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Abstract
In this article, a new metaheuristic algorithm named average differential evolution with local search (ADE-LS) has been

developed and implemented to find the optimal coefficients of unknown infinite impulse response (IIR) system as a system

identifier. The developed method minimizes the error between unknown system output and the adaptive IIR filter output.

Rapid convergence is aimed for the global solution in system identification problem using the ADE-LS based adaptive IIR

filter modelling with local search. In this way, more precise prediction of filter coefficients is ensured in the filter design

with multimodal error surface. ADE-LS algorithm is applied to four benchmarked IIR systems commonly studies in

literature to show its performance. Results found by using ADE-LS are compared to other methods reported in terms of

convergence rate and the mean square error value. The attained results approve the efficiency of the suggested method.

Keywords Infinite impulse response filter � Metaheuristic algorithms � Optimization � System identification

1 Introduction

IIR filters are one of the digital filter types commonly used

in the areas such as communication, signal processing and

parameter estimation [1–4]. Another application area they

are approved due to having a recursive and feedback

structure is system identification area. IIR system identifi-

cation problem is defined as characterizing an unknown

system using an adaptive IIR filter [1, 5–7]. In other words,

it is aimed to approach the adaptive filter coefficients to the

unknown system coefficients. For this, same input signal is

applied to the unknown system and adaptive filter and the

responses of both of them are monitored. In this way, the

problem turns into an optimization problem of minimizing

the error between the unknown system output and adaptive

filter output.

Traditional methods such as least mean square (LMS)

are given in the literature for the solution of this problem

[8, 9]. However, error surface is not quadratic in IIR fil-

tering and it is multimodal depending on the filter

coefficients. Therefore, gradient-based learning algorithms

cannot rapidly converge on the global optimum in the

optimization process and they easily stick around the local

minima. Another essential issue is the requirement of sta-

bility-monitoring for the learning of adaptive IIR filters

from higher orders. Because, IIR filter will be instable if

the poles stay out of the unit circle during the learning

process. Researchers have leaned towards using meta-

heuristic algorithms to overcome these hardships.

Many metaheuristic algorithms are used in IIR system

identification and filtering as well as various fields [10, 11].

Cat swarm optimization (CTO) has been applied to IIR

system identification problems [12]. The suggested method

has been shown to have more rapid calculation time and

produced less error than other methods. Harmony search

algorithm (HSA) has been applied to adaptive IIR filter

design problem [13]. The MSE value between the unknown

system and adaptive filter outlets has been minimized and

many system identification problems have been solved. In

another study, craziness particle swarm optimization

(CPSO) technique has been applied to IIR plant benchmark

set for the adaptive filter design [14]. The suggested

method provides a more rapid convergence and lower MSE

values than other methods. In [15], bat algorithm (BA) has

been used in the solution of IIR system identification
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problems in different orders. The results of the suggested

method have been compared to other metaheuristics. It has

been expressed that BA has provided more rapid conver-

gence and has found the adaptive filter coefficients more

precisely.

Other studies related to IIR system identification are also

reported in the literature [16–20]. Various intelligent search

techniques in which metaheuristics such as opposite HSA

(OHSA), particle swarm optimization (PSO), hybrid

gravitational search algorithm (HGSA) and teacher learner

based optimization (TLBO) take the lead are successfully

applied to adaptive IIR filter design. Generally used

metaheuristic algorithms provide good results in the area of

system identification and ensure more precise prediction of

system parameters. Thereof, the adaptive IIR system

design using heuristic algorithms is a current issue. In the

studies in which various aforementioned smart search

techniques are used; it is emphasized that generally rapid

convergence of the used algorithm to global solution and

local optimum escape ability are important in the solution

of IIR system identification problem. For this reason, these

two issues have been focused in this study.

The ADE algorithm was successfully applied to optimal

parameter prediction problem in our previous study [21]. It

is a population based algorithm and provides the cooper-

ative development of all individuals in the population. The

main contribution of this work is to develop ADE (ADE-

LS) algorithm with local search for the solution of IIR

system identification problem. ADE algorithm has been

combined with multiple trajectory search (MTS), which is

a strong local search technique, to increase the rapid con-

vergence and local search ability of ADE. To show the

efficiency of the improved method, it has been applied to

compute the optimal coefficients of adaptive IIR filter for

the system identification problem. Additionally, DE, PSO

and backtracking search optimization algorithm (BSA)

[22] methods have also been applied to the same IIR sys-

tem benchmark set for comparison. The attained results are

compared in terms of MSE and convergence speed.

2 IIR system identification

The IIR system identification problem is defined as esti-

mating the coefficients of the unknown IIR system through

an adaptive IIR filter model using a metaheuristic algo-

rithm. In other words, metaheuristic algorithm iteratively

searches for the adaptive IIR filter coefficients so that the

input–output relationship of the filter closely matches the

unknown system. Figure 1 shows the scheme of an IIR

system identification problem using metaheuristic opti-

mization algorithm.

In general, the relationship between the input–output of

an IIR filter is defined by the difference equation below.

XN

k¼0

aky ðn� kÞ ¼
XD

k¼0

bkx ðn� kÞ ð1Þ

where ak and bk are filter coefficients, y(n) is the output of

the filter, x(n) is the input of the filter, N is the order of

numerator and D is the order of denominator. If the coef-

ficient a0 = 1 is assumed, the transfer function of IIR filter

in z-domain is expressed as follow:

HðzÞ ¼ YðzÞ
XðzÞ ¼

PD
k¼0 b

0
kz

�k

1þ
PN

k¼1 a
0
kz

�k
ð2Þ

The purpose in IIR system identification problem is to

identify an unknown system with transfer function Hs(-

z) using an adaptive IIR filter with transfer function Hf(z).

In this situation, the problem turns into an optimization

problem as approaching adaptive IIR filter coefficients [ak
0,

bk
0]T to the unknown system coefficients [ak, bk]

T. As

shown in Fig. 1; the error between the unknown system

output and adaptive IIR filter output is minimized using

metaheuristic algorithm for the solution of the problem.

