
ORIGINAL ARTICLE

A novel meta-heuristic algorithm for solving numerical optimization
problems: Ali Baba and the forty thieves

Malik Braik1 • Mohammad Hashem Ryalat1 • Hussein Al-Zoubi2

Received: 29 November 2020 / Accepted: 26 July 2021 / Published online: 9 August 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
This paper presents a novel meta-heuristic algorithm called Ali Baba and the forty thieves (AFT) for solving global

optimization problems. Recall the famous tale of Ali Baba and the forty thieves, where Ali Baba once saw a gang of

forty thieves enter a strange cave filled with all kinds of treasures. The strategies pursued by the forty thieves in the

search for Ali Baba inspired us to design ideas and underlie the basic concepts to put forward the mathematical models

and implement the exploration and exploitation processes of the proposed algorithm. The performance of the AFT

algorithm was assessed on a set of basic benchmark test functions and two more challenging benchmarks called IEEE

CEC-2017 and IEEE CEC-C06 2019 benchmark test functions. These benchmarks cover simple and complex test

functions with various dimensions and levels of complexity. An extensive comparative study was performed between the

AFT algorithm and other well-studied algorithms, and the significance of the results was proved by statistical test

methods. To study the potential performance of AFT, its further development is discussed and carried out from five

aspects. Finally, the applicability of the AFT algorithm was subsequently demonstrated in solving five engineering

design problems. The results in both benchmark functions and engineering problems show that the AFT algorithm has

stronger performance than other competitors’ algorithms.

Keywords Optimization � Meta-heuristics � Nature-inspired algorithms � Ali Baba and the forty thieves algorithm �
Optimization techniques

1 Introduction

Solving optimization problems is the norm in almost all

disciplines of engineering [1, 2] and science [3, 4], and the

need for more robust solutions is ever increasing. This

means, we need plausible algorithms that can fit the intri-

cate nature of such up-to-date scientific and engineering

challenges. When surveying the literature for the existing

optimization methods, one may find a wide variety of these

methods [5]. These range from traditional optimization

techniques that use both linear and nonlinear programming

[6], to the newer nature-inspired meta-heuristics [7, 8],

each with their own strengths and weaknesses. Despite

being successful in solving well-known optimization

problems [2, 9], traditional algorithms on one side suffer

from inherent dependency on gradient information and the

desperate need for a promising initial starting vector within

the search space [2, 9]. The existing nature-inspired meta-

heuristic optimizers, on the other side, are highly problem

dependent in that they might be very successful in solving

certain problems and may not be able to provide satisfac-

tory solutions for other problems [10]. This is partly

ascribed to the common behavior of these meta-heuristics

of being trapped in local or suboptimal solutions [11].

What makes contemporary optimization problems tough

in nature can be summarized in a few points. It is very

likely that such problems are nonlinear in essence, trou-

blesome in nature, contain numerous decision variables,
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their objective functions are, in some cases, complex and

handcuffed with several constraints, in addition to having

multifarious peaks [12]. For these problems, it is impera-

tive to go ahead from an encouraging starting point with

the hope of finally hitting the global optimum solution.

After many years of research, the research community has

found that traditional methods might not represent them-

selves as the best catch for solving these contemporaneous

optimization problems [13]. More specifically, the found

solution must be accurate enough to be accepted, and the

time needed to solve the problem should fall within rea-

sonable ranges [14]. To this end, the researchers have

turned their attention toward nature-inspired meta-heuris-

tics that have shown extremely heartening capabilities in

dealing with very knotted shapes of challenging opti-

mization problems [15, 16]. Meta-heuristic techniques are

global optimization methods designed based on simula-

tions and methods inspired by nature that are openly

applied to solve global optimization problems [17, 18].

In contrast to traditional algorithms, meta-heuristic

methods have become startlingly very trendy. This repu-

tation is due to the fact that these methods are very flexible,

do not require gradient information and have proven their

success in escaping from local minimums when solving

real-world scientific or engineering problems that have

several local solutions [11, 19]. It is important to note that

the first and second merits stand out from the verity that

meta-heuristics tackle optimization problems by assuming

them as black boxes in that they only require knowledge of

the input and output sets of the variables. Thereby, there is

no necessity to calculate a derivative of the search space.

Also, meta-heuristics belong to the family of stochastic

optimization methods, in which they make use of the

stochastic operators. This feature has been broadly

affirmed, in which meta-heuristics have proven successful

in keeping away from local minima when addressing real

problems that often have a large number of local mini-

mums [11, 18]. This explains their eligibility to handle

challenging optimization problems in diversified domains

[20, 21]. More closely, meta-heuristics have been har-

nessed to tackle hard real-life problems in a variety of

scientific and engineering disciplines. Examples of such

domains encompass, but are not limited to, image pro-

cessing [22, 23], signal processing [24], the realm of pro-

cess control [25], text clustering [26], classification

problems [27] as well as several other domains [28, 29].

1.1 Motivations of the work

According to the ‘‘no-free-lunch’’ (NFL) theory [30], it is

difficult to employ a single meta-heuristic algorithm in

striving to solve all possible optimization problems [31].

As it really is, one meta-heuristic algorithm might do a

good job in optimizing certain problems in particular fields,

but it falls short to find the global optima in other fields

[11]. This has been a motive for the researchers in this

field, as well as ourselves, to look for new and innovative

nature-inspired methods to solve and show superior scores

on the current and new hard real-life problems [32]. The

door is still open, and here we present a novel meta-

heuristic algorithm based on human behavior with the very

famous tale of Ali Baba and the forty thieves, as our

inspiration targeting numerical optimization problems.

1.2 Contributions of the work

The core of this paper is to establish a novel nature-inspired

algorithm, referred to as Ali Baba and the forty thieves

(AFT), to solve global optimization problems. As its name

glimpses, AFT falls into the category of human-based

algorithms, as it is inspired by human interactions and

human demeanor in a human-related story. The thieves’

behavior, in the tale of Ali Baba and the forty thieves, in

finding Ali Baba and the intelligent methods that Ali

Baba’s maid used to save him from the thieves, inspired us

to simulate this behavior with an optimization algorithm. In

this anecdote, there is a behavior that has many similarities

with optimization processes. From the point of view of

optimization, the thieves are the search agents, the envi-

ronment (i.e., town of Ali Baba) is the search space, each

position of the town corresponds to a realizable solution,

the home of Ali Baba is the objective function and Ali

Baba is the global solution. Based on these similarities, the

AFT algorithm was developed to mimic the behavior of the

thieves and the maid to locate the global solution to the

considered optimization problems. The performance of

AFT was evaluated on sixty-two benchmark test functions,

and it was applied to optimize the designs of five engi-

neering problems.

Section 2 presents the literature and related works.

Section 3 shows the tale of Ali Baba and the forty thieves

and the key concepts of this tale. Section 4 presents the

mathematical models and analysis of the AFT method.

Some of the possible expansions of AFT from several

aspects are given in Sect. 5. Section 6 then presents a

conceptual comparison of AFT with other existing opti-

mizers. The experimental, qualitative and statistical anal-

ysis results are introduced in Sect. 7. Section 8 presents the

applicability and reliability of AFT in solving five engi-

neering problems. The conclusion comments and some

further research paths are shown in Sect. 9.
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2 Related works

This section looks at the most recent developments in the

field of optimization. There are many sections in this field

such as multi-objective, single-objective, constrained and

others [33]. Since the meta-heuristic algorithm proposed in

this work is turned to solve single optimization problems,

the chief hub of this section concerns the relevant works in

single optimization areas.

