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Abstract
Interactive reinforcement learning has allowed speeding up the learning process in autonomous agents by including a

human trainer providing extra information to the agent in real-time. Current interactive reinforcement learning research has

been limited to real-time interactions that offer relevant user advice to the current state only. Additionally, the information

provided by each interaction is not retained and instead discarded by the agent after a single-use. In this work, we propose a

persistent rule-based interactive reinforcement learning approach, i.e., a method for retaining and reusing provided

knowledge, allowing trainers to give general advice relevant to more than just the current state. Our experimental results

show persistent advice substantially improves the performance of the agent while reducing the number of interactions

required for the trainer. Moreover, rule-based advice shows similar performance impact as state-based advice, but with a

substantially reduced interaction count.

Keywords Reinforcement learning � Interactive reinforcement learning � Persistent advice � Rule-based advice

1 Introduction

Interactive reinforcement learning (IntRL) allows a trainer

to guide or evaluate a learning agent’s behaviour [1, 2].

The assistance provided by the trainer reinforces the

behaviour the agent is learning and shapes the exploration

policy, resulting in a reduced search space [3]. Current

IntRL techniques discard the advice sourced from the

human shortly after it has been used [4, 5], increasing the

dependency on the advisor to repeatedly provide the same

advice to maximise the agent’s use of it.

Moreover, current IntRL approaches allow trainers to

evaluate or recommend actions based only on the current

state of the environment [6, 7]. This constraint restricts the

trainer to providing advice relevant to the current state and

no other, even when such advice may be applicable to

multiple states [8]. Restricting the time and utility of advice

affect negatively the interactive approach in terms of cre-

ating an increasing demand on the user’s time, instead of

withholding potentially useful information for the agent

[2]. In this regard, interaction is advice received from a

trainer agent, and this trainer may be either a human, a

simulated user, an intelligent agent previously trained, or

an oracle with full knowledge of the intended task [5].

This work introduces persistence to IntRL, a method for

information retention and reuse. Persistent agents attempt

to maximise the value extracted from the advice by

replaying interactions that occurred in the past, rather than

relying on the advisor to repeat an interaction. Agents that

retain advice require fewer interactions than non-persistent

counterparts to achieve similar or improved performance,

thus reducing the burden on the advisor to provide advice

on an ongoing basis.
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Additionally, this works introduces a persistent rule-

based IntRL approach. Allowing users to provide infor-

mation in the form of rules, rather than per-state action

recommendations, increases the information per interac-

tion, and does not limit the information to the current state.

By not constraining the advice to the current state, users

can give advice pre-emptively, no longer requiring the

current state to match the criteria for the user’s assistance.

This more informationally rich interaction method

improves the performance of the agent compared to

existing methods and reduces the number of interactions

between the agent and the advisor. Considering that advice

in IntRL comes from expert users, the total amount of

interaction is relevant. A lower dependency on experts

makes the approach feasible to work in real-world sce-

narios (e.g., human–robot interaction) in which a human

expert may be available for a very limited number of steps.

Therefore, the contribution of this work is twofold. First,

the introduction of a state-based method for the retention

and reuse of advice, named persistence. Second, a persis-

tent rule-based IntRL method obtaining the same perfor-

mance as state-based advice, but with a substantially

reduced interaction count. In this regard, rules allow advice

to be provided that generalises over multiple states.

2 Rule-based interactive advice

2.1 Reinforcement learning and interactive
advice

Reinforcement learning (RL) [9] is a machine learning

technique that allows an agent to learn the dynamics of an

environment by interacting with it. When interacting the

agent transits from the current state st to a new state stþ1 by

performing action at. Additionally, the agent receives a

reward value rtþ1 for the actions performed. During this

process, the agent observes both the new states and the

reward signal and learns a policy p : S ! A, where S is the

set of all possible states and A the set of actions available

from S. Figure 1 shows the traditional RL loop between the

agent and the environment inside the grey box.

An environment in an RL problem can be described as a

Markov decision process (MDP) [10]. An MDP in defined

as a 4-tuple \S;A; d; r[ , where S is a finite set of states,

A is a set of actions, d is the transition function

d : S� A ! S, and r is the reward function r : S� A ! R.

In an MDP, a state with the Markovian property con-

tains all the information about the dynamics of the task,

i.e., the next state and the reward depend only on the action

selected. Therefore, the history of previous transitions is

not relevant in terms of the decision-making problem [9].

Thus, the probability that st, rt, and at take values s0, r and

a with the previous state being s is given by:

pðs0; rjs; aÞ ¼ Pðst ¼ s0; rt ¼ rjst�1 ¼ s; at�1 ¼ aÞ: ð1Þ

By interacting with the environment, an agent has to deal

with the exploration/exploitation trade-off problem, that is,

the agent has to explore the action space offsetting the

already explored good actions with others that it never tried

[11]. Hence, the agent needs a strategy to choose actions to

perform in a given state. An alternative is to use the �-

greedy action selection method. This method uses an

exploration factor (�) which is randomly chosen from a

uniform distribution. The probability Pðst; aÞ of selection

action a in state st can be formally defined as:

Pðst; aÞ ¼
1 � � if a ¼ argmax

ai2AðstÞ
Qðst; aiÞ

� otherwise

(
ð2Þ

Although RL is a plausible learning approach, the agent

has to interact with complex state spaces in many situa-

tions. This leads to excessive computational cost in order to

find the optimal policy and fully autonomous learning

becomes impractical [12, 13].

Interactive reinforcement learning (IntRL) is a field of

RL research in which a trainer interacts with an RL agent

in real-time [14]. IntRL includes an external trainer s as an

expert to provide advice k for the learning agent in cer-

tain situations [14]. In this regard, IntRL has been proven

as an effective method to speed up the learning process for

an artificial agent [15, 16]. The advice k provided by the

expert trainer may be either evaluative or informative, i.e.,

it judges the last action performed by the agent or it sug-

gests an action to perform next, respectively [17]. Current

IntRL methods limit guidance and evaluation to the current

state of the agent, regardless of whether the conditions for

the information are shared among multiple states [5, 18].

Therefore, in a particular time step during the learning

process, the IntRL agent makes use of the received advice

kt only in that situation, i.e., only in state st. After using

Fig. 1 Interactive reinforcement learning framework. In traditional

RL, an agent performs an action and observes a new state and reward.

In the figure, the environment is represented by the simulated self-

driving car scenario and the RL agent may control the direction and

speed of the car. IntRL adds advice from a user acting as an external

expert in certain situations. Our proposal includes the use of persistent

rule-based advice in order to minimise the interaction with the trainer
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advice kt at time step t, the agent disregard the advice, not

making persistent use of it in case of facing the same sit-

uation or a similar one in the future. This constraint

requires the advising user to constantly monitor the current

state of the agent and wait until conditions that suit the

advice they wish to provide are met again. This lack of

generalisation increases the number of interactions and the

demand on the user [18, 19].

In this work, we propose using the advice kt persistently

during the learning process when facing the same state s in

a different time step. Furthermore, we use the same pro-

vided advice as a rule for similar situations, i.e., when the

agent is in any state s 2 S where the rule may be used, then

the advice is reused.

2.2 Rule-based learning

In computer science, a rule is a statement consisting of a

condition and a conclusion. A simple example of a rule is

‘IF p THEN q’, dictating that if the condition of p is met,

then the conclusion is q. Additional qualifiers may sup-

plement rules, allowing for a rules condition or conclusion

to be constructed to meet specific demands. When teaching

or conveying information between people, one form of

knowledge transfer is rules. While the syntax of the rule is

not necessarily formal, the relation of condition and con-

clusion is maintained. Moreover, conditions and conclu-

sions are quickly identifiable by humans when natural

language is used. Recent advances in speech-to-text sys-

tems have demonstrated the ability to identify the condition

and conclusion in human speech [20]. The ease with which

humans can identify rules for knowledge transfer, and the

ability for machines to translate speech to rules, means that

rules are an increasingly viable option for knowledge

transfer for non-technical users [21].

