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Abstract
In this study, we apply multilevel thresholding segmentation to color images of plant disease. Given that thresholding

segmentation is just an optimization problem, we use Otsu’s function as the objective function. To solve this optimization

problem, we implement five metaheuristic algorithms, namely artificial bee colony (ABC), cuckoo search (CS), teaching–

learning-based optimization (TLBO), teaching–learning-based artificial bee colony (TLABC) and a modified version of

TLABC proposed in this work, known as MTLABC. This version is a hybridization between TLABC and Levy flight

where the search equations of TLABC are changed according to Levy flight equations; this modification, based on the

experimental results, yields a significant improvement in TLABC. Various numbers of thresholding levels are tried to

compare the performance of the optimization algorithms at multiple dimensions. The performance is measured according

to five measures: the objective function, CPU time, peak noise-to-signal ratio, structural similarity index and color feature

similarity. These measures indicate that our proposed algorithm, with the best values of the measures in most images and

levels, ranks first. Also, Friedman and Wilcoxon signed-rank tests are used to analyze the results statistically. These two

tests prove that our proposed algorithm is significantly different from the other four algorithms.

Keywords Multilevel thresholding segmentation � Metaheuristic optimization � Teaching–learning-based artificial bee

colony � Plant disease

1 Introduction

Agricultural products play a key role in many economies

worldwide. However, plant diseases are common and can

occur naturally. Accordingly, these prevalent diseases are

likely to adversely affect both the quantity and quality of

these agricultural products. Then, the detection of plant

diseases is crucial for that reason [25].

The main causes of plant disease are viruses, bacteria or

even fungi. These various causes result in different visual

symptoms, mainly on the plants. Fortunately, these

symptoms can be identified by the naked eye. Therefore,

the conventional method for detecting plant diseases is the

naked eye. Nonetheless, this method is not only time-

consuming but also costly since a well-trained team of

experts is required to conduct this type of examination

[25].

An alternative automatic method based on image pro-

cessing is proposed in the literature to overcome the tra-

ditional ways disadvantages. In essence, a diseased leaves

image consists of a background, normal part and diseased

part with visual symptoms, like a change in color [30]. So

image segmentation is a key step in the process of plant

disease detection such that the diseased part of the plant

leaf can be extracted and examined to detect the disease

and its degree if required. Indeed, segmentation is a crucial,

inevitable step in image processing. The following image

processing steps, such as feature extraction and pattern

recognition, are highly dependent on this step [8].

In general, image segmentation divides the image into

two or more parts according to the intensity of pixels,
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where the pixels with similar intensity levels or similar

properties are part of the same region. Although a wide

range of image segmentation techniques exists in the lit-

erature, these techniques are generally divided into five

main categories: clustering-based segmentation, matching-

based segmentation, region-based segmentation, edge-

based segmentation and thresholding-based segmentation

[8]. Thresholding is considered as one of the most common

segmentation techniques due to its robustness, simplicity

and efficiency [20]. Thresholding-based segmentation

methods divide into two broad types: bi-level and multi-

level thresholding [20]. In bi-level thresholding, we try to

find one threshold value that separates the image into a

background and object. However, in multilevel threshold-

ing, we try to find two or more threshold values to separate

the image into distinct meaningful regions or objects.

Consequently, multilevel thresholding demands more

computation than bi-level thresholding and the computa-

tion complexity increases exponentially with the number of

thresholds [20]. In the plant disease detection, we need to

use multilevel thresholding rather than binary thresholding

as an image of a diseased leaf contains at least three dis-

tinct objects: the background, normal part and diseased

part.

Optimization is an important branch of mathematics that

aims at finding the optimal solution of a given problem and

under given constraints [10]. Thresholding is an opti-

mization problem where we try to find the best threshold

values minimizing some objective function. In terms of the

optimization objective function, thresholding can be sepa-

rated into two types: entropy-based thresholding and

between-class variance-based thresholding. Kapur entropy

and Otsu (between-class variance-based approach) are the

most widely used objective functions [21]. In addition to

these two common objective functions, Renyi entropy and

Tsallis entropy are another candidate objective functions

for the thresholding segmentation [19].

Deterministic optimization methods can be used for

multilevel thresholding problems, but one of their major

drawbacks is the computation time, particularly when the

number of threshold values is high [20]. For instance,

dynamic programming, which is one of the famous deter-

ministic optimization algorithms, was used in [17] to solve

the thresholding segmentation problem with Otsu’s objec-

tive function. However, this algorithm’s main limitation,

like other deterministic optimization algorithms, is the

computation time, which increases exponentially with the

number of threshold values [19]. In [19], a modified ver-

sion of the Otsu’s between-class variance was used as the

objective function for the deterministic optimization algo-

rithm used in [17]. This modified Otsu’s objective function

and the original one share the same solution.

Metaheuristic algorithms are powerful optimization

algorithms that are often used as alternative, efficient

methods to the traditional optimization techniques to

overcome their limitations [20]. Indeed, metaheuristic

algorithms achieve better results than the traditional opti-

mization algorithms [6]. In the literature, there are innu-

merable metaheuristic algorithms and new ones are

constantly being developed [15]. One of them is the best

depends on the application itself; that is, one algorithm

might show good results in one specific application but

show bad results in other applications [20]. Each algorithm

has its limitations; some have good exploitation ability

while the others have good exploration ability [6]. Hybrid

optimization algorithms are proposed in the literature to

overcome the drawbacks of the individual algorithms and

mix their strengths.

In [21], nine of metaheuristic algorithms were listed as

multilevel segmentation algorithms. These nine bio-in-

spired algorithms were ABC, CS, bat algorithm, social

spider optimization, firefly algorithm, gray wolf algorithm,

moth flame optimization, whale optimization algorithm

and particle swarm optimization. A comparison between

these algorithms was drawn based on four factors: the

value of the objective function (both Otsu and Kapur were

used as the objective function), peak signal-to-noise ratio

(PSNR) [12], structural similarity index (SSIM) [26] and

lastly CPU time.

In [1], five of the metaheuristic methods were used to

solve the multilevel segmentation problem. These five

algorithms were the particle swarm optimization, culture

algorithm, genetic algorithm, artificial tree algorithm and

CS. They were compared against each other in terms of the

computation time, value of the objective function which

was the Levine and Nazif intra-class uniformity and PSNR.

In [6], several stochastic algorithms, including the ABC,

firefly algorithm, differential evolution, social spider opti-

mization, particle swarm optimization, whale optimization

algorithm, moth flame optimization, gray wolf optimiza-

tion, multiverse optimization, selfish herd optimization and

harmony search, were used and compared in solving the

thresholding problem. Time complexity, fitness values,

PSNR and SSIM were the performance factors used to

assess the different algorithms. In addition, Wilcoxon’s

ranked-sum statistical test was carried out to analyze the

results statistically.

In [4], a modified version of the particle swarm opti-

mization algorithm was used as the optimization algorithm

for multilevel thresholding with the recursive minimum

cross-entropy as the objective function. This proposed

algorithm was compared with the original CS, particle

swarm algorithm, genetic algorithm, firefly algorithm and

modified ABC. The comparison was drawn in terms of the

following performance factors: values of the objective
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function, computation time, misclassification error, com-

plex wavelet structural similarity index measurement,

feature similarity index (FSIM) and PSNR.

In [7], a hybrid algorithm of ABC and the sine–cosine

algorithm was implemented for the multilevel segmenta-

tion, for which the Otsu’s function was used as the

objective function. The performance of this hybrid algo-

rithm was compared with the original ABC algorithm and

sine–cosine algorithm according to the fitness values, CPU

time, SSIM and PSNR. Additionally, [13] applied a novel

metaheuristic algorithm, known as black widow opti-

mization, to the multilevel thresholding segmentation. Both

Otsu and Kapur were used as the objective function. The

results were compared against those of a six other meta-

heuristic optimization algorithms according to SSIM,

PSNR, FSIM as well as the fitness function.

All of the studies mentioned above tried to segment gray

images using multilevel thresholding. Unlike these studies,

a study reported in [11] used a metaheuristic algorithm

called the efficient Krill Herd algorithm to segment color

images using multilevel thresholding segmentation. In that

study, the Tsallis entropy, Kapur and Otsu were used all as

the objective function. In addition to that study, color

satellite images were segmented in [24] using multilevel

thresholding. Masi entropy was used as the objective

function of the optimization problem and compared with

the other famous entropy-based objective functions,

including Kapur, Tsallis and Renyi entropy. Using Masi

entropy [18] showed better results for color satellite images

as compared to the other three entropy-based criteria. The

performance was assessed based on PSNR, FSIM, SSIM,

mean square error (MSE) and misclassification error.

The last study implemented satellite images, while the

other studies mentioned above used some benchmark

images. Below is some literature review about segmenta-

tion for plant disease detection. In [25], color images of

five different leaf diseases were segmented using genetic

algorithm, with the Euclidean distance between the pixels

and their corresponding clusters as the fitness function. The

five types of leaf diseases were frog eye leaf spot, early

scorch, fungal disease Sunburn disease and bacterial leaf

spot. In [2], K-means clustering method [9] was carried out

to segmentation of color images of plant leaves. There

were four clusters; that is, each image was segmented into

four regions. Different values of the number of clusters

were tested and the best results were achieved when the

number of clusters was four. In [14], color images of dis-

eased leaves were segmented by using K-means clustering

and additional segmentation step was added in order to

mask the mostly green-colored pixels. This additional

segmentation was done using Otsu’s method.

