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Abstract
Graph convolution networks (GCNs) have become one of the most popular deep neural network-based models in many

real-world applications. GCNs can extract features take advantage of both graph structure and node attributes based on

convolutional neural networks. Existing GCN models represent nodes by aggregating the graph structure and node

attributes from their neighbors which usually disrupt the node similarities in the feature space. In this paper, we propose the

MSF-GCN, a graph convolutional network with multi-similarity attributed matrices fusion for node classification. The key

idea behind the MSF-GCN is that not only the topology but also the attributes similarities are taken into consideration for

node presentation. Specifically, we first apply a GAT-based module to obtain a general representation of the original graph.

Next, we construct two k-nearest neighbor graphs based on node attributes with cosine similarity and heat kernel similarity.

To balance the disparity between the graph structure and node attributes for each similarity matrix, we develop a self-

attention network to integrate the node attributes with topological features. Furthermore, we design a gated-fusion network

to merge the cosine similarity vector and heat kernel vector. In our experiments on four real-world datasets, results show

that our MSF-GCN model can extract more correlation information from the node attributes and graph structure, and

outperform seven state-of-the-art methods.

Keywords Graph convolutional networks � Graph representation learning � Node classification � Multi-similarity attributed

matrices fusion

1 Introduction

Recently, graph convolutional networks (GCNs) have

become an increasingly powerful tool in various fields such

as social media, recommender systems, natural language

processing and biology [1–4]. The goal of GCNs is to learn

a low dimensional embedding vector of each node for the

graph structure data by aggregating the graph structure and

node attribute features with convolutional operation. Node

representation is realized by collecting the embedding of

neighbor nodes, and then performing one or more layers of

linear transformation and nonlinear activation. After that,

the node vectors can be applied for many important

machine learning tasks on graph, such as node

classification [5], community detection [6, 7], link predic-

tion [8] and graph anomaly detection [9]. Note that in this

paper, we focus on the problem of node classification in

attributed graphs: Given a set of labeled nodes with rich

node attributed features and topological information, the

goal is to predict the classification of unlabeled nodes.

Recent years, GCNs have made remarkable achieve-

ments in learning node representation [10, 11]. Generally

speaking, GCNs can be categorized into two categories:

spectral approaches and spatial approaches. Spectral

approaches [12] perform the convolutional operation in the

spectral domain. In such way, spectral methods do not need

to construct neighbor nodes explicitly for complex graph

data. Specifically, spatial approaches [13, 15] conduct

convolutions directly on the graph. These methods first

construct a fixed size neighborhood for each node in the

network and then perform regular convolution on the

neighbor nodes.
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Nevertheless, it is reported that node representation

learning from the GCNs naturally destroy the node simi-

larity of the attribute feature spaces [16]. Since the node

similarity plays an important role for graph representation,

the learnable representation can be affected by this phe-

nomenon. In addition, the degree of the node in the graph

usually follows the long-tail distribution, which means that

many nodes are low-degree nodes with a few of neighbors.

In the traditional GCN models, there are many cold-start

nodes (many nodes only have few or no neighbors), and it

makes the representation of those nodes is not very accu-

racy. Thus, those nodes can obtain very limited information

from their neighbors and GCNs receive poor performance

on those nodes. Moreover, GCNs are usually with shallow

architectures due to its intrinsic limitation [17], so as to

limit the effective propagation of label signal. To solve this

problem, Franceschi et al. [18] created a k nearest neighbor

(kNN) graph based on some measures of similarity

between data points. Although this method can partially

improve the performance of GCNs with few labeled data,

this method ignores the importance of topological

information.

