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Abstract
Knowledge graphs (KGs) store real-world information in the form of graphs consisting of relationships between entities

and have been widely used in the Semantic Web community since it is readable by machines. However, most KGs are

known to be very incomplete. The issues of structure sparseness and noise paths in large-scale KGs create a substantial

barrier to representation learning. In this paper, we propose an Attribute-embodied neural Relation Path Prediction (ARPP)

model to predict missing relations between entities in a KG. The ARPP framework leverages both structural information

and textual information from the KG to enrich the representation learning and aid in learning more valuable information

from noise paths for relation prediction. To handle the overlooked equal path weight distribution issue which hinders the

performance of KG completion, our method evaluates the information propagation for the path by mining neighboring

nodes. In order to verify the benefits of incorporating structural information and textual information and the effectiveness

of path weight re-distribution, we conduct experiments from various aspects to evaluate the quantitative results for link

prediction and entity prediction task, the accuracy change caused by the ablation studies, the effectiveness of the entity

attribute and entity/sequence attention, the applicability of the proposed method on Knowledge Graph Completion task,

and case study. Results demonstrate that the ARPP model significantly outperforms the state-of-the-art methods.

Keywords Knowledge graph completion � Relation prediction � Representation learning � Path denoising �
Information propagation

1 Introduction

In this paper, we introduce the knowledge graph comple-

tion problem, which aims to alleviate the incompleteness

and sparseness issues caused by collaboratively or semi-

automatically knowledge graph (KG) construction.

The major challenge of the knowledge graph completion

task is how to predict missing or likely connections

between entities based on existing facts in a given KG.

KGs are a type of semantic network that depicts how

concepts are related to one another and illustrates how they

are interconnected [23]. In the literature, missing relation

prediction in the KG has been the subject of significant

effort from researchers in the last decade [1, 4, 33]. Despite

the effectiveness of previous studies, relation prediction

still suffers from the following issues:

(1) There is a problem of performing learning and

inference on a large-scale KG with incomplete

knowledge coverage and structure sparseness. The

node degree, which is related to the betweenness

centrality in the network, differs from entity to entity

in a KG [5]. Compared with the entities of large

degree, the entities of small degree are trained with

less information, resulting in an inaccurate entity

presentation [12].

(2) Limited performance caused by noise paths. For

example, to identify the relationship between a

disease and a symptom, the path ‘‘disease!
alias!disease!symptom’’ is more effective than
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the path ‘‘disease!suitable for eating!food not

suitable for eating symptoms.’’ Most existing work

assumes that KG paths have equal weights, but in

reality, there is a gap in weight distribution between

different relationships and paths [20]. It is also time-

consuming to adopt traditional depth-first search

algorithms to explore a large number of paths in the

KG, especially considering that some paths are noise

paths, which cannot provide useful information [22].

In this paper, we present ARPP, an Attribute-embodied

neural Relation Path Prediction model for relation predic-

tion. Specifically, we first propose an entity/relation rep-

resentation model that leverages the structure information

and textual information to alleviate the limitation of

structure sparseness. The learned structural and textual

representations make the KG essentially computable and

have proved to be helpful for relation prediction. After-

ward, we perform the information propagation for the path

by mining the linear combination of neighboring nodes to

effectively alleviate the impact of noisy and redundant

paths on the relation prediction task. We validate the

effectiveness of ARPP on a public dataset.

The main contributions of this paper are summarized as

follows:

(1) We expand the semantic structure of the KG by

proposing a text-enhanced knowledge representation

method considering both structural information and

textual contexts in deep neural networks, thereby

overcoming the barriers of KG sparseness.

(2) To alleviate the impact of the noise paths and

unbalanced relations on the relation prediction task,

we consider the information propagation between

path nodes to distinguish the subtle differences

between paths and then emphasize those paths with

rich information.

(3) Experiments are conducted on a large benchmark

dataset and indicate that our model is superior to the

state-of-the-art methods on path prediction tasks.

We organize the rest of our article as follows. Section 2

reviews related works of knowledge graph completion

methods. Section 3 describes our Attribute-embodied

neural Relation Path Prediction model (ARPP). Section 4

provides experimental results and several model analyses.

Finally, in Section 5, we make a conclusion of our work

and point out several promising directions for future

researches.