In [27], a two-step segmentation of color images of

diseased leaves was carried out using Otsu’s method as the

first step and Sobel operator as the second step. In fact,

Otsu’s method was commonly used in the literature in

order to segment images of diseased plants after some

preprocessing had been implemented to the images. In

[30], segmentation of color images of diseased leaves was

implemented via K-means clustering and super-pixel

clustering. The segmentation process went through two

distinct steps. The first step was by applying super-pixel

clustering; after that, K-means clustering of the super-pixel

clustering-segmented images was conducted.

The contribution of this study can be summarized as

follows. First, we introduce a novel modified version of

TLABC. Then, we apply it the multilevel thresholding

color image segmentation and compared our results with

four other closely related metaheuristic algorithms: ABC,

TLBO, TLABC and CS. The proposed version of TLABC

introduces two modifications to the standard TLABC

algorithm. The first one is the use of Levy flight equations

in the scout phase while the second one is the addition of

an indicator of the fertile area to the framework strategy.

These two modifications, in fact, substantially improve the

performance of the algorithm. The next section provides

more details and explanations about these modifications.

The rest of this paper is as follows: Section 2 explains

the methodology and algorithms used in this work, Sect. 3

sheds light on the different metrics used to assess the

performance of the used algorithms, Sect. 4 displays the

results and findings of this study with relevant discussion,

and finally, Sect. 5 concludes this paper.

2 Methodology

Color image thresholding is considered a problem of

optimization. In this research, metaheuristic algorithms

have been used to solve this optimization problem. The

objective function of this optimization problem is the

Otsu’s function where the optimal thresholds separate the

image pixels into different classes with minimal intra-class

variance and maximal inter-class variance. That is, Otsu’s

method is a maximization problem exhaustively searching

for the best thresholds maximizing the inter-class variance

and equivalently minimizing the intra-class variance.

Metaheuristic algorithms, depend on an iterative process to

find the optimal solution to the optimization problems.

Each metaheuristic algorithm has its way of generating and

replacing the solutions during the searching process,

leading to different outputs. In this section, we will intro-

duce ABC, CS, TLBO, TLABC and TLABC with Levy

flight algorithms, a new modified version of TLABC pro-

posed in this work, in detail.
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2.1 Thresholding problem

The image thresholding problem searches for the optimal m

levels such that the original image is segmented into ðmþ
1Þ subimages. When m equals 1, it is called bi-level

thresholding while it becomes multilevel thresholding

when m is greater than one. Thus, the m� level thresh-

olding is an optimization problem trying to find the optimal

vector ½t1; t2; :::; tm� that minimizes some objective function

(in our case, the Otsu function). That is, the original image

I (with intensity f(x, y) at the location (x, y)) is segmented

into ðmþ 1Þ subimages as follows:

Io ¼ ff ðx; yÞ 2 I 0� f ðx; yÞ� t1j � 1g
I1 ¼ ff ðx; yÞ 2 I t1 � f ðx; yÞ� t2 � 1j g

..

.

Ii ¼ ff ðx; yÞ 2 I ti � f ðx; yÞ� tiþ1 � 1j g
..
.

Im ¼ ff ðx; yÞ 2 I tm � f ðx; yÞ� 255gj

ð1Þ

While Eq. (1) normally applies to the gray-level images, it

can apply to the red, green and blue channels of the RGB

color images as well where each channel of the RGB image

is treated as an individual image.

2.2 ABC algorithm

Among swarm intelligence optimization algorithms, the

ABC algorithm is considered as one of the most effective

algorithms due to its major advantages such as high

exploration, simple implementation and less control

parameters [16]. To improve its performance more and

overcome its limitations like poor exploitation and slow

convergence, many modified versions of this algorithm

were proposed in the literature. A recently modified version

along with other already existing modified versions of the

ABC algorithm, were compared in [16].

The ABC algorithm divides the bee foraging task into

three phases: employed and onlooker bees for the purpose

of exploitation in addition to scout bees for the purpose of

exploration. These three types of tasks lead the bees to

converge toward the best food source by sharing infor-

mation with each other. The bee colony is divided into two

equal subsets of bees, the employed and onlookers. A scout

bee carries out a random search. The employed bee

becomes a scout as soon as its food source is exhausted.

Each of these tasks is described in detail as follows.

Initialization Initial population is randomly generated

using Eq. (2).

xji ¼ xjmin þ randð0; 1Þðxjmax � xjminÞ ð2Þ

Employed Bee Task Equation (3) is used for performing the

update of the current solution where k 2 ½2; SN� and j 2
½2;D� are randomly chosen indices, SN is the number of

food sources, D is the dimension of the solution (in this

paper, D is the number of levels) and k is not equal to i.

Employed bees update the existing solution based on the

fitness value of the new solution which is calculated by

Eq. (3). Then they replace the existing food source with the

new one of higher fitness value.

vji ¼ xji þ randð0; 1Þðxji � xjkÞ ð3Þ

Onlooker Bee Task It starts when the employed bees phase

finishes. In this task, the onlooker bees in the hive calculate

the selection probability of food sources based on the

employed bees that shared the new solutions. The proba-

bility may be computed using Eq. (4).

Pi ¼
FitðiÞ

XN

i¼1

FitðiÞ ð4Þ

Scout Bee Task A food source is assumed to be exhausted if

that food source is not improved for a threshold number of

iterations. Then employed bee becomes a scout, and a new

food source will be created randomly inside the search

space using Eq. (2).

2.3 CS algorithm

Due to its high efficiency in solving various types of

optimization problems and real-world applications, CS has

attracted great attention [28]. There are three idealized

rules of simplicity in the definition of CS: (1) Each cuckoo

lays only one egg in a randomly selected nest at a time. (2)

Only bring the best nests to the next generations. (3) The

number of available host nests is fixed, and the host bird

can discover the egg laid by a cuckoo with a probability

pa 2 ½0; 1�.

x
0

ijðt þ 1Þ ¼ xijðtÞ þ stepsizeðtÞ � Levy ð5Þ

2.4 TLBO algorithm

The algorithm TLBO mimics a teacher’s effect on students.

There are two stages in the TLBO algorithm: teacher phase

and student phase [22].

Teacher phase The best solution from the population is

known as the teacher since the teacher is considered the

most knowledgeable person in the class. The teacher pro-

vides learners with information to maximize the mean

outcome of the lesson using Eq. (6). This phase is

responsible for the exploration process.
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xnewi;d ¼ xoldi;d þ rand2ðxteacher;d � TF � xmean;dÞ ð6Þ

Learner phase Through communicating with each other,

the learners increase their knowledge. If one of the students

has more experience and knowledge than the others, then

all other learners will learn new information. This phase is

the responsibility of the exploitation process.

us ¼
xs þ rand � ðxs � xjÞ; if f ðxsÞ� f ðxjÞ
xs þ rand � ðxj � xsÞ; if f ðxjÞ[ f ðxsÞ

�
ð7Þ

2.5 TLABC algorithm

TLABC is hybridization between TLBO and ABC algo-

rithms which combines the advantages of both (the

exploration of ABC and the exploitation of TLBO). It

effectively employs three hybrid search phases as follows

[5].

Teacher phase Here, each employed bee uses a hybrid

of TLBO and mutation operator of differential evolution to

search a new food source, which can develop the variety of

search tendencies extraordinarily and upgrade the search-

ability of TLABC.

Learning-Based Onlooker Bee Phase In this stage, an

onlooker bee chooses a sustenance source to search out as

indicated by the selection probability, which is determined

utilizing Eq. (8). After that, the onlooker bee finds out new

food sources using the TLBO’s learning strategy.

ui;d ¼
xoldi;d þ rand2ðxteacher;d � TF � xmean;dÞ; if rand1\0:5

xr1;d þ F � ðxr2;d � xr3;dÞ; otherwise

(

ð8Þ

Generalized Oppositional Scout Bee Phase In this stage, if

a nourishment source cannot be improved further for a

specific period, it is viewed as depleted and would be

relinquished. At that point, an arbitrary candidate solution

and the generalized oppositional solution of it are created.

The best solution of them is utilized rather than the old

depleted nourishment source.

xGOi;j ¼ k � ðaj þ bjÞ � xi;j ð9Þ

2.6 The proposed modification of TLABC
algorithm (MTLABC)

TLABC has a good balance between exploration and

exploitation, as described above. Yet, the modification of

TLABC proposed in this paper would significantly improve

its efficiency. The TLABC algorithm was modified in

previous work; the framework of TLABC was maintained

while the equations of searching of onlooker and employed

phases were modified [23]. Nonetheless, the currently

proposed modification of the TLABC algorithm is, in

essence, a kind of low-level integrative hybridization

between the TLABC and the Levy flight algorithm. In fact,

the good exploration ability of the ABC algorithm attracts a

considerable number of researchers to hybridize it with

many other swarm algorithms, as mentioned previously.