In this work, we aim to design a new Graph Convolu-

tional Network with Multi-Similarity attributed matrices

Fusion (MSF-GCN) that can better obtain the balance

between the graph structure and node attribute feature

during the aggregation. Specifically, MSF-GCN first

applies a GAT-based module to obtain the general repre-

sentation of the original graph. Next, since different simi-

larity metrics can measure different aspect of nodes, we

construct two k-nearest-neighbor (kNN) graph based on

node features with cosine similarity and heat kernel simi-

larity. Following the constructed graphs, MSF-GCN further

conducts the self-attention network to balance the influence

between the graph structure and node features for each

similarity matrix. By integrating multi-similarity matrices,

our model can learn the comprehensive semantics

ingrained in the attributed graphs. Furthermore, we develop

a gated-fusion network to measure the importance of

cosine similarity vector and heat Kernel vector and

aggregate them together. Suffice it to say that, although our

model only utilizes two similarity matrices, our model can

be easily extended to multiple similarity matrices fusion

model. Our contributions can be summarized as follows:

– We propose a novel GCN model called MSF-GCN that

can effectively balance the information from the graph

structure and node attribute feature during the aggre-

gation step. It exhibits start-of-the-art performance on

attributed graph with different label rates.

– We take two k-nearest-neighbor (kNN) graphs based on

node features with two similarity measures and the

topological graph as the input to enhance the MSF-

GCN model and improve the node classification task.

– Extensive experimental results show that our proposed

model can outperform state-of-the-art baselines on four

real-world datasets, which demonstrate the effective-

ness of MSF-GCN.

2 Related work

Our work is related to node classification with deep neural

network. In this section, we will give the brief reviews

about the node classification and graph convolution net-

work, respectively.

2.1 Node classification

In the field of graph structured data learning, there is a very

important task about node classification. Given the corre-

sponding categories of some nodes in the graph, its task is

to predict which categories the unlabeled nodes belong to

[19, 20]. This task is also called semi-supervised node

classification. Early works on node classification use iter-

ative classification methods with node features [21], label

propagation [39], graph regularization [23, 24] to learn a

global labeling function over the graph. However, these

methods do not usually scale up the large graphs.

In recent years, node embedding for node classification

aims to project each node in graph into a low dimension

vector with either shallow [25, 26] or deep architectures

[27, 28] for classification. DeepWalk [25] constructs the

second-order proximity for node embedding with random

walks. Node2Vec [26] extends DeepWalk with a truncated

random walk on graph and applies the Skip Gram by

treating the sampling nodes as sentences. Higher-order of

proximity method such as HOPE [29] are based on a high-

order proximity preserved embedding. All the above

methods can be used in the field of node classification.

While a majority of these methods are based on represen-

tation before classification and it lacks an end-to-end model

for representation and classification together.

2.2 Graph convolution networks

Graph convolution network is evolved from convolution

neural network and it generalizes the convolution operation

from grid structure data to graph structure data [30].

Overall, GCNs can be categorized into two classes: Spec-

tral convolution and spatial convolution. Spectral convo-

lution defines the spectral representation of a graph in

Fourier domain by Laplacian eigen-decomposition

[12, 30]. The spatial convolution methods operate directly
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on the graph to aggregate the multi-order neighbor nodes to

the node representation. GraphSAGE obtains the node

representations by learning the topological structure and

node features in the neighborhood [13]. SGCN [14]

explicits heterogeneous information of graph semantics via

meta-paths. Besides those methods, GAT [31] and GLCN

[32] utilize the self-attention mechanism or feature simi-

larity to reweight the edges of original graphs.

For the attribute graphs, a series of effective deep con-

volutional network methods have been proposed. Zhuang

and Ma [33] advanced the local and global consistency by

using the multi-view input and unsupervised temporal loss

function. However, the graphs contain many noise or hub

nodes which make the graph representation confusing or

misleading [34]. Similar to our paper, kNN-GCN model

[18] constructed a dense similarity matrix with cosine

similarity for each node pair. On the basis of this paper, we

further propose a graph convolutional network with multi-

similarity attributed matrices fusion which considers the

topological properties and the node feature similarity

matrices.

3 The proposed method

In this section, we introduce the proposed MSF-GCN

which apply graph neural network along with the multi-

similarity fusion for node classification in the attributed

graphs. First, we give an overview of the paper in Sect. 3.1.

Then, we describe the core components of MSF-GCN in

detail, i.e., graph attention component in Sect. 3.2, multi-

similarity attributed graph construction component in

Sect. 3.3 and fusion component in Sect. 3.4, respectively.

Finally, we provide the model training in Sect. 3.5.

