

different applications such as chaotic time series prediction

[66–69], prediction of geological science events

[59, 70, 71] and prediction of wind power [62]. Besides, it

has been applied to controlling the heat and air conditions

[72] and smart machines [73, 74].

This paper aims to develop a rainfall–runoff model

using SBEL on a daily time scale and compare its perfor-

mance with the MLP as the universal approximator. The

biological basis of the emotional brain, structure and

mathematical model of SBEL will be described. Then, the

ability of SBEL to predict peak flows and also discharge at

non-rainy days as well as rainy days (with at least one

recorded rainfall event in all precipitation stations) will be

investigated. Also, the network performance will be

examined in conditions of limited training data by reducing

the length of the training dataset in three different sce-

narios, including dry, normal and wet training periods. The

learning speed and accuracy of the network will also be

measured by reducing the number of training epochs. In all

aforementioned analysis, the SBEL performance has been

compared to the MLP as the most common ANN in

hydrologic modeling.

2 Methodology

2.1 Multilayer perceptron artificial neural
network

The MLP neural network with backpropagation training

algorithm is a widely used type of ANNs, applied in var-

ious fields of hydrology to predict nonlinear systems

[22, 75]. The MLP model, called the universal approxi-

mator, can create nonlinear mappings between input and

output spaces, which can estimate any nonlinear function

desirably [76]. The MLP structure includes one input layer,

one or more hidden layers and one output layer [27]. The

schematic diagram of an MLP neural network with one

hidden layer is presented in Fig. 1. Due to the effect of

topology and learning algorithm on the performance of the

MLP, it is essential to precisely determine some factors

such as the number of neurons in each hidden layer, the

activation functions and, finally, the network weights [77].

The number of neurons in the input and output layers is

determined based on the problem statement [78]. The

number of hidden layers, as well as the number of neurons

in each layer, depends on the complexity of the problem

and are usually determined by trial and error [79]. The

small number of neurons in hidden layer can lead to

reduced network learning ability, while a large number

may cause problems such as overtraining [78]. The acti-

vation functions in the neurons are responsible for the non-

linearization of the input signals [80], and the most com-

monly used functions are sigmoid and hyperbolic tangent.

Adjusting network weights is also performed in the training

phase based on the back propagation (BP) algorithm by

propagating the error to the back layers to minimize the

difference between the observed and calculated values

[81].

2.2 Brain emotional learning-based artificial
neural network

Emotional learning is caused by emotional stimuli such as

rewards and punishments received from various real-life

situations and associated with emotional states such as

happiness, fear, etc. [82]. All of these processes, such as

receiving rewards and punishments, processing emotional

stimuli and creating emotional states, take place in the

central area of the brain called the limbic system (LS),

which plays an important role in the emotional process

[83, 84]. Figure 2 shows the limbic system and its main

components, including the thalamus, sensory cortex,

amygdala, orbitofrontal cortex, hypothalamus and hip-

pocampus [83–85]. There are two ways to get external

stimuli by the amygdala. One path is short and fast,

including a naı̈ve content that comes directly from the

thalamus, and the other is a long and slower path, including

more veritable information coming from the sensory cortex

[86]. Given the pathways mentioned above, the amygdala

will give an imprecise but quick response to stimuli. Then,

based on the interactive mechanism that exists in the

emotional brain between the amygdala and the orbito-

frontal cortex, imprecise responses of the amygdala to the

stimuli will be inhibited by the orbitofrontal cortex

[87, 88].

The existence of short paths and rapid responses to the

learning process of the emotional brain, as well as the

correction of inaccurate responses, has led to mathematical

modeling of this type of learning process and the emer-

gence of a new class of artificial neural networks based on

emotional intelligence. Several models of BEL have been

presented so far, all of which are based on the amygdala–

orbitofrontal model [61, 87]. In this study, we used the

supervised BEL (SBEL) as a universal approximator that

was first proposed by Lotfi and Akbarzadeh-T [89] by

modifying the amygdala–orbitofrontal model. In Fig. 3,

SBEL is presented with n inputs, single output and one

sensory cortex area.
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The model consists of four neural components in the

emotional brain, including the thalamus, sensory cortex,

amygdala and orbitofrontal cortex that interact with each

other. Figure 3 shows the data flow as solid lines and the

learning flow in the form of dashed lines. The number of

nodes in each area equals the number of inputs except in

the amygdala, which has an additional node.