Some of them keep both the search equations and the ABC

framework while the others keep just the ABC framework.

In the TLABC hybridization, only the framework was

maintained; therefore, in this paper, we have also modified

the search equation used in the scout phase. This modifi-

cation enhances the performance of exploitation searching

of TLABC in the generalized oppositional scout bee phase;

the solution created randomly using Eq. (2) was replaced

by a solution created using the update equation of Levy

flight using Eq. (6) around the fertile area of the search

rather than the old depleted nourishment source. In fact, the

scout phase of the original ABC and TLABC generates

solutions randomly to improve the exploration more.

However, the exploration of ABC is already high and we

here make some trade-off between the exploration and

exploitation by generating solutions near the best solution

instead of randomly. By doing so, we improve the

exploitation of the algorithm and achieve some type of

balance between exploration and exploitation. In addition,

we add an indicator of the fertile area which is the other

modification we add to the TLABC. The fertile area could

be discovered by using this indicator to each solution

which will increase whenever the solution increases. Thus,

the solution which its indicator is the highest is indeed in

the fertile area. The pseudo-code for this change is shown

in Algorithm (1). The parameter settings of the MTLABC

algorithm are listed in Table 1.

Table 1 Parameters setting of MTLABC algorithm

Parameter Value

The initialization within the search space was uniform random

Number of iteration 100

Limit 100

Colony size NP 100

Number of food sources SN ¼ NP=2

The range search was inside the interval [0, 255]

pa 0.5
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Algorithm 1 The pseudo code of MTLABC Algorithm
1: Initialize the population by Eq. (2),
2: Calculate the fitness values of the population using Eq. (3),
3: Set trail(i) = 0 and indicator(i) =0 for each individual,
4: repeat
5: for i = 1 . . .NP do
6: Move the employed bees by using Eq. (8),
7: if the new food source is better then
8: Replace solutions (xi,d = ui,d),
9: indicator(i) = indicator(i) + 1,
10: trail(i) = 0,
11: end if
12: end for
13: for i = 1 . . .NP do
14: Calculate selection probability using Eq. (2),
15: Move the onlooker bees by using in Eq. (7)
16: if the new food source is better then
17: Replace solutions (xi,d = ui,d),
18: indicator(i) = indicator(i) + 1,
19: trail(i) = 0,
20: end if
21: end for
22: if The trail is greater than the limit then
23: Find the solution with the maximum indicator
24: Update its value by applying the update Eq. (5)
25: Create its generalized oppositional sol. using Eq. (9)
26: end if
27: Memorized the best solution
28: until (Cycle=MaxCycle or termination criteria are met)

Teaching based
employed
bee phase

Learning based
onlooker bee phase

Generalized
oppositional

scout bee phase

3 Image quality assessment (IQA) metrics

Loss of information, together with a significant degradation

in the quality of an image, occurs at different stages of its

life cycle, including acquisition, transmission, restoration,

processing or compression [12, 26]. Therefore, various

methods, known as image quality assessment, have

developed in the literature to assess the quality of a par-

ticular image after going through some type of distortion.

In general, IQA methods divides into two main approaches:

subjective and objective approaches. In the subjective

methods, the image quality is evaluated by a human.

However, this method is costly, time-consuming and sub-

jective (can differ according to the person evaluating the

image). On the other hand, the objective approaches assess

the image according to some quantitative measures so the

image quality assessment can be done automatically using

some algorithms and metrics. Some of the most widely

used objective IQA metrics are PSNR, SSIM, FSIM and

color feature similarity (FSIMc) indices [29].

3.1 PSNR index

PSNR, which is a function of the MSE, is considered as the

simplest IQA metric. It is very straightforward to compute,

mathematically convenient for optimization, and has a

clear physical meaning. MSE measures the mean-squared

error between the intensities of the reference image pixels

(the image before segmentation in our case) and the dis-

torted image pixels (the image after segmentation in our

case). The PSNR index is calculated according to Eq. (10).

PSNRðIR; ISÞ ¼ 10log10

2552

MSEðIR; ISÞ

� �
ð10Þ

where IR and IS are the original image and the segmented

image, respectively. The MSE is obtained using Eq. (11).

MSEðIR; ISÞ ¼
1

m � n
Xm

i¼1

Xn

j¼1

½IRði; jÞ � ISði; jÞ�2 ð11Þ

where the size of the image is m� by� n, and the MSE is

averaging the sum of the difference between the original

and segmented images squared.

The PSNR index measures the quality of the segmented

image as compared to the original one in decibels. As

inferred from Eq. (10), when the MSE approaches zero, the

PSNR goes to infinity. Consequently, high values of the

PSNR mean a high quality of the segmented image and

vice versa [12]. Although the MSE and PSNR are easy to

compute, both of them fail to distinguish structural content

of the image. In fact, two images with different levels of

degradation can have the same MSE (PSNR) values.
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3.2 SSIM index

As mentioned before, the MSE and PSNR fail to discrim-

inate the structural content of an image. Nevertheless, the

nature of images is highly structured where proximate

pixels of an image are highly dependent and these depen-

dencies are due to the structure of the different objects on

the image. Thus, SSIM tries to measure the differences

between the structural content of the original image and the

distorted image (the segmented image in this paper). The

SSIM index imitates how the human visual system (HVS)

assesses the image quality depending upon the structures of

the images. The SSIM index models the image distortion as

three distinct factors: luminance distortion, correlation

distortion and contrast distortion. Then, the SSIM index is

defined as follows:

SSIMðIR; ISÞ ¼ LðIR; ISÞ:CðIR; ISÞ:SðIR; ISÞ ð12Þ

LðIR; ISÞ ¼
2 � lIRlIS þ c1

l2
IR
þ l2

IS
þ c1

ð13Þ

CðIR; ISÞ ¼
2 � rIRrIS þ c2

r2
IR
þ r2

IS
þ c2

ð14Þ

SðIR; ISÞ ¼
rIRIS þ c3

rIRrIS þ c3
ð15Þ

where IR and IS are the original (reference) image and the

segmented image, respectively. LðIR; ISÞ is the luminance

function which compares the similarity between the lumi-

nance means of the original and segmented images. This

function is maximum and equal to 1 when lIR ¼ lIS �
CðIR; ISÞ is the contrast function measuring the similarity

between the original and segmented images. This function

is maximum and equal to 1 when the standard deviations of

the original and segmented images are equal rIR ¼ rIS �
SðIR; ISÞ is the correlation or structural function which

measures the correlation between the two images where

rIRIS is the covariance between the original and segmented

images. The higher the SSIM index is, the higher the

quality of the segmented image is. The three constants in

the above equations are used to ensure stability and make

sure the denominators are always nonzero.

3.3 FSIM index

FSIM is other IQA metric which evaluates the image

quality relying upon its low-level features, just as HVS

does. These low-level features are the phase congruency

(PC) of the image and the gradient magnitude (GM). The

primary feature of the FSIM index is the PC, which is a

dimensionless indicator of the significance of the local

structure. Although the PC is a reasonable model of how

HVS identifies the image features, it is contrast-invariant

given that the HVS perception of the image quality does

also depend on the information about the contrast in the

image. So the GM is the secondary feature of the FSIM

index which takes into account the local contrast to play a

complementary role with the PC in characterizing the

image local structure [29]. The process of computing the

FSIM index consists of two steps:

Step 1: The map of the local similarity between the two

images (the original and segmented images) is calculated.

In fact, the PC and GM are two components determining

the local similarity map. Therefore, the similarity between

the original and segmented images in terms of their PC’s is

calculated as in Eq. (16).

SPC ¼ 2 � PC1 � PC2 þ T1

PC2
1 þ PC2

2 þ T1
ð16Þ

where PC1 and PC2 are the PC of the original and seg-

mented images and T1 is a positive constant to increase the

stability and ensure the denominator does not equal zero

(the value of T1 relies upon the dynamic range of the PC).

The values of SPC are in the range (0, 1] such that small

values near zero indicate that the PC of the two images are

different and high values near one indicate that the PC of

the two images are similar. Likewise, the similarity

between the original and segmented images in terms of

their GM’s is calculated according to Eq. (17).

SG ¼ 2 � G1 � G2 þ T2

G2
1 þ G2

2 þ T2
ð17Þ

where G1 and G2 are the GM of the original and segmented

images and T2, like T1, is a positive constant calculated

according to the dynamic range of the GM.

Step 2: The two components, the PC and GM, are

combined to come up with a single value according to

Eq. (18).

SL ¼ ðSPCÞa � ðSGÞb ð18Þ

where SL is the combined similarity between the original

and segmented images. a and b are two parameters

weighing the importance of the GM and PC. For simplicity,

both a and b are normally put equal to 1. After obtaining

SL, the overall similarity between the original and seg-

mented images is:

FSIM ¼
P

x2X SLðxÞ � PCmðxÞP
x2X PCmðxÞ

ð19Þ

X is the whole image spatial domain. SL at any location x is

weighted by PCmðxÞ where PCmðxÞ ¼ maxðPC1;PC2Þ. So

the PC acts as a weight because different locations have

different importance in determining the similarity between

two images according to the HVS. Additionally, the PC

structures determine the significance of each location. Like
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SSIM and PSNR, the higher the FSIM index is, the better

the quality of the segmented image is.

