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Abstract
Detection and classification of Alzheimer’s disease (AD) are a demanding field of research in medicine throws light on

innovative approach in detecting and classifying AD from cognitive impairment with resting-state functional magnetic

resonance imaging (rsfMRI). The goal of this research is chiefly aimed to diagnose mild cognitive impairment (MCI)

patients who essentially need support for medical intervention. A new concept is presented in classifying AD and MCI

from rsfMRI using Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. The images are preprocessed using some

advanced technique to eliminate noise and parameter variations, and the preprocessed images are used for extracting the

raw features. The rsfMRI is applied for feature selection processes in order to reduce feature dimensions using principal

component analysis (PCA). The proposed kernel-based PCA-support vector regression (SVR) includes t-distributed

stochastic neighbor embedding (tSNE) and polynomial kernel-based tSNE that are separately handled by significantly

merging correlated local and class features. The kernel PCA method analysis the new features explicitly based on nonlinear

mapping function in the data points of high-dimensional search. The kernel PCA method is suitable to analysis the new

feature and feature importance in AD classification. The proposed kernel SVR method has the advantage of effectively

analyzing the high-dimensional data to provide linear relationship and suitable to apply in MCI and AD data. The PCA

method is applied for feature reduction process due to its capacity to select the relevant features and effectively analyzing

the individual features. The proposed kernel-SVR method has the advantage of selecting the relevant features and avoid

overfitting problem in the classifier. The SVR uses reduced features that are obtained from different reduction methods for

classification of AD and MCI, a polynomial kernel based. The results showed that the proposed kernel-based PCA-SVR

showed better average accuracy values 98.53% for kernel PCA when compared the existing models hippocampal visual

features of 79.15% and deep neural network of 80.21%

Keywords Alzheimer’s Disease Neuroimaging Initiative � Kernel-based principal component analysis � Polynomial kernel-

based PCA � Resting-state functional magnetic resonance imaging � Support vector regression � t-distributed stochastic

neighbor embedding
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A Matrix

D Dimension of the space
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P Eigen decomposition
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Q Eigen decomposition
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xmax Maximum intensity in the image

xmin Minimum intensity in the image

y1, y2, ……yN Class of data

Greek symbols
aj Least square solution for mapping

bi Blending coefficients

/ Mapping function

rj Variance bandwidth

w Að Þ Matrix polynomial

;G; ;W ; ;g; and ;s Kernel-based projection

nn; n
0

n
Slack variables

1 Introduction

Nearly 15% of 65 years’ age-old persons are affected by

MCI and 50% of them develop Alzheimer’s disease within

a half-decade. As it is very critical to diagnose AD at an

initial stage, many types of researches have been intensely

conducted on exploring the possibilities of prediction.

Degradation of various brain regions is observed in AD,

and thus, it is also termed a disconnection syndrome which

is a type of neurodegenerative disorder [1]. The neuron

network of the healthy brain is modified in the cases of

MCI that progresses to AD. Cognitive function of the

mentally healthy elderly people should be observed before

initiating the treatment by diagnosing the conversion from

MCI to AD in mentally healthy elderly people is major

precedence for AD investigation [2, 3]. The AD patients

with initial symptoms of MCI are cognitively impaired but

appear like a healthy person with simpler memory func-

tions. The structural sMRI is used to describe accurately

the brain features like cortical thickness, areas, volumes,

and the curvatures of gyri and sulci. These brain parame-

ters have been extensively utilized to examine any modi-

fication of brain anatomy during the transformation from

healthy to Alzheimer’s disease. In general, AD patients

have unstable memories and abnormal cognitive abilities

and it is challenging to identify AD patients at initial stage,

the diagnosis is on demand [4, 5]. Nevertheless, the diag-

nosis of the signs of MCI development continues to be an

uninvestigated endeavor.

Many types of researches aimed to investigate AD dri-

ven modifications of the brain anatomy, neuroimaging

types, namely sMRI, rsfMRI, diffusion tensor imaging

(DTI), positron emission tomography (PET), resting-state

functional MRI (rsfMRI) and so on, have been observed to

be more instructional in establishing the biomarkers for

MCI to AD development. Several earlier types of

researchers used a single type of neuroimaging in the

identification of AD [6–9], and a similar approach is car-

ried out to increase the prediction accuracy of AD com-

pared to certain previous single image technique

approaches [10–14]. The rsfMRI images have proven to be

more effective means in determining the morbid physiol-

ogy of functional connectome among AD patients as well

as among neuropsychiatric or neurological patients

[15–18]. However, in the existing models, diagnosing the

patients with serious signs becomes complex because of

the difference in demography and clinical trials; further, it

becomes more complex due to largely varying and

uncommon symptomatic trends that prevail among MCI

patients [19]. Further, the natural connectome at rest

establishes the transport links for information about the

tasks. Therefore, in the proposed kernel-based PCA-SVR

which is an ensemble rsfMRI has proven to effectively

detecting AD. By using polynomial kernel-based PCA for

feature selection process that overcomes the problem

occurred in the existing researches. So, the researchers

have attempted to show the capability of rsfMRI in the

detection of MCI and AD patients [20–23]. Existing

methods in AD classification have the limitation of irrele-

vant feature selection that creates overfitting problem in the

classification. The selection of relevant features selection

in rsfMRI data helps to avoid overfitting problem in the

classifier. The proposed method applies kernel-PCA

method for the feature selection to select the relevant

features and applied to kernel-SVR for effective classifi-

cation. The proposed kernel-SVR method overcames the

limitation of overfitting problem in existing method by

relevant features selection for classification. The proposed

kernel-SVR method has improved the accuracy of classi-

fication of AD up to 98.7% and existing deep learning

method 84.97% accuracy in classification.