2 Related work

KGs typically suffer from missing relations [34], which

give rise to the task of automatic knowledge base com-

pletion that requiring predicting whether a given triple is

valid or not.

Initial KG completion methods mainly drew upon rule-

based reasoning approaches [2] and statistical methods [6].

These methods use a first-order relational learning algo-

rithm [17, 18] to learn the probability rules and substitute a

specific entity to instantiate the rule to infer a new relation

instance from other relation instances that have been

learned.

Afterward, distributed representation-driven KG com-

pletion methods [23] attempt to learn fact triples for the

vector representation of the KG and conduct the inference

or prediction in a low-dimensional vector space. Current

knowledge representation methods can be carried out by

semi-structured data exploration and textual information

extraction.

The semi-structured data exploration method has been

introduced to automatically create or augment KGs with

facts extracted from Wikipedia, which has led to the high

accuracy and trustworthiness of facts in its automatically

created KGs, including YAGO and DBpedia. Although

semi-structured texts are informative, they cover only a

fraction of the actual information expressed in the articles

and thus cannot meet the demand of completeness in real-

world applications.

Textual information extraction methods, which attempt

to extract facts from the natural language text, can be

grouped into two four approaches, i.e., (i) compositional,

(ii) translational, (iii) neural network-based, and (iv) graph-

based models.

Several studies have attempted to use graph structure

learning methods, e.g., the Path Ranking Algorithm (PRA)

[10], and predictive models with multi-task learning [30],

to reason over discrete entities and relationships in KGs.

However, current structure models do not take full

advantage of the contextual information contained in KGs

to find more relevant and predictive paths.

Inspired by the success of word embedding, translation-

based embedding models attempt to interpret the relations

among entities as translations from head entity to tail

entity. Translation-based methods have become increas-

ingly popular for their simplicity and effectiveness. Nev-

ertheless, the heterogeneity and imbalance issues in KGs

are ignored by previous translation models such as TransE

[1], TransH [8], TransR [9], and RotatE [25].

Many studies have attempted to adopt neural network

models to facilitate reasoning over relationships between

two entities. Neelakantan et al. [15] construct
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compositional vector representations for the paths and

adopt Recursive Neural Networks to perform inference in

the vector space. Shen et al. [19] perform multi-step path

reasoning in the learned embedding space through shared

memory and a controller. Socher et al. [24] introduce a

semantic relationship prediction model based on a matrix-

vector recursive neural network (RNN) to learn the com-

positional vector embeddings of phrases and sentences.

Nathani et al. [14] propose a novel feature embedding

based on the graph attention network (GAT) to capture

both entity and relation features in a multi-hop neighbor-

hood of a given entity. Jagvaral et al. [7] combine bidi-

rectional long short-term memory (BiLSTM) and

convolutional neural network (CNN) with an attention

mechanism to perform path reasoning for link prediction

tasks.

Graph-based models learn more expressive embeddings

due to their parameter efficiency and consideration of

complex relations. According to the transfer hypothesis, a

score function is designed to measure the probability of a

relation path connected by multiple triples [34]. Despite

obtaining high precision and recall, these methods struggle

to explore knowledge from the entities and relationships

with small degrees in a KG [31].

In this study, we will explore the textual knowledge

contained in the KG and show how to alleviate the impact

of noise paths and unbalanced relations in such automati-

cally extracted facts by considering the information prop-

agation to better understand information differences.

3 Methodology

In this paper, we propose an Attribute-embodied neural

Relation Path Prediction model (ARPP), a novel frame-

work that leverages textual structure information to tackle

relation prediction (see Fig. 1). First of all, we learn the

textual embeddings of the entity attributes via a Bidirec-

tional Long Short-Term Memory network (Bi-LSTM), and

we learn the structural embeddings of the entity and rela-

tion included in the KG via TransE. Meanwhile, we project

both entity embeddings and relation embeddings into the

same representation space to generate multi-hop paths.

Afterward, for the path denoising, we perform information

propagation through a Graph Attention Network (GAT)

network, which captures the semantic correlation between

neighboring path nodes, and computes their linear combi-

nation using the normalized attention coefficients. Finally,

we feed the path representation into a fully connected

network to obtain the final relation prediction results. Next,

we would elaborate the framework in detail.