3.4 FSIMc index

The FSIM index is developed to be used with grayscale

images or the luminance of color images. The FSIM can be

easily extended to be used with color images by incorpo-

rating the chrominance information of color images. This

extension of the FSIM index is known as FSIMc. Firstly,

the RGB color image is transformed into YIQ color space

where Y denotes the luminance information, and I and Q

contain the chrominance information. This transformation

can be obtained by Eq. (20).

Y

I

Q

2

64

3

75 ¼
0:299 0:587 0:114

0:596 � 0:274 � 0:322

0:211 � 0:523 0:312

2

64

3

75
R

G

B

2

64

3

75 ð20Þ

We can compare the similarity between the chromatic

channels of the original and segmented images as follows:

SIðxÞ ¼
2 � I1ðxÞ � I2ðxÞ þ T3

I2
1ðxÞ þ I2

2ðxÞ þ T3

ð21Þ

SQðxÞ ¼
2 � Q1ðxÞ � Q2ðxÞ þ T4

Q2
1ðxÞ þ Q2

2ðxÞ þ T4

ð22Þ

where I1 and Q1 are the chromatic channels of the original

image while I2 and Q2 are the chromatic channels of the

segmented image. T3 and T4 are, like T1 and T2, positive

constant. Since the two chromatic components, I and Q,
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Fig. 3 Convergence curves of

the TLBO, TLABC, ABC, CS

and MTLABC applied to the

first image (red channel) with

different numbers of levels (k =

5, 7, 9, 11, 13, 15, 17, 20)
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have roughly the same dynamic range, T3 and T4 can be

equal to each other. Then the two similarity components, SI
and SQ, are combined together to yield a single value

according to Eq. (23).

SCðxÞ ¼ SIðxÞ � SQðxÞ ð23Þ

Lastly, the FSIMc can be defined as

FSIMc ¼
P

x2X SLðxÞ � ½SCðxÞ�k � PCmðxÞP
x2X PCmðxÞ

ð24Þ

where k is a positive parameter indicating the significance

of the two chromatic components.

4 Experimental results

In this section, we show the results of applying five

metaheuristic optimization algorithms to the multilevel

segmentation problem. These metaheuristic optimization

algorithms are ABC, CS, TLBO, TLABC and MTLABC.

The first four are well-known metaheuristic optimization

algorithms in the literature, while the last one is a modified

version of TLABC proposed in this paper. Eight color

images of plant diseases were selected randomly from New

Plant Diseases Dataset available on [3] and used as the

benchmark to compare the five metaheuristic optimization

algorithms. Figure 1 shows these eight color images toge-

ther with their histograms. As it is shown in Fig. 1, the

images are with different levels of complexity. One of

these images is unimodal (with one peak), some of them

are bimodal (with two peaks) and the others are multi-

modal. This variety of number of peaks in images his-

tograms makes it a difficult task for the metaheuristic

algorithms to find the optimal thresholding values. Each of

the five metaheuristic optimization algorithms was repe-

ated 50 times and the averages of these 50 times were used

for comparison.

To compare the performance of the five optimization

algorithms, five performance criteria were used. These five

criteria are the objective function, CPU time, PSNR, SSIM

and FSIMc. The experiments were conducted on

MATLAB R2018b installed on a laptop with Intel Core i7-

2670QM CPU (2.20GHz) and 6-GB RAM.

4.1 Objective function

As mentioned before, the Otsu’s function was used as the

objective function of the metaheuristic optimization algo-

rithms with different numbers of thresholds. The objective

function was found for each of the three channels of the

RGB color images individually. Table 5 shows the values

of the objective function for the red channel of the eight

images using different numbers of thresholds (k = 5, 7, 9,

11, 15, 17 and 20 where k is the number of the thresholds).

Likewise, Tables 6 and 7 show the values of the objective

function for the green and blue channels. For each image,

the best results at every threshold are boldfaced. In

Table 5, MTLABC achieved the best results in 43 out of 64

while CS obtained the best results in 21 out of 64. In

Table 6, MTLABC obtained the best results in 48 out of 64

while CS achieved the best results in 16 out of 64. In

Table 7, MTLABC achieved the best results in 54 out of 64

while CS achieved the best results in 10 out of 64. It is

clearly seen that CS was almost the best when the number

of thresholds was small while MTLABC was the best when

the number of thresholds was large. Figure 2 shows a

comparison between the MTLABC and CS which are

always the best two algorithms in terms of the objective

function. At each level, there are eight color images with

red, green and blue channels. In fact, we treat these three

channels as individual images so there are 24 image (24

experiments) at each level. From Fig. 2, we see that CS is

the best in most of the 24 experiments at low levels (k = 5

and 7) while MTLABC is the best in most, and often all, of

the 24 experiments at high levels (k = 9, 11, 13 15, 17 and

20). Therefore, MTLABC performs well in high dimen-

sions and as the dimension (number of levels) increases,

the MTLABC outperforms the other four algorithms more

significantly.

Figure 3 displays the convergence curves of the five

algorithms for the red channel of the first image at all the

Table 2 Mean CPU time in

seconds at level 5 (standard

deviation)

Image ID TLBO TLABC ABC CS MTLABC

1 3.118 (0.239) 3.708 (0.154) 2.201 (0.182) 3.79 (0.206) 3.687 (0.123)

2 3.013 (0.163) 3.643 (0.125) 1.963 (0.191) 3.886 (0.144) 3.654 (0.130)

3 3.029 (0.154) 3.685 (0.118) 1.509 (0.152) 3.661 (0.133) 3.668 (0.142)

4 3.039 (0.172) 3.666 (0.098) 2.235 (0.247) 3.747 (0.147) 3.671 (0.115)

5 3.027 (0.154) 3.65 (0.141) 1.489 (0.163) 3.659 (0.129) 3.661 (0.139)

6 3.018 (0.169) 3.683 (0.149) 1.892 (0.249) 3.688 (0.148) 3.676 (0.119)

7 3.023 (0.178) 3.686 (0.162) 1.865 (0.200) 3.728 (0.135) 3.662 (0.145)

8 3.016 (0.163) 3.679 (0.128) 1.771 (0.212) 3.667 (0.156) 3.651 (0.134)
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levels. The convergence curves show how the average

values of the objective function change with respect to the

number of iterations. Each algorithm was run 50 times so

we report in the graph the average values of the objective

function. According to Fig. 3, MTLABC achieves the best

(fastest) convergence among the five optimization algo-

rithms; in contrast, CS and ABC exhibit the slowest con-

vergence. As a results, the modifications we added to

TLABC improves the convergence of the algorithm, not to

mention its improved accuracy.

4.2 CPU time

As mentioned before, each one of the five algorithms is

repeated 50 times; thus, the mean CPU time in seconds,

together with the standard deviation of the 50 repetitions at

level 5, as an example, is shown in Table 2. As shown in

Table 2, ABC has less mean CPU time in all the eight

images since the ABC involves fewer computational as

compared to the other algorithms. On the other hand, the

computation time of the modified version of TLABC,

MTLABC, is comparable to TLABC, although the results

and convergence of MTLABC are better than TLABC.

4.3 PSNR

As stated previously, whenever the value of the PSNR

index is high, the quality of the segmented image is good

and accordingly the performance of the optimization

algorithm is high. Table 8 shows the PSNR values for the

five algorithms at the different numbers of the thresholds

where the best results were boldfaced. As shown in

Table 8, the performance of the MTLABC was the best, in

terms of the PSNR index, in 59 out of 64. On the other

hand, CS was the best in the remaining five cases. It is also

noted that the MTLABC was always the best when the

number of the thresholds is high (when k = 11, 13, 15, 17

and 20).

4.4 SSIM

Like PSNR, the performance of the optimization algorithm

is high when the SSIM index is high. Table 9 shows the

SSIM values for the five algorithms at the different num-

bers of the thresholds. The best results were boldfaced. The

MTLABC was the algorithm with the highest SSIM values

in 61 out of 64 while CS achieved the best performance in

the remaining three cases. As with the PSNR index, the

MTLABC was always the best when the number of the

thresholds is high (when k = 9, 11, 13, 15, 17 and 20).