A user may create multiple rules over the duration of

their assistance to an agent [22]. As a result, a single state

may have multiple rules, each with conflicting advice for

the current state. In this regard, binary decision trees offer a

method of structuring rules in such a way that only one

conclusion is given for each state [23]. Algorithms such as

ID3 [24] and CART [25] allow the design of the decision

tree to be automated, provided that large amounts of

labelled data are available.

The usual methods for building decision trees do not

meet the IntRL constraints. IntRL does not have access to

large amounts of labelled data and aims to be within the

skill level of non-expert users, not specialised knowledge

engineers [13]. Rule-based IntRL requires a method for

generating binary decision trees without the need for expert

skills in knowledge engineering, without large amounts of

labelled data, and that can be built iteratively without the

need for the user to know the full context of the tree.

In relational RL, a combination between RL and

inductive logic programming, logical decision trees have

been used [26, 27]. An important difference with classical

decision trees is that logical decision trees use a relational

database or knowledge base to describe a set of facts.

However, a key issue in this representation is the back-

ground knowledge needed to use inductive logic pro-

gramming. Additionally, another problem that does not

benefit the use of algorithms such as Q-learning with

relational function abstraction is the nature of Q-values.

Q-values encode both the distance to and the size of the

next reward; this becomes especially hard to predict in

stochastic and highly complex tasks [28].

Case-based reasoning (CBR) has been also combined

with RL to accelerate learning by making use of heuristic

information [29]. These approaches use a heuristic function

to choose the next action to be taken. For instance, the

case-based heuristically accelerated RL (CB-HARL)

algorithm proposes the reuse of previously learned policies

using CBR [30]. In CB-HARL, previous to the action

selection, the case similarity is computed based on the

current state and the cost of adapting these cases. The use

of heuristics from a base of cases has also led to the

development of transfer learning approaches in machine

learning [31, 32]. These methods also deserve attention

since they may be converted into interactive methods with

straightforward adaptations.

Ripple-down rules (RDR) is a well-known iterative

technique for building and maintaining binary decision

trees [33, 34]. RDR is a combination of decision trees and

case-based reasoning [35]. A case is a collection of

potentially relevant material that the system uses to make a

classification and is equivalent to the concept of states in

RL. Each node in an RDR system contains a rule, a clas-

sification, and a case. The case paired with each node is

referred to as the ‘cornerstone case’ and justifies the node’s

creation [36].

RDR systems require the user to only consider the dif-

ference between the current case and the cornerstone case

[36]. Using this methodology, the user does not need to

know the context of the entire system, or how new rules

will impact its structure. The iterative nature of RDR also

negates the need for large amounts of labelled data.

Instead, the tree is built using the gradual flow of cases that

any decision tree system is subject to. These features make

RDR suitable to structure rule-based advice in IntRL

scenarios.
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3 A persistent rule-based interactive
approach

The method for retention and reuse of advice proposed here

combines the concept of modelling demonstrations, with

the evaluative and informative interaction methodology

from IntRL [3]. This combination, resulting in retained

advice, allows an agent to maximise the utility of each

interaction. Additionally, a rule-based IntRL approach

would further minimise the advisor demand. Rule-struc-

tured advice allows information to be generalised over

multiple states. This reduces the interactions required with

the human advisor while simultaneously increasing the

potential benefit each interaction has on the agent’s beha-

viour. The generalisation occurs because the user can

specify the conditions in which the information is appli-

cable, allowing the advice to be generalised beyond the

current state. The agent can then check each state it

encounters to see if the conditions are met, at which point

the recommendation or evaluation can be utilised.

3.1 Persistent state-based interaction

As introduced, we propose a persistent agent that keeps a

record of each interaction and the conditions in which it

occurred. When the conditions are met in the future, the

interaction is replayed. This results in improved utilisation

of the advice and, consequently, improved performance of

the agent. Additionally, fewer interactions with the trainer

are required, as there is no need for advice to be repeatedly

provided for each state.

However, a naive implementation of persistence can

introduce flaws into the reward-shaping process. These

flaws, if unaddressed, may cause the agent to never learn an

optimal policy. Prior work on reward-shaping [37] has

shown that while reward-shaping can accelerate learning, it

can also result in the optimal policy under the shaping

reward differing from that which would be optimal without

shaping. Ng et al. [38] demonstrated that this issue can be

avoided by using a potential-based approach to construct-

ing the shaping reward signal. This guarantees that the

rewards obtained along any path from a state back to itself

are zero-sum so that the agent will not find a loop in the

environment that will provide infinitely accumulating

rewards without termination [39]. For non-persistent IntRL

agents, the reward given as part of the evaluation is tem-

porary as the human has to provide the supplemental

reward upon revisiting the state. Assuming that the human

will eventually stop providing advice, the reward signal

will become zero-sum [40].

For IntRL agents that use policy-shaping, i.e., recom-

mendations on which action to perform next, a

straightforward implementation of persistence will work if

the advice is correct. However, human advice is rarely

100% accurate [3]. Inaccuracy can result from negligence,

misunderstanding, latency, maliciousness, and noise

introduced when interpreting advice. Furthermore, if the

agent always performs the recommended action, then it is

not given the opportunity to explore and discover the

optimal action. An agent that retains and reuses inaccurate

advice will not learn an optimal policy. Therefore, it is

important that the agent be able to discard or ignore

retained knowledge.

These two issues with persistence, non-potential reward-

shaping and incorrect policy-shaping advice, result in

persistent agents being unable to learn the optimal policy.

The issue of inaccurate advice with persistence has two

possible solutions, either identify the incorrect advice and

discard it or discard all advice after a period regardless of

its accuracy. To know the accuracy of a piece of advice a

full solution to the problem must be known, and if this is

achievable, then an RL agent is not needed. Instead, a

policy of discarding or ignoring advice after a period

allows a persistent agent to function with potentially

inaccurate advice, while still maximising the utility of each

interaction. This method also solves the issue of non-po-

tential evaluative advice, as the frequency of the supple-

mental reward is reduced over time until zero. Once the

supplemental reward is reduced to zero, the cumulative

shaping reward function becomes zero-sum once again.

Therefore, to solve the issue of incorrect advice in

persistent IntRL, a method for discarding or ignoring

advice after a period of time is needed. Probabilistic policy

reuse (PPR) is a technique that aims to improve RL agents

that use guidance [41]. PPR relies on using probabilistic

bias to determine which exploration policy to use when

multiple options are available, the goal of which is to

balance random exploration, the use of a guidance policy,

and the use of the current policy.

For the persistent agent scenario, there are three action

selection options available: random exploration, the use of

retained advice from the trainer, or the best action currently

known. PPR assigns each of the three options a probability

and priority of selection [41]. Over time, the probability of

using guidance or retained information decreases, and trust

in the agents own policy increases. Using PPR, the guid-

ance provided by the trainer is used for more than a single

time step, with a decreasing probability over time, until the

value of the advice is captured by the agent’s own policy.

Once encapsulated by the agent, self-guided exploration

and exploitation of the environment continue.
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3.2 Rule-based interaction

In the following, we supply details about the rule-based

interactive agent implemented. As in the previous case,

issues of conflicting and incorrect advice need to be miti-

gated. Therefore, a method for managing and correcting

retained information is required. In this regard, ripple-

down rules (RDR) offer a methodology for iteratively

building knowledge-based systems without the need for

engineering skills.