The organization of the present research work is as

follows: Sect. 2 is the literature review section that surveys

various existing techniques involved in AD detection using

f-MRI. The Sect. 3 describes about the proposed ensemble-

based PCA for dimensionality reduction for AD and MCI

detection. Section 4 describes about the results and dis-

cussions for the present research work by comparing the

proposed and existing models. The Sect. 5 describes about

the conclusion and further improvement required in future

for the research.

2 Literature survey

There are various researches undergone for AD detection

using MRI techniques that are as follows:

Grieder et al. [9] developed default mode network

(DMN) complexity and cognitive decline in mild AD. The

Alzheimer’s disease has yielded lower global DMN-MSE
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than that of control group. The regional effects were

localized at the left and it was true for most scales at the

right hippocampi. However, the developed model used

small sample size which was not enough in finding the

differences among the mild AD and HC increased the error

rate.

Eskildsen et al. [15] developed ADNI cohort using

patterns of cortical thinning for prediction of AD in sub-

jects with mild cognitive impairment. The predictions of

accuracies were obtained from different stages from MCI

to AD that improved by learning atrophy patterns for

designing different stages of disease progressions. How-

ever, the main limitation of AD was that it involved vivo

data for uncertain diagnosis which was the reason for

probable AD diagnosis will confirm the diagnosis. Also,

the patterns for neurodegeneration were found in many

studies which has various uncertainties faced difficulties

during correct diagnoses.

Peng et al. [17] developed a structured sparsity regu-

larized multiple kernel learning for AD diagnosis. The

developed regularizer was enforced on the kernel weights

that are concisely selected from the feature set present in

each of the homogeneous group. There was the presence of

heterogeneous features that took an advantages from the

dense norms. However, a general framework was assumed

without any prior knowledge about the group of features

and their importance was still required in the model.

Ahmed et al. [18] performed an automatic classification

of AD subjects from MRI using hippocampal visual fea-

tures. The main contribution of the model was that it

considered visual features from the most involved region in

AD (hippocampal area) and used a late fusion to increase

precision results. The experiments showed that combining

hippocampus features and cerebrospinal fluid (CSF)

amount classification gave better accuracy especially when

discriminating between AD and MCI when compared with

only hippocampal visual features.

Dyrba et al. [19] performed multimodal analysis of

functional and structural disconnection in Alzheimer’s

disease using multiple kernel SVM. The developed model

used fiber tract integrity as that measured diffusion tensor

imaging (DTI), GM volume derived from structural MRI,

and the graph-theoretical measures ‘local clustering coef-

ficient’ and ‘shortest path length’ derived from resting-state

functional MRI (rsfMRI) for the evaluation of the utility of

the three imaging methods in automated multimodal image

diagnostics, to assess their individual performance, and the

level of concordance between them. However, the data

used in the study were from AD patients in mild to mod-

erate stages of the disease, but patients were not further

stratified by disease severity.

Nguyen Thanh Du et al. [21] developed a 3D-deep learning

based automatic diagnosis for AD using resting-state fMRI.

To improve MMSE regression performance, feature opti-

mization methods including least absolute shrinkage and

selection operator and support vector machine-based

recursive feature elimination (SVM-RFE) were utilized for

the research. However, in the developed model16 ICAs

were selected as input data points for deep learning, but it

was difficult to determine exactly what kinds of compo-

nents impacted the broader neural network.

Problem Statement Existing methods in AD classifica-

tion have the limitation of overfitting problem, lower effi-

ciency in the large dataset, and requires the balance dataset

to train the model. The existing methods have higher

misclassification in the imbalance dataset due to the models

bias to single-class. Some of the existing methods were

higher performance in detection and poor performance in

the classification of AD. Visual features were not sufficient

to classify the AD due to similarity of the AD to the MCI.

Deep learning models in AD classification suffer from the

overfitting problem due to inconsistent feature selection.

The aforementioned surveys discussed about the exist-

ing methodologies involved for AD detection automati-

cally using f-MRI and also stated the limitations of their

studies. Therefore, the present research work performs an

automatic classification method that uses the data from

rsfMRI is aimed to classify three groups of patients

between AD, MCI, and healthy individuals. The research

aims to apply a polynomial kernel-based PCA technique to

detect more, particularly the MCI patients among

stable patients.

3 Materials and techniques

3.1 Proposed approach

A comprehensive method suggested is presented in Fig. 1.

ADNI rsfMRI images of 210 patients (68 AD, 69 MCI, and

73 HC) are subjected to this research. Once the prepro-

cessing of rsfMRI images, the ROI atlas is applied to detect

the region of interests (ROIs) of the brain, particularly the

gray matter, white matter, gyri, and sulci curvatures, and

the mean matrix was computed using the volume and

surface area of selected brain regions. Global and local

features are computed. Nilearn is utilized for preprocessing

and volumetric segmenting of brain regions from rsfMRI

images. The areas and volumes of the gray and white

matters, gyri and sulci in surface area, based on ROI atlas,

are computed the features in proposed methods. The

rsfMRI local and global features are merged to produce a

feature vector of every subject. Four feature selection

methods are used to determine an optimal feature subset for
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support vector regression (SVR) [20]. The SVR is trained

to classify AD, MCI, and healthy applying reduced rsfMRI

features derived from PCA, kernel PCA, tSNE, and kernel

tSNE. The aim of the research is to classify the AD and

MCI based on the rsfMRI data and to reduce the overfitting

problem. The input data are applied with normalization for

better representation, and ROI method is applied for seg-

mentation. The kernel-PCA method is applied for the

feature selection, and PCA method is applied for feature

reduction. The selected feature is applied in kernel-SVR to

classify the AD and MCI on rsfMRI data.