4.5 FSIM

The extension of the FSIM for the color images was used

as other performance metrics. The optimization algorithms

with a good performance show high values of the FSIMc

index, similar to the PSNR and SSIM indices. Table 10

shows the FSIMc values for the five algorithms at the

different numbers of the thresholds. The MTLABC was the

algorithm with the best performance in 60 cases out of 64

Table 3 P values and Chi-

square values of Friedman test

of the red, green and blue

channels at different levels

Red Green Blue

Level Chi p value Level Chi p value Level Chi p value

5 25.90 3.31E-05 5 26.80 2.18E-05 5 24.40 6.64E-05

7 25.30 4.38E-05 7 25.30 4.38E-05 7 24.10 7.63E-05

9 24.10 7.63E-05 9 25.10 4.80E-05 9 25.70 3.64E-05

11 25.00 5.03E-05 11 26.30 2.75E-05 11 28.40 1.03E-05

13 26.30 2.75E-05 13 25.90 3.31E-05 13 25.90 3.31E-05

15 26.30 2.75E-05 15 25.90 3.31E-05 15 26.30 2.75E-05

17 26.30 2.75E-05 17 26.30 2.75E-05 17 26.30 2.75E-05

20 26.90 2.08E-05 20 25.70 3.64E-05 20 25.70 3.64E-05

Table 4 P values of the Wilcoxon signed-rank test of the red, green and blue channels

Channels MTLABC versus ABC MTLABC versus TLBO MTLABC versus CS MTLABC versus TLABC

Red 3.53E-12 3.53E-12 9.13E-08 3.53E-12

Green 3.53E-12 3.53E-12 6.78E-08 3.53E-12

Blue 3.53E-12 3.53E-12 1.05E-10 3.53E-12
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cases while CS achieved the best performance in the

remaining four cases. As with the other metrics, the

MTLABC was always the best when the number of the

thresholds is high (when k = 11, 13, 15, 17 and 20).

4.6 Statistical analysis

Due to their stochastic behavior, statistical tests are needed

to prove statistically significant differences between the

Table 5 Averages of the Otsu

objective function (red)
Level Algorithm Image ID

1 2 3 4 5 6 7 8

5 ABC 1747.51 658.80 3726.07 793.66 4013.45 4648.52 1674.75 2693.51

TLBO 1744.30 660.84 3722.03 793.29 4008.44 4653.33 1676.91 2689.66

CS 1778.03 697.28 3768.69 834.49 4061.68 4700.12 1715.55 2731.96

TLABC 1747.94 659.24 3726.01 787.87 4014.36 4654.27 1673.13 2692.97

MTLABC 1777.80 696.73 3768.54 834.25 4061.49 4699.94 1714.93 2731.87

7 ABC 1772.52 675.59 3771.00 821.40 4073.05 4701.45 1712.26 2727.33

TLBO 1773.86 681.89 3767.34 821.03 4071.71 4701.80 1712.03 2729.22

CS 1800.66 712.16 3805.22 854.27 4112.90 4733.11 1743.93 2759.48

TLABC 1772.67 678.68 3767.67 819.61 4068.95 4700.03 1713.62 2728.34

MTLABC 1800.43 712.69 3804.72 854.27 4112.74 4732.20 1743.13 2758.50

9 ABC 1786.82 681.33 3793.90 831.44 4101.61 4723.02 1731.06 2746.98

TLBO 1785.02 675.84 3793.06 834.32 4103.94 4724.07 1729.75 2746.27

CS 1810.07 717.76 3823.27 862.61 4135.84 4750.31 1755.26 2770.78

TLABC 1785.02 683.55 3792.46 831.02 4104.91 4723.16 1729.62 2748.59

MTLABC 1810.94 718.76 3823.26 862.90 4135.62 4750.29 1755.63 2770.49

11 ABC 1795.69 652.61 3810.45 842.97 4119.46 4738.69 1743.59 2758.06

TLBO 1796.08 658.39 3808.55 843.55 4123.65 4737.25 1742.03 2758.01

CS 1814.81 721.14 3832.55 867.02 4148.07 4759.42 1762.08 2776.59

TLABC 1796.61 640.48 3810.89 841.16 4121.24 4738.71 1741.66 2758.90

MTLABC 1816.58 722.88 3833.77 867.98 4148.63 4759.94 1763.21 2776.55

13 ABC 1800.85 655.08 3819.13 842.70 4134.50 4747.86 1750.82 2766.49

TLBO 1803.73 589.96 3820.76 844.92 4134.51 4747.82 1750.76 2765.68

CS 1818.03 723.07 3838.24 869.56 4154.71 4765.13 1766.42 2780.02

TLABC 1801.52 587.51 3819.89 845.46 4134.72 4748.75 1751.31 2765.73

MTLABC 1820.25 725.33 3840.37 871.29 4156.44 4766.26 1767.63 2780.93

15 ABC 1807.81 372.41 3826.82 849.52 4142.89 4755.29 1756.11 2771.36

TLBO 1805.96 530.33 3827.87 817.95 4143.48 4756.27 1756.71 2770.78

CS 1820.35 724.53 3842.48 871.22 4159.68 4768.88 1769.51 2782.38

TLABC 1806.79 493.32 3827.37 816.06 4142.91 4755.65 1757.38 2770.53

MTLABC 1822.71 726.89 3844.82 873.58 4161.79 4770.59 1771.04 2783.65

17 ABC 1808.35 388.38 3832.98 844.79 4149.24 4759.45 1761.13 2774.88

TLBO 1809.48 288.41 3832.86 853.52 4150.68 4759.99 1760.86 2774.56

CS 1822.04 725.78 3845.38 872.97 4163.03 4771.64 1771.62 2784.04

TLABC 1808.92 333.39 3832.79 814.61 4150.03 4759.32 1761.18 2774.34

MTLABC 1824.51 728.40 3847.98 874.90 4165.55 4773.74 1773.28 2785.67

20 ABC 1813.21 210.73 3838.97 648.63 4157.01 4764.91 1766.06 2778.75

TLBO 1813.64 170.42 3838.24 751.91 4156.34 4766.13 1765.91 2778.55

CS 1823.91 726.83 3848.53 874.70 4166.70 4774.61 1774.04 2786.11

TLABC 1813.44 241.47 3838.97 810.45 4156.64 4765.50 1766.36 2778.86

MTLABC 1826.31 728.64 3851.19 876.70 4169.49 4776.89 1775.93 2787.78
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different metaheuristic optimization algorithms used in this

study.

In this paper, the Friedman test and the Wilcoxon

signed-rank test, which are two widely used nonparametric

hypothesis tests, were used to test whether or not a sig-

nificant difference between the used optimization algo-

rithms exists. In particular, we want to show that

MTLABC, which is the proposed optimization algorithm in

this paper, is statistically different from the other opti-

mization algorithms proposed in the literature and used in

this paper.

In the Friedman test, the null hypothesis, Ho, is that the

medians of the optimization algorithms are equal while the

alternative hypothesis, H1, is that their medians are

Table 6 Averages of the Otsu

objective function (green)
Level Algorithm Image ID

1 2 3 4 5 6 7 8

5 ABC 1361.95 506.82 2591.06 758.53 3715.39 4236.52 1577.97 2887.48

TLBO 1358.82 502.81 2591.84 755.77 3711.94 4236.28 1573.88 2885.58

CS 1395.34 545.69 2638.67 793.90 3766.70 4283.56 1614.58 2920.16

TLABC 1356.43 507.11 2589.42 754.83 3715.09 4236.71 1577.07 2883.48

MTLABC 1395.20 545.74 2638.54 793.82 3766.55 4283.43 1613.89 2919.99

7 ABC 1385.78 520.20 2638.26 780.04 3771.79 4281.06 1608.14 2918.49

TLBO 1382.86 515.10 2634.99 779.13 3781.11 4283.49 1607.44 2918.76

CS 1416.25 557.34 2676.64 814.80 3821.63 4316.89 1637.60 2947.07

TLABC 1381.08 516.04 2634.47 782.26 3776.39 4282.35 1607.85 2916.99

MTLABC 1416.02 557.99 2676.27 813.18 3820.99 4316.49 1637.43 2946.85

9 ABC 1396.64 512.05 2662.25 793.87 3809.32 4303.87 1625.10 2935.13

TLBO 1396.47 507.04 2662.69 794.75 3811.56 4304.57 1625.92 2935.37

CS 1424.13 562.00 2694.90 822.41 3846.08 4333.57 1649.09 2958.55

TLABC 1397.98 506.52 2660.24 793.64 3814.18 4306.39 1623.29 2934.83

MTLABC 1425.65 563.54 2695.08 822.68 3845.13 4334.05 1649.17 2957.70

11 ABC 1407.02 346.24 2677.99 803.63 3831.71 4320.04 1636.59 2946.01

TLBO 1407.85 409.00 2678.04 804.46 3831.16 4318.51 1636.28 2945.93

CS 1428.51 564.39 2703.60 826.32 3858.76 4342.44 1654.90 2963.72

TLABC 1407.07 470.11 2679.05 803.74 3831.41 4319.94 1636.45 2947.32

MTLABC 1431.13 566.65 2704.61 827.58 3858.78 4343.70 1655.99 2964.10

13 ABC 1415.33 281.65 2689.16 809.51 3844.94 4328.88 1642.96 2953.52

TLBO 1414.79 275.13 2689.35 811.25 3844.52 4328.18 1643.92 2953.51

CS 1431.88 565.79 2709.26 829.20 3866.01 4347.77 1658.44 2967.11

TLABC 1412.82 176.36 2689.32 808.10 3845.78 4329.04 1643.46 2952.84

MTLABC 1434.30 568.90 2710.71 830.60 3866.55 4349.76 1659.99 2968.07

15 ABC 1418.57 154.35 2698.64 814.83 3854.14 4334.99 1647.37 2959.20

TLBO 1417.98 222.92 2697.10 813.44 3853.63 4335.72 1649.14 2958.64

CS 1433.65 567.44 2712.95 831.15 3870.80 4351.00 1660.80 2969.56

TLABC 1418.15 167.57 2697.43 813.68 3853.20 4336.65 1648.71 2958.58

MTLABC 1436.76 570.42 2714.94 832.95 3871.90 4353.84 1662.70 2970.67

17 ABC 1421.21 109.76 2702.91 809.57 3861.41 4340.58 1652.19 2961.82

TLBO 1420.78 97.44 2703.27 799.22 3860.51 4340.88 1652.17 2961.74

CS 1435.65 568.46 2716.02 832.77 3874.26 4353.58 1662.67 2971.27

TLABC 1420.19 119.56 2702.18 815.80 3860.71 4340.07 1651.44 2962.54

MTLABC 1438.35 571.59 2718.14 834.63 3875.92 4356.68 1664.67 2972.58

20 ABC 1423.79 11.15 2708.36 803.27 3866.59 4346.48 1656.60 2966.11

TLBO 1425.60 11.17 2708.03 762.78 3867.18 4345.95 1656.52 2966.54

CS 1437.63 544.66 2719.05 834.30 3877.65 4356.54 1664.66 2973.06

TLABC 1424.75 31.99 2708.69 751.29 3866.47 4346.89 1655.86 2965.98

MTLABC 1440.16 572.83 2721.14 836.34 3879.76 4359.62 1666.64 2974.64
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different. Therefore, rejecting the null hypothesis in favor