2.1 Single-objective optimization problems

In single-objective optimization problems, there is only one

objective to be maximized or minimized. This kind of

optimization might be subject to a set of constraints, which

fall into two categories: equality and inequality [11].

Without loss of generality, single-objective optimization

problems can be expressed as a minimization or a maxi-

mization problem. The search space is created using a set

of variables, objectives, range of variables and constraints.

For optimization problems, the search space can be easily

plotted in the Cartesian coordinate system and its shapes

can then be observed. Having a large number of decision

variables is the first challenge when addressing optimiza-

tion problems. The limitation of the search space is the

range of variables, which is diversified. These variables can

be discrete or continuous. This means that they either

create a discrete or a continuous search space. In the first

case, there is a finite set of points between two points in the

search space, while in the second case, there is an infinite

number of points between every two points [11].

Usually, an optimization method might begin with an

initial range and extend it while optimization. The con-

straints restrict the search space even more, and typically

lead to breaks in the search space because the solutions in

those areas are not appropriate when solving an optimiza-

tion problem. A set of constraints can even divide the

search space into various detached areas. The solutions that

penetrate the constrained regions are named infeasible

solutions, while the solutions in the constrained regions are

named feasible solutions. There are two terms for the

portions of the search space that are within and out of the

constrained regions: feasible and infeasible. A restricted

search space has the potency to render the optimization

method ineffective in spite of its sensible performance in

an unrestricted search space [34]. Thus, optimization

methods must be well prepared with adequate operators to

deal effectively with the constraints [34]. Another chal-

lenge that arises when tackling optimization problems is

the existence of local solutions.

In a single-objective search space, there is usually the

global optimal solution that returns the best objective

value. However, there are normally several other solutions

that yield values close to the objective value of the global

optimal [33]. This type of solutions is named local solu-

tions as it is locally the best solution if we take into account

the search space in its vicinity. On the other hand, it is not

the best solution globally when taking into account the

whole search space. The existence of local solutions in

optimization problems bring many optimization algorithms

to fall into local solutions [8]. A real search space generally

contains a large number of local solutions. Thus, an opti-

mization method must be able to efficiently averting them

to find the global optimum. An optimization algorithm that

is able to eschew local solutions is not necessarily capable

of converging to the global optimum. The approximate

position of the global optimal is found when an algorithm

averts local solutions. The convergence speed is also a

difficulty when solving optimization problems [8]. Need-

less to say, rapid convergence leads to local optima stag-

nation. In contrast, abrupt variations in the solutions result

in avoiding local optima, but slow down the convergence

rate toward the global optimal. These two trade-offs are the

key challenges that an optimization algorithm handles

while addressing optimization problems. There are other

varieties of difficulties when addressing a single-objective

search space such as: isolation of the optimum, dynamic

objective function and many more [11]. Each of these

challenges demands special attention. These conceptions

are outside the scope of this paper, so solicitous readers are

referred to the studies conducted by Boussaid [33].

2.2 Single-objective optimization algorithms

In the literature, optimization algorithms can be split into

two broad categories:

• Deterministic algorithms these algorithms always

locate the same solution for a particular problem if

they commence with the same starting point. The main

merit of these methods is the reliability as they

decidedly find a solution in each run. However, local

optima stagnancy is a flaw as these algorithms do not

typically contain random behaviors when solving

optimization problems.

• Stochastic algorithms these algorithms benefit from

stochastic operators. This leads to find a different

solution at each run even if the starting point, in the

runs, remains unaltered and thus makes stochastic

methods less reliable as compared to the deterministic

methods. However, the stochastic behavior has the

vigor to avoid the local optimums. The reliability of

stochastic algorithms can be boosted by adjusting and

rising the number of runs. Stochastic methods fall into

two classes:
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2.2.1 Individualist algorithms

The stochastic method starts and carries out optimization

with a single solution. This solution is randomly changed

and enhanced for a predefined number of steps or realiza-

tion of a final criterion. The most well-respected algorithms

in this class are Tabu search [35], hill climbing [36] and

iterated local search [37]. The most chief feature of the

algorithms in this set is the low computational effort and

the need for few function evaluations.

2.2.2 Collective algorithms

Collective techniques generate and develop multiple ran-

dom solutions during optimization. Usually, the collection

of solutions collaborates to better identify the global opti-

mum in the search domain. Multiple solutions reduce the

chance to slack in local optima [38]. This is a key merit of

these algorithms. However, each of the solutions requires a

single function evaluation, where building an efficient

cooperation between the solutions is a challenge. Despite

these two flaws, collective stochastic optimization methods

are widely used in optimization problems [11]. This is due

to the well coveted features of these algorithms.

Irrespective of the distinctions between collective

algorithms, they all pursue the same course of action for

finding the global optimum. Optimization first begins with

a pool of random solutions, which need to be combined and

changed at random, quickly, and suddenly. This elicits that

the solutions move globally. This stage is called explo-

ration of the search space because the solutions are

attracted toward various areas of the search space by abrupt

changes [38]. After sufficient exploration, the solutions

begin to sparingly change and move locally around the

most promising solutions of the search space in order to

raise their quality. This phase is called exploitation, and its

key aim is to enhance the precision of the best solutions got

in the exploration phase [39]. Although avoidance of local

optima may occur in the exploitation phase, the coverage

of search area is not as broad as the exploration occur. In

this case, the solutions evade local solutions in the prox-

imity of the global optimal. So we can deduce that the

exploration and exploitation phases pursue inconsistent

goals [40]. So, most of the methods seamlessly demand the

search agents to transit from exploration to exploitation

using adaptive strategies. A convincing recommendation

for good performance is to achieve an adequate balance

between them [38]. Due to the random behavior of the

meta-heuristics, they can be deemed as stochastic collec-

tive algorithms [21, 41]. Continuing from this last point,

any meta-heuristic algorithm can fall into:

• Physics-Based (PB) algorithms these methods utilize

the physical foundations present on Earth, in particular,

or in our universe, at the broadest level. The general

technique of PB methods is different from other meta-

heuristics’ mechanisms because the search agents of

these methods contact around the search space accord-

ing to physics rules firmed up in physical processes.

Some of the most prominent examples of PB algorithms

include simulated annealing (SA) algorithm [42, 43],

gravitational search algorithm (GSA) [44], multi-verse

optimizer (MVO) [45], Henry gas solubility optimiza-

tion (HGSO) [46] and equilibrium optimizer (EO) [47].

• Evolutionary Algorithms (EAs) EAs follow the Dar-

winian theory of natural selection and biological

Darwinism that represents the survival of the fittest,

where the well-known evolution mechanisms in biology

are simulated. These methods often do well at finding

near-optimal solutions in view of the fact that they do

not lend any credence about the underlying fitness

landscape. The list of EAs includes, but not limited to,

evolutionary strategy (ES) [48], genetic algorithm (GA)

[49, 50], genetic programming (GP) [51] and differen-

tial evolution (DE) algorithm [52].

• Swarm Intelligence (SI) algorithms these algorithms use

the intelligence of the social collective behavior of

various societies of creatures such as birds, bees, ants

and the alike. This class includes a large variety of

algorithms such as particle swarm optimization (PSO)

[53], ant colony optimization (ACO) [54], artificial bee

colony (ABC) algorithm [55], grey wolf optimizer

(GWO) [56], dragonfly algorithm (DA) [57], salp

swarm algorithm [11, 58], coral reefs optimization

(CRO) [59] and many others [7, 8].