3.2 Description of subjects

In the present research, most of the subjects listed in ADNI

are used from rsfMRIs Alzheimer’s Disease Neuroimaging

Initiative (ADNI) image dataset: 68 AD patients with mean

age 74.6 years and of 38 females, 69 MCI patients with a

mean age of 72.2 years and 39 females, and 73 healthy

individuals with a mean age of 73.3 years and 37 females.

The AD patients, who are used in this research, get the

scores of 20–30 on Mini-Mental State Examination

(MMSE) and 0.5–1.0 on clinical dementia rating (CDR).

The MCI patients get the scores of 25–32 on MMSE; loss

of objective memory deprivation is quantified through

education-adjusted scores of 23–29 on Wechsler Memory

Scale Logical Memory II and 0.5 on CDR, non-appearance

of notable impairment levels in other cognition spheres,

necessarily is maintained in day to day activities, and lack

of dementia. The healthy cases are non-demented, non-

MCI, and non-depressed and get the scores of 23–32 on

MMSE and almost 0 on CDR. Demographic data of the

subjects are depicted in Table 1. Analysis of variance

(ANOVA) is applied to observe the data variance based on

the group, and Fisher method is applied to analysis the

significant set in the data. ANOVA measures the mean of

the group, and Fisher is measured as the ratio of variation

between the sample means and variation within the

samples.

3.3 Image collection and preprocessing

The functional MRI images are compiled to the ADNI

scanning standards. The fMRI images with DICOM format

are available in ADNI. In order to preprocess them in

Nilearn, the dicom format is converted in NifTI format.

Then, typical preprocessing methods were employed on

rsfMRI images utilizing Nilearn python library. The pre-

processing involved to mitigate the motional effects [21]

and to remove skull, and other non-brain tissue using

watershed algorithm [24]. For segmenting the white matter,

deeper gray matter, gyri and sulci structures [24], and

detecting the boundaries of white and gray matters by

normalizing the intensity, and discriminating the borders

between gray and white matters, and between gray and

CSF, the gradients by intensity were applied in order to

precisely locate the tissues classes. The intensity normal-

ization in the input images is given in Eq. (1).

Fig. 1 Flow diagram for the proposed kernel-based PCA-SVR for AD detection

Table 1 Demographic and

clinical details
Number Male/Female Age MMSE Score CDR Score

AD 68 30/38 74.6 � 8.18 20.68 � 2.85 0.036 � 0.18

MCI 69 30/39 72.2 � 12.24 27.11 � 2.03 0.5 � 0.02

Healthy 73 36/37 74.3 � 11.76 29.24 � 1.82 0.94 � 0.34

P value – 0.64* 0.86* 0.00028** 0.0001**

*Fisher test, **ANOVA Test
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x ¼ x� xmin

xmax � xmin

ð1Þ

where x represents the input image, xN represents the

normalized image, xmax represents the maximum intensity

in the image, and xmin represents the minimum intensity in

the image. The AD-based features are needed to be

extracted from the preprocessed images, and therefore,

next the feature extraction process is undergone.

3.4 Extracting features from rsfMRI data

The features are extracted from the preprocessed rsfMRI

using a vector that uses local and global measures are

computed based on mean vectors of compiled rsfMRI. The

local measure is clustering coefficients of the ROI struc-

tures, whereas the global measures are clustering coeffi-

cients of the transition between ROI structures. The surface

area, contour curvatures, and the volumes of gray and

white matters of ROI are used as features of the proposed

algorithm. To perform the measurements between subjects

comparatively, a structural normalization is carried out.

The measurements of volume and area are divided by the

sum of all volume and area of ROI, respectively. The

cortical thickness and the contours are structurally nor-

malized. Once the extraction of features is done, the fea-

tures are normalized for every subject separately. The

extracted features might create complexity due to higher

dimensional data, and thus, the feature selection process is

carried out further.

3.5 Feature selection

The extracted features are used for recognizing the pattern

and solving the classification problems, but at the same

time, handling higher dimensional data becomes a complex

case, specifically in the applications of neuroimaging as the

sample availability is less with a huge number of features.

The selection of features is generally carried out to detect

appropriate features, thus decreasing their dimensionality

and improving the model abstraction. An effective selec-

tion method of features becomes a key element for a

machine learning technique wherein the features with

higher dimensions. Here, four kinds of feature selection

techniques, namely principal component analysis (PCA),

kernel-based PCA, t-distributed stochastic neighborhood

embedding (t-SNE), and kernel-based t-SNE, were applied.

Eventually, the kernel-based PCA method was so effective

in recognizing the AD and specifically the AD prodromal

condition [20].

The kernel PCA applies a mapping function to transform

the design space to the feature. A mapping function is

denoted as / : RN ! RL, where L can be arbitrarily large

without through explicitly defining /. For input dataset X,
the new covariance matrix PL�L is P ¼ 1

MUUT , where

columns vectors /~ x~i
� �

2 RL form U 2 RL�M . The Eigen

decomposition P becomes P ¼ VKVT , where eigenvectors

of K 2 RL�L and P forms V 2 RL�L. The Eigen problem

long and expensive is depend on value of L. The kernel

trick helps to solve this problem. The kernel matrix K 2
RM�M is given in Eq. (2).

K ¼ UTU ð2Þ

An RBF kernel function is considered without generality

loss, as given in Eq. (3).

k x~i; x~j
� �

¼ exp �
x~i � x~j
�� ���� ��2

2

2r2

 !