3.1 Overview

Given an attribute graph G ¼ ðV; E;XÞ, where V ¼
fv1; v2; � � � ; vng is the set of n nodes, E is the set of con-

nections between them, X 2 Rn�d is the set of features for

each node, n represents the number of nodes, and vi denotes

the i-th node. In addition, given node vi, let xi ¼
fxi1; xi2; � � � ; xidg 2 Rd be the attributed feature vector from

node i and d is the number of features of each node. The

graph G can also be represented by corresponding adja-

cency matrix A 2 f0; 1gn�n
, where aij ¼ 1 indicates that

there is an edge between the node vi and node vj, otherwise,

aij ¼ 0. The actual label of a node i is denoted by an one-

hot vector yi 2 RC and C is the number of classes.

The general MSF-GCN framework is illustrated in

Fig. 1. The key idea behind the MSF-GCN is that the node

representation and node classification should be considered

the topological properties but also the node attribute

matrices. As shown in Fig. 1, there are one topological

graph and two similarity graphs. Although there are only

two similarity graphs, our study can be easily extended to

multiple similarity. For the topological properties, we use a

GAT-based module to obtain a general representation of

the original graph in graph attention component. Then, to

balance the information from graph structure and node

features, we construct two k-nearest-neighbor (kNN) graph

based on node features X with two similarity measures in

multi-similarity attributed graphs construction component.

Further, considering that different similarity can construct

different similarity matrices, we construct two similarity

matrices to get the adjacency matrices. To capture the

complex pairwise feature similarity relations, we utilize the

self-attention network to balance the influence between the

graph structure and node features for each similarity

matrix, respectively. Also, we develop a gated-fusion net-

work to measure the importance of cosine similarity vector

and heat kernel vector and aggregates them together in

fusion component. After that, we add them into the training

set to update the parameters.

3.2 Graph attention component

In recent years, some baseline methods such as GCN [30]

and GAT [31] have achieved remarkable success in dif-

ferent graph learning tasks. In this paper, our graph atten-

tion component is a GAT-based module that converts each

node to a low-dimensional representation with attention

aggregation on topological properties of neighboring

nodes. Specifically, we use a neighborhood aggregation

strategy to iteratively obtain the vector of node i by fusing

vectors of its neighbors NðiÞ. After L iterations, we can

obtain the topological information with L-hop neighbor-

hood. The representation of node i in l-layer can be defined

as:

h
ðlÞ
i ¼ ReLUðlÞ h

ðl�1Þ
j jj 2 NðiÞ

� �
; l 2 f1; � � � ; Lg; ð1Þ

where h
ðlÞ
i is the representation vector of node i in the l-

layer, h
ð0Þ
i ¼ xi is the feature vector of node i. In order to

learn the higher order of node i within the graph topolog-

ical properties, a self-attention mechanism is proposed to

iteratively aggregate representation of its neighbor nodes

NðiÞ. Following the idea of graph attention network [31],

the attention coefficients can be calculated as:

a
ðlÞ
ij ¼ Atten W ðl�1Þ

a e
ðl�1Þ
i ;W ðl�1Þ

a e
ðl�1Þ
j

� �
; ð2Þ

where a
ðlÞ
ij is used to determine the importance of neighbor

node j to node i in the l-1 layer, W
ðl�1Þ
a is the linear
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transformation of the weight matrix. For different nodes,

the informativeness of neighbor nodes of each node could

vary a lot in different layers. To catch the importance of

different neighbor nodes, a softmax function is applied to

normalize neighbor node j of the node i:

aðlÞij ¼ softmax a
ðlÞ
ij

� �
¼

exp a
ðlÞ
ij

� �

P
k2NðiÞ exp a

ðlÞ
ik

� � : ð3Þ

In this paper, we use the MLP with the learnable projection

matrix Watten to parameterize the weight vector. Followed

by a LeakyReLU nonlinearity (with negative input slop b =

0.2) is utilized to compute the coefficients by the attention

mechanism:

aðlÞij ¼
exp LeakyReLUðW ðl�1Þ

atten W
ðl�1Þ
a e

ðl�1Þ
i kW ðl�1Þ

a h
ðl�1Þ
j

h i� �

P
k2N ðiÞ exp LeakyReLU W

ðl�1Þ
atten W

ðl�1Þ
a e

ðl�1Þ
i kW ðl�1Þ

a e
ðl�1Þ
k

h i� �� � ;

ð4Þ

where k is the concatenation operation.