First, inputs enter the thalamus, and the added imprecise

input will be generated using a feature expansion function

according to Eq. (1). The feature expansion function makes

the new features by the input characteristics and can be a

sinusoidal, Gaussian or max function.

If p ¼ ½p1:p2:. . .:pn� be the input vector, then the

expanded feature will be computed as:

pnþ1 ¼ max
j¼1;n;n

pj
� �

ð1Þ

where pnþ1 is the expanded input to the amygdala. The

sensory cortex receives the input signal p from the thala-

mus and releases it to the amygdala and orbitofrontal

cortex. The orbitofrontal cortex receives n inputs from the

sensory cortex. It does not receive any input from the

thalamus, while the amygdala, in addition to receiving

inputs from the sensory cortex, also directly receives the

expanded feature of the thalamus as input. Finally, the

SBEL output will be calculated according to Eq. (2).

E ¼ Ea � Eo ð2Þ

where Ea and Eo are the outputs of the amygdala and

orbitofrontal cortex, respectively, and are calculated as

follows:

Ea ¼
Xnþ1

j¼1

vjt � pj
� �

ð3Þ

Eo ¼
Xn

j¼1

wj � pj
� �

þ b ð4Þ

In Eqs. (3) and (4), vj is the learning weight of the

amygdala, and wj and b are the learning weight and the bias

of orbitofrontal, respectively.

Fig. 1 Multilayer perceptron artificial neural network

Fig. 2 Limbic system in the brain [82]

1512 Neural Computing and Applications (2022) 34:1509–1526

123



After calculating the final output, it is necessary to

correct the weights w, v and the bias so that the network

output leads to the least error as follows:

vkþ1
j ¼ 1� cð Þ � vkj þ a�max T � Ea; 0ð Þ � pkj
j ¼ 1; . . .; nþ 1:

ð5Þ

wkþ1
j ¼ wk

j þ b� E � Tð Þ � pkj j ¼ 1; . . .; n ð6Þ

Bkþ1 ¼ Bk þ b� E � Tð Þ ð7Þ

where a and b are learning rates, c is the proposed decay

rate, T is the target value, and k is the learning step. The

max operator in Eq. (5) will also result in monotonic

learning [82]. In the learning process of the amygdala, c
controls the effects of target values as well as monotonic

learning in the model and simulates the forgetting role of

the amygdala [90]. In this way, controlling the monotonic

learning will lead to model performance improvement and

consistent decision making [89].

3 Case study and dataset

The Dez River, with upstream catchment area of 17,000 sq.

km and an average annual discharge of 245 cms released to

the Dez Dam reservoir, is one of the major rivers of Iran in

terms of runoff volume. The presence of the 203 meters

height Dez Dam and hydroelectric power plant upstream of

Dezful city with the aim of flood control, power generation

and supplying water to the Dezful Plain has increased its

importance.

With many destructive flood events generated annually

in this catchment, it is necessary to develop flood man-

agement strategies, especially early flood forecasting and

warning systems on the Dez River to optimal maneuvering

of the dam gated spillways and reservoir operation to

protect the downstream plane.

The Taleh-Zang hydrometric station has been con-

structed on the Dez River, upstream of the Dez Dam, that

measures the inflow to the dam reservoir. The mean daily

discharge data at this station besides precipitation data at

twelve rain gauges for the period September 1982 to

September 2014 (7304 events) were used in this study

(Fig. 4).

To predict mean discharge of Taleh-Zang hydrometric

station through rainfall–runoff modeling at a given day,

fifteen independent variables have been used, including

discharges of one and 2 days ago, daily rainfall of twelve

rain-gauge stations and a weighted antecedent precipitation

index (WAPI). The WAPI is a weighted sum of previous

rainfall values used as a modified antecedent soil moisture

content of the watershed.

In this paper, WAPI is calculated by Eq. (8) based on the

weighted summation of daily precipitation values of 12

precipitation stations in the past 5 days.