While current IntRL agents accept advice pertaining to

the current state only, ripple-down rule reinforcement

learning (RDR-RL) accepts rule-based advice that can

apply to multiple states. Each interaction contains a rec-

ommendation or evaluation from the user and the condi-

tions for its application. For example, the user may provide

the following rule to an agent learning to drive a car: ‘‘IF

obstacle_on left==TRUE THEN action=turn_right’’. In

this example, the advice is to turn right, and the condition

for its use is that there is an obstacle on the left-hand side

of the car. While rule-based IntRL assumes that all inter-

actions contain a rule, this rule does not have to be sourced

directly from the user. The method in which the user

interacts with the agent can be by any means, as long as the

advice collected results in a set of conditions and the rec-

ommendation. The user may provide the set of conditions

for the applicability of the advice directly, or optionally,

the conditions may be discovered using assistive tech-

nologies such as case-based reasoning or speech-to-text.

An RDR-RL agent has three aspects to be considered

during its construction, each of which is described in the

following sections. These aspects are advice gathering,

advice modelling, and advice utility.

3.2.1 Advice gathering

The RDR-RL agent has the same foundation as any RL

agent. The ability to retain and use the advice provided by

the user is an addition to the RL agent, built around the

existing algorithm. Like existing IntRL agents, when no

advice has been provided to the agent, it will operate to the

exact same as a standard RL agent.

For instance, at any point during the agent’s learning, a

user may assist the agent by recommending an action to

take. When the user begins an interaction, they are pro-

vided with the agent’s current state, and if available, the

current intended action. If the user agrees with the intended

action the agent presented, or if the user is no longer

available, the agent continues learning on its own.

If the user disagrees with the action the agent is

proposing, or if there is no action proposed, then the

interaction continues. The user is provided with a

cornerstone case. The cornerstone case is the state in which

the user recommended the action that the agent is intending

to take. The differences between the cornerstone case and

the current state are presented to the user. If there is no

cornerstone case, for example, when it is the first time the

user is providing advice to the agent, then only the current

state is provided. The user recommends an action for the

agent to take and creates a rule that distinguishes the two

cases, setting the conditions for their recommended action.

Once the recommended action has been provided, and the

rule setting the conditions for its use determined, they are

passed to the agent. The agent then uses the rule and rec-

ommendation to update its model of advice.

3.2.2 Advice modelling

Advice modelling is the process of storing the information

received from the user. The agent receives a rule and a

recommendation from the user each time an interaction

occurs. The rule dictates the conditions that must be met

for the recommendation to be provided to the agent.

For instance, using persistence for state-based IntRL

may maintain a lookup table for each state and the corre-

sponding recommendation/evaluation that had been pro-

vided. As we will describe along with the experimental

results, this simple method for advice modelling improves

performance compared to agents that do not retain advice.

However, this lookup model does not generalise advice

across multiple states and may present difficulties with

incorrect advice.

For rule-based advice, a ripple-down rules decision tree

is used to model the advice provided by the user. This

system allows a model of advice to be iteratively built over

time, as the user provides more information to the agent.

The RDR model is part of the learning agent but is inde-

pendent of the Q-value policy. It is used to assist in action

selection.

When an interaction with the user occurs, the agent is

provided with an action recommendation, and a rule gov-

erning its use. To update the model of advice, the agent

provides the current state as a case to the RDR system. The

system returns a classification node and an insertion node.

The classification node contains the recommended action

based on the advice collected prior to the current state, the

recommendation that the user disagrees with given the

current state. The insertion node is the last node in the

branch of the RDR tree that evaluated the current state and

is the point at which the new rule will be inserted. A new

node is created using the rule and recommendation from

the user, along with the current state as the cornerstone

case. If the rule in the insertion node is evaluated TRUE

using the information in the current state, then the new
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node will be inserted as a TRUE child; otherwise, it will be

inserted as a FALSE child.

3.2.3 Advice utility

The last aspect of the agent’s construction details when the

advice gathered from the user is used by the agent. In the

previous section, the concept of persistence was discussed.

There, it was identified as an issue the decreasing agent

performance if incorrect advice was provided, or recom-

mended actions were always followed and neglecting

exploration. To mitigate this issue, PPR was proposed.

For the RDR-RL agent, the guidance policy is the model

of advice. The trade-off between exploration and the

exploitation of the learned expected-rewards policy con-

tinues to be managed by whichever action selection method

is preferred by the agent designer. For instance, an �-greedy

action selection method is used for the experiments in this

work. In this regard, PPR manages to switch between the

action recommended by the advice model and the �-greedy

action selection method.

At each time step, the advising user has a chance to

interact with the agent. If an interaction occurs, the model

is updated. When a user first recommends an action, it is

expected that the agent will perform it. For this reason, the

recommended action is always performed on the time step

at which it was recommended, regardless of the probabil-

ities currently set by PPR.

When an agent is selecting an action in a time step

where the user has not recommended a previous action,

PPR is used. First, the agent’s model of advice is checked

to see if any advice pertains to the current state. If the

model recommends an action, then that action is taken with

a probability determined by the PPR selection policy. If no

action is recommended, then the agent’s default action

selection policy is used, e.g., �-greedy.

4 Experimental environments

4.1 Mountain car

The mountain car is a control problem in which a car is

located in a unidimensional track between two steep hills.

This environment is a well-known benchmark in RL

community; therefore, it is a good candidate to initially test

our proposed approach.

The car starts at a random position to the bottom of the

valley (�0:6\x\0:4) with no velocity (v ¼ 0). The aim is

to reach the top of the right hill. However, the car engine

does not have enough power to claim to the top directly

and, therefore, needs to build momentum moving towards

the left hill first.

An RL agent controlling the car movements observes

two state variables, namely, the position x and the velocity

v. The position x varies between - 1.2 and 0.6 in the x-axis

and the velocity v between - 0.07 and 0.07. The agent can

take three different actions: accelerate the car to the left,

accelerate the car to the right, and do nothing.

The agent receives a negative reward of r ¼ �1 each

time step, while no reward is given if a hill is reached

(r ¼ 0). The learning episode finishes in case the top of the

right hill is climbed (x ¼ 0:6) or after 1,000 iterations in

which case the episode is forcibly terminated.

4.2 Self-driving car

The self-driving car environment is a control problem in

which a simulated car, controlled by the agent, must nav-

igate an environment while avoiding collisions and max-

imising speed. The car has collision sensors positioned

around it which can detect if an obstacle is in that position,

but not the distance to that position. Additionally, the car

can observe its current velocity. All observations made by

the agent come from its reference point, this includes the

obstacles (e.g., there is an obstacle on my left) and the car’s

current speed. The agent cannot observe its position in the

environment.

Each step, the environment provides the agent reward

equal to its current velocity. A penalty of - 100 is awarded

each time that the agent collides with an obstacle. Along

with the penalty reward, the agent’s position resets to a safe

position within the map, velocity resets to the lower limit,

and the direction of travel is set to face the direction with

the longest distance to an obstacle.

Figure 2a shows the map used for the self-driving car

experiments. This map challenges the agent to learn a

behaviour that maximises velocity while avoiding colli-

sions by using a layout that prohibits turning at high speeds

Fig. 2 A graphical representation of the simulated self-driving car.

The blue square at the top left is the car. A yellow line within the car

indicates the current direction, and the number below (in yellow) is

the current velocity. The small green squares surrounding the car are

collision sensors and will always align with the cars current direction.

The large white rectangles are obstacles (a) (color figure online)
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at the narrow corridors on the top, right, and bottom of the

map. The only two sections of the map that allow for high-

velocity turning are the large empty sections on the left

side.