The mean square error (MSE) objective function is

defined as following:

MSE ¼ 1

L

Xn¼L

n¼1

yðnÞ � ŷðnÞð Þ2 ð3Þ

The dB form of MSE is given by

MSE ðdBÞ ¼ 10 log10ðMSEÞ ð4Þ

where yðnÞ is the response of the actual system, ŷðnÞ is the
response of the adaptive IIR filter and L is the number of

input samples.

IIR system identification problem has been widely

studied in the literature [12–19]. Definitions of the reported

IIR system identification problem set are presented in

Table 1. The unknown system is identified with filter

models both from the same order and from the reduced

Fig. 1 The schematic diagram of adaptive IIR system identification
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order. ADE-LS algorithm suggested in this study is applied

to this IIR system benchmark set. In addition, ADE, DE,

PSO and BSA methods are applied to the same problems

for comparison. Here, the task of the algorithms, as seen in

the schematic representation in Fig. 1, it is to identify the

unknown system by minimizing the error function. In other

words, selected actual filter coefficients are estimated

through an adaptive IIR filter model. The input signal is

applied to both the actual IIR filter system and the IIR filter

model. The difference of the outputs obtained from the

actual system and the adaptive filter model is evaluated as

the objective function (Eq. 3). Metaheuristics minimize

this objective function throughout iterations by adjusting

different coefficient combinations. The coefficient vector

that provides the lowest MSE value is returned as the best

solution.

3 Basic ADE algorithm

ADE algorithm is a newly metaheuristic algorithm and a

version of DE algorithm [21]. It evolves possible solution

vectors by taking the average of individuals in the current

population. Thus, a cooperative search methodology is

used to find a global solution.

Similar to other metaheuristics, the ADE algorithm has

some evolutionary phases that follow initialization, evalu-

ation, improvement, handling, selection and termination.

The evolutionary process begins with the random

production of possible solutions within the allowed limits.

The creation of the initial population is expressed by the

equation below.

x j
i;G ¼ xi;max þ rand � ðxi;max � xi;minÞ;
i ¼ 1; 2; . . .PS and j ¼ 1; 2; . . .D

ð5Þ

Here x is the solution vector set, PS is the population size,

D is the dimension of each solution vector, G is the number

of generation, rand is the uniform random number in [0, 1],

xi,max and xi,min are the maximum and minimum bound

values of dimension j, respectively.

Each individual in the initial population is evaluated in

terms of the objective function of the problem is defined as

following.

fobjðxÞ; x~i;G ¼ x j
1;G; . . .x

j
PS;G

h iT
ð6Þ

The next phase is the improvement of candidate solu-

tions. In this phase, the average vector A~G of the Gth gen-

eration is calculated first. This vector is the mean value of

solution vectors in the current population and is defined as

follows:

A~G ¼ 1

PS

XPS

i¼1

x~i;G ¼ ð1/PSÞ � x~1;G þ x~2;G þ � � � þ xPS;G
� �

ð7Þ

Afterwards, a mutant vector associated with the target

solution vector is created. This process in which the target

Table 1 Four IIR system

identification problems
The transfer function of Example 1

HsðzÞ ¼ 0:05�0:4z�1

1�1:131z�1þ0:25z�2

Case 1 (same order)

Hf ðzÞ ¼ b0
0
þb0

1
z�1

1�a0
1
z�1�a0

2
z�2

Case 2 (reduced order)

Hf ðzÞ ¼ b0
0

1�a0
1
z�1

The transfer function of Example 2

HsðzÞ ¼ �0:2�0:4z�1þ0:5z�2

1�0:6z�1þ0:25z�2�0:2z�3

Case 1 (same order)

Hf ðzÞ ¼ b0
0
þb0

1
z�1þb0

2
z�2

1�a0
1
z�1�a0

2
z�2�a0

3
z�3

Case 2 (reduced order)

Hf ðzÞ ¼ b0
0
þb0

1
z�1

1�a0
1
z�1�a0

2
z�2

The transfer function of Example 3

HsðzÞ ¼ 1�0:9z�1þ0:81z�2�0:729z�3

1þ0:04z�1þ0:2775z�2�0:2101z�3þ0:14z�4

Case 1 (same order)

Hf ðzÞ ¼ b0
0
þb0

1
z�1þb0

2
z�2þb0

3
z�3

1�a0
1
z�1�a0

2
z�2�a0

3
z�3�a0

4
z�4

Case 2 (reduced order)

Hf ðzÞ ¼ b0
0
þb0

1
z�1þb0

2
z�2

1�a0
1
z�1�a0

2
z�2�a0

3
z�3

The transfer function of Example 4

HsðzÞ ¼ 0:1084þ0:5419z�1þ1:0837z�2þ1:0837z�3þ0:5419z�4þ0:1084z�5

1þ0:9853z�1þ0:9738z�2þ0:3864z�3þ0:1112z�4þ0:0113z�5

Case 1 (same order)

Hf ðzÞ ¼ b0
0
þb0

1
z�1þb0

2
z�2þb0

3
z�3þb0

4
z�4þb0

5
z�5

1�a0
1
z�1�a0

2
z�2�a0

3
z�3�a0

4
z�4�a0

5
z�5

Case 2 (reduced order)

Hf ðzÞ ¼ b0
0
þb0

1
z�1þb0

2
z�2þb0

3
z�3þb0

4
z�4

1�a0
1
z�1�a0

2
z�2�a0

3
z�3�a0

4
z�4
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vector, best vector and average vector is taken into con-

sideration is defined as follows:

u~i;Gþ1 ¼ x~best;G þ c � rand ½�1; 1� � A~G � x~i;G

h i
ð8Þ

where u~i;Gþ1 is the mutant vector, x~best;G is the best vector

in the generation G, c is the scaling factor and rand ½�1; 1�
is a random number in [0, 1].

The final process of the improvement phase is crossover.