3.1 Entity and relation representation

3.1.1 Structural embeddings of node and edge

Given a training set T of tuples (h, r, t) composed of two

entity nodes h; t 2 E and a relationship edge r 2 R, we

transform each KG node and edge to a real-valued repre-

sentation using the TransE model with the Freebase 15K

database. The structures of the node and edge can be

obtained from pre-trained word embedding matrix and are

embedded as ves 2 Rdl and vrs 2 Rdl, respectively, where dl

is the vector dimension set by TransE.

3.1.2 Textual embeddings of node description

Each node has various attributes. Since the content of the

node ‘‘description’’ attribute in KGs is much complete than

that of other attributes, we encode the node ‘‘description’’

attribute as a textual representation:

The textual embedding consists of two parts, i.e., a Bi-

LSTM network and a self-attention mechanism. The self-

attention mechanism provides a set of summation weight

vectors which are dotted with the hidden LSTM states. The

resulting weighted hidden LSTM states are regarded as an

embedding for the sequence.

‘‘Description’’ Sequence Representation. We adopt

TransE as the knowledge embedding method to generate

initial embedding for the ‘‘Description’’ sequence. The

input of the GloVE is the word sequence

Wl ¼ ½w1;w2; . . .;wm�, and the output is the word vector

sequence Vl ¼ ½v1; v2; . . .; vm�, where m is the fixed length

of the word sequence, vi ¼ Rdw is the word vector of dw
dimension, i 2 ½1;m� denotes the index of the word

sequence.

We adopt a Bi-LSTM to capture the ‘‘description’’

information. The output hwt at time step t is computed by

combining the output of two sub-networks for the past

contexts (Vl ¼ ½v1; v2; . . .; vm�) and future contexts

(Vlreverse ¼ ½vm; vm�1; . . .; v1�), which is given by Eq. (1):

hwt ¼ hft þ hbt: ð1Þ

The vector sequence Hwl ¼ ½hw1; hw2; . . .; hwm� refers to

the output of the Bi-LSTM model at all time steps.

Sequence Reweighted by Attention. We apply a self-at-

tention mechanism [13] to summarize the attention values

and pay due attention to each word in sequence according

to their interaction. The input of attention mechanism is all

hidden LSTM states Hw, while the output is a vector of

weights aw 2 Rm, which is given by Eq. (3):

Mw ¼tanhðWswHwÞ; ð2Þ
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aw ¼softmaxðwT
wMwÞ; ð3Þ

where Mw 2 Rdlxm is the nonlinear mapping function,

Wsw 2 Rdlxdl and ww 2 Rdl are projection parameters.

Accordingly, the textual embeddings of entity description

vet can be calculated by Eq. (4):

vet ¼ Hwa
T
w: ð4Þ

3.1.3 Unifying encoding

Given the structural embeddings of the entity and relation

as well as the textual embeddings of the entity description,

we attempt to learn the node and edge representations and

map them into the same representation space.

KG node representation using self-attention mechanism

The projection matrices, Ms and Mt, are adopted to project

the node structural embeddings ves and ‘‘description’’ tex-

tual embeddings vet, respectively, into the same represen-

tation space, which are given by Eq. (5):

vetm ¼ Mtvet; vesm ¼ Msves: ð5Þ

We adjust the attention weight of the node structural

embeddings and textual embeddings; then, the node rep-

resentation ve 2 Rdl is computed by merging both embed-

dings, which is given by Eq. (8):

Me ¼tanhðWe½vetm; vesm�Þ; ð6Þ

ae ¼softmaxðwT
eMeÞ; ð7Þ

ve ¼vetma1
e þ vesma

2
e ; ð8Þ

where We 2 Rdlxdl and we 2 Rdl are projection parameters

to be learned, Me 2 Rdlx2 is the nonlinear mapping func-

tion, and a1
e and a2

e are the attention weights for the

structural embeddings and textual embeddings,

respectively.

KG Edge Representation. The edge representation is

given by vr ¼ Msvrs. The edge representation is in the same

vector space as the node representation because the struc-

tural embeddings of both are processed by TransE.

3.2 Path representation

The path representation gi ¼ fu1; u2; . . .; ulg is a multi-hop

sequence, where u2i and u2iþ1 are the edge embedding vr
and the node embedding ve, respectively.