Then, we use all attention coefficients of the neighbors

NðiÞ for node i to update the representation vector of node

i:

h
ðlÞ
i ¼ r

X
j2NðiÞ

aðl�1Þ
ij W

ðl�1Þ
h e

ðl�1Þ
j

0
@

1
A; ð5Þ

where rð�Þ is a nonlinearity ReLU function, Wh is a

learnable projection matrix. Similar to most of graph self-

attention based models [31, 35], we utilize the multi-head

attention to stabilize the training of the graph attention

component.

h
ðlÞ
i ¼ r

1

K

XK
k¼1

X
j2N ðiÞ

aðl�1Þ
ij W

ðl�1Þ
k e

ðl�1Þ
j

0
@

1
A; ð6Þ

where K is the number of heads. Meanwhile, for each

head, we use different project matrices, respectively. The

graph attention component is illustrated in Fig. 2. Every

node embedding is aggregated by its neighbor nodes. Since

concatenation is no longer sensible, we utilize the mean of

all heads to aggregate the multi-head graph attention

results. Once the forward propagation of graph attention

component has finished, we obtain the final representation

matrix HðlÞ ¼ fhðlÞ1 ; h
ðlÞ
2 ; � � � ; hðlÞn g.

Attributed 
Graph A1

Topology 
Graph A

Attributed Graph 
A2

H(1) H(L)
...

Graph Attention Component

Attributed Graph construction Component

Z1(1) Z1
(L)

...

Z2
(1) Z2

(L)
...

Z2

H

Z1

Self 
Attention

Self 
Attention

P1

P2

Gated-
Fusion P

Attributed Graph construction Component

Fusion Component

Fig. 1 Overview framework of the proposed MSF-GCN model for node classification

hi-1 hiavg

Fig. 2 Illustration of graph attention component
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3.3 Multi-similarity attributed graph
construction component

In this section, based on the different similarity and the

topological representation of each node, we propose a

multi-similarity attributed graphs construction component

to integrate the node attribute features with topological

features.

In order to catch the feature similarity, we convert the

matrix X ¼ fx1; x2; � � � ; xng into two different similarity

metrics with kNN graphs, respectively. Actually, there are

many ways to construct different similarity matrices.

Moreover, different semantic similarity matrix can be

constructed based on different similarities. In this paper we

choose two popular ones, in which the similarities between

node i and j can be defined as:

For a given node feature pair (xi, xj), the cosine simi-

larity can be calculated as follows:

S1ðxi; xjÞ ¼
xTi xj

kxik2kxjk2
: ð7Þ

Similar with the cosine similarity, heat kernel similarity

[36] can be calculated as follows:

S2ðxi; xjÞ ¼ exp
kxi � xjk2

t

 !
; ð8Þ

where t is the time parameter in heat similarity and we set

t ¼ 2.

Then, we set k nearest neighbors with different simi-

larity metrics for each node and obtain two kNN graphs.

We denote the adjacency matrix of two similarity graphs as

A1 and A2, respectively. After building the similarity graph,

we feed the graphs into a simple GCN model [30],

respectively:

Z
ðlÞ
f ¼ r eD�1

2

f
eAf
eD�1

2

f z
ðl�1Þ
f Wf

� �
; ð9Þ

where eAf ¼ Af þ If (f=1, 2 and If is an identity matrix),

eDf is the diagonal degree matrix of Af , Wf is the project

weight matrix and r is the nonlinear activation function

ReLU.

3.4 Fusion component

Taking topological representation matrix and two similar-

ity representation vectors as inputs, we resort to the self-

attention network [37] to catch the impact of the node

features with topological features. The self-attention net-

work has widely used in language model, neural machine

translation and abstractive summarization. The core of

transformer network is three matrices from input matrices.