The collision sensors return a Boolean response as to

whether there is an obstacle at that position, though not the

distance to that obstacle. Additionally, the agent does not

know the position of its sensors in reference to itself. The

only information the agent has regarding the sensors is

whether each is currently colliding with an obstacle. As

stated, the agent also knows its current velocity. The pos-

sible velocity of the agent is capped at 1m/s at the lower

end, and 5m/s at the higher end. A lower cap above zero

velocity prevents the agent from moving in reverse or

standing still. This lower limit reduces the state space and

prevents an unintended solution, e.g., standing still is an

excellent method for avoiding collisions. The upper limit

of 5m/s is set so that velocity is not limitless and further

reduces the state space, while still being high enough that it

exceeds the limit for a safe turn anywhere in the environ-

ment. An action that attempts to exceed the velocity

thresholds set by the environment will return the respective

limit. There are five possible actions for the agent to take

within the self-driving car environment. These actions are:

i. Accelerate: the car increases its velocity by 0.5

meters per second.

ii. Decelerate: the car’s velocity will decrease by 0.5

meters per second.

iii. Turn left: the car alters its direction of travel by 5

degrees to the left.

iv. Turn right: the car alters its direction of travel by 5

degrees to the right.

v. Do nothing: the car’s velocity or direction of travel is

not altered. When performing this action, the only

change is the car’s position, based on current

velocity, position, and direction of travel.

The self-driving car environment has nine state features,

one for each of the collision sensors on the car, and the

current velocity of the car. The collision sensor state fea-

tures are Boolean, representing whether they detect an

obstacle at their position. The velocity of the agent has nine

possible values, the upper and lower limits, plus every

increment of 0.5 value in between. With the inclusion of

the five possible actions, this environment has 11520 state-

action pairs.

The reward function defined by the environment pro-

motes the agent to learn a behaviour that avoids obstacles

while attempting to achieve the highest velocity the envi-

ronment allows. The most natural solution to learn that

achieves these conditions is to drive in a circle, assuming

that the path of the circle does not intersect with an

obstacle. The map chosen for use in these experiments

allows an unobstructed circle path to be found, but only at

low velocities. If the agent is to meet both conditions that

achieve the highest reward, a more complex behaviour

must be learned (see Fig. 2b).

5 Experimental methodology

To compare agent performance and interaction, metrics for

agent steps, agent reward, and interactions are recorded. A

number of different agents and simulated users have been

designed and applied to the mountain car and self-driving

car environments. Simulated users have been chosen over

actual human trials, as they allow rapid and controlled

experiments [42]. When employing simulated users,

interaction characteristics such as knowledge level, accu-

racy, and availability can be set to specific and measurable

levels. In the following, we describe all the agents used

during the experiments.

5.1 Non-persistent and persistent state-based
agents

Next, we demonstrate the use of persistent advice with

probabilistic policy reuse (PPR), and the impact its use has

on agent performance and user reliance. The experiments

have been designed to test several levels of human advice

accuracy and availability, with and without retention of

received advice.

The mountain car environment is used in these experi-

ments since it is a common benchmark problem in RL with

sufficient complexity to effectively test agents and simple

enough for human observers to intuitively calculate the

correct policy. Additionally, the mountain car environment

has been previously used in a human trial evaluating dif-

ferent advice delivery styles [3] and with simulated user

[42]. We use the results reported in the human trial to set a

realistic level of interaction for evaluative and informative

advice agents. Five agents have been designed for the

following experiments. The expected-reward values have

been initialised to zero, an optimistic value for the envi-

ronment. All the agents are given a learning rate a ¼ 0:25,

a discounting factor c ¼ 0:9, and use an �-greedy action

selection strategy with � ¼ 0:1. For the agent to represent

the continuous two-dimensional state space of the envi-

ronment, it has been discretised into 20 bins for each state

feature, creating a total of 400 states, each with three

actions. The learning agents are listed below:

i. Unassisted Q-learning agent: A Q-learning agent

used for capturing a baseline for performance on the

mountain car environment. This agent is unassisted,
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receiving no guidance or evaluation from the trainer

and used as a benchmark.

ii. Non-persistent evaluative advice agent: This agent is

assisted by a user. The user may provide an

additional reward at each time step to evaluate the

agent’s last choice of action. For this non-persistent

agent, the supplemental reward is used in the current

learning step and then discarded.

iii. Persistent evaluative advice agent: This agent is

assisted by a user. The user may provide an

additional reward at each time step to evaluate the

agent’s last choice of action. For this persistent

agent, the evaluation provided is retained, and upon

performing the same state-action pair in the future,

the evaluation may be automatically provided to the

agent, with a probability defined by the PPR action

selection policy.

iv. Non-persistent informative advice agent: This agent

is assisted by a user. The user may recommend an

action for the agent to perform for the current time

step. When the agent is recommended an action, that

action is taken on that time step, and then the advice

is discarded. This non-persistent agent, when visiting

the same state again in the future, will not recall the

recommended action and will perform �-greedy

action selection.

v. Persistent informative advice agent: This agent is

assisted by a user. The user may recommend an

action each time step for the agent to perform. If

recommended, the learning agent will take the advice

on that time step and retain the recommendation for

use when it visits the same state in the future. When

the agent visits a state in which it was previously

recommended, it will take that action with the

probability defined by the PPR action selection

policy.

The agents adopting a persistent model are employing

PPR for action selection. As depicted in Fig. 3, the PPR

action selection begins with an 80% chance of reusing

advice provided to the agent in the past. The probability of

reusing advice decreases by 5% each episode. For the

remaining 20% of the time, or if no advice has been pro-

vided for the current state, an �-greedy action selection

policy is used.

For each agent, one hundred experiments are run. At the

beginning of each experiment, the environment, the agent,

and the agent’s model of provided advice are reset. Each

experiment runs with a maximum of one thousand steps

before it terminates. The number of steps performed,

interactions performed, and reward received are recorded.

An interaction is recorded if the user provides advice to the

agent, not when the agent uses advice it has stored from a

previous interaction.

Six different simulated users have been created as

trainers: three providing evaluative advice and three

informative advice. Evaluative advice-giving users provide

either a positive or negative supplemental reward corre-

sponding to the agent’s choice in action on the last time

step. Informative advice-giving users provide a recom-

mended action for the agent to perform on the current time

step. Simulated users that are advising a persistent agent

will not provide advice for a state, or state-action, that it

has previously advised on, as it is assumed that if the agent

is retaining information, it should not need repeated advice

for the same conditions. This does not apply to non-per-

sistent agents.

Additionally, each simulated user will have either opti-

mistic, realistic, or pessimistic values for advice accuracy

and availability. Accuracy is a measure of how correct the

advice is provided by the user. Accuracy of interaction is

altered by, with a specified probability, replacing the rec-

ommended action with an action that is not optimal for the

current state. Availability is a measure of how frequently

the user provides advice. The availability of the simulated

user is altered by specifying a probability that the user will

interact with the agent on any given time step.

Optimistic simulated users have 100% accurate advice

and will provide advice on every time step that the agent

does not have retained knowledge of. Realistic simulated

users have accuracy and availability modelled from pre-

viously obtained results in a human trial [3]. The recorded

accuracy and availability of human advice-givers differs

depending on the type of advice being provided, i.e.,

evaluative or informative. Previous work has compared

evaluative and informative advice/agents [3], and as such is

not in the scope of this study. Lastly, pessimistic simulated

users are given accuracy and availability values half that of

Fig. 3 Probabilistic policy reuse (PPR) for an IntRL agent using

informative advice. If the user recommends an action on the current

time step, then the agent’s advice model updates and the action is

performed. If the user does not provide advice on the current time

step, then the agent will follow previously obtained advice 80% of the

time (*decays over time) and its default exploration policy the

remaining time
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the realistic users. Table 1 shows the accuracy and avail-

ability values for each of the six simulated users (3 eval-

uative users, 3 informative users). The previously observed

accuracy and availability for human advisors in the

mountain car environment are shown as for realistic agents.