Information Propagation. We adopt a variant of Graph

Attention Network (GAT) [29] to propagate information

among path nodes. The hidden states of input nodes are

denoted as gi 2 R2d�1, i 2 f1; . . .; ðmþ nÞg. A Multi-

Layer Perceptron (MLP) is used to evaluate attention

coefficients between a node i and its neighboring nodes j

(j 2 N i) at layer t as given by Eq. (9):

Fig. 1 Overview of ARPP

model. Dark green, light green,

and blue matrices denote entity

representation, relation

representation, and path

representation, respectively
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p
ðtÞ
ij ¼ W ðtÞa ðReLUðW ðtÞb ½g

ðt�1Þ
i � g

ðt�1Þ
j � eij�ÞÞ; ð9Þ

where Wt
a and Wt

b are trainable parameters of the t-th layer,

� indicates the concatenation operation, and N i indicates

the set of neighbors of node i. Afterwards, we apply the

softmax function to normalize the coefficients as shown in

Eq. (10):

aðtÞij ¼ softmaxjðpðtÞij Þ ¼
expðpðtÞij Þ

P
k2N i

expðpðtÞik Þ
: ð10Þ

Finally, a linear combination of the neighboring nodes is

evaluated based on the normalized attention coefficients.

The updated vector for node i at the t-th layer is formulated

as in Eq. (11):

g
ðtÞ
i ¼

X

j2N i

aðtÞij g
ðt�1Þ
j : ð11Þ

Inspired by Transformer [28], we further apply a position-

wise feed-forward (FFN) layer after each GAT layer. The

path representation after propagation is represented as

gi ¼ g
ð2Þ
i .

3.3 Relation prediction

The path representation gi from the Aggregation Graph is

fed into a fully connected network to obtain the final

relation prediction results as given by Eq. (12):

~yi ¼ softmaxðWcgi þ bcÞ; ð12Þ

where Wc and bc are trainable parameters of the predictor.

The whole model is trained end-to-end by minimizing the

cross-entropy loss, which is given by Eq. (13):

L ¼ CrossEntropyðy; ~yÞ: ð13Þ

4 Results and discussion

4.1 Experimental setup

We test our algorithm on a subset of Freebase 15K-237,

whose paths were labeled in 2016 by Neelakantan’s group

[15]. The dataset consists of triples ðe1; r; e2Þ and the paths

that connecting entity pairs ðe1; e2Þ in the knowledge

graph. Table 1 provides statistics of the dataset used.

We use the mean average precision (MAP) and mean

rank (MR) as evaluation metrics to analyze the incorpo-

ration of structural and textual information and the effec-

tiveness of path weight re-distribution, respectively.

For the word embeddings, we set the dimension to be 50

and pre-train them by GloVE1. We feed initial word

representation into a Bi-LSTM with 230 hidden units. The

batch size is set to be 32. The dropout rate and learning rate

are set to 0.5 and 0.001, respectively. All other model

parameters are randomly initialized from [- 0.1,0.1]. The

parameters are regularized with a L2 regularization strength

of 0.0001. We use the depth-first search algorithm for path

searching, setting the value of the path number to be 100

and the minimum and maximum lengths of the path to be 2

and 6, respectively. The threshold for path searching is set

to 0.5. The score indicates the informative degree of the

path pattern; the higher, the more important. For the GRU

model implementation, we compute the cross-entropy as

the loss function and use the ReLU activation function and

AdaGrad optimizer. The dropout is adopted in the output

layer to prevent overfitting.

For the baseline models, we use the implementation of

the original paper.

4.2 Experimental results

We compare the performance of ARPP with the state-of-

the-art methods, including the supervised relation extrac-

tion methods, translation-based methods, path-based

methods, structural-based methods, and hybrid methods

that utilize structural and textual information. Table 3

summarizes a comparison, introducing state-of-the-art

methods in terms of the aim and approach.

To verify the effectiveness of various components of our

model, we conduct the ablation test by removing the tex-

tual embeddings of ‘‘description’’ attributes (w/o textual

description) and attention mechanism. The ablation test of

the attention mechanism includes discarding the attention

concerning the description sequence representation (w/o

sequence attention) and entity representation (w/o entity

attention). In addition, we process path representation

through GRU rather than through path information propa-

gation, which denotes (w/o path information propagation).