The input of self-attention network consists of query,

key and value matrices. First, we have to calculate the dot

product between query matrix Q and key matrix K. In order

to prevent the result from being too large, it is divided by a

scale
ffiffiffiffiffi
dk

p
, where dk is the query of dimension. Then, the

results is normalized to probability distribution by softmax

operation to obtain the weight one the value matrix V. The

scaled dot-product attention can be calculated as:

Self AttenðQ;K;VÞ ¼ softmaxðQK
T

ffiffiffiffiffi
dk

p ÞV ; ð10Þ

For graph attention component, we simply denote the

topological matrix as H ¼ fhðLÞ1 ; h
ðLÞ
2 ; � � � ; hðLÞn g, while the

feature similarity representations Zf ¼ fzðLÞf1 ; z
ðLÞ
f2 ; � � � ; z

ðLÞ
fn g

ðf ¼ 1; 2Þ through the output of multi-similarity feature

graph construction component. In our context, we utilize

the topological embedding to query feature similarity

embedding, where the query matrix Qf are calculated by H,

the key matrix Kf and value matrix Vf are calculated by Zf .

Specifically, we transform H and Zf to the same latent

space through nonlinear conversion:

Qf ¼ ReLUðHWQÞ; ð11aÞ

Kf ¼ ReLUðZfWKÞ; ð11bÞ

Vf ¼ ReLUðZfWVÞ; ð11cÞ

whereWQ,WK andWV are the project matrices and shared

by all nodes. With the learned parameters as attention

weights, we can obtain the effect of the topological rep-

resentation and the feature representation as follows:

Pf ¼ SelfAttenðQf ;Kf ;Vf Þ; ð12Þ

To combine the different feature representation of each

node, we use gate-fusion network to measure the impor-

tance of cosine similarity and heat kernel similarity vector

and aggregates them together. Given the cosine similarity

matrix P1 and heat kernel matrix P2 as input, the gate

vector F is used to control the contribution between two

different similarities:

F ¼ sigmoidðW1P1 þW2P2 þ bf Þ; ð13Þ

where W1, W2, bf are the learnable projection parameters.

The final output of the fusion matrix P is computed as:

P ¼ ð1� FÞ � P1 þ F � P2; ð14Þ

where � is element-wise multiplication.

3.5 Model training strategy

In the attribute graph G, given the training and validation

node sets V tr (Vval 2 V whose nodes have been labeled),
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the purpose of this paper is to predict the categories of

unlabeled nodes from the test set V te 2 V. The validation

set is used to adjust the model parameters. We apply a

softmax function to get the output vector Y 2 Rn�c of our

model, i.e., bY ¼ softmaxðPÞ, where byi ¼ fbyi1; byi2; . . .; byiCg
2 bY is the probability vector of node i appearing in each

category. Then the loss function is defined as the cross-

entropy of the probability and the ground-truth on the

training set V tr, and it can be calculated as follows:

L ¼ 1

jV trj
X
vi2V tr

ðyik ¼¼ 1Þln byik: ð15Þ

This loss function makes nodes that are topological close

with multi-feature similarity matrices fusion, which con-

firms our idea for utilizing the feature similarity for graph

representation. All parameters can be randomly initialized

and jointly optimized using the back-propagation training

processing. We summarize the optimization in Algo-

rithm 1. At each iteration of MSF-GCN algorithm, we

training GAT model and two similarity attribute matrices

with Eq. (4) and Eq. (9), respectively. Then, a gated-fusion

network is used to merge the cosine similarity vector and

heat kernel vector. Let f ðhÞ ¼ L and fiðhÞ is ith out of f ðhÞ.
After that, the classification model is retrained with the

full-gradient 5LðhÞ ¼ 1
jV tr j
P

vi2V tr
ðfiðhÞ; yiÞ, where h is the

parameters of MSF-GCN algorithm.

4 Experiments

In this section, we first describe the experiments setting

from Sect. 4.1, including dataset description, baseline

methods, and experimental setups, followed by the main

node classification results (Sect. 4.2). Finally, we study the

impact of different learning rate, hyper-parameters and

different components in Sect. 4.3–4.5, respectively.