Its purpose is to maintain genetic diversity throughout

iterations. The target vector x~i;G and the mutant vector

u~i;Gþ1 are subjected to a crossover with the Cr probability

as defined below.

x
_ j

i;Gþ1 ¼
if randj ½0; 1� �Cr u j

i;Gþ1

else x j
i;G

( )
ð9Þ

The dimensional boundaries of the candidate solution

x
_ j

i;Gþ1 obtained as a result of crossover are checked. If there

is a violation, the value of the parameter is moved to the

nearest variable limit [21].

In the selection phase, a selection is made between the

target and the candidate solution in terms of fitness value to

determine the solution to be passed on to the next gener-

ation. This selection can be shown with the following

equation.

x~i;Gþ1 ¼
if fobj x̂i;Gþ1

� �
[ fobj x~i;G

� �
; x̂i;Gþ1

else x~i;G

� �
ð10Þ

where fobj x̂i;Gþ1

� �
and fobj x~i;G

� �
represent the fitness func-

tion of x̂i;Gþ1 and x~i;G, respectively.

The evolutionary stages described above are maintained

until stopping criteria are met. When the final iteration

number is reached, the calculation is terminated and the

best solution is returned [21].

4 ADE with local search (ADE-LS)

The most essential problem in IIR system identification

problem is that the error surface (namely objective func-

tion) of the unknown filter system is multimodal. There-

fore, the search algorithm could stick around the local

optimum during the optimization. In this situation, the error

between the unknown system model and the adaptive IIR

filter model increases and system identification fails. It is

necessary for the search algorithms to make a rapid con-

vergence to global solution and have increased escape

ability from local optimums for more precise prediction of

the unknown system parameters. For this reason, the main

idea of this work is to increase the performance of ADE

algorithm with local search for the solution of IIR system

identification problem. The developed ADE algorithm with

local search, which is called as ADE-LS, uses MTS local

search technique [23]. The framework of ADE and ADE-

LS can be described as in Algorithm 1.

MTS uses multiple agents to simultaneously search the

search space. Main objective is to fitting the best in the

close neighbourhood of a solution and in this way, an agent

could find the local or global optimum. MTS applies the

local search to the best solution to develop it. It conducts a

search along one dimension for all the dimensions (deci-

sion variables) of that solution vector [23]. The framework

of MTS is given in Algorithm 2.

Algorithm 1: ADE and ADE-LS algorithms framework
1: Initialization// define the PS, Cr, max and min limits of variables, Max_ite, fobjective, D
2: Generate the initial population using Eq. (5)
3: Evaluate the each solution vector according to Eq. (6)
4: while (stopping criterion)
5: Generate the average vector using Eq. (7)
6: Record best solution vector
7: for i =1 to PS
8: For each xi, generate mutant vector according to Eq. (8)
9: for j=1 to D
10: For each parameter j

iu (jth dimension of j
iu ),

11: update the , 1
j

i Gx +
) according to Eq. (9)

12: end
13: Selection and update according to Eq. (10)
14: end
15: Record best solution vector
16: Applied the local search defined in Algorithm 2
17: end
18: Return the best solution vector
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Firstly, the search range (SR) is defined as in Eq. (11).

At the beginning, SR is defined as the half value of the

difference between the upper and lower limits of the

decision variable. If the previous local search cannot

improve, SR is narrowed down by half until it is less than

1E-15.

SR ¼ xðjÞmax � xðjÞmin

� �
=2 ð11Þ

where x(j)max and x(j)min are the upper and lower bound

values of dimension j, respectively.

In the related dimension in which the search has been

conducted; firstly, SR value is deducted from the value of

this dimension as in Eq. (12). It is observed whether the

objective function value defined Eq. (6) has improved or

not. If there is an improvement, the search is sustained for

the next dimension. If there has not been any improvement,

the solution is restored and afterwards, 0.5*SR value is

added to the dimension value as in Eq. (13). Again, it is

observed whether the objective function value has

improved or not. If there is an improvement, the search is

sustained for the next dimension. If there has not been any

improvement, the solution is restored and the original

solution is returned. MTS sustains local search iterations

until the maximum iteration number is reached [23].

xðjÞ ¼ xðjÞ � SR j ¼ 1; 2; . . .D ð12Þ
xðjÞ ¼ xðjÞ þ 0:5 � SR j ¼ 1; 2; . . .D ð13Þ

In this study, MTS being a local search technique has

been integrated with ADE algorithm to increase its local

search ability. This developed ADE-LS algorithm calcu-

lates the filter coefficients by being applied to the adaptive

IIR filter design. ADE-LS tries to develop solution by

conducting local search on the current best solution vector

to reach global solution in every iteration during the

optimization period. The flow chart of ADE-LS algorithm

for IIR system identification problem is shown in Fig. 2.

5 Simulation results and discussions

In this part, the performance of ADE-LS suggested for the

solution of IIR system identification problem set is asses-

sed. Same-order (case 1) and reduced-order (case 2) IIR

filter models are considered for the prediction of the

coefficients of four sample IIR systems coming from the

literature. Results of the suggested ADE-LS are compared

to the results of BSA, PSO, DE and ADE. Besides, the best

results of the suggested method are compared to the results

belonging to other methods reported in the literature for all

samples.

A simulation platform has been established for IIR

system identification shown in block diagram Fig. 3. ADE-

LS, ADE, DE, PSO and BSA algorithms have been coded

in Matlab R2015. Simulation studies have been conducted

on a PC having core i7 processor and 2.4 GHz with 8 GB

RAM. All optimization algorithms have been run for 50

times independently for each problem.

As seen in Fig. 3, the input signal is applied to the

transfer functions of both the actual IIR system (Hs(z)) and

the adaptive filter model (Hf(z)) whose general form is

defined as in Eq. (2). The difference of the outputs

obtained from the real system and the adaptive filter model

is minimized by metaheuristics. Thus, optimum filter

coefficients [ak
0, bk

0]T are estimated in order to closely

follow the actual system output. For metaheuristics, solu-

tion vectors are defined as combinations of coefficients

such as xi = [a1
0, a2

0,… aN
0, b0

0, b1
0,…, bD

0]T (i = 1…PS).