• Human-based algorithm the algorithms of this class

originate from human interactions in societies. The

inspiration for researchers in the realm of human-based

algorithms comes from experiences and stories related

to human demeanor and human actions [60]. Previous

works in this area include harmony search (HS) [61],

seeker optimization algorithm [62], Human Group

Formation (HGF) [63], Social-Based Algorithm

(SBA) [64], Interior Search Algorithm (ISA) [65] and

the football game inspired algorithm (FGIA) [66].

3 Inspiration

The proposed AFT algorithm is based on the well-known

tale of Ali Baba and the forty thieves. We have found in

this anecdote several intrinsic traits that inspired us to

develop the AFT algorithm. Rather than literally retelling

the story in this section, we prefer to link some of the
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events that took place in the tale to the attributes that

constitute the AFT algorithm. The tale itself can be found

in several books as well as web pages. We refer the

interested readers to [67], as an example.

The nature of the tale is a search-based, where a gang of

forty thieves go after Ali Baba. The ultimate goal of the

gang is to catch Ali Baba for revenge and to get their

treasure back. The search carried out by the gang for Ali

Baba is iterative in nature, going in several rounds, each

time reinforcing the solution found by previous iterations.

The search is based upon the collective behavior of the

thieves, represented as a population in the proposed algo-

rithm. The counter measures took by the main character of

the tale, named Marjaneh, prevented the gang at each

iteration from fulfilling their search mission. The big town,

where Ali Baba lives, represents the search space. The tale

shows the success of the forty thieves in tracking down Ali

Baba and spotting the location of his house. The looters’

successful actions in achieving their strategic target and

finding Ali Baba were based on smart tricks and tactics.

However, the acumen of the savvy maid of Ali Baba,

Marjaneh, saved the life of Ali Baba in each of these tac-

tics, abridged as follows [68].

In the first trial, the gang’s assistant captain disguised

himself as a foreigner and entered the town in the hope to

hear any talk or find any clue that could lead him to Ali

Baba. He managed to get to Ali Baba’s house and marked

his door with an ‘X’ sign in his pursuit to later fulfill the

ultimate mission of the gang. Marjaneh observed the mark

and, in response, she placed similar marks on the doors of

all houses in the neighborhood, rendering the plan useless.

The tactics followed by the robber are harnessed in the

proposed algorithm to maximize the exploration efficiency.

The second trial took place when another assistant of the

captain took the mission. He built upon the procedures

previously followed by his comrade. In our algorithm, this

is used by making the search in every iteration builds upon

the best solution found so far from previous iterations. This

time, the robber marked Ali Baba’s house with a sign that

is not easy to be observed by chance. In AFT, this again

reflects on the utilization and enhancement of previously

found solutions [69]. This leads to strong exploration and

exploitation features in the proposed algorithm.

The third incident occurred when the captain decided to

change the plan, and take upon himself the task of cap-

turing Ali Baba, yet to build upon the achievements

attained so far by his two assistants. The captain and his

followers succeeded in arriving at Ali Baba’s house, and

they took every possible measure not to be discovered

while attacking Ali Baba, but they failed.

The final trial in targeting Ali Baba took place by the

captain alone with a totally new plan, who disguised as a

merchant selling silks, and introduced himself to the son of

Ali Baba. The perseverance and persistence of the gang’s

captain are good traits for a successful search technique.

The approaches adopted in the tale, such as the attempts

of the thieves and Marjana’s intelligence to disrupt these

attempts, are reflected in the exploration and exploitation

mechanisms built into the proposed algorithm. This has led

to the mathematical models developed to design AFT and

perform optimization. The proposed algorithm is described

in detail below.

4 Ali Baba and the forty thieves algorithm

The overall goal of this work is to present a new opti-

mization method that imitates the tale of Ali Baba and the

forty thieves as a coordinated model of social behavior of

humans’ actions. The following principles derived from

this tale achieve the basic assumptions of this algorithm:

• The forty thieves collaborate in a group and get

guidance from someone or from one of the thieves to

find Ali Baba’s house. This information may or may not

be correct.

• The forty thieves will travel a distance starting from an

initial distance until they can locate Ali Baba’s house.

• Marjaneh can deceive the thieves many times with

astute ways to somehow protect Ali Baba out of arrival

of them by a proportion.

The behaviors of the thieves and Marjaneh can be drawn up

in such a manner that they can be linked to an objective

function to be optimized. This makes it feasible to evolve a

new meta-heuristic algorithm as detailed below.

4.1 Random initialization

The AFT algorithm is initiated by randomly initializing the

position of a number of n individuals in a d-dimensional

search space as shown below:

x ¼

x11 x12 x13 . . . x1d
x21 x22 x23 . . . x2d

..

. ..
. ..

. ..
. ..

.

xn1 xn2 xn3 . . . xnd

2
66664

3
77775

ð1Þ

where x is the position of all thieves, d is the number of

variables of a given problem and xij represents the jth

dimension of the ith thief.
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The initial position of population (i.e., thieves) can be

generated as shown in Eq. 2.

xi ¼ lj þ r � ðuj � ljÞ ð2Þ

where xi is the position of the ith thief that denotes a

candidate solution to a problem, lj and uj refer to the lower

and upper bounds in the jth dimension, respectively, and

r is a uniformly distributed random number in the range

from 0 to 1.

The wit level of Marjaneh with respect to all thieves can

be initialized as shown below:

m ¼

m1
1 m1

2 . . . m1
d

m2
1 m2

2 . . . m2
d

..

. ..
. ..

. ..
.

mn
1 mn

2 . . . mn
d

2
66664

3
77775

ð3Þ

where mi
j denotes the astute level of Marjaneh in relation to

the ith thief at the jth dimension.

4.2 Fitness evaluation

The values of the decision variables are inserted into a

user-defined fitness function that is evaluated for each

thief’s position. The corresponding fitness values are stored

in an array as given in the following form:

f ¼

f1ð½x11; x12; . . .; x1dÞ�
f2ð½x21; x22; . . .; x2dÞ�

..

. ..
. ..

. ..
.

fnð½xn1; xn2; . . .; xndÞ�

2
66664

3
77775

ð4Þ

where xnd is the dth dimension of the position of the nth

thief.

In the simulation of the AFT algorithm, the solution

quality is evaluated for each thief’s new location based

upon a defined fitness function. After that, the location is

updated if it is better than the solution quality of the current

one. Each thief stays in his current location if his solution

quality is more efficient than the new one.

4.3 Proposed mathematical model

As discussed above, three fundamental cases may occur

while thieves search for Ali Baba. In each case, it is

assumed that the thieves search efficiently throughout the

surrounding environment, while there also a proportion that

occurs due to Marjaneh’s intelligence that forces the

thieves to search in random locations. The above searching

behavior can be mathematically modeled as follows:

Case 1 The thieves may track down Ali Baba with the

help of information obtained from someone. In this case,

the new locations of the thieves can be obtained as follows:

xitþ1 ¼gbestt þ
�
Tdt best

i
t � yit

� �
r1

þTdt yit � m
aðiÞ
t

� �
r2

�
sgnðrand� 0:5Þ;

r3 � 0:5; r4 [Ppt

ð5Þ

where xitþ1 represents the position of thief i at iteration

ðt þ 1Þ, yit is the position of Ali Baba in relation to thief i at

iteration t, bestit represents the best position that has

achieved so far by thief i at iteration t, gbestt represents the

global best position obtained so far by any thief up to the tth

iteration, m
aðiÞ
t represents Marjaneh’s intelligence level

used to camouflage thief i at iteration t, Tdt is the tracking

distance of the thieves at iteration t, Ppt denotes the per-

ception potential of the thieves to Ali Baba at iteration t,

rand, r1, r2 and r4 are random numbers generated with a

uniform distribution between 0 and 1 , r3 � 0:5 gives either

1 or 0 to indicate that the information obtained to the

thieves is true or false, respectively, and sgnðrand� 0:5Þ
gives either 1 or - 1 to change the direction of the search

process.