Table 2 lists all the agent/simulated user combinations

tested. There are a total of thirteen agents, six persistent

agents, six non-persistent agents, and an unassisted

Q-Learning agent used for benchmarking. Included next to

each agent/user combination is a short name. This short

name is used later in the Results section, as the full name is

too long to include in each figure legend.

5.2 Rule-based agents

In this case, three learning agents have been designed,

which include unassisted Q-learning, persistent state-based

informative, and rule-based assisted using ripple-down

rules. No evaluative assisted agents are tested in these

experiments, as they cannot be suitably compared to the

rule-assisted agent which is using informative advice. The

three learning agents used are described below:

i. Unassisted Q-learning agent A Q-learning agent

used for capturing a baseline for performance on

each environment. This agent is unassisted, receiving

no guidance or evaluation from the trainer and used

as a benchmark. The agent will represent each

environment as described in the previous section. The

expected-reward values have been initialised to zero.

This agent uses �-greedy action selection.

ii. State-based persistent agent This agent is assisted by

a user. The user may recommend an action each time

step for the agent to perform. If an action is

recommended by the user, the agent will take it on

that time step and retain the recommendation for use

when it visits the same state in the future. When the

agent visits a state in which it was previously

recommended, it will take that action with the

probability defined by the PPR action selection

strategy. The persistent informative agent uses the

same parameter settings as the unassisted Q-learning

agent for each environment.

iii. Rule-assisted persistent agent This agent is assisted

by a user. The user may provide a rule and

recommended action at each time step. The rule-

assisted learning agent uses ripple-down rules to

model the advice received by the trainer. If the user

provides advice, and the rule provided equates to true

for the current state, then the agent will take the

recommended action during that time step. If the

provided rule equates to false, then the agent will use

its default action selection strategy. When a rule is

provided, the agent will retain the rule for use in

future states. Each time the agent visits a state, it will

query its retained model of rules. If a rule is found

that equates to true for the current state, then that

action is taken with a probability defined by the

agent’s PPR action selection strategy. All rule-

assisted agents used in this experiment begin with

an 80% chance of taking the action recommended by

its advice model. This 80% chance is decayed each

episode, until the point at which the agent is relying

solely on its secondary action selection strategy. The

agent’s secondary action selection strategy is the

same strategy used by the unassisted Q-Learning

agent, i.e., �-greedy. The rule-assisted agent uses the

same parameter settings as the unassisted Q-learning

agent for each environment.

The mountain car environment is a good candidate for the

rule-based advice method as the optimal solution can be

captured in very few rules, while still remaining under-

standable by humans. The rule-based and state-based

Table 1 Simulated users modelled for the experimental setup

Name Accuracy Availability (%)

Evaluative Optimistic 100% 100

Evaluative Realistic 48.470% 26.860

Evaluative Pessimistic 24.235% 13.43

Informative Optimistic 100% 100

Informative Realistic 94.870% 47.316

Informative Pessimistic 47.435% 23.658

Accuracy and availability are set using previous results obtained in a

human trial as reference [3]

Table 2 Agent/user combinations for persistent agent testing,

including short names for reference

Short name Agent Simulated user

UQL Unassisted Q-learning NONE

NPE-O Non-persistent eval. EVAL. OPTIMISTIC

NPE-R Non-persistent eval. EVAL. REALISTIC

NPE-P Non-persistent eval. EVAL. PESSIMISTIC

NPI-O Non-persistent Info. INFO. OPTIMISTIC

NPI-R Non-persistent info. INFO. REALISTIC

NPI-P Non-persistent info. INFO. PESSIMISTIC

PE-O Persistent evaluative EVAL. OPTIMISTIC

PE-R Persistent evaluative EVAL. REALISTIC

PE-P Persistent evaluative EVAL. PESSIMISTIC

PI-O Persistent informative INFO. OPTIMISTIC

PI-R Persistent informative INFO. REALISTIC

PI-P Persistent Informative INFO. PESSIMISTIC
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agents are tested against the mountain car environment,

employing simulated users with varying levels of knowl-

edge of the environment. The aim is to compare the per-

formance of the agents and the number of interactions

performed to achieve that performance. The learning

parameters used are the same as the previous experiments.

Additionally, in these experiments, the self-driving car

environment is also used. The state and action spaces for

this environment are larger than for the mountain car

environment, but still remain understandable by human

observers. The self-driving car agents are given a learning

rate a ¼ 0:1, a discounting factor c ¼ 0:999, and used an �-

greedy action selection strategy with � ¼ 0:01.

The requirements of the reward function, to avoid col-

lisions and to maximise velocity, make the creation of

optimal rules much more difficult. For the self-driving car

environment, it is easy to provide rules that will help

achieve greater performance in parts of the environment,

maximising speed or when to turn for example. However, it

is much more difficult to provide rules that meet both

requirements optimally, for example, when to turn the car

and by how much to maintain the highest possible velocity

while not crashing. The characteristic of being able to

easily creating performance improving yet non-optimal

rules is what makes the self-driving car environment an

interesting benchmark for the rule-based advice method.

The difference between this environment and the mountain

car is that this environment will test a larger state and

feature space, and consist of advice that, while beneficial,

is not optimal.

5.3 Simulated users

To allow quick, bias-reduced, repeatable testing of the

agents, simulated users are used as trainers in place of

humans. Simulated users offer a method for performing

indicative evaluations of RL agents that require human

input, with controlled parameters [42]. There are two types

of simulated users required for the following experiments,

one must provide state-based advice, and the other must

provide rule-based advice. Both types of simulated users

will provide the same information and the same amount of

it.

The first type, an informative state-based advice user, is

the same user employed for the previous experiments. This

user may provide a recommended action on each time step.

The agent that the user is assisting will retain any recom-

mendations provided by the user, and will not give the user

an opportunity to provide advice for a state for which

advice has already been received, capping the number of

interactions at the number of states. As in the previous

experiments, each informative state-based user had an

accuracy and availability score. Accuracy is the probability

that the advice the user is providing is optimal for the

current state. Availability is the probability that the user

would provide advice for any given opportunity. Addi-

tionally, the states that the user can provide advice will be

limited to parts of the environment, simulating a limited or

incomplete knowledge level of the environment. Table 3

shows the knowledge limitations of the various state-based

users built for the rule-based experiments in order to do a

fair comparison.

The advice that the state-based simulated users provide

for the mountain car environment is optimal (previous to

accuracy, availability, and knowledge level is applied).

However, the same may not be true for the self-driving car

environment. The reward function for this environment

reinforces behaviour that avoids collisions and maximises

speed. The advice that the simulated user provides for the

self-driving car environment only attempts to avoid colli-

sions. While this advice should be optimal, there may be

situations where the agent will want to stay close to an

obstacle to maximising speed. In these situations, the

advice provided would be considered incorrect, and the

agent will need to learn to ignore it to learn the optimal

behaviour.

The second type of simulated user is a rule-based advice

user. Simulated users are a common methodology for the

creation and evaluation of ripple-down rule systems in

research [33, 43, 44]. These simulated users will return a

rule and a recommended action for each interaction with

the user. The simulated users employed for the these

experiments have been built with their own ripple-down

rules model and populated with a set of rules that they will,

over time, provide to the agent. As in reality, users do not

have their own rule model, rather they would generate rules

themselves; therefore, we use the rule model for simulated

users as a means to replicate the interaction process of a

real user.