The fitness value (quality) of each solution vector is eval-

uated according to the objective function defined in

Eq. (3). The minimization of this error function is main-

tained throughout iterations. When the maximum iteration

(Max_ite) is reached, the computational process of meta-

heuristics is terminated. The filter coefficients with the

lowest MSE value are returned as the optimum solution.

For all cases, the input signal is a white noise with

uniform distribution and the number of input samples is

L = 200. The setting parameters of the used algorithms are

given in Table 2. The values of these parameters are the

same as the values reported in the original articles in the

literature [21, 22, 24, 25] The MSE defined in Eq. (3) has

been used as the performance metric in the comparisons.

The results attained in terms of the statistical values and

convergence characteristics of MSE are given in tables and

figures in the following sub-parts.

Algorithm 2: Function local search (Xk, SR)
1: XB = XBest ; YB = YBest ; Xk = XB ; //  Copy best solution
2: if Improve = false
3: SR = SR / 2;
4: if SR < 1e-15
5: SR = (upper_bound-lower_bound)*0.5;
6: end
7: end
8: Improve = false;
9: for j = 1 : D
10: Xk (j) = Xk (j) – SR   // Use the Eq. (12)
11: Yk = Fnk_objective (Xk) ; //  Evaluate the Xk using Eq. (6)
12: if Yk < YB // if Xk is better than current best solution
13: XB = Xk ; YB = Yk ;       // Update the current best solution
14: Improve = true;
15: else
16: Xk (j) = Xk (j) + 0.5*SR  // Use the Eq. (13)
17: Yk = Fnk_objective (Xk) ; // Evaluate the Xk using Eq. (6)
18: if Yk < YB // if Xk is better than current best solution
19: XB = Xk ; YB = Yk ;  // Update the current best solution
20: Improve = true;
21: else
22: Restore Xk to its original value
23: end
24: end
25: end
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5.1 Design examples and modelled systems

5.1.1 Example 1

In the first example problem, the second-order IIR system

is modelled using a second-order IIR filter (for case 1) and

a first-order IIR filter (for case 2). The statistical results

obtained from 50 independent runs of ADE-LS and other

methods are given in Tables 3 and 4. According to these

tables, best solution in terms of the MSE values (normal-

ized and dB) is obtained by ADE and ADE-LS for case 1.

They find the global solution exactly. For case 2, the best

MSE obtained is 4.4E-03 (- 23.5184 dB) for ADE-LS.

The other algorithms take near to - 17 dB. The conver-

gence graphs of the MSE (dB) for different methods are

demonstrated in Fig. 4. From Fig. 4a, the convergence rate

of ADE-LS is highest for case 1. It reaches the global

optimum at the 200 iterations, while ADE and DE need

250 and 300 iterations, respectively. In case 2, there is no

exact solution since reduced order filter model is used.

Therefore, the final solution value is more important than

the convergence rate. It is verified from Fig. 4b that, all

algorithms get stuck early on the local optimum solution.

The proposed ADE-LS algorithm converges near to

- 23 dB thanks to its local search capability. It is perfect

in achieving the best MSE value among the other

algorithms.

For the same-order and reduced-order filter models, the

coefficient values obtained for the best result are given in

Fig. 2 Flow chart of the ADE-LS algorithm for system identification

Fig. 3 The simulation schematic of IIR system identification
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Tables 5 and 6, respectively. In case 1, four filter coeffi-

cients are optimized as the solution vector [a1
0, a2

0, b0
0,

b1
0]T. In case 2, two filter coefficients are optimized as the

solution vector [a1
0, b0

0]T. It is observed from Table 5 that

all algorithms used generally obtain the exact values of the

system coefficients. Since there is no exact result for case

Table 2 Setting parameters of

BSA, PSO, DE, ADE and ADE-

LS

Parameters Symbol BSA PSO DE ADE ADE-LS

Population size PS 50 50 50 50 50

Maximum iterations Max_ite 300 300 300 300 300

Inertia weight w – 0.9*0.4 – – –

Cognitive constant c1 – 2 – – –

Social constant c2 – 2 – – –

Mutant factor F 3*rand(0,1) – 0.5 – –

Mix rate mixrate 1.0 – – – –

Crossover rate Cr – – 0.9 0.85 0.85

Scaling factor c – – – 2 2

Stopping criteria – Max_ite Max_ite Max_ite Max_ite Max_ite

Table 3 The MSE values of 50 runs for Example 1 (case 1)

Methods MSE MSE (dB)

Best Mean Worst SD Best Mean Worst

BSA 6.9633e-08 6.2072e-06 2.3771e-05 7.8842e-06 - 71.571 - 52.071 - 46.239

PSO 1.1791e-14 9.5081e-11 9.0542e-10 2.5213e-10 - 139.284 - 100.219 - 90.431

DE 6.2107e-33 9.2693e-10 1.2744e-08 3.0684e-09 - 322.069 - 90.329 - 78.948

ADE 0.0 4.8434e-33 1.2492e-32 2.3596e-33 ! - 323.148 - 319.034

ADE-LS 0.0 4.6571e-33 1.3511e-32 3.2326e-33 ! - 323.318 - 318.693

Table 4 The MSE values of 50

runs for Example 1 (case 2)
Methods MSE MSE (dB)

Best Mean Worst SD Best Mean Worst

BSA 0.0205 0.0215 0.0272 6.9708e-15 - 16.8847 - 16.6756 - 15.6543

PSO 0.0178 0.0179 0.0181 2.1059e-18 - 17.5000 - 17.4715 - 17.4232

DE 0.0178 0.0179 0.0180 1.3786e-18 - 17.5000 - 17.4715 - 17.4473

ADE 0.0162 0.0163 0.0172 5.0340e-18 - 17.8990 - 17.8781 - 17.8781

ADE-LS 0.0044 0.0045 0.0046 5.6282e-19 - 23.5184 - 23.4679 - 23.3724

(a) Case 1                        (b)  Case2

Fig. 4 The convergence graphs of Example 1
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2, the performance of the algorithms is compared in terms

of MSE values and convergence speed. From Table 4 and

Fig. 4b, it can be observed that ADE-LS performs best in

identifying a system using reduced order model. The higher

convergence speed of ADE-LS and a smaller MSE makes

ADE-LS one of the best choices for reduced order system

modelling.