The parameter a in m
aðiÞ
t can be defined as follows:

a ¼ dðn� 1Þ � randðn; 1Þe ð6Þ

where rand(n, 1) represents a vector of random numbers

generated with a uniform distribution in the range of [0, 1].

Marjaneh updates her astute plans if the quality of the

new solution that the thieves come up with is better than

their previous position. In this case, Eq. 7 can be used to

update her’s plans.

m
aðiÞ
t ¼

xit if f xit
� �

� f m
aðiÞ
t

� �

m
aðiÞ
t if f xit

� �
\f m

aðiÞ
t

� �

8><
>:

ð7Þ

where f ð�Þ stands for the score of the fitness function.

The tracking distance parameter Tdt is defined as given

in Eq. 8.

Tdt ¼ a0e
�a1ðt=TÞa1 ð8Þ

where t and T denote the current and maximum number of

iterations, respectively, a0 (a0 ¼ 1) represents the initial

estimate of the tracking distance at the first iteration and a1
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is a constant value used to manage exploration and

exploitation capabilities.

Equation 8 shows that Tdt is iteratively updated during

the course of iterations of the AFT algorithm. Figure 1

shows the values of Tdt over 1000 iterations.

The tracking distance, as shown in Fig. 1, greatly affects

the search ability, which has a large impact on both the

exploration and exploitation power of the AFT algorithm.

As presented in Fig. 1, the parameter Tdt starts from a

value of 1.0 and goes down to the lowest value where it

assumes that the thieves have arrived at Ali Baba’s house.

Large values of Tdt result in global search that can be

diverted toward further exploration, and this may avoid

local optimal solutions. On the other side, small values of

Tdt lead to local search, where this increases the

exploitation ability in AFT so that the thieves have a good

possibility to find Ali Baba.

Similarly, the perception potential parameter Ppt was

defined as given in Eq. 9.

Ppt ¼ b0logðb1ðt=TÞb0Þ ð9Þ

where b0 (b0 ¼ 0:1) represents a final rough estimation of

the probability that the thieves will realize their target at

the end of the iterative process of AFT and b1 is a constant
value used to manage exploration and exploitation

capabilities.

Figure 2 shows the values of Ppt over 1000 iterations.

As shown in Fig. 2, by gradually increasing the value of

Ppt, AFT tends to move from global search to local search

in the most promising areas where a potential solution

could be found in these areas. In other words, large values

of Ppt lead to local search that intensifies the search in the

most appropriate areas of the search space. On the other

side, small values reduce the possibility of searching in the

vicinity of current good solutions. Thus, an increase in this

value stimulates AFT to explore the search space on a

global scale and to diversify the search in all areas of the

search space.

For all of the problems solved in this work, a1 and b1 are
both equal 2.0. These parameters are found by experi-

mental testing for a large subset of test functions.

Case 2 The thieves may grasp that they have been

deceived, so they will randomly explore the search space

for Ali Baba. In this case, the new locations of the thieves

can be obtained as follows:

xitþ1 ¼ Tdt uj � lj
� �

randþ lj
� 	

; r3 � 0:5; r4 � Ppt ð10Þ

The parameter Tdt is incorporated in Eq. 10 because the

thieves have a good level of knowledge to discern of the

most propitious areas of the search space where Ali Baba’s

house could be.

Case 3 In order to ameliorate the exploration and

exploitation features of the AFT algorithm, this study also

considers the search in other positions than those that could

be obtained using Eq. 5. In this case, the new locations of

the thieves can be obtained as follows:

xitþ1 ¼gbestt �
�
Tdt best

i
t � yit

� �
r1

þTdt yit � m
aðiÞ
t

� �
r2

�
sgnðrand� 0:5Þ;

r3\0:5

ð11Þ

The pseudo-code of the AFT algorithm can be briefly

described by the iterative steps given in Algorithm 1.
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Fig. 1 Proposed exponential iterative function for Tdt
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Algorithm 1 reveals that AFT initiates optimization in

solving an optimization problem by randomly generating a

set of positions (i.e., potential solutions), considering the

upper and lower bounds of the problem variables. After

that, the best position, the global best position of the

thieves and Marjaneh’s wit plans are initialized. The

quality of each created solution is assessed using a pre-

defined fitness function, whereby the suitability of each

solution is recalculated within each iteration in order to

identify the thief with the optimal solution. For each

dimension, the new position of the thieves is computed

iteratively within each iteration using Eqs. 5, 10 and 11.

The feasibility of each new position is examined to see if it

moves out of the search area. In such a context, it will be

brought back to the boundary on the basis of the simulated

steps of AFT. Then, the new position, the best position, the

global best position of the thieves and the wit plans of

Marjaneh are assessed and updated accordingly. All the

steps of AFT shown in Algorithm 1, except the initializa-

tion steps, are iteratively performed until the termination

evaluation condition is reached. At the end, the best posi-

tion of the thieves is scored as a solution of the optimiza-

tion problem.

4.4 Exploration ability of AFT

There are many parameters in AFT that lead to exploration,

explained as follows:

• Tdt: this parameter controls the exploration quantity of

AFT. It identifies the extent to which the new locations

of the thieves would be to the house of Ali Baba. The

selection of appropriate values for a0 and a1 for Tdt
would reduce the recession probability in local optima

and augment the probability of approaching the global

optimum. Based on the experimental tests, a0 ¼ 1 and

a1 ¼ 2 offers a good balance between exploration and

exploitation.

• Ppt: this parameter underlines the high exploration

capacity of AFT when it takes relatively small values.

This parameter is gradually increased during the

iterative process of AFT. The choice of the values for

b0 and b1 in Ppt is a little bit arbitrary, but was selected

based on pilot testing for a large set of test functions. In

the initial iterations, the candidates are all far away

from each other in distance. Updating the parameter Ppt
improves AFT’s ability to avoid stagnation entrapment

in local optima and approaches the global optimum.

Based on empirical testing, b0 ¼ 0:1 and b1 ¼ 2 present

a good balance between exploration and exploitation.

• sgnðrand� 0:5Þ: this parameter manages the direction

of exploration. Since rand takes values between 0 and 1

with a uniform distribution, there is an equal probability

of negative and positive signs.

• Marjaneh’s intelligence plans: Using this parameter will

directly improve the AFT’s ability for exploration.

4.5 Exploitation ability of AFT

The key parameters that help to perform local search and

exploitation in AFT can be described as follows:

• Tdt: as iteration passes, exploration fades out and

exploitation fades in. Small values of Tdt lead to local

searches in promising areas of the search space. As a

result, at the last iterations, where thieves are close to

the house of Ali Baba, the positioning updating process

with cases 1, 2 and 3 will assist in local search around

the best solution, leading to exploitation.

• Ppt: this parameter controls the exploitation feature, by

quantifying the quantity of exploitation through in-
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depth search around the best solution. With the passage

of iterations, the exploitation stage heightens with

facing relatively large values of this parameter. Thus,

the positioning updating process with cases 1 and 2

enhances AFT’s ability to locally ramp up the searches

in the space, which results in further exploitation.

• sgnðrand� 0:5Þ: this parameter controls the quality of

exploitation by changing the direction of the search.