API ¼ 1 pt�1ð Þ þ 0:9 pt�2ð Þ þ 0:8 pt�3ð Þ þ 0:7 pt�4ð Þ þ 0:6ðpt�5Þ
1þ 0:9þ 0:8þ 0:7þ 0:6

ð8Þ

Fig. 3 Brain emotional learning-based artificial neural network [82]
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In Eq. (8), WAPI is the weighted antecedent precipita-

tion index in millimeters and Pt�1, Pt�2, Pt�3, Pt�4 and

Pt�5 are the antecedent mean daily precipitation of whole

12 precipitation stations during one to five previous days.

The weight given to each rainfall average is such that the

recent days will receive greater weights, linearly.

4 Results and discussion

4.1 Experimental design

In this paper, the data set was scaled in order to balance the

data range, prevent early saturation of the neurons and

avoid variables with large numerical ranges dominating the

role of the smaller numerical ranges.

The following equation is used for data normalization:

xn ¼ 0.05þ 0.9� x� xminð Þ
xmax � xminð Þ ð9Þ

where x, xn, xmin and xmax are raw, normalized, minimum

and maximum values of observations, respectively.

Accordingly, the data are converted to the range [0.05,

0.95]. Using this domain instead of the range [0, 1] is due

to add more flexibility to the model in simulating possible

future events. This option allows values less than the

minimum as well as larger than maximum of the available

data to be better processed in probable future

circumstances.

In this paper, statistical indicators such as coefficient of

determination (R2), root mean square error (RMSE), mean

relative error (MRE), Taylor diagram and Violin plot have

been used to evaluate the performance of MLP and SBEL

models in rainfall–runoff simulation.

Fig. 4 The location map of the study area
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R2 ¼
Pn

i¼1 Qoi � Qo

� �
Qci � Qc

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Qoi � Qo

� �2Pn
i¼1 Qci � Qc

� �2
q

2

64

3

75

2

ð10Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Qoi � Qcið Þ2

n

s

ð11Þ

MRE %ð Þ ¼ 1

n

Xn

i¼1

Qoi � Qcij j
Qoi

� 100 ð12Þ

where R2, RMSE and MRE are the coefficient of determi-

nation, root mean square error and mean relative error

percentage, respectively. Also Qoi, Qci, Qo, Qc and n are

the observed discharge, computed discharge, mean

observed discharge, mean computed discharge and number

of observations, respectively.

The Taylor diagram is a graph that simplifies the com-

parison and evaluation of different models. It has recently

been frequently used in weather studies [91–94]. This

diagram was first proposed by Taylor [95], which is based

on the geometric relationship between correlation coeffi-

cient (R), the standard deviation of time series and root

mean square difference (RMSD). The latter is calculated as

follows [91, 95]:

RMSD2 ¼ r2c þ r2o � 2rcroR: ð13Þ

r2c ¼
1

n

Xn

i¼1

ðQci � QcÞ2 ð14Þ

where r2c and r
2
o are the variance of computed and observed

data, respectively.

The Taylor diagram is presented in the form of a half-

circle (to show positive and negative correlations) or a

quarter circle (to show positive correlations). In either case,

values of the correlation coefficient in the form of the

radius of the circle, the standard deviation values in the

form of co-centric circles around the origin of coordinates

and the values of RMSD as co-centric circles around the

reference point are plotted. The reference point represents

the location of the observed data. To evaluate and compare

the performance of models, the location of the models

based on the three above-mentioned indices will be plotted

on the graph, and any model whose position on the chart is

closer to the reference point will have more precision in the

forecasting.

The Violin graph is a combination of box and density

graphs representing the distribution of data and their

probability density. The superiority of this plot than the

box diagrams is the form of the data distribution that is

drawn as prominence on the left and right of the box plot. It

will also be able to identify data clusters, as well as min-

imum and maximum values [96]. A wider section of the

graph in a given value indicates the greater the density of

data at that value, and the smaller width, the less likely the

sample will take that value.