The learning agent begins each experiment with an

empty model of advice, and the simulated user begins with

a full model. Over time, the learning agent will provide the

trainer user with an opportunity to provide advice. When

an opportunity occurs, the learning agent provides the

current state observation, the current action it will take, and

details about how it chose that action (either from the

retained user model or from an exploration strategy). This

information is the same information that would be made

available to an actual human advisor. Now that the simu-

lated user has this information, it may choose to respond

and what advice it will provide with. The simulated user

will respond if it has a rule that applies to the current state

and it disagrees with the agent’s choice of action. The

simulated user will continue to provide advice for as long

as it is given opportunities, that it has new rules to provide,

and that the new rules disagree with the agent’s current
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behaviour. Algorithm 1 shows the full process flow to

choose an action using rule-based advice to assist a

learning agent. In the algorithm, ctþ1 represents the

cornerstone case for state stþ1 and action atþ1, whereas ltþ1

represents the advice given by the user at state stþ1.

Algorithm 1 Interactive reinforcement learning with
a rule-based advice model for assisting an RL agent.
1: Initialize environment selecting st
2: for (each episode) do
3: Choose action at from st using π
4: repeat
5: Perform action at

6: Observe next state st+1
7: Choose next action at+1 from st+1
8: Pass st+1, at+1, ct+1 to user
9: if (adding advice) then
10: Observe advice lt+1 from st+1
11: if (lt+1 �= at+1) then
12: Create new rule using ct+1
13: Update advice model
14: Change action at+1
15: end if
16: else
17: User ignores agent
18: end if
19: if rand(0, 1) < ε then
20: Choose any random action at+1 from A
21: end if
22: Update Q-values
23: st ← st+1; at ← at+1
24: until s is terminal
25: end for

Multiple rule-based simulated users have been created to

provide a range of different knowledge levels for the var-

ious environments (equivalent to the knowledge level of

state-based simulated users shown in Table 3). Table 4

describes and provides the knowledge bases in use for each

of the environments. A short description of each knowl-

edge base is provided.

6 Results

6.1 Probabilistic policy reuse

The first experiment performed tests the use of proba-

bilistic policy reuse (PPR) as an action selection method,

compared to always using advice when available within the

mountain car environment. As aforementioned, the use of

persistence in RL introduces a critical flaw. Specifically, if

provided advice is retained and reused, and that advice is

incorrect, then the agent will not be able to learn a solution

to the current problem. Figure 4 shows the performance of

3 RL agents: an unassisted Q-learning (UQL) agent for

benchmarking and 2 persistent IntRL agents using infor-

mative advice. These two interactive agents are identical

except that one is using PPR for action selection, called

persistent informative reuse (PPR) agent or PI-R (PPR),

while the other will always take a recommended action if

one exists for the current state, called persistent informa-

tive reuse (No-PPR) agent or PI-R (No-PPR). Both inter-

active agents are assisted by a simulated user created with

realistic values of accuracy and availability.

Figure 4 shows that both assisted agents immediately

outperform an unassisted agent (UQL in blue). Both agents

are retaining the recommended actions from the user and

cannot differentiate between correct and incorrect advice.

The No-PPR agent (in red) will always take the recom-

mended action for the current state, if available. This works

well for the first few episodes, as small amounts of correct

advice can have a large positive impact on agent perfor-

mance and small amounts of incorrect can be ignored

because of the momentum the agent builds in the mountain

car environment. However, as the amount of incorrect

recommended actions retained increases, the effect on the

agent’s performance increases. Eventually, the impact of

taking the wrong action will have such an effect that the

agent cannot build the required momentum to solve the

Table 3 State-based simulated user knowledge bases for the mountain car and the self-driving car environments

Environment (user

name)

Limits

Mountain car/MC-

FULL

User will provide advice for all states

Mountain car/MC-

HALF

User will only provide advice for state in which the agent is on the left slope of the valley. (IF position\- 0.53)

Mountain car/MC-

QUARTER

User will only provide advice for state in which the agent is on the bottom half of the left slope of the valley. (IF

position\- 0.53 AND position[- 0.865)

Mountain car/MC-

MIDDLE

User will only provide advice for the few states at the bottom of the valley. (IF position\- 0.43 AND position[
- 0.63)

Self-driving car/SC-

AVOID

User will only provide advice for states where the agent has an obstacle on the left side OR the right side, but not

both. (IF right = true OR right-front-close = true) OR (IF left = true OR left-front-close = true)
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task. Without the required momentum, the agent will get

stuck in local minima.

The agent using probabilistic policy reuse (PPR) con-

tinues to outperform both the unassisted agent (UQL), and

the other assisted agent (PI-R No-PPR). The PPR agent

will initially take the users advice in high regard, taking

recommended actions 80% of the time. Over time, the

agent pays less attention to the retained advice of the user,

and more to its own learned policy. This allows the agent to

disregard incorrect advice, as its own value estimations will

show the correct action to take, while correct advice will

accelerate the discovery of the true value estimation of the

correct action in advised states.

If human-sourced advice is 100% accurate for the

problem being tested, the use of PPR may lower the

potential performance of the agent. This is due to the PPR

action selection policy disregarding accurate information

and instead taking exploratory or local minima actions.

However, previous work [3] has shown that human-sourced

Table 4 Rule-based simulated

user knowledge bases for the

mountain car and self-driving

car environments

Environment/user name Limits

Mountain car/MC-FULL IF 1 ¼¼ 1 : EXPLORE

IF velocity[ 0: GO RIGHT

NO TRUE NODE

IF velocity\=0 GO LEFT

Mountain car/ MC-HALF IF 1 ¼¼ 1 : EXPLORE

IF position\ -0.53: GO RIGHT

IF velocity [ ¼ 0: GO RIGHT

IF velocity\ 0: GO LEFT

NO FALSE NODE

Mountain car/MC-QUARTER IF 1 ¼¼ 1 : EXPLORE

IF position\ -0.53 AND

position[ -0.86: GO RIGHT

IF velocity [ ¼ 0: GO RIGHT

IF velocity\ 0: GO LEFT

NO FALSE NODE

Mountain car/MC-MIDDLE IF 1 ¼¼ 1 : EXPLORE

IF position\ -0.43 AND

position[�0:63 : GO RIGHT

IF velocity [ ¼ 0 : GO RIGHT

IF velocity\ 0 : GO LEFT

NO FALSE NODE

Self-driving car/SC-AVOID IF 1 ¼¼ 1 : EXPLORE

IF right OR right-front-close:

TURN LEFT

NO TRUE NODE

IF left OR left-front-close:

TURN RIGHT

NO FALSE NODE

The model is shown using ripple-down rules with a text representation

UQL
PI-R (No PPR)
PI-R (PPR)

Episodes

St
ep

s
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Fig. 4 Probabilistic policy reuse and direct-use action selection for

IntRL using retained informative advice. Both assisted agents are

using simulated users using realistic values for accuracy and

availability, and are both retaining advice provided to them
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information is not likely to be 100% correct, and as such,

the use of PPR mitigates the risk of inaccurate information.

6.2 State-based persistent advice

The second experiment tests non-persistent advice and

state-based persistent advice, i.e., the provided advice is

used and retain with PPR only in the given state. An

unassisted Q-learning (UQL) agent is used for bench-

marking. Simulated users are used for providing advice in

the mountain car environment with three different initial-

isation, namely, optimistically, realistic, and pessimisti-

cally (denoted with the suffix -O, -R, and -P, respectively).