ð3Þ

3.6 Feature reduction methods

Feature reduction technique further applied in the selected

feature to remove the highly correlated features and this

avoid overfitting problem in the classifier. The kernel-PCA

method selects the features from rsfMRI and selected

features were applied in feature reduction methods. In the

feature selection process, to detect appropriate features,

decreasing their dimensionality and improving the model

abstraction PCA, t-SNE have been applied to recognize

patterns by combining the diverse features into vectors

obtained from particular modalities [25]. PCA computation

involves lesser effort, and thus, it is used for any real-time

uses. PCA is the best-known technique for decreasing the

size of a higher dimensional feature array, particularly in

nonsupervisory learning.

3.6.1 Theory of PCA

The selected features are applied in the PCA method as xi
to reduces the features and avoid high variance in the

model. PCA is a factorial analysis technique statistically

based to identify the significant variables from distributed

data using absolute variance. PCA originally finds the

optimal variations in the data that are characterized by a

value set are arranged in one-dimensional form. Such data

numerical values can be of integer or floating-point rep-

resentations and can be either discrete or continuous

[26, 27]. To derive lower-dimensional data, the data are

mapped on to an earlier maximal variance eigenvector

direction [19]. For data with large dimensions, few

dimensions persist to be zero data length. In such a case, it

is onerous to show their eigenvectors that projected will

inhabit in the subspace ranged by the data.
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kaua ¼ Cua ¼
1

N

X
xix

T
i ua ¼

1

N

X
xTi ua
� �

xi;

In which ua ¼
X xTi ua

� �

Nka
xi ¼

X

i

aai xi
ð4Þ

ua represents an eigenvector of C.

Eventually, a new set of data t is determined, and thus,

projection onto newly reduced space can be derived by the

means

uTa t ¼
X

i

aai x
T
i t ¼

X

i

aai K xitð Þ ð5Þ

The Eq. (2) is quite a usual one and more basic for

numerous kernel methods. A method is needed to compute

the K matrix. This indicates that a kernel is required to

substitute for xi ! U xið Þ and to describe

Kij ¼ U xið ÞUðxjÞT , where U xið Þ ¼ Uia.

3.6.2 Theory of kernel-based PCA

It is complex particularly to center the features in their

space. Nevertheless, the resulting algorithm will depend on

a kernel, and thus, feature centering becomes possible [28].

The kernel that does centering can be computed accord-

ingly with non-centered kernel and nonessential features as

stated

Kc ti; xj
� �

¼ U tið Þ �
X

k

U xkð Þ
" #

U xj
� �

�
X

l

U xlð Þ
" #T

ð6Þ

The above expression can be modified by carrying out the

identical calculation using Kc ti; xj
� �

and Kc xi; xj
� �

Kc ti; xj
� �

¼ K ti; xj
� �

� k tið Þ1Tj � 1ik xj
� �Tþki1i1

T
j ð7Þ

3.6.3 Theory of t-distributed Stochastic Neighborhood
Embedding (tSNE)

A tSNE is computed with two main steps. At first, tSNE

draws a probability distribution across pair of high

dimension objects in such a way similar objects which have

high probability will get selected most likely while dis-

similar objects which have a substantially low probability

will get unselected most likely. Next, tSNE reflects the

probability distribution of identical data in lower-dimen-

sional space, and thus, it decreases relatively the Kullback–

Leibler divergence among two neighboring data clusters

located in the space [29].

The tSNE intends to learn the feature data present in

y1; y2; . . .. . .:yN , yi 2 RD�N where D is the dimension of the

space and identifies the resemblance between data at best

through pij. Here, the target disease type labels y are

associated with features that combined linear, namely gray

volumes (XG), white volumes (XW ), gyri surface areas (Lg)

and sulci surface areas (Ls) by following expressions

y ¼ XGT
wG þ eG ð8Þ

y ¼ XWT
wW þ eW ð9Þ

y ¼ AgTwg þ eg ð10Þ

y ¼ AsTws þ es ð11Þ

In which wG 2 RD, wW 2 RD, wg 2 RD and ws 2 RD are

the vectors of weighted coefficients of feature vectors,

whereas eG 2 RN , eW 2 RN , eg 2 RN and es 2 RN are the

vectors comprise noises obtained individually from regular

normal distributions.

In itself, it estimates the resemblances qij between data

xGi and xWi , x
G
j and xWj , a

g
i and asi , and agi and asj , using

similar approach.qij is thus represented as

qij ¼
1þ yi � yj

�� ��2
� ��1

P
k 6¼i 1þ yi � ykk k2
� ��1

ð12Þ

The heavy-tailed student t-distribution has 1 degree of

freedom (df) and hence like Cauchy distribution, this is

used to evaluate common features among lower-dimen-

sional data to allow dissimilar features to be described

distantly in data space, i.e., it sets qii to zero.

The data values yi that situated in data space are

detected by optimizing the divergence of the Kullback–

Leibler between the distributions of P and Q to minimum

KLðPjjQÞ ¼
X

i6¼j

pGij log
pGij
qij

þ
X

i 6¼j

pWij log
pWij
qij

þ
X

i 6¼j

pgij log
pgij
qij

þ
X

i 6¼j

psij log
psij
qij

ð13Þ

In order to obtain the optimal minimum divergence of

Kullback–Leibler over data, gradient descent is performed.

This optimization results better to identify common fea-

tures between high and low dimensional data.

The optimization problem is solved using Eqs. (12) and

(13) that apply the gradient technique [30, 31]. The features

of gray and white matters are selected according to the

presence of nonzero elements that correspond to weighted

coefficients in W ¼ wGwWwgws½ �.

3.6.4 Theory of kernel-based tSNE

On expanding non-parametric-based dimensional reduction

technique, t-SNE is a type of categorical projection
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described by setting as x ! fw xð Þ ¼ y and it will be opti-

mizing the factors of fw instead of mapping on coordinates.