4.6 Computational complexity analysis

Computational complexity of an optimization method can

be defined by a function that links the runtime of the

optimization method to the input size of the problem. To do

this, Big-O notation is applied here as a widespread ter-

minology. In this, the time complexity of AFT can be given

as follows:

OðAFTÞ ¼Oðproblem def:Þ þ OðinitializationÞ
þ Oðtðpos: updateÞÞ þ Oðtðcost functionÞÞ
þ Oðtðboundary controlÞÞ

ð12Þ

As Eq. 12 suggests, the time complexity of AFT relies on

the number of iterations (t), the number of thieves (n), the

dimension of the problem (d) and the cost of the objective

function (c). In concrete terms, the overall time complexity

of AFT under the termination method can be computed as

follows:

OðAFTÞ ¼Oð1Þ þ OðndÞ þ OðvtndÞ
þ OðvtncÞ þ OðvtndÞ

ð13Þ

where v denotes the number of evaluation experiments.

The number of iterations (t) is typically greater than the

number of thieves (n), the cost of the fitness function (c)

and the number of problem’s variables (d). Also, the

number of problem variables (d) and the cost of the fitness

function (c) are usually less than the number of thieves (n).

Accordingly, the parameters t and n are important factors

in assessing the computational complexity. As nd � tnd

and nd � tcn, the items 1 and nd can be excluded from the

complexity issue given in Eq. 13; also, 2vtnd ffi vtnd.

Therefore, the time complexity of AFT can be expressed as

follows:

OðAFTÞ ffi ðvtnd þ vtncÞ ð14Þ

As it is shown, the complexity issue of the AFT is of the

polynomial order, which can be deemed as an effective

meta-heuristic optimization algorithm.

4.7 Characteristics of AFT

Human-based algorithms possess two abilities, that is,

exploration and exploitation. This is to optimize the search

space of a problem. In AFT, these abilities are realized by

the convergence of the thieves toward the global optimum

solution. To be precise, convergence means that most of

the thieves gather in the same position in the search space.

AFT utilizes several parameters that lead to exploration

and exploitation as explained in Subsects. 4.4 and 4.5,

respectively. These parameters are beneficial for carrying

out the convergence process of AFT. The thieves (i.e.,

search agents) in AFT can change their position in line with

a mathematical model and tuning criteria as implemented

by three basic cases that may occur while thieves search for

Ali Baba. These cases are presented in Eqs. 5, 10 and 11.

In each case, it is assumed that the thieves search effi-

ciently throughout the surrounding environment, while

there is also a percentage that occurs due to Marjaneh’s

intelligence that forces the thieves to search in random

locations. There are two important parameters in AFT,

referred to as tracking distance and perception potential

that are presented in Eqs. 8 and 9, respectively. With these

two parameters, AFT can better search the space for all

possible solutions to identify the optimal or suboptimal

solutions. Another important parameter in AFT is the

simulation of Marjaneh’s intelligent ways to deceive the

thieves. Thereby, the thieves will explore the search space

in different locations and directions, which implies that

better solutions may be found in other promising areas. In

short, AFT has several distinct merits according its basic

principle, summarized as follows: (1) The position updat-

ing models for case 1 and case 3 of AFT effectively assist

the individuals of the population to explore and exploit

every area in the search space. (2) The random search that

thieves use in the search space using case 2 not only

enhances the diversity of the population but also ensures

the speed of convergence, indicating an efficient balance

between exploration and exploitation. (3) The number of

parameters in AFT is small, but they have good ability to

improve its strength and performance. (4) The computa-

tional burden of AFT is low as discussed in Subsect. 4.6.

As a result, there is a big room for enhancing the per-

formance of AFT according to the above mentioned char-

acteristics, as presented in the following section.

5 Possible developments of AFT

To further study the potential performance of the AFT

algorithm, it is elaborated from several aspects as shown in

the following subsections.
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5.1 Self-adaptation of tracking distance of AFT

Self-adaptive tracking distance is used to strike a better

balance between exploration and exploitation during the

search process [70]. This distance decreases as a function

of time indicating that the exploration capacity gradually

fades out and exploitation capacity gradually fades in.

However, the search agents trapped in local optima area

demand reasonable exploration to escape from this local

optima. Some search agents require a large tracking dis-

tance to explore the search space and others exploit the

local area with a small tracking distance. So, it is imper-

ative for each search agent to have its own tracking dis-

tance to balance exploration and exploitation. When the

fitness value of a search agent is worse or unaltered, it

denotes that the search agent can identify the local optimal

area. In this, the search agents require a large tracking

distance to move away from this area. When the fitness

value of a search agent ameliorates, it indicates that the

search agent has a superior chance of getting close to the

optimal solution. Hence, the value of the tracking distance,

Td(t), of the search agents of AFT should be grown. Fig-

ure 3 presents an illustration of the self-adaptive tracking

distance [70].

In Fig. 3, the pentagram, sphere, circle and arrowhead

stand for the global optimum area, the local optimum area,

search agent and tracking distance, respectively. Case 1

implements that if a search agent is trapped into local

optimal area, it needs an appropriate tracking distance to

raise its strength to escape from this area. On the other

hand, Case 2 indicates that a search agent rapidly moves to

the global optimal area with mounting tracking distance. In

this context, to estimate the situation of the search agents in

AFT, the counters nsi and nfi are presented in Eqs. 15 and

16, respectively, to record the fitness results of the ith

search agent [70].

nsti ¼
nst�1

i þ 1 if fiðtÞ\fiðt � 1Þ
0 if fiðtÞ� fiðt � 1Þ



ð15Þ

nf ti ¼
nf t�1

i þ 1 if fiðtÞ[ fiðt � 1Þ
0 if fiðtÞ� fiðt � 1Þ



ð16Þ

Equations 15 and 16 are presented to adjust the parameter

Td(t) according to the fitness of the objective function,

where it is employed to estimate the search condition of

search agents. If a search agent fails to obtain a better

solution in many iterations, the search agent gets stuck in

the local optima area with a high probability. If a search

agent is improved in many iterations, it may migrate to the

global optima.

A threshold h and probability p are applied to dominate

the update of the tracking distance of search agents over the

course of iterations. If nsti exceeds h, the tracking distance

will be increased to speed up the convergence of the ith

search agent toward the super search agent. Likewise, if nf ti
exceeds h, the tracking distance is enhanced to mend the

ability to avert the local optima while searching. The self-

adaptive TdiðtÞ of the ith search agent is defined in Eq. 17:

TdiðtÞ ¼
TdiðtÞ � riðtÞ if count[ h & rand\p

TdiðtÞ otherwise



ð17Þ

where count comprises two counters nsti and nf ti , and rand

is a uniformly distributed random value in the interval

[0, 1].

In Eq. 17, when count overrides h and rand overrides p,

the search agent requests a large tracking distance to

strengthen its exploration capability, where it is multiplied

by riðtÞ. Otherwise, the updated tracking distance is set to

the tracking distance of AFT.

The tracking distance of search agents is related to the

distance that thieves use to follow Ali Baba as given in

Eq. 8. Also, there is another parameter that is related to the

perception potential of the thieves for Ali Baba. Therefore,

the tracking distance and perception potential constants of

the ith search agent are used to adapt its TdiðtÞ. The ratio of
tracking distance and perception potential constants of the

search agents can be thought of as the new tracking dis-

tance value for the search agents. Here, riðtÞ stands for the
adjusted value of TdiðtÞ and is presented in Eq. 18:

riðtÞ ¼
2

c
if c\1

c c� 1

8<
: ð18Þ

where c is the ratio of tracking distance and perception

potential constants as shown in Eq. 19.

c ¼ log
TdiðtÞ
PpiðtÞ

� �
 ð19Þ

where TdiðtÞ and PpiðtÞ are the tracking distance and per-

ception potential of search agent xi at iteration t,

respectively.