The results of link prediction and entity prediction on the

FB15K dataset are reported in Table 4. We observe the

following:

(1) ARPP is superior to the state-of-the-art results on

FB15K. The reason may be that, compared with a

model that only uses structural information or text

information in the path, the path information

obtained through information propagation has richer

semantic knowledge. Therein demonstrating that the

simultaneous consideration of structural information

and textual description can effectively alleviate the

training ineffectiveness on entities of low degree. In

addition, unlike the knowledge representation model

1 http://nlp.stanford.edu/data/glove.6B.zip.
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that uses a single triple, the path information takes

advantage of all the triple information in the path,

which greatly improves the relation prediction task.

(2) Our proposed model outperforms the TAPR model

[21] which also incorporates structural information

and textual description for knowledge graph com-

pletion tasks but does not conduct the path denoising

with information propagation, indicating the advan-

tage of combining the structural, textural, and path

information included in the knowledge graph.

(3) Generally, all factors contribute, and this results in a

larger performance boost for relation prediction. The

basic ARPP model (w/o textual description) cannot

perform as well as the ARPP model, which shows

that, for low-frequency entities, the description

provides supplementary information for embedding;

thus, the issue of sparsity in a knowledge base can be

addressed properly. It is within our expectation that

the adopted attention mechanisms significantly

reduce noise and enhance the representation learning

of description sequences and entities.

4.3 Model analysis

4.3.1 Utilization of attributes

To further analyze the performance of our model with

respect to the entity attribute, we report the MAP results of

ARPP and its basic model (w/o textual description) in

Fig. 2. We can observe that in the MAP accuracy interval

[0.6, 0.9], the ARPP achieves a significant improvement,

indicating that textual information can largely alleviate the

issue of sparsity when the structural information can pro-

vide certain but insufficient support.

4.3.2 Utilization of sequence attention

Due to space limitations, we randomly choose one relation,

‘‘_soccer_football_ player_position_s,’’ from Freebase 15K

to analyze the attention mechanism concerning the

sequence representation.

Substantial amounts of positional information can aid in

identifying the football player’s position, including

Table 2 Statistics of our dataset
Statistical Information Total Number/Length

Number of relations 27,791

Number of relation types (test set) 46

Number of entities 1.59M

Number of entities with ‘‘description’’ attribute 1.12M

Number of entity pairs 3.22M

Number of entity pairs (test set) 2M

Average length of paths 4.7

Minimum length of paths 1

Maximum length of paths 16

Number of paths 191M

Table 1 Notation list

Symbol Description

(h, r, t) Tuples containing the head and tail entity nodes h, t and the relationship edge r

ves Word embeddings of the node structure by TransE

vrs Word embeddings of the edge structure by TransE

Wl Sequence embeddings of the entity description by TransE

Vl Sequence vectors of the entity description by GloVE with input of Wl

Hwl Sequence vectors of the entity description by the Bi-LSTM model with inputs of Vl and its reversed vector

vet Textual embeddings of the entity description calculated by a self-attention mechanism

vesm Projected node representations from ves

vetm Projected ‘‘description’’ textual representations from vet

ve Reweighted node representations by merging vesm and vetm with a self-attention mechanism

vr Projected edge representations from vrs

gi Path representation
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forward, midfielder, defender, and goalkeeper. We classify

the positive samples into two groups, i.e., the ‘‘position

group,’’ involving the entities with positional information,

and the ‘‘w/o position group,’’ containing the remaining

entities.

Table 5 shows the accuracy and mean rank of different

models for relation prediction. The accuracy increases

when the mean rank decreases. Accordingly, we can

observe that ARPP demonstrates robust superiority over its

basic models, which are developed without sequence

attention or positional information.

To predict the relation between ‘‘Marko Arnautović’’

and ‘‘Forward,’’ we visualize the attention scores assigned

by ARPP in Fig. 3. The color depth indicates the impor-

tance degree of the words, darker representing greater

importance. As one may expect, ARPP pays significantly

more attention to those words that are contextually related

to the pairwise entity, such as ‘‘as a forward for,’’ ‘‘Aus-

trian footballer,’’ and ‘‘in race,’’ which verifies the effec-

tiveness of path weight re-distribution and denoising.