of the alternative demonstrates that the distinct optimiza-

tion algorithms are different from each other. In addition to

hypotheses, the significance level of the test, a, is defined

as the probability of rejecting the null hypothesis while it

is, in fact, true. Accordingly, as the significant level goes

down, it becomes more difficult to reject the null

hypothesis. Thus, the smallest significance level at which

we still can reject the null hypothesis is an important factor

known as the p value. The p value indicates the level of

confidence when rejecting the null the hypothesis. The

smaller the p value is, the more confident we reject the null

hypothesis. Moreover, when the p value for some sample is

Table 7 Averages of the Otsu

objective function (blue)
Level Algorithm Image ID

1 2 3 4 5 6 7 8

5 ABC 1752.27 1205.36 3892.61 1739.80 4628.33 6237.57 2221.20 2146.33

TLBO 1749.31 1205.94 3887.89 1745.77 4629.25 6235.85 2218.00 2146.57

CS 1786.50 1257.13 3933.70 1784.69 4676.92 6273.61 2260.00 2188.27

TLABC 1749.40 1208.67 3887.04 1742.59 4636.56 6232.82 2216.98 2148.00

MTLABC 1786.30 1257.33 3933.62 1784.72 4676.83 6273.60 2259.97 2188.13

7 ABC 1774.31 1185.10 3936.26 1772.83 4685.72 6272.16 2252.86 2184.55

TLBO 1772.28 1179.10 3940.31 1772.62 4686.92 6274.41 2259.37 2182.01

CS 1806.05 1273.23 3973.38 1807.46 4726.50 6301.75 2293.34 2217.74

TLABC 1775.47 1192.32 3933.95 1773.83 4685.94 6271.29 2254.97 2182.90

MTLABC 1806.60 1274.25 3973.22 1808.32 4726.24 6301.63 2293.11 2217.74

9 ABC 1788.41 1022.32 3964.91 1788.13 4718.78 6291.30 2276.73 2202.48

TLBO 1789.92 979.13 3963.04 1789.43 4720.51 6291.21 2272.61 2202.32

CS 1814.40 1280.56 3992.65 1818.49 4747.89 6315.17 2306.60 2229.01

TLABC 1787.95 858.88 3963.97 1788.84 4718.87 6291.39 2276.31 2205.03

MTLABC 1816.70 1282.85 3993.24 1820.56 4748.40 6315.85 2307.35 2229.79

11 ABC 1795.78 540.84 3978.21 1801.02 4736.88 6304.80 2288.16 2214.20

TLBO 1795.72 691.43 3979.18 1800.53 4736.30 6303.78 2285.27 2214.55

CS 1819.37 1283.85 4002.80 1823.81 4760.43 6322.80 2313.49 2235.01

TLABC 1796.62 693.50 3979.55 1801.83 4737.49 6303.14 2291.42 2214.59

MTLABC 1822.70 1287.18 4004.87 1827.57 4762.87 6324.32 2315.48 2236.36

13 ABC 1802.85 322.79 3990.03 1807.26 4750.04 6311.56 2295.45 2222.47

TLBO 1801.43 252.08 3991.77 1808.14 4750.30 6311.18 2296.69 2221.76

CS 1822.33 1286.00 4009.40 1828.37 4768.81 6327.04 2317.60 2238.51

TLABC 1802.09 422.67 3990.53 1807.88 4749.20 6311.05 2294.70 2222.34

MTLABC 1826.50 1290.29 4011.91 1831.63 4771.51 6329.53 2319.94 2240.71

15 ABC 1807.59 226.41 3998.97 1811.58 4756.98 6316.96 2302.20 2227.21

TLBO 1805.90 51.03 3998.14 1810.86 4757.29 6316.76 2299.27 2227.94

CS 1824.74 1286.98 4013.75 1831.17 4773.80 6329.97 2320.59 2241.15

TLABC 1806.68 250.15 3997.91 1810.43 4759.02 6316.70 2299.25 2227.49

MTLABC 1828.99 1291.90 4016.60 1834.48 4776.90 6332.79 2323.73 2243.27

17 ABC 1809.18 25.67 4003.96 1815.27 4764.36 6320.11 2214.99 2232.56

TLBO 1809.85 152.81 4004.03 1814.76 4763.39 6320.22 2258.07 2231.67

CS 1826.75 1285.68 4016.84 1832.72 4777.56 6332.43 2323.04 2242.95

TLABC 1739.30 76.02 4004.38 1815.83 4764.85 6320.20 2303.87 2231.45

MTLABC 1830.68 1292.72 4019.96 1836.62 4780.51 6335.29 2325.91 2245.38

20 ABC 1593.53 25.66 4010.18 1819.98 4771.51 6325.65 2311.24 2235.45

TLBO 1704.95 25.60 4009.58 1743.87 4771.57 6325.24 2213.11 2235.61

CS 1828.71 874.55 4020.41 1835.27 4781.52 6334.75 2325.50 2245.08

TLABC 1703.93 50.30 4010.70 1820.50 4771.12 6324.93 2169.78 2235.90

MTLABC 1832.39 1293.74 4023.28 1838.70 4784.25 6337.58 2328.34 2247.27
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less than the significant level of the test, the null hypothesis

gets rejected by that test.