The percentage improvement in the performance of

ADE-LS over ADE, DE, PSO and BSA is graphically

presented in Fig. 5 for both same-order and reduced-order

system identification. The best MSE value is considered as

a performance measure. The percentage of improvement in

MSE obtained for ADE-LS compared to other algorithms

except ADE is 99.99% for same-order system modelling.

For this case, both ADE and ADE-LS exhibit the same

performance.

The percentage improvement noticed in MSE for

reduced order system are 72.83%, 75.28%, 75.28% and

78.53% for ADE-LS compared to ADE, DE, PSO and

BSA, respectively. Due to the reduced filter order, algo-

rithms get stuck on local optimum solutions during the

search process. The ADE-LS finds more feasible solutions

thanks to its local search capability.

Table 5 Optimized coefficients

of Example 1 using same-order

IIR filter model

Coefficients Exact value Optimized value

BSA PSO DE ADE ADE-LS

b00 0.0500 0.0494 0.0500 0.0500 0.0500 0.0500

b01 - 0.4000 - 0.3991 - 0.4000 - 0.4000 - 0.4000 - 0.4000

a01 1.1314 1.1328 1.1313 1.1314 1.1314 1.1314

a02 - 0.2500 - 0.2513 - 0.2499 - 0.2500 - 0.2500 - 0.2500

Table 6 Optimized coefficients

of Example 1 using reduced-

order IIR filter model

Coefficients Optimized value

BSA PSO DE ADE ADE-LS

b00 - 0.3204 - 0.2908 - 0.2908 - 0.3343 - 0.2970

a01 0.9149 0.9095 0.9095 0.9116 0.9065

Fig. 5 Percentage improvement in the performance of ADE-LS over

other algorithms for Example 1

Table 7 The MSE values of 50 runs for Example 2 (case 1)

Methods MSE MSE (dB)

Best Mean Worst SD Best Mean Worst

BSA 5.1518e-07 9.6105e-06 8.0942e-05 1.7252e-05 - 62.880 - 50.172 - 40.918

PSO 2.0513e-16 8.8926e-06 1.7523e-04 3.9155e-05 - 156.880 - 50.509 - 37.563

DE 1.2030e-26 1.4288e-05 2.8551e-04 6.3839e-05 - 259.197 - 48.450 - 35.443

ADE 1.0017e-33 1.3470e-21 1.4529e-20 4.1121e-21 - 329.993 - 208.706 - 198.377

ADE-LS 0 1.2655e-33 1.0682e-32 2.3969e-33 ! - 328.977 - 319.713
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5.1.2 Example 2

In this example, the third-order IIR system is modelled

using a third-order IIR filter (for case 1) and a second-order

IIR filter (for case 2). The statistical results obtained from

50 independent runs of ADE-LS and other methods are

given in Tables 7 and 8. According to these tables, the best

MSE value (normalized and dB) is obtained by ADE-LS

for two cases. In case 1, the ADE-LS finds the global

solution exactly. In case 2, it reaches the MSE value of

- 39.149 dB. The convergence graphs of the MSE (dB)

values of Example 2 using different methods are

Table 8 The MSE values of 50

runs for Example 2 (case 2)
Methods MSE MSE (dB)

Best Mean Worst SD Best Mean Worst

BSA 0.0020 0.0021 0.0023 1.5756e-11 - 27.091 - 26.777 - 26.382

PSO 0.0017 0.0019 0.0021 4.2211e-19 - 27.638 - 27.212 - 26.777

DE 0.0017 0.0018 0.0021 3.2239e-19 - 27.611 - 27.447 - 26.777

ADE 8.7659e-04 9.5679e-04 9.9651e-04 8.7659e-04 - 30.572 - 30.191 - 30.015

ADE-LS 1.2162e-04 1.2332e-04 1.2952e-04 2.5152e-20 - 39.149 - 39.089 - 38.876

(a) Case 1 (b) Case2

Fig. 6 The convergence graphs of Example 2

Table 9 Optimized coefficients

of Example 2 using same-order

IIR filter model

Coefficients Exact value Optimized value

BSA PSO DE ADE ADE-LS

b00 - 0.2000 - 0.2033 - 0.2000 - 0.1999 - 0.2000 - 0.2000

b01 - 0.4000 - 0.3975 - 0.4000 - 0.4000 - 0.4000 - 0.4000

b02 0.5000 0.5009 0.4999 0.5000 0.5000 0.5000

a01 0.6000 0.6063 0.5998 0.6000 0.6000 0.6000

a02 - 0.2500 - 0.2507 - 0.2500 - 0.2500 - 0.2500 - 0.2500

a03 0.2000 0.2028 0.2000 0.1999 0.2000 0.2000

Table 10 Optimized

coefficients of Example 2 using

reduced-order IIR filter model

Coefficients Optimized value

BSA PSO DE ADE ADE-LS

b00 - 0.1935 - 0.1839 - 0.2102 - 0.2088 - 0.2463

b01 - 0.5533 - 0.5392 - 0.5633 - 0.5887 - 0.5829

a01 - 0.1735 - 0.2183 - 0.1606 - 0.1606 - 0.1565

a02 - 0.4001 - 0.3931 - 0.4079 - 0.3546 - 0.3495
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demonstrated in Fig. 6. From Fig. 6a, the convergence rate

of ADE-LS is faster than that of others. It reaches the

global optimum at the 180 iterations. In case 2, there is no

exact solution since reduced order filter model is used. It is

verified from Fig. 6b that, all algorithms get stuck early on

the local optimum solution. The proposed ADE-LS algo-

rithm converges near to - 39 dB thanks to its local search

capability. It is perfect in achieving the best MSE value

among the other methods.