4.1 Experimental setup

4.1.1 Datasets

The statistic properties of all datasets have been summa-

rized in Table 1. Cora, Citeseer and Pubmed [38] are the

citation network datasets, where nodes denote the docu-

ments and edges are citation links. For the Cora and

Citeseer datasets, the node feature are the bag-of-words

representation of each documents. Instead of bag-of-words

value, the node features in Pubmed dataset are denoted as

the Term Frequency-Inverse Document Frequency (TF-

IDF) of each words in the document. BlogCatalog is a blog

social network, which contains 5,196 users and 171,743

interactions between the users, and 8,189 attributes

denoting the keywords of their blogs.

4.1.2 Baselines

To evaluate the performance of the proposed MSF-GCN

framework, we choose five state-of-the-art representative

baselines:

– LP [39] is a non-GCN model that use belief propagation

for supervised node classification on the graphs.

– SemiEmb [40] is semi-supervised learning method

which combined an embedding-based regularizer with

a supervised learner.

– GCN [30] is the most representative graph convolu-

tional network-based model for node representation

learning. It is widely used as a GNN baseline.

– GAT [31] is a self-attention-based GNN method which

learn different weights to different neighbor nodes. It is

another widely used as a GNN baseline.

13140 Neural Computing and Applications (2023) 35:13135–13145

123



– kNN-GCN [18] is a node representation learning

method which takes the k-nearest neighbor graph from

the node features as input.

– DGCN [33] is a general GNN model which learn the

local consistency and global consistency with graph

adjacency matrix and positive mutual information

matrix.

– GraphSAGE [13] is a general GNN model which

samples the neighbor nodes randomly and aggregate

those neighbors by average function.

4.1.3 Experiment settings

Our model and all neural-based baselines are defined and

trained on a Windows server with 3.60 GHz Intel I9-9900k

CPU and 11 GB NVIDIA GeForce RTX 2080Ti GPU, and

implemented with the PyTorch [42] and PyTorch Geo-

metric [43] libraries. In fact, there are many hyper-pa-

rameters in this paper and the baselines, i.e., batching size

and learning rate. These parameters are commonly deter-

mined by several experimental trails or hard-tuning [44].

Throughout all experiments we use Adam optimizer with

initial rate of 0.005 for 300 epochs. We set the number of

layers L in all GCN is 2 with hidden layer units 128,

dropout rate 0.5. In kNN-GCN and our proposed methods,

we set the number of nearest neighbors to 10. In GAT and

our proposed method, the number of heads is set to 8. For

other baselines, we utilize the default parameter setting.

We use Accuracy to evaluate the performance of baselines

and our proposed methods.

4.2 Performance evaluation

For each dataset, we follow the widely used semi-super-

vised setting in [30, 31] given the node set V, we select 20
nodes in each class for training set, 500 and 1000 nodes as

the validation set, test set and training set, respectively.

Each experiment is run 10 times. The average accuracy

with standard deviation (Std for short) is reported in

Table 2. We highlight the best results of all models in

boldface. Note that we use the suggested parameters for

both GCN, GAT, kNN-GCN, DGCN and GraphSAGE as

suggested by the authors in their works, respectively.

As shown in Table 2, NSF-GCN achieves state-of-the-

art node classification performance on 4 out of 5 bench-

marks. NSF-GCN especially outperforms the baselines

with a large margin in the Pubmed and BlogCatalog

datasets. To be specific, considering the stability of the all

algorithms, MSF-GCN achieves the best performance on

all datasets. The results demonstrate the effectiveness of

the proposed MSF-GCN method.

Second, NSF-GCN consistently outperforms GAT and

kNN-GCN on all datasets, indicating that the effectiveness

of the fusion mechanism in MSF-GCN with topological

properties and node attribute features, because it can

extract more useful information than only topological

properties GAT and node attribute features kNN-GCN,

respectively. MSF-GCN further outperformed those struc-

ture-only methods GCN, GAT, DGCN and GraphSAGE,

which proves the significance of joint learning latent

attribute features and structure embedding. This is because

when the structure information has many noisy and mis-

leading. In this case, the node feature similarity can provide

strong guidance for the training of the model and improve

the robustness of the model.