This performance expansion from a non-parametric type to

a parametric type was used in numerous descriptions [32].

fw is supplied to a deep auto-encoder to train initially in a

normal way, and subsequently, the parameters are fine-

adjusted enabling cost function optimization of tSNE by

projecting the data to the mapped space. Due to the high

flexibility of the deep learning model, kernel tSNE allows

the model to achieve good accuracies using a substantial

amount of data through training that is accomplished per-

fectly. As a result, several parameters are constituted in

deep auto-encoders and consequential mapped space usu-

ally appears complex since the vast amount of data and

time needed for training. The notion of parametric type

applying in the optimization of the cost function through

non-parametric-based dimensionality reduction is evident

in tSNE and confirmed its performance in respect of

piecewise linear functions. Using simpler functions, a

fairly simple concept is derived to train with less amount of

data in lesser time. But, the flexibility of the resulting map

is confined as opposed to the complete tSNE method since

the local nonlinear property may not be captured during

local linear mapping. As the first step in the operation of

kernel tSNE, projection of fw is carried out applying linear

Gaussians function, where its coefficients are expected to

be trained based on its cost function by directly using a

false inverse of train data while projecting in tSNE.

The map fw ¼ y based on kernel tSNE is represented as

follows

x ! y xð Þ ¼
X

j

aj
kg x; xj
� �

P
l kg x; xlð Þ ð14Þ

aj 2 Y are the parameters of data in the projected space, xj
is a vector contains sample data, j takes account of subset

X0 sampled from data interval [x1; . . .; xm]. kg is defined as a

Gaussian kernel and rj as variance bandwidth.

kg x; xj
� �

¼ e
�

0:5 x�xjk k2

r2
j

� 	

ð15Þ

For a confined lesser bandwidth, t-SNE appears the

same for the inputs derived from X0. Eventually, aj decides
the projection of yj on xj. For remaining x, an interpolation

is performed proportionally according to the length of x of

xi that sampled from X
0
. The mapping of this type consti-

tutes an extensive linear map in the manner that the

training is carried out particularly in a simpler method for

sampled xi. Then, aj is computed using the least square

solution for mapping. As A constitutes the coefficients aj,
the entries of after normalization of Gram matrix K are

represented as follows

K½ �i;j¼ kg xi; xj
� �

=
X

l

kg xi; xlð Þ ð16Þ

Y denotes the mapping matrix with yi elements. Then, least

square error is
X

i

yi � y xið Þk k2 ð17Þ

aj is represented as follows

A ¼ K�1 � Y ð18Þ

With K�1 as K inverse.

A traditional tSNE is employed on subsets of X0 to

obtain vectors for training. This categorical systemic

method is utilized to obtain projecting parameters. Using

obtained projection, the whole X is then projected linearly

by adopting y projections. It can be considered as another

form of extended dimension reduction. ri is projection

variance bandwidth that occurs to be an important param-

eter since it determines the flexibility and coarseness of

consequent kernel-based projection. The better technique

explores these parameters through the selection of ri as a
distance measure of xi with its closest neighbor present in

X0, the scaling parameter usually takes the value positive

close to zero. This parameter is acquired innately as a

minimal measure in a way the elements comprise in K will

be in the designated range.

3.6.5 Theory of polynomial kernel

Polynomial filtering [33, 34] method enables to influence

of PCA or tSNE models with a closer approximation to a

low rank. w(A) specifies a matrix polynomial of A matrix of

degree d, and it is represented as follows

w Að Þ ¼ ndA
d þ nd�1A

d�1 þ . . .. . .. . .n1Aþ n0 ð19Þ

If assuming that A is normal which described by the

property ATA ¼ AAT , it results from A = QKQT as its

eigen decomposition

w Að Þ ¼ w QKQT
� �

¼ Qw Kð ÞQT ð20Þ

Therefore, the polynomial applies to a results in a poly-

nomial of eigenvalues. This can be comfortably repre-

sented in applying polynomial filtering to derive directly

the similarity vector by avoiding eigenvalue computations

completely.

The x data are changed using x
^ ¼ x� l. To determine

the similarity magnitude s, w polynomial of A
^
T A
^

is

described as follows
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s ¼ w A
^

T A
^� �

A
^
T x
^

¼ w VRTRVT
� �

VRTUT x
^

¼ VwðRTRÞVTVRTUT x
^

¼ VwðRTRÞRTUT x
^

ð21Þ

Choosing w tð Þ, the polynomial appropriately will enable

us to understand this approach as a compromise between

the correlation and PCA. If polynomial w is unconstrained,

one can use any kind of function. While w tð Þ ¼ 18x,
w RTR
� �

changes to a resemblance operator. Hence, the

discussed approach is similar to a correlation method.

The data can be estimated using polynomial filtering.

Therefore, applying polynomial filtering to PCA or tSNE

can result in an almost identical alike eigenvalue decom-

position method by devolving the expensiveness of

eigenvalue decomposition. Further, the condition to hold

back the matrices of PCA or tSNE may be completely

removed being the demand to restore these matrices when

the subspace used proactively learn the differences. The

cutoff option is fairly similar to the issue of choosing the

parameter k in the PCA or tSNE method. However, the

salient difference between PCA and tSNE is choosing a

higher k value in PCA or tSNE may result from these

techniques expensive. But when selecting a high cutoff in

polynomial filtering will drastically reduce the expense

[35].