We applied the Friedman test to the three channels of

the RGB color images individually. In other words, the red,

green and blue channels of any image are treated as three

different images, and Table 3 shows the p values along

with the Chi-square x2 values of the Friedman test at

different threshold numbers. From a x2-distribution, the

0.95 quantile (the critical value at significant level 0.05) of

x2-distribution with (5-1) degrees of freedom is 9.488 and

all the x2 values in Table 4 are significantly greater than

this critical value. That means the null hypothesis is con-

fidently rejected and the optimization algorithms are

proved different. Likewise, the very small p values mean

Table 8 PSNR values of ABC,

TLBO, CS, TLABC and

MTLABC

Level Algorithm Image ID

1 2 3 4 5 6 7 8

5 ABC 21.4519 20.6826 19.7454 21.0351 19.8875 19.5585 20.7078 20.1612

TLBO 23.4913 23.1349 21.5271 23.7153 21.2922 21.1640 22.7826 22.4223

CS 21.3993 20.6630 19.8801 21.0682 19.8020 19.6381 20.5004 20.3804

TLABC 21.3662 21.0854 19.7406 20.9413 19.9486 19.8307 20.4650 20.2629

MTLABC 23.6960 24.1549 21.5741 23.7430 21.2913 21.1092 22.8811 22.5227

7 ABC 23.1229 22.1513 21.7013 22.8770 21.6660 21.7989 22.4709 22.3639

TLBO 25.7374 26.6016 23.8553 25.5849 23.6378 24.0100 25.6298 25.3456

CS 22.9558 22.5667 21.6506 22.7729 21.7452 21.7914 22.6207 22.1294

TLABC 23.0449 22.0943 21.6239 22.7684 21.6952 21.8142 22.5572 22.7046

MTLABC 26.1455 27.4517 24.1029 26.0546 23.6375 23.9471 25.6797 25.7734

9 ABC 24.3756 22.6977 23.2720 23.9381 23.1338 23.0835 24.0430 24.2048

TLBO 27.1116 28.2804 25.6515 26.9949 25.2735 26.0804 27.4350 27.4592

CS 24.5149 22.3388 23.2459 24.0733 23.2287 23.2321 23.9555 24.2146

TLABC 24.2990 21.9082 23.2930 24.0074 23.2886 23.4169 24.0146 24.5382

MTLABC 28.1404 29.5918 26.1124 27.8603 25.3827 26.0745 27.6536 28.3691

11 ABC 25.3261 21.4343 24.3947 25.2346 24.4193 24.6869 25.2928 25.7871

TLBO 28.1361 29.2825 27.0067 27.9346 26.5839 27.5754 28.7102 28.9694

CS 25.3175 22.5466 24.5036 25.2004 24.4539 24.5941 25.1587 25.7176

TLABC 25.4675 22.2988 24.6764 25.1219 24.4284 24.7090 25.3415 25.7440

MTLABC 29.9982 31.2799 27.8259 29.6387 26.8517 28.0278 29.2385 29.9912

13 ABC 26.3770 22.9932 25.6100 25.8623 25.4925 25.8175 26.2801 27.0722

TLBO 28.9547 30.1277 28.0310 28.9297 27.6055 28.8920 29.6576 30.2207

CS 26.3268 22.7026 25.5899 25.9451 25.5082 25.8033 26.3664 27.0624

TLABC 26.1508 22.8730 25.5728 25.9476 25.4798 25.8204 26.2128 27.0477

MTLABC 31.4723 32.5600 29.1929 31.1482 28.1240 29.4302 30.4385 31.2835

15 ABC 27.2286 22.8586 26.6585 26.6541 26.3612 26.6210 27.0638 28.0834

TLBO 29.9207 30.6809 29.0033 29.7107 28.4775 29.6922 30.4587 31.3258

CS 26.9929 23.1184 26.5758 26.5181 26.3523 26.8198 27.1313 28.0345

TLABC 27.0275 23.4152 26.5882 26.5818 26.3599 26.7518 27.0798 27.9278

MTLABC 32.5962 33.5383 30.3721 32.3773 29.3655 30.6781 31.5693 32.3451

17 ABC 27.5057 23.8960 27.3017 26.5529 27.2309 27.4079 27.8978 29.0520

TLBO 30.5057 30.9785 29.9242 30.3560 29.3209 30.5441 31.2501 32.0715

CS 27.5591 23.6777 27.4189 27.1371 27.2308 27.5173 27.8168 28.7147

TLABC 27.6286 23.5240 27.3488 26.9419 27.2338 27.4492 27.7855 28.9499

MTLABC 33.5843 34.3395 31.3955 33.3206 30.4045 31.7632 32.5085 33.2783

20 ABC 27.8910 24.4012 28.4517 27.6364 28.3187 28.6648 28.9606 30.0368

TLBO 31.6857 30.1578 30.9902 31.4208 30.3588 31.5969 32.1973 33.1929

CS 28.4037 24.7893 28.4651 27.0071 28.3020 28.7410 28.6187 30.0771

TLABC 28.3340 24.6921 28.5661 27.1604 28.2801 28.7129 28.6542 30.0065

MTLABC 34.7605 35.0448 32.6470 34.5037 31.7799 33.1081 33.7642 34.5181
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that we can reject the null hypothesis with high confidence.

As a result, we can conclude that the five P-metaheuristic

algorithms are not the same according to the Friedman test

(indicating that the proposed MTLABC might be different

from the other four and a follow-up pairwise test is needed

to prove that).

The Wilcoxon signed-rank test was used as a follow-up

pairwise test, to statistically validate the results and show a

significant difference between the proposed MTLABC

algorithm and the other optimization algorithms from

which MTLABC is a modified version. The Wilcoxon

signed-rank test performed a pairwise test between

MTLABC and the other four optimization algorithms used

Table 9 SSIM values of ABC,

TLBO, CS, TLABC and

MTLABC

Level Algorithm Image ID

1 2 3 4 5 6 7 8

5 ABC 0.7670 0.6814 0.6990 0.7272 0.7840 0.6181 0.6901 0.7782

TLBO 0.8439 0.8400 0.7837 0.8603 0.8149 0.7610 0.7696 0.8565

CS 0.7715 0.6783 0.7043 0.7222 0.7797 0.6299 0.6846 0.7838

TLABC 0.7731 0.6977 0.6992 0.7185 0.7852 0.6355 0.6799 0.7789

MTLABC 0.8495 0.8608 0.7852 0.8594 0.8154 0.7607 0.7768 0.8578

7 ABC 0.8261 0.6999 0.7810 0.7840 0.8276 0.7206 0.7420 0.8405

TLBO 0.8922 0.8991 0.8604 0.8902 0.8534 0.8217 0.8500 0.9054

CS 0.8191 0.7221 0.7808 0.7868 0.8267 0.7245 0.7518 0.8359

TLABC 0.8194 0.7128 0.7798 0.7813 0.8291 0.7301 0.7502 0.8477

MTLABC 0.8972 0.9156 0.8664 0.8968 0.8564 0.7921 0.8540 0.9115

9 ABC 0.8527 0.7122 0.8340 0.8122 0.8611 0.7653 0.7889 0.8789

TLBO 0.9122 0.9188 0.8995 0.9122 0.8743 0.8593 0.8802 0.9287

CS 0.8533 0.6855 0.8326 0.8189 0.8599 0.7651 0.7886 0.8783

TLABC 0.8484 0.6373 0.8360 0.8160 0.8635 0.7742 0.7872 0.8856

MTLABC 0.9258 0.9398 0.9092 0.9222 0.8902 0.8645 0.8861 0.9392

11 ABC 0.8715 0.6141 0.8632 0.8497 0.8885 0.8161 0.8180 0.9061

TLBO 0.9248 0.9307 0.9227 0.9249 0.9009 0.8923 0.9000 0.9408

CS 0.8712 0.6744 0.8654 0.8425 0.8859 0.8151 0.8194 0.9054

TLABC 0.8753 0.6361 0.8723 0.8444 0.8848 0.8158 0.8196 0.9047

MTLABC 0.9481 0.9540 0.9372 0.9412 0.9169 0.9052 0.9088 0.9530

13 ABC 0.8909 0.7010 0.8913 0.8551 0.8987 0.8455 0.8444 0.9216

TLBO 0.9325 0.9397 0.9355 0.9353 0.9146 0.9186 0.9133 0.9493

CS 0.8886 0.7084 0.8890 0.8575 0.9023 0.8467 0.8453 0.9227

TLABC 0.8879 0.6899 0.8894 0.8577 0.8976 0.8481 0.8469 0.9223

MTLABC 0.9630 0.9642 0.9536 0.9551 0.9339 0.9289 0.9250 0.9624

15 ABC 0.9045 0.7154 0.9099 0.8708 0.9155 0.8681 0.8613 0.9329

TLBO 0.9423 0.9442 0.9474 0.9423 0.9231 0.9275 0.9240 0.9555

CS 0.9000 0.6826 0.9079 0.8690 0.9108 0.8738 0.8623 0.9316

TLABC 0.9013 0.7296 0.9096 0.8644 0.9121 0.8684 0.8584 0.9308

MTLABC 0.9711 0.9696 0.9650 0.9647 0.9551 0.9454 0.9398 0.9699

17 ABC 0.9080 0.7109 0.9196 0.8552 0.9257 0.8826 0.8752 0.9415

TLBO 0.9460 0.9410 0.9560 0.9488 0.9344 0.9406 0.9340 0.9592

CS 0.9083 0.7378 0.9224 0.8751 0.9265 0.8877 0.8752 0.9381

TLABC 0.9094 0.7046 0.9206 0.8686 0.9240 0.8837 0.8745 0.9397

MTLABC 0.9776 0.9723 0.9723 0.9707 0.9650 0.9567 0.9504 0.9747

20 ABC 0.9083 0.7662 0.9360 0.8778 0.9394 0.9066 0.8948 0.9501

TLBO 0.9563 0.8919 0.9645 0.9566 0.9442 0.9514 0.9430 0.9654

CS 0.9203 0.7744 0.9371 0.8676 0.9374 0.9092 0.8849 0.9506

TLABC 0.9190 0.7733 0.9374 0.8630 0.9391 0.9089 0.8866 0.9483

MTLABC 0.9826 0.9735 0.9787 0.9764 0.9749 0.9676 0.9617 0.9800
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in this paper. If the p value of this test is less than 0.05, then

there, indeed, exists a statistically significant difference

between the two algorithms which the test compared.

Otherwise, the test fails to prove any significant difference

between the two algorithms. Table 4 shows the p values of

comparing MTLABC against TLABC, TLBO, ABC and

CS using the Wilcoxon signed-rank test. It is obvious that

the p values are much smaller than 0.05, such that the

significant difference between MTLABC and the other

algorithms are demonstrated.