Equation 18 states that riðtÞ is set to the reciprocal of c

when c is less than 1 to ensure that the search agent can

Fig. 3 Illustration of self-adaptive tracking distance in AFT [70]
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have a reasonably large tracking distance, otherwise, riðtÞ
is set to c.

The original and self-adaptive tracking distance con-

stants are presented in Figs. 1 and 4, respectively.

The tracking distance constant in Fig. 4 is changed in

accordance to the search condition of the search agents,

where the red and blue lines indicate a modification of Case

1 and Case 2, respectively. The search agent is in a state of

failure when the search agent gets a worse search status. In

contrast, the search agent is in a state of success when the

search agent gets better search status.

In sum, in the search process, various search agents have

different search cases. Some of them want vigorous

exploration to explore the solution space, while others want

extensive exploitation to locate a better solution. Therefore,

each search agent adjusts its Td to balance exploration and

exploitation.

5.2 Population hierarchical structure of AFT

The hierarchical structure of the population is that the

search agents are arranged and placed in different layers

according to some specific characteristics [71, 72]. These

layers can be stated as different levels from top to bottom

according to the actual effect of each layer on the search

agents. The top layer leads its next layer, and its next layer

leads its second one, and so on. In this light, the interactive

relationship between the layers is created to form a hier-

archical structure that is used to guide the evolution

direction of the search agents [72]. Here, a hierarchical

population structure was used in the AFT algorithm, so that

premature convergence could be mitigated and search

agents could elicit correct interactive information to realize

a better development. Further, the search agents have

ample opportunity to escape from local optima and get

close to the global optimum. Here, a three-layer

hierarchical structure was constructed for hierarchical AFT

(HAFT) as follows:

• Bottom layer The distribution of all search agents in the

current population is displayed on this layer. Search

agents move toward better ones in terms of the best

search agents on the middle layer. This layer can

divulge the landscape of the function created by a big

number of search agents.

• Medium layer For the effective guidance of the

development of general search agents, the best prede-

termined search agents are ranked on this layer. At each

iteration, the medium layer leads the bottom layer to

fulfill the position update for the search agents. Each

search agent needs a large tracking distance and small

perception potential to globally explore the whole

search area in the first few iterations of the search

process, and these parameters are gradually updated

over iterations. This means that the exploration ability

of AFT wants to be supported by a large suitable Td(t)

and its exploitation capacity demands a small one.

Thus, to improve the exploration ability of AFT, a new

Td(t) is presented to supersede the original one given in

Eq. 8. In the proposed HAFT, a log-sigmoid transfer

function was used to design a new constant Td(t) with

the formula given below:

TdðtÞ ¼ T0

1þ e
t� t

2
L

ð20Þ

where L is a step length. It can be observed that the

value of Td(t) in the graph shown in Fig. 1 decreases

rapidly before 500 iterations, indicating the exploration

ability of AFT is rapidly diminishing. On the other side,

the value of Td(t) in Fig. 5 consistently preserves a

large value before 500 iterations and then drops rapidly

to near zero. This effect can ensure a powerful explo-

ration ability of AFT in the early stage so that it has

100 200 300 400 500 600 700 800 900 1000

0.5

1

1.5

2

2.5

3

3.5

Fig. 4 Proposed exponential function for the self-adaptive tracking

distance

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5 The new tracking distance parameter Td(t)

Neural Computing and Applications (2022) 34:409–455 419

123



enough time to search for an approximate optimal that

can be further improved by its next exploitation capa-

bility. Since the number of the best search agents

gradually decreases with iterations, which means that

the number of best search agents dynamically decreases

on this layer. It is useful for the global optimum search

agent on the top layer to effectively direct many elite

search agents in the current population to provide a

better development tendency for all of the search agents

on the bottom layer.

• Top layer To provide efficient management for the

middle layer, a global optimum search agent is

determined and placed on this layer. At each iteration,

the pre-identified best search agents on the medium

layer are selected to be compared with the global

optimum search agent. In case there is a better search

agent, the optimal global one is replaced by it. The

global optimal search agent has the best position in the

current population. Hence, it can attract many of the

best search agents to move toward it. This strategy

could prevent the best search agents from being trapped

in the local optima and could accelerate the conver-

gence speed of the population. According to this

strategy, the formula of updating the position of the

best search agents oriented by the global optimal search

agent is presented as follows:

xitþ1 ¼goptt �
�
Tdt y

i
t � mi

t

� �
r2

�
sgnð0:5� rÞ

r3\0:5

ð21Þ

where gopt denotes the global optimal search agent and

r represents a random number with a uniform distribution

in the interval [0, 1].

In HAFT, Eq. 21 was proposed to update the position of

the search agents on the top layer which could efficaciously

alleviate the early convergence of AFT and improve its

performance.

In order to further clarify the apparent properties of

HAFT, Fig. 6 was drawn to show its operating precept on

the multimodal landscape with local optima.

It is obvious from Fig. 6a that search agents x3 and x4
are heading toward a local optimal, while the global opti-

mal search agent gopt provides additional guidance to assist

them escape from the local optimal. When search agents x3
and x4 do not fall into a premature convergence as shown

in Fig. 6b, they can draw others to move toward them.

Meanwhile, gopt will accelerate the movement of x3 and x4
in order to improve the convergence rate of the population.

Thus, the capabilities of exploration and exploitation can

be enhanced in the search process. More details about

hierarchical population structure can be found in [71, 72].

5.3 Exploration and exploitation

Exploration and exploitation are the two most important

properties of meta-heuristic algorithms to achieve success

when addressing optimization problems [38]. With regard

to these two concepts, empirical experiments have shown

that there is a robust relationship between the exploration

and exploitation ability of a particular search method and

its convergence speed. Particularly, while exploitation

procedures are known to improve convergence toward the

global optimum, they are also known to rise the likelihood

of entrapment into local optima [38]. Conversely, search

strategies that promote exploration over exploitation

incline to increase the likelihood of locating areas within

the search space, where the global optimum is more

probable to be identified. This is at the cost of deteriorating

the convergence speed of optimization algorithms [39]. In

recent years, the question of how exploration and

exploitation of solutions is realized in meta-heuristics has

remained an open subject, and although it appears trivial, it

has stayed as a source of contention among many

researchers [40]. Although many thoughts and notions may

sound opposite, there appears to be a common consent

within the research community on the conception that an

adequate ratio between exploration and exploitation is

necessary to ensure reasonable performance in this type of

search methods.

Meta-heuristics use a set of candidate solutions to

explore the search area with the goal of finding satisfying

solutions for an optimization problem. Generally, the

search agents with the superior solutions are liable to guide

the search process toward them. As a result of this attrac-

tion, the distance between the search agents fades in while

the impact of exploitation fades out. On the other side,

when the distance between the search agents increases, the

influence of exploration strategy is more pronounced. To

compute the increase and decrease in distance between the

search agents, a diversity measurement [73] is taken into

account. Under this method, population diversity is stated

as follows [38]:

(a) (b)

Fig. 6 The illustrative diagrams of the operating precept of HAFT

[71]
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Divj ¼
1

N

XN
i¼1

medianðxjÞ � xji
  ð22Þ

Div ¼ 1

m

Xm
j¼1

Divj ð23Þ

where medianðxjÞ represents the median of dimension j in

the entire population, xji is the dimension j of search agent i,

n stands for the number of search agents and m denotes the

number of design variables of the optimization problem.