For the same-order and reduced-order filter models, the

coefficient values obtained for the best result are given in

Tables 9 and 10, respectively. In case 1, six filter coeffi-

cients are optimized as the solution vector [a1
0, a2

0, a3
0, b0

0,
b1

0, b2
0]T. In case 2, four filter coefficients are optimized as

the solution vector [a1
0, a2

0, b0
0, b1

0]T. It is observed from

Table 9 that ADE-LS, ADE and DE obtain the exact values

of the system coefficients. From Table 8 and Fig. 6b, it can

be observed that ADE-LS performs best in identifying a

system using reduced order model. The higher convergence

speed of ADE-LS and a smaller MSE makes ADE-LS one

of the best choices for reduced order system modelling.

Figure 7 exhibits the percentage improvement in MSE

of ADE-LS in comparison with ADE, DE, PSO and BSA

for both same-order and reduced-order system modelling.

It indicates that the results obtained in terms of MSE value

for the same-order system modelling using ADE-LS is

tremendously improved compared to other algorithms. The

percentage improvement observed in MSE for the reduced

order system is 86.12%, 92.54%, 92.54% and 93.91% for

ADE-LS compared to ADE, DE, PSO and BSA,

respectively.

5.1.3 Example 3

In this example, the fourth-order IIR system is modelled

using a fourth-order IIR filter (for case 1) and a third-order

IIR filter (for case 2). The statistical results obtained from

50 independent runs of ADE-LS and other methods are

given in Tables 11 and 12. According to these tables, the

best MSE value (normalized and dB) is obtained by ADE-

LS for two cases. The ADE-LS reaches the MSE value of

- 321.184 dB and - 36.811 dB for cases 1 and 2,

respectively. The convergence graphs of the MSE (dB)

values of Example 3 using different methods are demon-

strated in Fig. 8. From Fig. 8a, the convergence rate of

ADE-LS is highest for case 1. It reaches the global opti-

mum at the 300 iterations. In case 2, there is no exact

solution since reduced order filter model is used. It is

verified from Fig. 8b that, all algorithms get stuck early on

the local optimum solution. The proposed ADE-LS

Fig. 7 Percentage improvement

in the performance of ADE-LS

over other algorithms for

Example 2

Table 11 The MSE values of 50 runs for Example 3 (case 1)

Methods MSE MSE (dB)

Best Mean Worst SD Best Mean Worst

BSA 4.1882e-05 4.5549e-04 0.0014 4.2014e-04 - 43.779 - 33.415 - 28.538

PSO 5.9962e-08 0.0272 0.5398 0.1206 - 72.221 - 15.654 - 2.677

DE 3.3697e-13 1.2480e-05 5.6407e-05 1.9513e-05 - 124.724 - 49.037 - 42.486

ADE 4.1172e-17 3.4776e-04 0.0068 0.0015 - 163.854 - 34.587 - 21.674

ADE-LS 7.6132e-33 8.5569e-32 4.4014e-31 1.2972e-31 - 321.184 - 310.676 - 303.564
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Table 14 Optimized

coefficients of Example 3 using

reduced-order IIR filter model

Coefficients Optimized value

BSA PSO DE ADE ADE-LS

b00 0.9459 0.9701 0.9651 1.1537 1.0129

b01 0.0503 0.0136 0.0790 0.4008 0.0817

b02 0.5886 0.5629 0.5373 0.8402 0.6571

a01 - 0.9926 - 0.9564 - 1.0512 - 1.1025 - 0.9509

a02 - 0.8118 - 0.7503 - 0.8439 - 0.9632 - 0.7679

a03 - 0.1430 - 0.1008 - 0.1548 - 0.2009 - 0.1069

(a) Case1 (b) Case2

Fig. 8 The convergence graphs of Example 3

Table 13 Optimized

coefficients of Example 3 using

same-order IIR filter model

Coefficients Exact value Optimized value

BSA PSO DE ADE ADE-LS

b00 1.000 0.9989 1.0000 1.0000 1.0000 1.0000

b01 - 0.9 - 0.8820 - 0.8997 - 0.9000 - 0.8999 - 0.9000

b02 0.81 0.8019 0.8103 0.8100 0.8100 0.8100

b03 - 0.729 - 0.7356 - 0.7244 - 0.7290 - 0.7290 - 0.7290

a01 - 0.04 - 0.0503 - 0.0402 - 0.0399 - 0.0400 - 0.0400

a02 - 0.2775 - 0.2756 - 0.2779 - 0.2774 - 0.2775 - 0.2775

a03 0.2101 0.2209 0.2095 0.2101 0.2101 0.2101

a04 - 0.14 - 0.1290 - 0.1402 - 0.1399 - 0.1400 - 0.1400

Table 12 The MSE values of 50

runs for Example 3 (case 2)
Methods MSE MSE (dB)

Best Mean Worst SD Best Mean Worst

BSA 0.0058 0.0059 0.0063 1.7444e-04 - 22.399 - 22.291 - 22.006

PSO 0.0061 0.0090 0.0153 0.0044 - 22.113 - 20.457 - 18.153

DE 0.0059 0.0059 0.0059 6.6032e-17 - 22.257 - 22.291 - 22.291

ADE 0.0018 0.0037 0.0204 0.0058 - 27.342 - 24.318 - 16.903

ADE-LS 2.084e-04 0.0039 0.0124 0.0059 - 36.811 - 24.089 - 19.065
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algorithm converges near to - 36 dB thanks to its local

search capability. It is perfect in achieving the best MSE

value among the other methods.