Table 10 FSIMc values of

ABC, TLBO, CS, TLABC and

MTLABC

Level Algorithm Image ID

1 2 3 4 5 6 7 8

5 ABC 0.8891 0.8303 0.8948 0.8446 0.9012 0.8660 0.8383 0.8767

TLBO 0.9202 0.8639 0.9249 0.8813 0.9159 0.8792 0.8711 0.9005

CS 0.8895 0.8232 0.9032 0.8432 0.8970 0.8644 0.8351 0.8842

TLABC 0.8880 0.8367 0.8966 0.8408 0.9012 0.8695 0.8342 0.8770

MTLABC 0.9220 0.8791 0.9258 0.8827 0.9159 0.8804 0.8708 0.9007

7 ABC 0.9121 0.8571 0.9245 0.8772 0.9236 0.8999 0.8751 0.9159

TLBO 0.9378 0.9178 0.9509 0.9220 0.9414 0.9205 0.9096 0.9386

CS 0.9095 0.8608 0.9237 0.8792 0.9234 0.9013 0.8728 0.9121

TLABC 0.9101 0.8552 0.9272 0.8782 0.9236 0.9009 0.8744 0.9163

MTLABC 0.9435 0.9275 0.9545 0.9235 0.9423 0.9273 0.9106 0.9373

9 ABC 0.9277 0.8697 0.9437 0.8967 0.9402 0.9200 0.8967 0.9373

TLBO 0.9502 0.9380 0.9626 0.9403 0.9563 0.9472 0.9359 0.9596

CS 0.9298 0.8666 0.9434 0.8993 0.9407 0.9212 0.9010 0.9371

TLABC 0.9257 0.8609 0.9433 0.9005 0.9409 0.9251 0.8975 0.9375

MTLABC 0.9566 0.9506 0.9664 0.9436 0.9592 0.9474 0.9397 0.9596

11 ABC 0.9382 0.8587 0.9512 0.9139 0.9520 0.9381 0.9173 0.9525

TLBO 0.9568 0.9468 0.9688 0.9492 0.9649 0.9604 0.9522 0.9699

CS 0.9384 0.8774 0.9535 0.9186 0.9517 0.9357 0.9162 0.9501

TLABC 0.9373 0.8735 0.9546 0.9135 0.9515 0.9382 0.9160 0.9501

MTLABC 0.9686 0.9647 0.9746 0.9565 0.9672 0.9648 0.9572 0.9732

13 ABC 0.9459 0.8800 0.9600 0.9245 0.9584 0.9482 0.9298 0.9622

TLBO 0.9616 0.9536 0.9726 0.9547 0.9692 0.9689 0.9601 0.9759

CS 0.9482 0.8770 0.9603 0.9253 0.9577 0.9460 0.9317 0.9625

TLABC 0.9429 0.8748 0.9599 0.9234 0.9582 0.9481 0.9305 0.9616

MTLABC 0.9793 0.9726 0.9808 0.9695 0.9717 0.9741 0.9678 0.9819

15 ABC 0.9543 0.8768 0.9672 0.9339 0.9642 0.9545 0.9386 0.9700

TLBO 0.9668 0.9589 0.9759 0.9592 0.9722 0.9732 0.9656 0.9803

CS 0.9522 0.8855 0.9668 0.9329 0.9638 0.9547 0.9403 0.9672

TLABC 0.9526 0.8825 0.9669 0.9341 0.9635 0.9564 0.9410 0.9660

MTLABC 0.9844 0.9780 0.9855 0.9793 0.9779 0.9805 0.9746 0.9869

17 ABC 0.9573 0.8919 0.9693 0.9334 0.9693 0.9595 0.9458 0.9728

TLBO 0.9697 0.9632 0.9796 0.9633 0.9754 0.9774 0.9705 0.9826

CS 0.9561 0.8905 0.9714 0.9392 0.9691 0.9609 0.9495 0.9722

TLABC 0.9557 0.8905 0.9712 0.9360 0.9690 0.9591 0.9470 0.9729

MTLABC 0.9880 0.9822 0.9889 0.9846 0.9818 0.9841 0.9799 0.9899

20 ABC 0.9626 0.8953 0.9748 0.9446 0.9740 0.9685 0.9566 0.9790

TLBO 0.9744 0.9601 0.9823 0.9679 0.9782 0.9815 0.9754 0.9869

CS 0.9640 0.8970 0.9759 0.9369 0.9731 0.9687 0.9565 0.9784

TLABC 0.9626 0.8981 0.9761 0.9390 0.9733 0.9692 0.9561 0.9792

MTLABC 0.9912 0.9855 0.9920 0.9891 0.9871 0.9886 0.9852 0.9929
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5 Discussion and conclusion

Thresholding is a widely used algorithm for image seg-

mentation owing to its robustness, simplicity and effi-

ciency. In essence, thresholding is deemed an optimization

problem. Some objective functions attempt to find the

optimal threshold values, efficiently separating the distinct

objects in an image. Indeed, Otsu’s function is one of the

commonly used objective functions of this optimization

problem. Like any optimization problem, multiple choices

exist to solve the problem and the best option is the one

that best suits the problem in hand. In general, there are two

broad types of optimization algorithms: deterministic and

stochastic optimization algorithms. The latter is used

whenever the problem is complicated, like our case, and

the deterministic optimization algorithms fail to solve the

problem or take unreasonably much time. In this work, we

used five different metaheuristic optimization algorithms to

solve the multilevel thresholding segmentation problem

where Otsu’s function was used as the objective function.

These five stochastic algorithms are ABC, CS, TLBO,

TLABC and a modified version of TLABC proposed in this

paper. The benchmark used in this paper consists of eight

color images of plant leaves with some kind of plant dis-

ease. Normally, a plant disease image comprises three to

five distinct parts.

However, we tried multiple numbers of levels and

reported the five algorithms’ results at each level. The

objective function values and three commonly used image

quality assessment metrics are used to evaluate and com-

pare the five stochastic performance algorithms. Our pro-

posed algorithm showed the best results in most images

and most of the levels in terms of these four performance

measures. In fact, MTLABC was the best in all the eight

images when the number of levels is high indicating that

MTLABC works considerably well in high dimension; CS

ranked second after MTLABC. Two nonparametric statis-

tical tests were used to analyze the results statistically.

These statistical tests proved that MTLABC, the algorithm

proposed in this work, is statistically different from the

other four stochastic algorithms: ABC, TLBO, TLABC and

CS. The p values obtained in both tests are less than 10�4.

For future study, the data set can be extended into more

than eight images, and further stages of image processing,

such as feature extraction and classification, can be carried

out. The new hybrid stochastic algorithm proposed in this

work will be applied to other applications and compared

with the already existing state-of-the-art stochastic algo-

rithms in future work.

Compliance with ethical standards

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

1. Ameur M, Habba M, Jabrane Y (2019) A comparative study of

nature inspired optimization algorithms on multilevel threshold-

ing image segmentation. Multimed Tools Appl 78:34353–34372

2. Bashish DA, Braik M, Bani-Ahmad S (2011) Detection and

classification of leaf diseases using k-means-based segmentation

and neural-networks-based classification. Inf Technol J

10(2):267–275

3. Bhattarai S. Dataset. https://www.kaggle.com/vipoooool/new-

plant-diseases-dataset. Accessed 1 Dec 2019

4. Chakraborty R, Sushil R, Garg M (2019) An improved PSO-

based multilevel image segmentation technique using minimum

cross-entropy thresholding. Arab J Sci Eng 44(4):3005–3020

5. Chen X, Xu B (2018) Teaching-learning-based artificial bee

colony. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm

intelligence—9th international conference, ICSI 2018, Shanghai,

China, June 17–22, 2018, Proceedings, Part I, vol 10941. Lecture

notes in computer science. Springer, pp 166–178

6. Elaziz MA, Bhattacharyya S, Lu S (2019) Swarm selection

method for multilevel thresholding image segmentation. Expert

Syst Appl 138:1–24

7. Ewees AA, Elaziz MA, Al-Qaness MAA, Khalil HA, Kim S

(2020) Improved artificial bee colony using sine-cosine algorithm

for multi-level thresholding image segmentation. IEEE Access

8:26304–26315. https://doi.org/10.1109/ACCESS.2020.2971249

8. Gao H, Pun CM, Kwong S (2016) An efficient image segmen-

tation method based on a hybrid particle swarm algorithm with

learning strategy. Inf Sci 369:500–521

9. Hartigan JA, Wong MA (1979) Algorithm as 136: a k-means

clustering algorithm. J R Stat Soc Ser C (Appl Stat)

28(1):100–108

10. He JH (2020) A new proof of the dual optimization problem and

its application to the optimal material distribution of sic/graphene

composite. Rep Mech Eng 1(1):187–191

11. He L, Huang S (2020) An efficient krill herd algorithm for color

image multilevel thresholding segmentation problem. Appl Soft

Comput 89:106063

12. Hore A, Ziou D (2010) Image quality metrics: Psnr vs. ssim. In:

20th international conference on pattern recognition

13. Houssein EH, Helmy BE, Oliva D, Elngar AA, Shaban H (2020)

A novel black widow optimization algorithm for multilevel

thresholding image segmentation. Expert Syst Appl 167:114159

14. Jaware TH, Badgujar RD, Patil PG (2012) Crop disease detection

using image segmentation. World J Sci Technol 2(4):190–194

15. Khan WA (2021) Numerical simulation of Chun-Hui He’s iter-

ation method with applications in engineering. Int J Numer Meth

Heat Fluid Flow. https://doi.org/10.1108/HFF-04-2021-0245

16. Kong D, Chang T, Dai W, Wang Q, Sun H (2018) An improved

artificial bee colony algorithm based on elite group guidance and

combined breadth-depth search strategy. Inf Sci 442–443:54–71

17. Luessi M, Eichmann M, Schuster GM, Katsaggelos AK (2006)

New results on efficient optimal multilevel image thresholding.

In: 2006 IEEE international conference on image processing,

ICIP 2006-proceedings, proceedings-international conference on

image processing. ICIP, pp 773–776

18. Masi M (2005) A step beyond Tsallis and Rényi entropies. Phys
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