Figure 5a, c shows the performance over time for both non-

persistent evaluative and informative agents, at varying

levels of user accuracy and availability. These figures do

not compare the two advice delivery styles against each

other (i.e., evaluative and informative), but they are com-

pared against their persistent counterparts. As evaluative

advice is evaluating actions that have already been taken,

there is a short delay between the action being taken and

the application of the advice to the agent. This delay causes

latency in the effect of the advice on the agent’s learned

policy. Figure 5a shows this delay for the evaluative agent,

where most of the advice is given in the first few episodes,

but it takes around twenty episodes before the agent has

fully utilised the advice and converges to an optimal path.

The agent using informative advice on the other hand does

not suffer from this delay (shown in Fig. 5a). This agent is

receiving recommendations on which action to take next,

and if a recommendation is provided, then the action is

taken.

Figure 5a, b shows evaluative agents, both non-persis-

tent (NPE-*) and persistent (PE-*), using advice from three

different users. The persistent agent (shown in 5b) is using

PPR to manage the trade-off between the advice received

from the user, its own learned policy, and its exploration

strategy. The persistent agent is limited to only receiving

one interaction from the user per state-action pair. If the

agent has already received some advice for the state-action

pair in question, then the user is not given the opportunity

to provide additional advice. The agent instead relies on the

stored advice from the first interaction regardless of its

accuracy. Both agents will always utilise advice received

directly from the user on the current time step. However,

the persistent agent keeps it and follows a PPR strategy,

which allows the agent to diminish the probability of using

the advice for a state-action pair over time. This results in

the persistent agent receiving one interaction per state-ac-

tion pair, maximising the utility that interaction, and then

eventually only relying on its own policy.

The agents being assisted by optimistically initialised

users perform almost the same. The optimistically assisted

persistent agent (PE-O) takes slightly longer to learn than

the non-persistent counterpart (NPE-O), because the advice

it receives is only listened to 80% (diminishing over time)

after the initial interaction with the user, compared to the

non-persistent agent whose user will continually interact

with the agent and the agent will always follow the advice.

The agents being assisted by realistically initialised users

differ greatly in performance. The non-persistent evalua-

tive agent using a realistically initialised user (NPE-R),

while able to solve the mountain car problem in fewer steps

than the 1000 cut-off limit, was not able to find the optimal

solution. However, the persistent evaluative agent (PE-R)

was not only able to solve the problem, but also learned the

solution faster than the benchmark unassisted agent (UQL),

just like the NPE-O and PE-O agents. The difference in

performance is not only due to the persistent agent

remembering the advice, but also because it can eventually

disregard incorrect advice as the likelihood that the PPR

algorithm will choose to take the recommended action

diminishes over time, while the agent’s value estimation of

the recommended action remains the same. What is par-

ticularly notable from these results is that the persistent

agent (PE-R), still outperformed unassisted Q-learning

despite more than half of all interactions giving the

incorrect advice. Regardless of whether the agent is per-

sistent or not, neither agent that was advised by a pes-

simistically initialised user (NPE-P, PE-P) was able to

solve the mountain car problem. This is likely due to the

accuracy of the pessimistic user being less than 25%.
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Fig. 5 Steps per episode for 4 different agents using advice. The

agents are assisted by three different simulated users, initialised with

either Optimistic, Realistic, or Pessimistic values for accuracy and

availability. The figure shows that the persistent agents learn in fewer

steps in comparison with the non-persistent agents when assisted by

sufficiently accurate users
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Figure 5c, d shows the performance of informative

agents, both non-persistent (NPI-*) and persistent (PI-*),

using advice from three users with different levels of

advice accuracy and availability. These agents can receive

informative advice from a user. The advice that they

receive is an action recommendation, informing them of

which action to take in the current state. When either agent,

persistent or non-persistent, receives an action recom-

mendation directly from the user on the current time step

that action will be taken by the agent. The persistent agent

will remember that action for the state it was received in,

and use the PPR algorithm to continue to take that action in

the future. Once the persistent agent has received an action

recommendation from the user for a particular state, the

user will not interact with the agent for that state in the

future.

The informative agents (NPI-O, PI-O), regardless of

persistence, learned the solution in the same amount of

time when being advised by an optimistically initialised

user. This is not surprising as the agent is receiving 100%

accurate advice for every time step, making this essentially

a supervised learning task at a great effort of the user. A

difference in the time required to find a solution can be

seen in the agents that are assisted by a realistically ini-

tialised agent (NPI-R, PI-R). While the non-persistent

agent (NPI-R) agent does learn faster than an unassisted

agent (UQL), the persistent agent learns the solution almost

immediately, much like the optimistically assisted persis-

tent agent (PI-O). This difference in learning speed is likely

due to the agent retaining and reusing advice. The NPI-R

and PI-R agents are being assisted by a simulated user with

realistic values for accuracy and availability. The realistic

simulated user has a s 48% chance of interacting with an

agent on any particular time step. The non-persistent agent

does not retain advice from the user, so it will always have

a s 48% chance of receiving advice for any particular

state. However, the persistent agent will retain and reuse

advice with an 80% (diminishing over time from PPR)

probability for any state that it has received advice on in

the past. As long as the retained advice is sufficiently

accurate, the persistent agent will learn faster because it

utilises that advice more often. The last two agents are

assisted by a pessimistically initialised user. The non-per-

sistent agent outperformed the persistent agent in this

experiment. This is due to the same principle as the real-

istically-assisted informative agents. The pessimistically-

assisted agent performed the recommended action more

often than the non-persistent agent. Both agents have a

23.6% chance of receiving advice from the pessimistic

user; however, the persistent agent retains and reuses this

advice, and will take the recommended action 80% of the

time for states it has been advised on. This results in the PI-

R agent taking the advised incorrect action far more often

than the NPI-R agent.

Table 5 shows the number and percentage of interac-

tions that occurred on average for each agent/user combi-

nation. However, the number of interactions is not

suitable to compare agents, as agents that benefit from

advice may take fewer steps, giving the users fewer

opportunities to provide advice, despite perhaps requiring

more attention from the user per episode. Therefore, the

percentage of interaction is more suitable for comparing

agents against each other, as it is a function of the inter-

action requirements, rather than a direct measurement of

the number of interactions. For non-persistent agents, this

interaction percentage is equal to the advising user avail-

ability. For persistent agents, this percentage varies due to

the use of the PPR approach.

It is clear from Table 5 that persistent agents require

substantially fewer interactions than non-persistent agents.

These results show that the number of interactions required

by the user to achieve each agent’s recorded performance is

significantly reduced when advice is retained. All persistent

agents measured less than 1% of steps with direct user

interaction. Assuming a direct correlation between the

number of interactions and the time required to perform

those interactions, the use of persistence offers a large time

reduction for assisting users. This significant drop in

required interactions, coupled with the previous observa-

tion of large performance gains shown by the majority of

persistent agents, makes a compelling case for the retention

and reuse of advice, assuming a suitable level of accuracy

of that advice.

For non-persistent agents, an observation can be made

that as the availability of the simulated user decreases, the

number of interactions increases. In this case, simulated

users that are highly accurate allow the agent to learn the

optimal policy faster, which results in the agent taking

fewer steps, and the simulated user having fewer oppor-

tunities to interact. Simulated users with lower accuracy,

such as the pessimistic users, cause the agent to take longer

to learn the policy, resulting in the agent taking more steps,

and allowing the simulated user more opportunities to

provide advice. This is what creates the inverse correlation

between the user advice availability and the number of

interactions recorded in non-persistent agents. The same

situation is not observed for persistent agents. This is due to

the use of the PPR approach, which leads to similar

opportunities to provide advice in all the cases. For

instance, if advice is given in a state that has previously

received, this might be dismissed by the PPR approach

delimiting the total number of interactions regardless of the

accuracy of such advice.
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6.3 Rule-based advice

Using a rule-based persistent advice technique, we expect

to reduce even further the number of interactions needed

between the learning agent and the trainer, in comparison

with the state-based persistent advice. In this regard, we

perform experiments using two different domains, namely,

the mountain car domain and the self-driving car domain

described in Sect. 4.