4.2 Overall performance of the models

In this section, the ability of the MLP and SBEL models in

simulating the daily rainfall–runoff process of Dez Dam

watershed is compared. The proposed SBEL and MLP

models have been written and evaluated on MATLAB

R2014b. In the MLP model, determining the number of

hidden layers and the number of neurons in each layer, as

well as the number of training epochs, is considered to be

an important issue. In this paper, through trial and error, the

MLP neural network with one hidden layer containing

eight neurons and 176 training epochs has been used. In the

hidden and output layers, tangent sigmoid and linear acti-

vation functions have been used, respectively. Also, by trial

and error, the momentum coefficient and the learning rate

of MLP are set as 0.0011 and 0.0017, respectively. On the

other hand, due to the absence of the hidden layer in SBEL

structure, the challenge of determining the number of

hidden neurons does not exist in this model. The perfor-

mance of SBEL was evaluated using the sinusoidal,

Gaussian and max operators as feature expansion func-

tions. No significant difference in the SBEL performance

was observed using these functions. Therefore, since the

previous studies used the max operator to feature expan-

sion, in this study the max function was selected as well

[55, 69, 82, 89]. All three parameters of the SBEL model

can also take values in the range [0, 1], which are adjusted

to 0.01, 0.01 and 0 by trial and error for a, b and c,
respectively. These values are consistent with the results

reported by Lotfi and Akbarzadeh [90]. The linear activa-

tion function in SBEL is adopted for both the amygdala

output and the final output. In order to evaluate the per-

formance of the MLP and SBEL models, the watershed

data have been divided into 70, 15 and 15 percentages for

training, cross-validation and validation, respectively.

The distribution of the observed and forecasted river

flow by MLP and SBEL models is presented in the Violin

plot, as shown in Fig. 5. This figure shows that the most

river discharges are in the range from 0 to 200 cms, and the

river flow distribution predicted by SBEL is closer to the

observed flow distribution. Considering the higher corre-

lation between the observed and predicted data by SBEL,

as shown in the scatter plots of Fig. 6, it can be concluded

that the overall performance and accuracy of the SBEL in

the river flow prediction is higher than the MLP. Also,

SBEL can estimate the peak discharges closer to their

observations and has higher accuracy than MLP. In table 1,

the lower values of RMSE and MRE and higher correlation

between observed and predicted discharge values in all

three training, cross-validation and validation phases

Neural Computing and Applications (2022) 34:1509–1526 1515
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denote more accuracy in SBEL compared to MLP. Also,

SBEL has been able to improve the MRE percentage of

MLP up to 59.9%, 56.2%, 57.5% and 69.8% for predicting

total data, training, cross-validation and validation data,

respectively.

4.3 Predicting peak discharges

The accurate prediction of peak values is usually a chal-

lenge in data-driven modeling, including rainfall–runoff

simulation. Therefore, due to the importance of peak flows

in flood management, the peak discharge in each water

year has been extracted and the prediction accuracy of peak

flow values is investigated using MLP and SBEL models.

According to the results shown in Table 2, SBEL has a

lower RMSE than MLP and has improved the MRE

percentage than the MLP model up to 21%. On the other

hand, considering the scatter plots presented in Fig. 7 and

the hydrograph illustrated in Fig. 8, SBEL is more capable

of predicting peak flows. If peak discharges can be inter-

preted as emotional stimuli, it can be deduced that the

brain’s emotional learning features mentioned in Sect. 2.2,

including the existence of the emotional processor and also

imprecise response modifier, have improved the SBEL

performance. Therefore, SBEL can be useful in developing

flood warning systems with an emphasis on forecasting

peak discharges.

4.4 Limiting the training data

In hydrological time series, high flows usually have much

less abundance than low flows. Therefore, most data-driven

methods require a large and varied set of training data to

predict high flow values accurately. As training data are not

always available sufficiently in many cases, this is a serious

limitation for data-driven models. In ANNs, inadequate

training data also lead to a decrease in generalization

capability and an increase in forecasting error. In this

section of the study, the performance of the MLP and

SBEL models has been evaluated by limiting the number of

training samples from 70% to 10% of all samples (equiv-

alent to two water years). The observed and predicted

runoff hydrographs are presented in Fig. 9. Results show

that the SBEL has been more effectively trained and also

has forecasted the peak discharge values with more accu-

racy even under the condition of a limited training dataset.

On the other hand, considering Fig. 10, the RMSE and

MRE of the SBEL are significantly lower than the MLP for

the total data, training, cross-validation and validation data,

e.g., the SBEL has been able to improve the MRE by

74.5%. According to Table 3, the predicted runoff volume

by the SBEL is closer to the observed runoff volume.