For the same-order and reduced-order filter models, the

coefficient values obtained for the best result are given in

Tables 13 and 14, respectively. In case 1, eight filter

coefficients are optimized as the solution vector [a1
0, a2

0,
a3

0, a4
0, b0

0, b1
0, b2

0, b3
0]T. In case 2, six filter coefficients

are optimized as the solution vector [a1
0, a2

0, a3
0, b0

0, b1
0

b2
0]T. It is observed from Table 13 that ADE-LS and ADE

obtain the exact values of the system coefficients. From

Table 12 and Fig. 8b, it can be observed that ADE-LS

performs best in identifying a system using reduced order

model. The higher convergence speed of ADE-LS and a

smaller MSE makes ADE-LS the best choices for reduced

order system modelling.

The percentage improvement in the performance of

ADE-LS over ADE, DE, PSO and BSA is graphically

presented in Fig. 9. It shows that the results obtained in

terms of MSE value for the same-order system modelling

using ADE-LS are tremendously improved over the other

methods. The percentage improvement noticed in MSE for

the reduced order system is 88.42%, 96.46%, 96.58% and

96.40% for ADE-LS compared to ADE, DE, PSO and

BSA, respectively.

5.1.4 Example 4

In this example, the fifth-order IIR system is modelled

using a fifth-order IIR filter (for case 1) and a fourth-order

IIR filter (for case 2). The statistical results obtained from

50 independent runs of ADE-LS and other methods are

given in Tables 15 and 16. According to these tables, the

best MSE value (normalized and dB) is obtained by ADE-

LS for two cases. The ADE-LS reaches the MSE value of

- 142.87 dB and - 65.078 dB for cases 1 and 2, respec-

tively. The convergence graphs of the MSE (dB) values of

Example 4 using different methods are demonstrated in

Fig. 10. From Fig. 10a, the convergence rate of ADE-LS is

highest for case 1. It reaches the global optimum at the 300

iterations. In case 2, there is no exact solution since

reduced order filter model is used. It is verified from

Fig. 10b that, all algorithms get stuck early on the local

optimum solution. The proposed ADE-LS algorithm con-

verges near to - 65 dB thanks to its local search capabil-

ity. It is successful in achieving the best MSE value among

the other methods.

For the same-order and reduced-order filter models, the

coefficient values obtained for the best result are given in

Tables 17 and 18, respectively. In case 1, eleven filter

coefficients are optimized as the solution vector [a1
0, a2

0,
a3

0, a4
0, a5

0, b0
0, b1

0, b2
0, b3

0, b4
0, b5

0]T. In case 2, nine filter

coefficients are optimized as the solution vector [a1
0, a2

0,
a3

0, a4
0, b0

0, b1
0, b2

0, b3
0, b4

0]T. From Table 17, it is observed

that only ADE-LS obtains the exact values of the system

coefficients. This result is supported by the lower MSE

value of ADE-LS given in Table 15. Thus, ADE-LS con-

tributes to the best approximation of the actual value of

system coefficients compared to other algorithms. From

Table 16 and Fig. 10b, it can be observed that ADE-LS

performs best in identifying a system using reduced order

model. The higher convergence speed of ADE-LS and a

smaller MSE makes ADE-LS one of the best choices for

reduced order system modelling.

The improvement in the performance of the ADE-LS in

the system identification problem over ADE, DE, PSO and

BSA is shown in Fig. 11. A considerable improvement in

the performance of ADE-LS in terms of MSE value for the

same-order and reduced-order system modelling is over

Fig. 9 Percentage improvement in the performance of ADE-LS over

other algorithms for Example 3

Table 15 The MSE values of 50

runs for Example 4 (case 1)
Methods MSE MSE (dB)

Best Mean Worst SD Best Mean Worst

BSA 2.8652e-05 3.4336e-04 0.0010 2.4050e-04 - 45.428 - 34.642 - 30.000

PSO 4.6605e-06 0.0733 0.3620 0.1257 - 53.315 - 11.349 - 4.412

DE 7.5274e-07 2.0264e-05 1.8014e-04 3.8949e-05 - 61.233 - 46.932 - 37.443

ADE 6.3415e-08 2.8283e-06 3.2574e-05 7.8266e-06 - 71.978 - 55.484 - 44.871

ADE-LS 5.1643e-15 2.7382e-06 4.0974e-05 9.4669e-06 - 142.870 - 55.625 - 43.874
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ADE, DE, PSO and BSA. It can be concluded that the

ADE-LS gives superior performance when compared to the

other algorithms.

5.2 Comparison and analysis of obtained results

In the IIR system identification problem, the system coef-

ficients are updated because it is aimed to close the filter

model output to the unknown system output. This update

process is to explore the optimal set of filter coefficients

that minimize the error function. Therefore, the MSE value

is considered as a performance metric to compare the

methods used. Furthermore, since the error surface of the

filter is multimodal, the obtained solutions are sub-optimal

in many cases when searching for a global solution.

Therefore, its convergence behaviour is observed to

demonstrate the global search capability of the algorithm

used.

The filter design examples presented in the previous

section are different order IIR system identification prob-

lems, respectively, 2nd, 3rd, 4th and 5th order systems. As

the filter order increases, the number of filter coefficients.

Thus, the computational complexity of the problem also

increases. On the other hand, a lower-order filter model

Table 16 The MSE values of 50

runs for Example 4 (case 2)
Methods MSE MSE (dB)