The diversity in each dimension, Divj, is stated as the

distance between the dimension j of each search agent and

the median of that dimension on average. The full balance

response is defined as the percentage of exploration and

exploitation utilized through a given algorithm. These

values are calculated at each iteration using the following

formulas [38]:

XPL% ¼ Div

Divmax

� �
� 100 ð24Þ

XPT% ¼ Div� Divmaxj j
Divmax

� �
� 100 ð25Þ

where Divmax stands for the maximum diversity value

present in the whole optimization process.

The percentage of exploration (XPL%) corresponds to

the relationship between the diversity at each iteration and

the maximum diversity reached. The percentage of

exploitation (XPT%) represents the level of exploitation

[38]. As can be observed, both elements XPL% and XPT%

are mutually conflicting and complementary. In assessing

the balance response, the use of the median value averts

discrepancies through the use of a reference element. This

balance response is also affected by Divmax that is found

during the whole optimization process. This value is

employed as a reference to assess the rate of exploration

and exploitation.

5.4 Chaos in meta-heuristic algorithms

Chaos theory is one of the most effective strategies used to

improve the performance of meta-heuristics by fostering

their exploration and exploitation features. Chaos appears

to exhibit irregular motion, a characteristic often encoun-

tered in nonlinear dynamic systems [74, 75]. It appears to

be random, unexpected behavior that a deterministic non-

linear system can present under deterministic conditions.

Thus, a chaotic system alters randomly and ultimately

passes through each state in the search space when the time

period is long enough. The applications of chaos in global

optimizers fall into two categories.

5.4.1 Chaotic maps and sequences

Chaotic maps are one of the preferable ways to reinforce

the performance score of meta-heuristics in terms of both

local optima avoidance and convergence property. They

are widely used to improve population diversity and solu-

tion quality by substituting random values and adjusting

parameters in the initialization of population and iterative

loop procedures [74, 75]. Chaotic properties have been

used in improved and new meta-heuristics, such as EAs

[74, 75], the immune system algorithm [76], PSO [77] and

DE [78]. These chaotic meta-heuristics have received a

high level of performance through the use of chaotic

sequences to replace random variables and parameters. In

this, they presented superb performance compared to the

other corresponding standard meta-heuristics.

5.4.2 Chaotic local search

Chaotic local search (CLS) appears as an applicable option

by making use of randomness and ergodicity of chaos

[74, 75]. Chaotic search is a mechanism that could be

conducted to improve the accuracy of the search and

convergence speed. For this reason, CLS has been inte-

grated with several meta-heuristic algorithms and achieved

splendid success in enhancing their performance, such as

chaotic PSO [79], chaotic DE [80] and chaotic GSA [81].

Their outcomes showed that CLS could prominently

strengthen search capacity and dwindle the problem of

getting into local optima. It has been widely demonstrated

that meta-heuristics with CLS achieved better performance

in terms of convergence rate and solution accuracy than the

other corresponding original versions [74, 75].

5.5 Theoretical analysis of the AFT algorithm

To theoretically analyze the performance of the AFT

algorithm from the perspective of complex network, there

is a need to establish a relationship among its search

agents. This analysis is helpful and vital to explain its

essence and discover some guiding methods to overcome

its limitations in order to better foster the performance of

this algorithm [82]. For this intent, we use the population

interaction network (PIN) method reported in [83, 84] to

put in place the relationship between the search agents of

AFT. This is for exploring and analyzing the intrinsic

phenomenon that occurs in a complex network. A clus-

tering method was used to classify the search agents

[83, 84]. In this method, each search agent can be regarded

as a vertex and the update position mechanism between the

search agents denotes the generation of edges. The PIN

method can be used to obtain both the intrinsic connection

of knowledge and characteristic of the network formed by
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the population. The method that composes the interaction

of population in AFT is displayed in Fig. 7.

In Fig. 7, blue circles, transparent circles, transparent

rectangles, blue rectangles, and blue diamond shapes

implement the search agents (i.e., vertices) in the current

population, the clusters, search agents xp that will be

replaced, the search agents that have been replaced and the

new created search agent Un, respectively. The circle,

square and triangle denote the current, new constructed and

old substituted vertices, respectively. It is noticed from

Fig. 7 that the distribution of search agents has changed in

the whole population and that the number of search agents

in each class changes accordingly. In sum, the initial

construction process of PIN can be described as stated

below:

1. There are three classes and nine basic search agents in

the population;

2. Two chosen search agents, xs1 and xs2, from two

classes yield the new created search agent Un for

comparison with the previous search agent, xp. A

vertex and two edges are created at the same time;

3. If the search agent Un overrides the search agent xp, in

which ðf ðUnÞ\f ðxpÞÞ, then Un replaces xp;

4. Another search agent xs is chosen from one class to

create Un to replace xp, which means creating a vertex

and an edge;

5. The replacement process is carried out once more when

f ðUnÞ\f ðxpÞ;
6. At the next iteration, the clustering method resumes

classifying the search agents into three classes to

finally get to terminate the algorithm and obtain the

PIN topology.

Readers can read [83, 84] for a detailed description of the

PIN method.

6 Comparative analysis of AFT with other
meta-heuristics

This section presents a comparative analysis of AFT with

other meta-heuristics such as PSO, GSA, DE, GA,

covariance matrix adaptation-evolution strategy (CMA-ES)

and ant colony optimization (ACO) algorithm.

6.1 Particle swarm optimization

PSO [85] mimics the cooperative social collective behavior

of the living creatures such as flocks of birds. Optimization

begins with the use of randomly generated solutions known

as artificial particles. Each particle in the swarm has a

randomly generated velocity. If xi is the initial position of

the ith particle with velocity vi, then the position updating

strategy of PSO can be given as follows [86]:

viðt þ 1Þ ¼ wviðtÞ þ c1ðPbesti � xiðtÞÞr1
þ c2ðGbest � xiðtÞÞr2

ð26Þ

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ ð27Þ

where w is the inertial weight, c1 and c2 are cognitive and

social constants, respectively, r1 and r2 are distributed

random numbers in the interval [0, 1], Pbesti is the local

best solution of the ith particle and Gbest is the global best

solution among all particles.

6.1.1 AFT versus PSO

Similar to PSO, AFT initiates the optimization process by

motivating the search agents to move in the search space in

search of their target. However, the positioning updating

mechanism of AFT is entirely different from that of PSO.

Some of the main differences are described as follows:

1. In PSO, the movement update of the ith particle is

obtained by Pbesti and Gbest as given in Eq. 26, where

the effect of these two parameters is considered to

identify the new position of the particles in the search

space. In regard to AFT, the new position of the search

agents are obtained through three different cases as

given in Eqs. 5, 10 and 11. In other words, PSO

updates all solutions with one strategy as presented in

Eq. 27, while the search agents of AFT use three

strategies to update their position in the search space.

2. The PSO algorithm is greatly influenced by the initial

values of the cognitive and social parameters as well as

the weighting strategy of the velocity vector, where

these parameters are used as the particle develops a

new position. In the AFT model, the thieves develop a

new position with the help of tracking distance which

Fig. 7 A descriptive schematic diagram of PIN method in the AFT algorithm [83, 84]
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is adapted during its iterative loops. This enables AFT

to alternate between local and global searches.

3. The behavior of the thieves’ movement is affected by

the information given by someone about the where-

abouts of Ali Baba’s house, which is designed with a

random number (r3). Accordingly, case 1 or case 3

shown in Eqs. 5 or 11 are used, respectively. Inclusion

of this random number in the AFT model suddenly

redirects thieves’ movement and thus improves explo-

ration and exploitation in AFT. On the other hand, PSO

does not use such behavior.