3.6.6 Theory of kernel-based support vector regression
classifier

The opted features are supplied to a kernel support vector

regression (kSVR) [36, 37] classifier, thereby the comple-

mentary features, the GM and WM volume and, gyri and

sulci surface areas are integrated. After opting the features,

the lowered dimensional N sampled training data

bXG
n ;
bXW
n
bAg
n;
bAs
n

n oN

n¼1
including the corresponding label

produce the vector yf gNn¼1. The kSVR applies simpler

equation that uses e a robust loss function. Assuming bAg
n ¼

bXg
n and bAs

n ¼ bXs
n, then

min
wGwWwgwsbnn0

1

2

X

i2 G;W;g;sf g
bi Wi
�� ��2þC

XN

n¼1

nn þ C
XN

n¼1

n
0

n

ð22Þ

where

P

i2 G;W ;g;sf g
bi Wið ÞT;i bXi

n þ b
� �

� yn � eþ nn

yn �
P

i2 G;W ;g;sf g
bi Wið ÞT;i bXi

n þ b
� �

� eþ n
0

n

nnn
0

n [ 0 n ¼ 1; 2. . .:N

8
>>>><

>>>>:

ð23Þ

wG;wW ;wg;ws are the weighted vectors, ;G, ;W , ;g, and ;s
are the kernel-based projection functions of the features, bi
are blending coefficients with the bounds bi � 0 and
P

i2 G;W ;g;sf g bi ¼ 1. Slack variables are denoted by nn; n
0

n,

and bias is denoted by b. The dual function is obtained as

follows

max
aa0

� 1

2

XN

n;m¼1

ða0

n

� anÞ a
0

m � am
� � X

i2 G;W ;g;sf g
biki bX

i
n; X̂

i
mð bAi

n;
bAi
m

� �

� e
XN

n¼1

a
0

n þ an
� �

þ
XN

n¼1

a
0

n � an
� �

yn ð24Þ

where
PN

n¼1 a
0
n � an

� �
¼ 0 and 0� an; a

0
n �C;

n ¼ 1; 2. . .. . .N. ð bXi
n; bX

i
mÞ and ð bAi

n;
bAi
mÞ are newly devel-

oped vectors of low dimension in testing the rsfMRI. A

polynomial described by ;G, ;W,;g, and ;s is applied. The
classifier performs the classification using the equation [30]

after the train of kSVR.

f bXG; bXW ; bAg; bAs
� �

¼
XN

n¼1

a
0

n � an
� �

kn ð bXG
n ; bX

W
n ; bAg

n;
bAs
n

� �
; bXG; bXW ; bAg; bAs
� �h i

þ b

ð25Þ

Above equation provides the classification of AD based on

selected features and the metrics are evaluated from the

classified result. Using various PCA-based feature dimen-

sionality reduction techniques, the complexity of the fea-

tures is reduced.

4 Experimental setup

The present section explained about the result and discus-

sion of the proposed framework. In the study, MATLAB

(2018A) was utilized for experimental evaluation. In the

scenario, the proposed kernel-based PCA-SVR perfor-

mance was compared with dissimilar classifiers and some

prior research works on the database ADNI. So, to deter-

mine the advantage of the proposed method during clas-

sification for AD, MCI, and HC from rsfMRI images, a

considerable number of experiments are carried out.

22804 Neural Computing and Applications (2023) 35:22797–22812

123



5 Results and discussion

The proposed technique will be selecting both global and

local resembling features. The experiments are carried out

by combining the volume and area features. The training is

then carried out with rsfMRI images supply to the kSVR

classifier. For training the classifier, 210 9 7 variable data

are applied by combining. The combined performance of

the classifier and the feature reduction methods largely

influence the accuracy of the classifier. The features of gray

matter, white matter, gyri, and sulci are considered here

with equal weights in classifying the mental disease. The

proposed regression classifier applies the polynomial

kernel.

5.1 Preprocessing for sliced rsfMRI

The preprocessing of the rsfMRI used Nilearn technique

results in the volume data of gray and white matters and

area data of gyri and sulci. The preprocessing involved to

remove cerebrospinal fluid (CSF) and to mitigate the

emotional effects. The input and normalized images are

shown in Fig. 2.

Then, the ROI atlas was applied to detect the region of

interests (ROIs) of the brain particularly the gray matter,

white matter, gyri, and sulci curvatures, and the mean

matrix was computed using the volume and surface area of

the selected brain regions. These data were collected in

excel and those depicted in Table 2. These collected data

from 210 subjects are obtained from ADNI and their par-

ticulars are described in Table 1. The information of sub-

jects, namely subject ID (SUB_ID), Age, Gender,

Intelligent score, and Intelligence Test, can be acquired

from the LONI website. The AD patients with the scores of

20–30 on MMSE and 0.5–1.0 on CDR, MIC patients with

the scores of 25–32 on MMSE, the scores of 23–29 on

Wechsler Memory Scale Logical Memory II and 0.5 on

CDR, and the healthy cases with the scores of 23–32 on

MMSE and almost 0 on CDR are used.

Figure 3 shows the correlation table using the data

collected in excel. The correlation between the white

matter volume and gyri surface area ? 0.7, with gray

matter volume is ? 0.6 and with total surface area is ? 0.8.

The correlation between gray matter volume and sulci

surface area is ? 0.8 and with total surface area is ? 0.9.

The correlation between white matter volume and gyri to

sulci surface area is negatively correlated by 0.5.

Figure 4 shows the scatter matrix using the data col-

lected in excel. White matter volume shows the linear

relationships of an almost same slope with gray matter

volume and gyri surface area for the cases of MCI and AD.