Fig. 5 Violin plot of the observed and predicted runoff time series

using MLP and SBEL models (all datasets)

Fig. 6 The scatter plots of the predicted versus the observed runoff time series using a MLP and b SBEL models (all datasets)

1516 Neural Computing and Applications (2022) 34:1509–1526

123



Considering the satisfactory agreement between the

observed and predicted runoff resulted by SBEL in the

cross-validation and validation phases, it can be concluded

that the SBEL model has a higher generalization ability

even under conditions of limited data availability.

Moreover, to further compare the performance of both

ANNs trained with 10% of the total data, where the

training data are not sufficiently varied, three different

training scenarios, including training data located in dry,

normal and wet periods, separately, are considered. The

results presented in Table 4 show that by reducing training

data from 70% to 10% and restricting them to a specific

scenario, the MLP network could not adequately be

trained, and its generalization capability in cross-validation

and validation is reduced compared to SBEL. In contrast,

SBEL has been better trained and is able to generalize its

knowledge with acceptable performance under different

conditions.

The less RMSE and MRE in the SBEL indicate the

superiority of this model in the condition of limiting the

training data. Also, SBEL has been able to improve the

MRE percentage of MLP in predicting total data, training,

cross-validation and validation data, respectively, up to

68.2%, 54.2%, 70.8% and 67.7% for the scenario of dry

water years, 68.7%, 64.7%, 66.5% and 70.8% for the

scenario of normal water years and 76.6%, 65.1%, 72.9%

and 75.2% for the scenario of wet water years.

Table 1 Overall performance indicators of MLP and SBEL models

Error criterion Data

All data Training Cross-validation Validation

SBEL MLP SBEL MLP SBEL MLP SBEL MLP

QC 0.92Qo 0.94 Qo 0.9 Qo 0.93 Qo Qo 0.98 Qo 1.22 Qo 1.02 Qo

R2 0.84 0.89 0.86 0.89 0.77 0.85 0.63 0.72

RMSE 98.1 95 102.6 101.4 93.1 86.5 80.2 68.2

MRE (%) 41.4 16.6 33.3 14.6 49.7 21.1 71 21.4

RMSE improvement by SBEL (%) ? 3.2 ? 1.2 ? 7.1 ? 15

MRE improvement by SBEL (%) ? 59.9 ? 56.2 ? 57.5 ? 69.8

Table 2 Performance of MLP and SBEL models in peak discharges prediction of each water year

Model Qc R2 RMSE MRE (%) RMSE Improvement by SBEL (%) MRE Improvement by SBEL (%)

MLP 0.62Qo 0.87 844.4 30.9 ? 15.6 ? 21

SBEL 0.71Qo 0.73 712.7 24.4

Fig. 7 The scatter plots of the predicted versus the observed peak discharges using a MLP and b SBEL models
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According to the Taylor diagram in Fig. 11, it can be

seen that the performance of both models decreases during

the training phase in the normal period than the wet period,

as well as the training in the dry period compared to the

normal period. However, SBEL is more accurate than MLP

in all three scenarios. The results show a higher perfor-

mance of SBEL versus MLP in the case of limited training

data.

4.5 Discharge forecasting in non-rainy events

To evaluate the performance of the models at daily events

in which no rainfall has been observed, the days with zero

precipitation records have been extracted. Then, the accu-

racy of the models has been evaluated in terms of fore-

casting discharge on these events. According to Fig. 12 and

Table 5, the correlation between observed and predicted

flows in the SBEL is somewhat more than the MLP. Also,

the RMSE in the SBEL model is amended, and the MRE is

improved by 78.3% compared to the MLP.

4.6 Discharge forecasting in rainy events

River flow forecasting when the basin response is due to

rainfall excitation is more complex and challenging than

when no precipitation enters the hydrological system.

Hence, the performance of models has been evaluated in

discharge forecasting of days which include recorded

rainfall events in at least one meteorological station. The

results in Fig. 13 and Table 6 indicate that the SBEL

improved the coefficient of determination and MRE

percentage and was more accurate in discharge forecasting

of rainy events.

4.7 Training speed

In most early flood forecasting and warning systems, the

training (or calibration) speed of the forecasting model is of

paramount importance in system reliability. Through this

perspective, a model that is capable of achieving appro-

priate learning in fewer training epochs is more efficient.

Figure 14 illustrates the trend of training error reduction in

MLP and SBEL models versus the number of iterations.