6.3.1 Mountain car domain

First, we employ the mountain car domain using both state-

based and rule-based advice. A total of eight different

simulated users are created, four are used for state-based

advice and four for rule-based advice. The agents differ in

the level of knowledge and the availability to deliver

advice, i.e., full, half, quarter, and bottom availability (as

shown in Table 4). Figure 6 shows the number of steps

each agent performed each episode for this environment.

Figure 6a shows the results for the state-based agents, and

Figure 6b shows the rule-based agents. A comparison of

the two graphs shows that the agents performed similar,

regardless of the advice delivery method. This was

expected, as the method in which the agent uses the advice

and the amount of advice in total that the agent receives

does not differ between the two types of agents. The agents

using minimal advice (MCP-MID and MCRDR-MID) end

up learning a worse behaviour than the unassisted

Q-Learning agent. This is likely an indication that the

decay rate for the PPR action selection method is too low

and that the agent has not yet learned to ignore the user

advice after its initial benefit and focus on its own learning.

Table 6 shows the number of interactions, and the per-

centage of interactions over opportunities for interactions,

for each agent. These results show that the number of

interactions is much less for the rule-based agents com-

pared to the state-based agents, allowing similar perfor-

mance with much less effort from the trainer. In the

previous experiment, the number of interactions was not a

useful measure to compare agents against each other. This

was because the advice provided to the agent affects the

number of steps the agent takes, which results in fewer

opportunities for interactions. However, Figure 6 shows

that the performance the agents that use the same simulated

user are the same, regardless of the advice type. Therefore,

in this context, the number of interactions is a useful

measure for comparing the corresponding state-based and

rule-based agents.

Table 5 Average number of

interactions performed per

experiment, and the percentage

of interactions compared to the

total steps taken, for each non-

persistent and persistent agent/

user combination

Agent Interaction

(% Interactions/total steps)

Non-persistent Persistent

Evaluative agent /Optimistic user (NPE-O/PE-O) 58,355 (100.00%) 668 (0.91%)

Evaluative agent /realistic user (NPE-R/PE-R) 486,503 (26.86%) 117 (0.01%)

Evaluative agent /pessimistic user (NPE-P/PE-P) 500,499 (13.43%) 47 (\ 0.01%)

Informative agent/Optimistic user (NPI-O/PI-O) 54,083 (100.00%) 253 (0.46%)

Informative agent/Realistic user (NPI-R/PI-R) 134,590 (47.31%) 255 (0.01%)

Infomative agent/Pessimistic user (NPI-P/PI-P) 193,170 (23.65%) 63 (0.38%)

Episodes

St
ep

s

1,000

750

500

250

0
0                        50                     100                     150                    200                     250

MC-BENCH
MCP-FULL
MCP-HALF
MCP-MID
MCP-QUAR
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(b) Rule-based agent.

Fig. 6 Step performance for state-based and rule-based IntRL agents

for the mountain car domain. Using considerable much less interac-

tion from the trainer, results show no significant difference in

performance between the two types of agents (a)

Table 6 Interaction percentage state- and rule-based agents for the

mountain car domain

Agent /User #Interaction (%)

State-based/full (MCP-FULL) 254 (\ 0.01%)

State-based/half (MCP-HALF) 227 (\ 0.01%)

State-based/quarter (MCP-QUAR) 139 (\ 0.01%)

State-based/bottom (MCP-MID) 45 (\ 0.01%)

Rule-based/full (MCRDR-FULL) 2 (\ 0.01%)

Rule-based/half (MCRDR-HALF) 3 (\ 0.01%)

Rule-based/quarter (MCRDR-QUAR) 3 (\ 0.01%)

Rule-based/bottom (MCRDR-MID) 3 (\ 0.01%)

Average number of interactions performed per experiment, and the

percentage of interactions compared to the steps taken, for each state-

based/rule-based agent/user combination
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6.3.2 Self-driving car domain

The aim of the agent in the self-driving car environment is

to avoid collisions and maximise speed. In the experiments,

we created two simulated users to provide state-based and

rule-based advice. Both agents outperformed the unassisted

Q-Learning agent, both achieving a higher step count and

reward. The obtained steps and reward are shown in

Fig. 7a, b, respectively. Although the agent was forcibly

terminated when it reached 3000 steps, Fig. 7a shows that

the agents never reached the 3000 step limit. This is

because the agents are given a random starting position and

velocity at the beginning of each episode, some of which

result in scenarios where the agent cannot avoid a crash.

Although both assisted agents outperformed the unassisted

agent, between the state-based and rule-based methods,

there is no considerable difference since both run a similar

number of steps and collected a similar reward.

Table 7 shows the number of interactions, and the per-

centage of interactions compared to the number of oppor-

tunities for interactions (equal to steps), for each agent.

These results show that the number of interactions is much

less for the rule-based agents compared to the state-based

agents.

7 Conclusion

In this work, we have introduced the concept of persistence

in interactive reinforcement learning. Current methods do

not allow the agent to retain the advice provided by

assisting users. This may be due to the effect that incorrect

advice has on an agent’s performance. To mitigate the risk

that inaccurate information has on agent learning, proba-

bilistic policy reuse was employed to manage the trade-off

between following the advice policy, the learned policy,

and an exploration policy. Probabilistic policy reuse can

reduce the impact that inaccurate advice has on agent

learning.

Interactive reinforcement learning agents, both evalua-

tive and informative, learned faster when retaining the

information provided by an advising user, when the

advising user’s accuracy is sufficient. Additionally, per-

sistent agents were shown to require significantly fewer

interactions than non-persistent agents, while achieving the

same or better learning speeds when advice accuracy was

sufficient.

Additionally, we have introduced rule-based interactive

reinforcement learning, a method for users to assist agents

through the use of rule-structured advice and retention.

Two environments were tested to investigate the impact

that rule-based advice had on performance and the number

of interactions performed to achieve the measured perfor-

mance. Compared to state-based persistent advice for

interactive reinforcement learning, rule-based advice was

able to achieve the same level of performance with sub-

stantially fewer interactions between the agent and the

user.

This work did not investigate the time and cognitive

requirements for users to construct state-based and rule-

based advice. It is likely that rule-based advice will require

more time and thought to construct. However, existing

research has shown that decision trees built with ripple-

down rules are easier for users to construct [34, 45, 46].

Future work is required to test if this will justify the ben-

efits that rules provide over state-based advice, in terms of

the number of interactions.

Benchmark
Rule-based
State-based

Episodes

St
ep

s

3,000

2,000

1,000

0

(a) Steps per episode.

Benchmark
Rule-based
State-based

Episodes

R
ew

ar
d

0

-1,000

-2,000

-3,000
0                       100                    200                     300                    400                     500

(b) Reward per episode.

Fig. 7 Steps and reward for state-based and rule-based IntRL agents

for the self-driving car domain. The advice required from the trainer

is considerable less obtaining no significant difference in performance

between the two types of agents

Table 7 Average number of interactions performed per experiment

and the percentage of interactions compared to the steps taken, for

each state-based/rule-based agent/user combination in the self-driving

car domain

Agent #Interaction (%)

State-based advice agent 232 (\ 0.01%)

Rule-based advice agent 2 (\ 0.01%)
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