White matter volume shows the linear relationships of the

larger slope with sulci surface area and total surface area of

AD compared with MCI and gyri surface area for the casesFig. 2 a Input image, and b normalized image

Table 2 The data that extracted after image preprocessing (12 Samples)

Label White matter volume

(WV)

Gray matter volume

(GV)

Gyri surface area

(GA)

Sulci surface area

(SA)

Total surface area

(TSA)

GV/

SV

SA/

GA

AD 241,007 54,859 14,287 7011 5359 0.228 0.491

243,231 54,872 14,298 7397 5378 0.226 0.517

261,029 59,472 15,507 7608 5837 0.228 0.491

278,827 64,069 16,720 7819 6300 0.23 0.468

MCI 80,686 26,478 4536 1011 565 0.328 0.223

95,756 31,377 5398 1206 618 0.328 0.223

112,149 36,651 6250 1442 690 0.327 0.231

128,531 41,918 7095 1680 763 0.326 0.237

CN 2113 67,966 13,332 6823 3965 32.166 0.512

3103 68,021 13,367 7158 3969 21.921 0.535

1089 68,024 13,370 7296 3973 62.465 0.546

1131 68,034 13,377 7431 4009 60.154 0.556
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of MCI and AD. White matter volume shows complete

independence with gray matter volume, gyri surface area,

sulci surface area, and total surface area in the case of HC.

Gray matter volume shows the linear relationships of the

almost same slope with gyri surface area in all the cases.

Gray matter volume shows the linear relationships of the

larger slope with sulci surface area and total surface area in

AD case in comparison with MCI and HC cases. Gyri to

sulci surface area ratio decreases exponentially with gray

matter volume in HC.

5.2 Segmenting sliced rsfMRI

In a classification of brain images, the high-dimensional

features normally affect available data. Therefore,

decreasing the dimensionality and thereby picking up the

feature is of enormous significance and gain interest. Here,

features like gray and white matter volumes, and gyri and

sulci surface area are utilized and supplied to kernel free

and kernel-dependent PCA and tSNE to select features and

classified using kSVR. The area shaded pixel counts of

gray and white matters, and contour pixel counts of gyri

and sulci are obtained from rsfMRI. The chosen features

have shown correlation better, and supply them by incor-

porating complementary data for reduction method and

regression classifier. Therefore, two kinds of the feature

selection procedure are used for dimensionality reduction

by including the polynomial kernel, which this attempt will

have an advantage to solve the problems of kernel-less

dimensionality reduction, for example, less likely to con-

sider globally correlated features.

Figures 5, 6 and 7 show the preprocessing outputs of

rsfMRI (z-axis cut the coordinate value of -200) of AD,

MCI, and HC cases, respectively. Figures 5, 6 and 7a

depict actual brain scan images with skull and other brain

tissue. Figures 5, 6 and 7b show an image after stripping

the skull. Figures 5, 6 and 7c show Nilearn ROI atlas.

Figs. 5, 6 and 7d show the physical mask. Figures 5, 6 and

7e show the segmentation of gray matter and gyri surface

from the atlas image. Figures 5, 6 and 7f show the seg-

mentation of white matter and sulci surface Threshold

segmentation is applied to extract contour so to evaluate

the surface area and to extract area to evaluate volume. The

segmented images are applied for the kernel-PCA for

feature selection process and selected features are applied

to kernel-SVR for classification.

5.3 Performance of feature dimensionality
reduction

For reducing the highly correlated feature dimension, this

research applied PCA [30], third-degree polynomial-based

kernel PCA, tSNE [31], and third-degree polynomial-based

kernel tSNE. The proposed kernel-PCA method provides

the linear relation for the features and linear relation is easy

for SVR to classify the data. The concentrated features here

Fig. 3 The correlation table is obtained using the data provided in Table 2. GA, SA, and TSA that observed in the table are gyri area, sulci area,

and total surface area
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Fig. 4 The scatter matrix is obtained using the data provided in Table 2

Fig. 5 The outputs of image preprocessing of rsfMRI of AD case a actual brain image b skull removed image c ROI atlas d physical mask

e segmented gray matter and gyri contour f segmented white matter and sulci contour
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Fig. 6 The outputs of image preprocessing of rsfMRI of MCI case a actual brain image b skull removed image c ROI atlas d physical mask

e segmented gray matter and gyri contour f segmented white matter and sulci contour

Fig. 7 The outputs of image preprocessing of rsfMRI of HC case a actual brain image b skull removed image c ROI atlas d physical mask

e segmented gray matter and gyri contour f segmented white matter and sulci contour

Fig. 8 Multi-dimensional plots of different feature reduction techniques applied on data using PCA, third-degree polynomial-based kernel PCA,

tSNE, and third-degree polynomial-based kernel tSNE

22808 Neural Computing and Applications (2023) 35:22797–22812

123



are gray matter and white matter volumes, gyri and sulci

surface area, and their ratios. Figure 8 depicts multi-di-

mensional scatter plots of different reduction techniques. In

Fig. 8, X-axis denotes the Principal Components 1 and Y-

axis denotes the Principal Components 2.

5.4 The performance of kernel-based SVR
classifier

The extracted seven features of 210 are supplied to four

types of reduction methods. The output from reduction

methods is used for training and testing the performance of

kernel-based SVR. The proposed kernel-SVR method has

the higher performance compared to existing methods in

AD classification. The proposed kernel-SVR method has

the advantage of selecting the relevant features based on

kernel-PCA and avoid overfitting problem in the classifi-

cation. The proposed kernel-SVR method has the accuracy

of 98.7%, and existing deep learning [18] method has

84.97% accuracy. The existing methods have the limitation

of overfitting problem that affects the performance of the

model. The performances of kernel SVR supplied with

output of reduction methods shown in Table 3. Further, the

Table 4 shows the proposed method using kernel PCA has

given better result in comparison with the previous works

of Jialin Peng [17], developed a structured sparsity regu-

larized multiple kernel learning for AD diagnosis that

achieved accuracy of 96.1%, but the general framework

was assumed without any prior knowledge about the group

of features and their importance was still required in the

model. Beheshti et al. [16] applied genetic algorithm for

the AD classification and Dyrba et al. [19] applied multi-

kernel SVM for the AD classification. Olfa Ben Ahmed

[18], performed an automatic classification of AD subjects

from MRI using hippocampal visual features achieved

accuracy of 87%, but the CSF amount classification failed

to give better accuracy especially when discriminating

between AD and MCI due to higher dimensionality of data.