Considering the vertical dashed lines drawn in the diagram,

the error will reach an acceptable value (3% of the previous

step error value) after 26 epochs in SBEL and after 49

epochs in MLP models. Therefore, the SBEL model has

achieved faster training with fewer iterations.

According to the indices presented in Table 7, it is clear

that by reducing the number of training epochs, the per-

formance of both models deteriorates. However, the SBEL

is more robust than MLP, confronting the reduction of

training epochs. At the same time, the SBEL was able to

perform lower RMSE and MRE values than the MLP

model in different numbers of iterations. Also, the SBEL

was appropriately trained, even with a very low number of

iterations, i.e., 10 epochs, and due to its performance in

cross-validation and validation periods, it has shown

acceptable generalization ability. In the MLP and SBEL

models, after 176 and 107 training epochs, respectively, the

error reached its minimum value and then remained con-

stant. Therefore, in Table 7, the number of iterations of

176, which is related to the lowest error rate in MLP, is

Fig. 8 Observed and predicted peak discharge time series
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considered to start comparing the performance of the

models while reducing the training epochs.

Figure 15 demonstrates the RMSE value of both models

in four different training epochs. According to this figure,

the SBEL performance is nearly constant with decreasing

the number of training epochs from 75 to 35, while in the

MLP, the error is continuously increasing. It can be con-

cluded that SBEL can learn faster with less number of

iterations, while capable of generalizing its knowledge

achieved in the training phase to different conditions with

acceptable accuracy. Therefore, the application of SBEL in

flood forecasting and warning systems can be of particular

interest.

Fig. 9 Observed and predicted hydrographs (trained models by a limited dataset)
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5 Conclusions

A reliable early flood forecasting and warning system

(FFWS) is an essential part of non-structural integrated

flood management strategies that can significantly reduce

flood damages. To improve the performance of the FFWS,

features such as prediction accuracy, fast learning, appro-

priate training even in the absence of sufficient data, reli-

able prediction of peak flows and accurate forecasts in

rainy events are of essential importance. The cognitive

model of brain emotional learning taken from the emo-

tional brain has been developed as a center for receiving,

processing and creating feelings in the human brain. SBEL

has a simple structure and, due to the short paths in its

structure, it can make quick responses to input impulses.

Determining the number of hidden layers and the number

of neurons in each hidden layer is challenging in the

topology design and training of the MLP, which is not an

issue in the SBEL due to the lack of the hidden layer in its

structure.

In this paper, as the first application in hydrology, the

SBEL neural network has been applied to the rainfall–

runoff simulation of the Dez Dam watershed and has been

compared with the MLP. The results show that the overall

performance of the SBEL is superior to the MLP and

improves the RMSE and MRE of MLP by 3.2% and

59.9%, respectively. Due to the importance of accurate

peak flow prediction in flood forecasting systems, the

estimation accuracy of these values has been investigated.

The results of peak discharge estimation in each water year

show that the SBEL model reduced the RMSE and MRE in

MLP by 15.6% and 21%, respectively. Lack of sufficient

recorded data to train data-driven models usually results in

performance deterioration, especially in high flow predic-

tions. To evaluate the robustness of models encountered

with a limited training data, by reducing the number of

training samples from 70% to 10% of total data and lim-

iting them to a specific scenario, including placing reduced

training data in dry, normal and wet periods, it has been

observed that SBEL can generalize its knowledge with

acceptable accuracy. In training scenarios located in the

dry, normal and wet periods, SBEL improved the RMSE

values of the MLP by 38.2%, 29.1% and 25.7%, respec-

tively, and also improved the MRE values of the MLP by

68.2%, 68.7% and 76.6%, respectively. The prediction

accuracy of both models is more desirable when training

data are placed in the wet water years, than other scenarios.

The river flow forecasting is more challenging in rainy

events than days without precipitation records. Along with

the precise performance of SBEL in predicting river flow in

rainy days, this model can reduce the RMSE and MRE of

MLP by 0.7% and 14.4%, respectively. On the other hand,

fast learning is another essential feature needed in flood

forecasting models. By reducing the number of training

epochs, the results from networks performance indicated

that SBEL could be trained faster with fewer training

epochs, without significant changes in model performance.