Third, the GCN-based methods (such as GCN, GAT,

kNN-GCN, DGCN, GraphSAGE, and our MSF-GCN)

outperform the non-GCN based methods (such as LP and

SemiEmb), which indicates that structure information is

not very useful for the attributed graphs.

Moreover, compared with structure-only methods, the

improvement of kNN-GCN and MSF-GCN are more sub-

stantial on the datasets Pubmed and BlogCatalog with

better attributed feature graphs (kNN). This implies that

kNN graph can catch more effective attributed features

with TF-IDF and keywords attributes than the bag-of-

words values.

4.3 Performance of different learning rates

To better understanding of the advantage of MSF-GCN

method, we make an extensive experiment with the base-

lines under different label rates. We vary the label ratio of

changed trainable nodes with 0.1%, 0.5%, 1%, 2% and 3%,

respectively. To make better comparison, we include all

listed baselines and use the default hyper-parameter setting

in the authors implementations. All experiments are repe-

ated 10 times, We test the performance of our method and

baselines in distinct label rates in Fig. 3 with the average of

accuracy.

As shown in Fig. 3, our proposed MSF-GCN method

outperforms other state-of-the-art approaches in Citeseer,

Pubmed and BlogCatalog dataset. In the Cora dataset, our

MSF-GCN method achieves best performance with label

Table 1 Summary statistics of attribute graph datasets

Dataset # Nodes # Edges # Features # Classes

Cora 2,708 5,429 1433 7

Citeseer 3,327 4,732 3703 6

Pubmed 19,717 44,338 500 3

BlogCatalog 5,196 171,743 8,189 6
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rate 0.1%. More Specifically, we make three observations

from the results:

– It is worth noting that due to the low efficiency of label

information dissemination, the performance of all

method decreases significantly when label data is

scarce. This signifies that the label information plays

an important role for node classification.

– Node attributed graph-based methods (such as kNN-

GCN and our MSF-GCN) tend to be superior to

structure-only based methods especially on fewer

labeled data with effective graph attribute features,

demonstrating the importance of graph attribute fea-

tures for node classification with few labeled nodes.

– Our MSF-GCN method leverages both the advantage of

structure information and node attribute similarities,

consistently outperforming other state-of-the-art

approaches with different label rates. Moreover, it

turns out that the lower label rate the graph has, the

more important of effective attribute node similarity

graph can produce.

4.4 Hyper-parameters sensitivity analysis

In this section, we mainly illustrate the impact of two

important hyper-parameters, namely the number of hidden

layers and the number of nearest neighbors. The results

over two datasets Citeseer and Pubmed are shown in

Fig. 4a, b in terms of Average Accuracy. Note that we kept

all other parameters fixed when vary the number of hidden

layers and the number of nearest neighbors, coordinately.

4.4.1 The number of hidden layers

As mentioned in Sect. 3, we need generate L layers with L-

hop neighborhood. We conduct the experiments by setting

different number of layers to obtain the performance

variance over Citeseer and Pubmed datasets. The number

of hidden layers varies from 1 to 4. As can be seen in

Fig. 4, the results are first increased and then decreased.

The best performance among the tested number of the

hidden layers was 2 in Citeseer dataset and 3 in Pubmed

dataset.

4.4.2 The number of nearest neighbors

we set k nearest neighbors with different similarity metrics.

Thus, we conduct experiments to analyze the influence of

different number of nearest neighbors. The number of

nearest neighbors k is set to f3; 5; 10; 15; 20g. In general

with the increase of nearest neighbors from 3 to 10 in

Citeseer dataset and from 3 to 15 in Pubmed dataset, the

value of accuracy rises steadily. However, when the

number of nearest neighbors is more than 15, there is no

further improvement in the performance. This result indi-

cates that the number of nearest neighbors influences the

classification accuracy.

4.5 Impact of different components

In the proposed MSF-GCN model, there are three core

components: cosine similarity matrix fusion, heat kernel

similarity matrix fusion and gated-fusion. To evaluate the

contribution of three core components, we conduct exper-

iments on different configuration of the MSF-GCN model

as follows:

– MSF-GCN-CS is our proposed MSF-GCN model which

is only aggregated with the cosine similarity matrix.