Nguyen Thanh Duc [21] used 3D-deep learning based

automatic diagnosis for AD that achieved accuracy of

84.97%, but it was difficult to determine exactly what kinds

of components impacted the broader neural network. The

used structured sparsity regularized multiple kernel learn-

ing, hippocampal visual features, and 3D-deep learning

based automatic diagnosis for reducing the dimensionality

of large datasets with less computational complexity. The

proposed kernel SVR is a most efficient algorithm for

managing large amount of datasets with gives better

Table 3 Comparison of

proposed different

dimensionality reduction

methods used in classification of

Alzheimer’s disease using

kernel SVR

PCA Kernel PCA tSNE Kernel tSNE

CN MCI AD CN MCI AD CN MCI AD CN MCI AD

Sensitivity 91 100 94 99.2 98.6 98.6 93 68 98 91 84 82

Specificity 100 92 100 98.8 98.9 98.3 100 96 83 100 87 92

Precision 100 87 100 99.2 99.4 98.9 100 90 74 100 76 83

Accuracy 97 95 98 98.5 98.4 98.7 97 87 88 96 86 89

Table 4 Comparison of

proposed different

dimensionality reduction

methods used in classification of

Alzheimer’s disease using

kernel-PCA

Kernel SVR SVR KNN DNN

CN MCI AD CN MCI AD CN MCI AD CN MCI AD

Sensitivity 99.2 98.6 98.6 99.02 97 97 94 65 96 89 83 84

Specificity 98.8 98.9 98.3 97 98 98 98 94 81 99 85 90

Precision 99.2 99.4 98.9 98 98 97 98 89 72 99 74 82

Accuracy 98.5 98.4 98.7 97 94 97 96 86 86 97 83 88

Table 5 Comparison of the

proposed model with different

feature optimization methods

Kernel PCA Relief ICA LDA

CN MCI AD CN MCI AD CN MCI AD CN MCI AD

Sensitivity 99.2 98.6 98.6 98.01 96 97.21 91 70 96 89 82 81

Specificity 98.8 98.9 98.3 97 97.2 97.3 99 94 81 99 86 90

Precision 99.2 99.4 98.9 98 98.21 96.9 98 89 73 98 82 82

Accuracy 98.5 98.4 98.7 97 98.14 96.7 96 85 86 97 84 84
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prediction and high classification accuracy results

(Tables 5 and 6 and Fig. 9).

6 Conclusion

The suggested method is to classify Alzheimer’s disease

utilizing the reduced features derived from the ROI atlas of

rsfMRI images. This classification is done using high

correlation between different features of gray matter and

white matter volumes along with the surface area of gyri

and sulci. These features are obtained by preprocessing the

rsfMRI. Then, the features are supplied to feature selection

techniques to reduce their dimensions, i.e., transforming

initial data space to more correlated lower dimension data

space by efficiently overlaying parameters over four fun-

damental features. Nilearn-based ROI detection reduces the

influence of the presence of noises and effectively

improves the detection of edges and contours which are

important to estimate volume and surface area. A model is

Table 6 Comparative analysis

of the proposed model with

existing techniques

Methods Dataset Sensitivity Specificity Precision Accuracy

Kernel PCA CN 99.2 98.8 99.2 98.5

MCI 98.6 98.9 99.4 98.4

AD 98.6 98.3 98.9 98.7

Peng et al. [17] CN 85.6 69.8 NA 80.3

MCI 65.9 82.7 NA 76.9

AD 97.3 94.9 NA 96.1

Ahmed et al. [18] CN 70.73 81 NA 78.22

MCI 75 83.34 NA 72.23

AD 75.5 70 NA 87

Duc et al. [21] CN 67.73 95.9 NA 86.2

MCI 67.2 96.86 NA 85.79

AD 65.63 90.03 NA 84.97

Beheshti et al. [16] CN 94.3 95.4 97.1 97.4

MCI 93.2 93.5 97.4 96.2

AD 93.6 94.5 96.3 96.5

Dyrba et al. [19] CN 97.5 96.2 96.3 97.6

MCI 96.1 96.3 97.2 97.5

AD 96.5 96.4 95.6 95.7

Structured sparsity regularized multiple kernel learning [17], hippocampal visual features [18], 3D-deep

learning based automatic diagnosis [21], genetic algorithm [16], multi-kernel SVM [19]

Fig. 9 Confusion matrices of the kSVR classifier while classifying the AD, MCI, and CN a uses the output from PCA b uses the output from

kernel PCA c uses the output from tSNE e uses the output from kernel tSNE
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proposed to derive initially the highly correlated lower-

dimensional features from actual basic features that are

extracted from rsfMRI and then is supplied to kernel-based

SVR classifier to diagnose AD and MCI. The proposed

kernel-SVR method selects the relevant features from the

rsfMRI data based on kernel-PCA and reduces the over-

fitting problem based on relevant features. The proposed

kernel-SVR method has higher performance in the classi-

fication of AD and MCI data. In comparison with the

existing techniques, the currently suggested technique has

no limitations in using rsfMRI obtaining from various

modes to handle scan parameter differences, and thus, the

built classifier model can predict AD and MCI. The pro-

posed model uses more correlated identical data through

feature reduction for precise diagnosis of AD and MCI.

The present research contributes better option to detect AD

and MCI from rsfMRI that can be used for the crucial

needs of medical interventions. The proposed kernel-SVR

method has lower performance in the imbalance dataset,

and deep learning method is applied in future work to

overcome the problem.
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