Also, compared to MLP, the SBEL generalization capa-

bility is reasonably maintained. For example, at very low

iterations, i.e., 10 training epochs, the percentage of RMSE

and MRE improvements of the SBEL compared to MLP

were 46.6% and 59.4%, respectively.

Notable features of the SBEL neural network used in the

present study are the simple structure, fast learning and

considerable generalization capability. Also, due to some

advantages presented in this case study, such as accept-

able learning ability in case of insufficient recorded

Fig. 10 Performance of MLP and SBEL models in case of the limited training data

Table 3 The observed and predicted runoff volume using the MLP

and SBEL models with limited training data

Data Observed Predicted

MLP SBEL

Runoff volume (billion m3)

All data 156.8 144 153.4

Training 15.6 15.3 15.5

Cross-validation 91.2 71.8 87.6

Validation 50 56.9 50.3
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Table 4 Performance indicators of the MLP and SBEL models, trained with limited training data in dry, normal and wet scenarios

Training scenario (limited

data)

Error criterion Data

MLP SBEL MLP SBEL MLP SBEL MLP SBEL

Dry water years Qc 0.31Qo 0.75Qo 0.72Qo 0.94Qo 0.28Qo 0.76Qo 0.35Qo 0.74Qo

R2 0.43 0.62 0.42 0.53 0.48 0.65 0.45 0.54

RMSE 279 172.4 85.8 67.1 337.1 191.4 240.3 168.5

MRE (%) 77.3 24.6 55.9 25.6 77.5 22.6 81.8 26.4

RMSE Improvement by SBEL

(%)

? 38.2 ? 21.8 ? 43.2 ? 29.9

MRE Improvement by SBEL (%) ? 68.2 ? 54.2 ? 70.8 ? 67.7

Normal water years Qc 0.69Qo 0.89Qo 0.81Qo 0.95Qo 0.63Qo 0.87Qo 0.84Qo 0.95Qo

R2 0.48 0.78 0.54 0.88 0.59 0.75 0.35 0.8

RMSE 182.7 129.6 123 71.3 224.2 169.8 143.3 85.9

MRE (%) 54 16.9 43 15.2 43.3 14.5 67.1 19.6

RMSE Improvement by SBEL

(%)

? 29.1 ? 42 ? 24.3 ? 40.1

MRE Improvement by SBEL (%) ? 68.7 ? 64.7 ? 66.5 ? 70.8

Wet water years Qc 0.98Qo 0.98Qo 0.9Qo 0.95

Qo

0.94

Qo

0.97

Qo

1.16

Qo

1.05Qo

R2 0.58 0.84 0.85 0.9 0.59 0.83 0.4 0.79

RMSE 157.7 117.1 147.3 132 158.6 126.3 159.1 103.2

MRE (%) 87.8 20.5 37.3 13 66.5 18 99.3 24.6

RMSE Improvement by SBEL

(%)

? 25.7 ? 10.4 ? 20.4 ? 35.1

MRE Improvement by SBEL (%) ? 76.6 ? 65.1 ? 72.9 ? 75.2

Fig. 11 The Taylor diagram of the MLP and SBEL models trained with limited training data, in dry, normal and wet scenarios
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Fig. 12 Scatter plots of predicted versus observed runoff using a MLP and b SBEL models (non-rainy events)

Table 5 Performance criteria of MLP and SBEL (non-rainy events)

Event Model Qc R2 RMSE MRE (%) RMSE improvement by SBEL (%) MRE improvement by SBEL (%)

No MLP 1.02Q 0.92 48.3 42.8 ? 27.7 ? 78.3

rainfall SBEL 0.94Qo 0.97 34.9 9.3

Fig. 13 Scatter plots of the predicted versus the observed runoff using a MLP and b SBEL models (rainy events)

Table 6 Performance indicators of the MLP and SBEL models in the discharge prediction (rainy days)

Event Model Qc R2 RMSE MRE (%) RMSE Improvement by SBEL (%) MRE improvement by SBEL (%)

Rainy days MLP

SBEL

0.87Qo

0.94Qo

0.77

0.81

158.4

157.2

50.8

43.5

? 0.7 ? 14.4
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training data as well as high accuracy in predicting peak

flows, the presented brain emotional learning-based neural

network can be of particular interest for researchers to

model hydrological processes in the future studies.
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