Best Mean Worst SD Best Mean Worst

BSA 3.7560e-05 9.1049e-05 2.2205e-04 5.4701e-05 - 44.252 - 40.407 - 36.535

PSO 5.5146e-07 0.0090 0.0651 0.0201 - 62.584 - 20.457 - 11.864

DE 5.3199e-07 2.2366e-06 1.7572e-05 5.3884e-06 - 62.740 - 56.504 - 47.551

ADE 5.1800e-07 6.3443e-07 1.1188e-06 2.4554e-07 - 62.856 - 61.976 - 59.512

ADE-LS 3.1053e-07 1.6849e-04 0.0017 5.3184e-04 - 65.078 - 37.734 - 27.695

(a) Case 1 (b) Case 2 

Fig. 10 The convergence graphs of Example 4

Table 17 Optimized

coefficients of Example 4 using

same-order IIR filter model

Coefficients Exact value Optimized value

BSA PSO DE ADE ADE-LS

b00 0.1084 0.1086 0.1084 0.1086 0.1084 0.1084

b01 0.5419 0.4453 0.4566 0.4680 0.5008 0.5419

b02 1.0837 0.5604 0.6718 0.7325 0.8954 1.0837

b03 1.0837 0.1045 0.3124 0.4429 0.7515 1.0838

b04 0.5419 - 0.3026 - 0.1340 - 0.0014 0.2735 0.5420

b05 0.1084 - 0.1807 - 0.1296 - 0.0784 0.0229 0.1084

a01 - 0.9853 0.0214 - 0.1992 - 0.2990 - 0.6075 - 0.9854

a02 - 0.9738 - 0.1769 - 0.3327 - 0.4892 - 0.7527 - 0.9738

a03 - 0.3864 0.3130 0.1731 0.1004 - 0.1252 - 0.3865

a04 - 0.1112 0.1037 0.0637 0.0017 - 0.0717 - 0.1112

a05 - 0.0113 0.0073 0.0025 0.0115 0.0056 - 0.0113
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than that of the transfer function of the unknown system is

used to improve the phase response linearity of the filter.

However, this case creates a multimodal environment

where local minima problem may be encountered. In order

to overcome this problem, the local search capability of the

search algorithm must be strong.

When the results attained with different algorithms are

generally assessed for IIR system identification problem,

the suggested method finds the best solutions in all

example problem solutions. The ADE-LS completely

reaches the global solution in examples 1 and 2. It provides

the lowest MSE value in the other cases. The ADE-LS is

the best method in terms of the convergence behaviours.

The curves of ADE-LS descend much faster than those of

the other approaches for all cases, suggesting its better

performance in search speed. It converges to the neigh-

bourhood of the global optimum with a few iterations,

especially in cases (case 1) where the unknown system and

filter model are in the same order. The ADE-LS reaches the

global solution in approximately 200, 180, 300 and 300

iterations for examples 1, 2, 3 and 4, respectively. The

convergence graphs clearly show that the convergence

speed of ADE-LS is faster than the others. The reason lies

in its capability of attaining the smallest values of ‘‘Best’’

and ‘‘Mean’’ in statistical results, which signifies its high

reliability.

Furthermore, the percentage improvement graphs shown

in Figs. 5, 7, 9 and 11 demonstrate the effectiveness of the

proposed method. In cases where system identification is of

the same order, ADE-LS provides tremendous improve-

ment over other methods for almost all design examples.

The results obtained show the strength of its global search

capability.

In the cases in which filter model from reduced order is

used (case 2), all algorithms generally stick around the

local optimum. Due to the multimodal environment, they

suffer from premature convergence and get easily trapped

to sub-optimal solution. In this status, the accuracy of the

solution depends on the strength of the method’s ability to

jump out of the local optima. The MTS local search

technique explores more feasible solutions in different

landscapes of the current best solution. Thus, a search

agent may find its way to a local optimum or a global

optimum. Convergence graphs show that the proposed

method provides faster convergence speed and lower MSE

values than other approaches. Local search provides the

ADE an advantage in finding high quality solutions and

making it easier to jump from the local optimum. The

percentage improvement graphs shown in Figs. 5, 7, 9 and

11 also support these interpretations. The local search

enhanced ADE-LS algorithm offers a significant

improvement over other methods in reduced order system

identification. It performs strongly in solving the multi-

modal design problem of an IIR filter.

As a result of these analyses, the proposed method

guarantees high quality solutions, strong global and local

search capability and fast convergence rate. These prop-

erties of ADE-LS make it much better suited for IIR system

identification problems.

Table 18 Optimized

coefficients of Example 4 using

reduced-order IIR filter model

Coefficients Optimized value

BSA PSO DE ADE ADE-LS

b00 0.1142 0.1083 0.1083 0.1081 0.1087

b01 0.4473 0.4973 0.4967 0.4971 0.4982

b02 0.6830 0.8732 0.8715 0.8735 0.8805

b03 0.3855 0.7014 0.6988 0.7021 0.7107

b04 0.0184 0.2209 0.2197 0.2213 0.2259

a01 - 0.1706 - 0.5727 - 0.5685 - 0.5740 - 0.5880

a02 - 0.5172 - 0.6881 - 0.6886 - 0.6886 - 0.6893

a03 0.0777 - 0.0989 - 0.0964 - 0.0996 - 0.1061

a04 - 0.0233 - 0.0453 - 0.0459 - 0.0451 - 0.0438

Fig. 11 Percentage improvement in the performance of ADE-LS over

other algorithms for Example 4
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5.3 Comparison with reported methods

The best results of ADE-LS and the results reported in

literature are listed in Table 19 for all cases. It is observed

that ADE-LS outperforms all reported methods for all

cases, except TLBO in Example 4. In this case, it finds the

second best solution by MSE value of - 65 dB. Conse-

quently, the proposed method is successful in terms of

minimum MSE values.

6 Conclusion

Local search methods use a search agent to iteratively

search for a more feasible solution in the close neigh-

bourhood of a candidate solution. In this way, the agent

may find more convenient local or global optimum. Local

search contributes to the performance of search algorithms

in the solution of multimodal problems such as the adaptive

filter design problem handled in this study. Thereof, the

local search ability of ADE algorithm has been developed

to find the optimal IIR filter coefficients in this study. The

developed ADE-LS algorithm has been applied to IIR

system identification problem set. The attained results

show that ADE-LS is better than other methods in all cases

in terms of convergence speed and MSE. It succeeds to

reach complete results for examples 1 and 2. It provides the

best MSE values according to the reported results in other

cases. It provides more convenient solutions without

sticking around the local optimum thanks to its ability of

local search in adaptive IIR filter modelling especially from

the reduced order. Consequently, the newly developed

algorithm shows a strong performance in the solution of the

system identification problems. Development of ADE

algorithm using different local search techniques and

solution of more complex world problems are aimed for

future studies.
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