4.3.3 Utilization of entity attention

The adopted attention mechanism can improve the entity

representation by merging the structural information and

attribute information according to their distributions. The

abscissa in Fig. 4 is the proportion of entities with a degree

less than or equal to 10 in the dataset, and the ordinate is

the MAP.

We can see that when the entity training is sufficient, the

entity attention cannot significantly improve the MAP. The

increase in the MAP is more obvious when there are a large

number of untrained entities in the dataset. The experi-

mental results indicate that the entity attention can increase

the entity degree and facilitate a better entity training.

4.4 Knowledge graph completion

The current KGs contain a large number of potential

relations that have not been explored. In this section, we

elaborate on several actual prediction results and show

examples that highlight the strengths of the ARPP model.

Table 3 Overall comparison between the state-of-the-art methods

Category Method Approach

Supervised relation extraction NLFeat [26] An observed feature model that utilizes text-augmented features

Translation-based TransE [1] An embedding method that represents the Euclidean distance between the head

entity and the tail entity in low-dimensional continuous space

TransH [8] An embedding method that maps entities to hyperplanes corresponding to specific

relationships

TransR [9] An embedding method that maps different relationships to different semantic

spaces

STransE [16] An embedding method that represents each entity as a low-dimensional vector and

each relation by two matrices and a translation vector

PTransE [12] An embedding method that considers relation paths as translations between entities

and designs an algorithm to measure the reliability of relation paths

Path-based PRA [35] An algorithm that provides random paths in a graph

RWR [11] A general-purpose graph proximity measure aiming to solve the feature sparsity in

link prediction

Structural-based RNN-PATH [15] An approach that composes the implications of a path using a recurrent neural

network that takes as inputs vector embeddings of the binary relation in the path

RNN chains of

reasoning [4]

A model that combines the rich multi-step inference of symbolic logical reasoning

with the generalization capabilities of neural networks

Hybrid methods that utilize

structural and textual information

ALL-

PATHS?NODES

[27]

A compositional learning method of relation types and intermediate nodes for

relation prediction on knowledge bases and text

TEKE [32] A novel KG representation learning method that takes advantage of the rich

context information in a text corpus

MINERVA [3] A reinforcement learning model aiming to navigate a graph conditioned on the

input query to reasoning over paths

TAPR [21] A Type-aware Attentive Path Reasoning framework to complete the knowledge

graph by simultaneously considering KG structural information, textual

information, and type information
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Due to space limitations, we randomly choose one

relation, i.e., the ‘‘disease-symptom’’ relationship, to pre-

sent the performance of ARPP on the KG completion task

(see Table 6). Considering the ‘‘head’’ entities (disease) as

the starting point, we collect the ‘‘head–tail’’ entity pairs

(disease–symptom) that satisfy the path pattern. For dif-

ferent paths within the ‘‘disease–syndrome’’ entity pairs,

ARPP utilizes the entity attribute to further verify the

authenticity of the specific relationship in an instance, and

it selects paths with scores above the threshold (0.70) as

candidate paths.

Table 6 shows that ARPP can discover certain diseases

that are not directly connected to a certain symptom

through an ‘‘ alias ’’ or ‘‘ complication ’’ relationship. For

example, a birth defect, also known as a congenital disor-

der, can result in ‘‘disabilities that may be physical, intel-

lectual, or developmental. Accordingly, we can associate

the disease ‘‘birth defect’’ with the symptom ‘‘physical

disability.’’

Table 4 Result on FB15K Dataset (with ablation study)

Model Link Prediction %MAP Entity Prediction %Mean Rank Entity Prediction %Hits@10