– MSF-GCN-HKS is our proposed MSF-GCN model

which is only aggregated with the heat kernel similarity

matrix.

– MSF-GCN-GF is our proposed MSF-GCN model

which removes the gated-fusion component and con-

catenates different feature representations between P1

and P2.

– MSF-GCN-TS is our proposed MSF-GCN model which

is aggregated with three matrices (cosine similarity,

heat kernel and Pearson correlation coefficient).

Table 3 depicts the impact of different components.

Note that we kept all other parameters fixed with the

parameters setting in Sect. 4.1.3. We highlight the best

Table 2 Overall performance

accuracy comparison

(Accuracy±Std)

Dataset Cora Citeseer Pubmed BlogCatalog

LP .7542±.0021 .5637±.0018 .6944±.0017 .5223±.0026

SemiEmb .6374±.0027 .6454±.0022 .7344±.0018 .5531±.0031

GCN .8136±.0033 .7148±.0038 .7874±.0022 .7443±.0036

GAT .8286±.0074 .7241±.0068 .7905±.0032 .7506±.0048

kNN-GCN .7908±.0022 .7105±.0020 .8084±.0011 .7736±.0014

DGCN .8346±.0026 .7258±.0043 .7984±.0026 .7473±.0039

GraphSAGE .8026±.0031 .7032±.0033 .7032±.0033 .7376±.0029

MSF-GCN .8343±.0022 .7324±.0019 .8228±.0009 .7849±.0012
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Table 3 Impact of three core

components
Methods Cora Citeseer Pubmed BlogCatalog

MSF-GCN-CS .8281±.0024 .7288±.0022 .8163±.0011 .7792±.0014

MSF-GCN-HKS .8234±.0018 .7236±.0017 .8217±.0008 .7844±.0011

MSF-GCN-GF .8258±.0022 .7264±.0019 .8192±.0009 .7821±.0012

MSF-GCN .8343±.0022 .7324±.0019 .8228±.0009 .7849±.0012

MSF-GCN-TS .8356±.0022 .7337±.0019 .8232±.0009 .7856±.0012
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results of all models in boldface. From the results in

Table 3, we have four major observations as follows. First,

without the multiple-similarity attributed graph construc-

tion, the performance of MSF-GCN decreases on four

datasets. It demonstrates the effectiveness of the multiple-

similarity attributed graph construction. It should be noted

that node attributed similarity matrices play an important

roles for node classification. Second, the different simi-

larity matrices play a different role for different datasets.

For example, cosine similarity matrix is more conducive to

the application of bag-of-words attributes, while heat-ker-

nel similarity matrix is good at the TF-IDF attributes. It

validates the effectiveness of the proposed MSF-GCN

architecture. Third, MSF-GCN with gated-fusion would

bring more performance improvements the MSF-GCN

without gated-fusion, which indicates that gated-fusion

might be an important component. Forth,since different

node attributed similarity matrices play different roles for

node classification, the effect of aggregating more and

more attributed similarity matrices shows a downward

trend. This is determined by the upper limit of GCN or

deep learning-based algorithms.

5 Conclusion

In this paper, we propose a novel graph convolutional

network with multisimilarity attribute matrices fusion

(i.e., MSF-GCN) for node classification. MSF-GCN is a

deep and multiple component fusion framework that

consists of three components: graph attention, multi-

similarity attributed graph construction, fusion compo-

nents. In particular, the framework constructs two

k-nearest-neighbor (kNN) graphs based on node features

X with two similarity measures. In addition, we apply

the self-attention network to balance the disparity

between the graph structure and node features for each

similarity matrix. Our proposed approach outperforms the

other state-of-the-art methods with different label rates.

However, how to obtain the semantic information with

semantic-paths and heterogeneous information [14] is

still a challenge in node classification domain. Mean-

while, lack of explanation and suffering from high time

complexity are common problems of the classification

model. For future work, we intend to develop an

explainable and scalable node classification model in

social network applications.
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