NLFeat (2015) 72.15 187 49.41

TransE (2013) 47.10 265 40.76

TransH (2014) 54.42 237 43.80

TransR (2015) 58.73 196 45.28

STransE (2016) 68.45 191 47.33

PTransE (2015) 71.26 184 47.33

PRA (2010) 64.43 192 47.12

RWR (2012) 64.93 191 47.00

RNN-PATH (2015) 68.43 177 46.28

RNN chains of reasoning (2017) 72.22 172 52.76

ALL-PATHS?NODES (2016) 74.57 170 53.33

TEKE (2016) 74.64 169 54.10

MINERVA (2018) 76.41 144 57.85

TAPR (2020) 78.52 136 64.80

ARPP 80.56 134 64.91

w/o textual description 75.21 148 58.16

w/o sequence attention 76.82 143 57.17

w/o entity attention 77.98 143 56.87

w/o path information propagation 77.10 140 56.43

Bold value indicates the best result in a column

Fig. 2 Effect of textual description. The blue and red lines represent

the MAP results for ARPP and its basic model (w/o textual

description), respectively. The higher the MAP value is, the more

accurate the method

Table 5 Comparison of models

w/ and w/o sequence attention
Position w/o Position

Mean Rank (MR) Accuracy Mean Rank (MR) Accuracy

ARPP 2746.08 0.7481 9272.68 0.2032

w/o sequence attention 6103.06 0.3146 8816.93 0.2653
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Another interesting result is the prediction given from

the unrelated diseases and symptoms through the inter-

mediate entity. For example, one of the lesions of the

disease ‘‘stroke’’ is the ‘‘head,’’ whose related symptom

may be ‘‘facial paralysis.’’ On the other hand, two different

diseases, ‘‘lobular pneumonia’’ and ‘‘acute lung abscess,’’

that occur in the same body part, ‘‘lung,’’ may have the

common symptom ‘‘empyema.’’ We also report noise

instances in Table 6. The score of the ‘‘stro-

ke!head eczema’’ instance is low because the textual

information of the ‘‘stroke’’ and ‘‘eczema’’ entities are

quite different, which indicates the benefits of incorporat-

ing textual information into predicting paths and ranking

instances.

Note that ARPP can identify noise instances that require

medical knowledge. Take the ‘‘bronchial

asthma!lung lobular pneumonia!shortness of breath’’

and ‘‘bronchial asthma !lung lobular pneumo-

nia!chills’’ instances as an example. The ‘‘shortness of

breath’’ is the syndrome of the given two diseases, while

‘‘chills’’ is the specific symptom of lobular pneumonia. It is

shown that ARPP is able to identify that the latter case is a

noisy case.

5 Conclusions and future work

In this paper, we study the task of knowledge graph com-

pletion, which has recently attracted increased attention

due to their broad applications in natural language pro-

cessing and natural language generation. We present a

novel and general relation prediction framework (ARPP) to

predict unseen relationships between entities through rea-

soning inside a given KG. We greatly expand the KG even

without external textual resources. The experimental

results on public datasets show that our ARPP method

significantly outperforms the state-of-the-art methods on

path prediction tasks, which confirms that ARPP is an

interpretable model that exploits the differences between

paths and demonstrates the impact of each path on relation

prediction tasks.

In the future, we will further alleviate the data sparsity

problem by exploring the hidden relations beyond the

context and other auxiliary data via BERT and transformer.

In addition, a multi-view attention mechanism will be

designed to interactively learn attentions from different

graph components to improve overall representational

learning.

Fig. 3 An example of the sequence attention visualization when

predicting the relation between ‘‘Marko Arnautović’’ and ‘‘Forward.’’

The color depth indicates the importance degree of the words, darker

representing greater importance

Fig. 4 Effect of entity attention. The abscissa is the proportion of

entities with a degree less than or equal to 10 in the dataset, and the

ordinate is the MAP. The entity attention can increase the entity

degree and facilitate better entity training when there are a large

number of untrained entities in the dataset

Table 6 Sampled ‘‘disease–syndrome’’ path patterns discovered by ARPP

Path Score Instance

disease�!alias
disease �!syndrome

syndrome
0.7018 BIrth defect ! congenital disorder ! physical disability

disease �!complication
disease �!syndrome

syndrome
0.8360 Diabetes ! diabetic nephropathy ! frequent urination

disease�!lesion
body parts �lesion

syndrome 0.7173 Stroke!head facial paralysis

0.1031 Stroke!head eczema

disease�!lesion
body parts �lesion

disease �!syndrome
syndrome

0.7101 Bronchial asthma ! lung  lobular pneumonia ! shortness of breath

0.3045 Bronchial asthma ! lung  llobular pneumonia ! chills
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