4. Simulation of thieves’ behavior in Eq. 10 imparts an

opportunity to present a random behavior of thieves’

movement. This enables AFT to mitigate stumbling in

local optimum areas. This behavior is not used in PSO

due to the natural behavior of swarms.

5. The use of Marjaneh’s intelligence that is formulated in

Eq. 7 improves the exploration feature of AFT, where

there is no such thing in the PSO algorithm.

6. The use of tracking distance and perception probability

in AFT enables it to conduct local searches in local

areas at some times, exploration of the search space on

a global scale at other times as well as getting an

appropriate balance between exploration and exploita-

tion features. These two parameters are not present in

the PSO algorithm.

6.2 Gravitational search algorithm

Gravitational search algorithm is a physics-based algorithm

evolved on the basis of the law of gravity [44]. Each

individual (i.e., agent) evolves its position according to the

gravitational force among individuals. The mechanism of

GSA is based on the interaction of masses in the universe

by means of the Newtonian law of gravitation. To describe

GSA, consider a system with N masses (i.e., agents), where

the position of the ith mass is defined as follows:

Xi ¼ ðx1i ; x2i ; . . .; xdi Þ i 2 1; 2; 3; . . .;N ð28Þ

where xdi denotes the position of the ith mass in the dth

dimension and d represents the total number of dimensions

in the search space.

The mass of the ith agent is computed after calculating

the fitness of the current populations, which is defined as

follows:

miðtÞ ¼
fiðtÞ � worstðtÞ

bestðtÞ � worstðtÞ ð29Þ

MiðtÞ ¼
miðtÞPN
j¼1 mjðtÞ

ð30Þ

where MiðtÞ and fiðtÞ represent the mass and fitness values

of the ith agent at iteration t, respectively, best(t) and

worst(t) represent the best and worst fitness values of the

current population in the tth iteration, respectively, where

worst(t), for a minimization problem, is defined as follows:

worstðtÞ ¼ maxfitjðtÞ; j 2 1; 2; . . .;Nf g ð31Þ

The gravitational force between agents Xi and Xj in the dth

dimension can be computed as follows:

Fd
ijðtÞ ¼ GðtÞMiðtÞ �MjðtÞ

RijðtÞ þ �
xdj ðtÞ � xdi ðtÞ
� �

ð32Þ

where RijðtÞ stands for the Euclidean distance between

agents i and j, � is a small value used to eschew division by

zero and G(t) is a gravitational constant given as a function

of time as shown below:

GðtÞ ¼ G0 � e�a t
T ð33Þ

where G0 represents an initial value, a represents a constant
value, and t and T represent the current iteration number

and the maximum number of iterations, respectively. The

total gravitational force Fd
i ðtÞ for agent Xi is given as

follows:

Fd
i ðtÞ ¼

X
j2Kbest;j 6¼i

randiF
d
ijðtÞ ð34Þ

where Kbest refers to a group of the first K best agents with

the best fitness value and biggest mass is kbest, K is the

agent number of Kbest and randi is a uniformly distributed

random number in the range [0, 1].

Hence, the acceleration adi ðtÞ of agent Xi in the dth

dimension at time t can be computed using a law of motion

as shown in Eq. 35.

adi ðtÞ ¼
Fd
i ðtÞ

MiðtÞ
ð35Þ

Then, the velocity vdi ðt þ 1Þ and position xdi ðt þ 1Þ of agent
Xi are updated, respectively, as follows:

vdi ðt þ 1Þ ¼randi � vdi ðtÞ þ adi ðtÞ ð36Þ

xdi ðt þ 1Þ ¼xdi ðtÞ þ vdi ðt þ 1Þ ð37Þ

where randi is a uniformly distributed random value in the

interval from 0 to 1.

6.2.1 AFT versus GSA

1. As shown in Eqs. 5, 10 and 11, the position updating

mechanism of the search agents of AFT is totally dif-

ferent from that of GSA as defined in Eq. 37.

2. GSA uses acceleration and velocity vectors for the

movement of its agents, while AFT generates new

Neural Computing and Applications (2022) 34:409–455 423

123



directions of movement for its search agent by various

mechanisms.

3. There are some own adaptive parameters for AFT such

as Tdt and Ppt. However, GSA does not use these

parameters, where it has its own parameters such as �

and RijðtÞ.
4. AFT algorithm incorporates the concept of random

movement of the thieves based on the parameter Ppt,

and uses Marjaneh’s intelligence in its position updat-

ing mechanism. Obviously, the generation of new

solutions by AFT seems very different from the update

mechanism of the agents of GSA.

6.3 Conventional differential evolution
algorithm

The differential evolution (DE) algorithm is a population-

based evolutionary algorithm evolved to solve real-valued

optimization problems [87]. The evolutionary process of

DE involves evolutionary concepts such as mutation,

crossover and selection strategies similar to those used by

GAs. The initialization of each individual Xi; i 2
1; 2; . . .;NPf g in DE is described as follow:

Xd
i ¼ Xdl

i þ randð0; 1Þ � ðXu
i � Xl

iÞ ð38Þ

where NP is the population size, d 2 1; 2; . . .;Df g denotes

the dimension of the problem, u and l represent the upper

and lower bounds of Xi in the dth dimension, respectively.

The mutation strategy of DE can characteristically cre-

ate a mutant vector to be an intermediate variable Vi for

evolution according to:

Vi ¼ Xr1 þ F � ðXr2 � Xr3Þ ð39Þ

where r1; r2 and r3 2 1; 2; . . .;NPf g are random indices,

i 6¼ r1 6¼ r2 6¼ r3 and F is a constant operator that indicates

the level of amplification.

The crossover strategy of DE that can boost the diversity

of new agent Ui by combining the original agent Xi with

the intermediate variable Vi can be defined as follows:

Ud
i ¼

Vd
i if randð0; 1Þ�CR or d ¼ drand

Xd
i otherwise

(
ð40Þ

where CR represents a crossover control parameter and

drand 2 ½1; 2; . . .;D�f g denotes a random number.

The selection process in DE is performed in each iter-

ation by contrasting Ui with Xi using a greedy norm for a

better agent reserve in the population for the next iteration.

Through these evolutionary processes, DE could rapidly

converge and eventually obtain the global optimum.

6.3.1 AFT versus DE

Generally speaking, since AFT is a human-based opti-

mization algorithm, so there is no need for evolutionary

processes such as crossover, mutation and selection oper-

ations. The main differences between DE and AFT can be

briefed by the following points:

1. The AFT algorithm preserves search space information

over subsequent iterations, while the DE algorithm

discards the information of previous generations once a

new population is formed.

2. AFT involves fewer operators to adjust and run as

compared to DE that uses several operations such as

selection and crossover. Moreover, AFT utilizes a

parameter denoting Marjaneh’s plans, while DE does

not memorize the best solution obtained so far.

3. In DE, exploration is enhanced using crossover and

selection operations, while in AFT, it is enhanced by

allowing the thieves to randomly explore the search

space.

4. In DE, mutation is generally implemented on the basis

of enhancing the exploitation of DE. However, a better

exploitation of AFT is achieved with the perception

probability parameter.

6.4 Genetic algorithm

GA was first put forwarded by Holland [88]. It is consid-

ered as a global optimization algorithm inspired by bio-

logical mechanisms such as evolution and genetics. When

using GAs, the search space is used to construct chromo-

somes, whereby every possible solution is coded as a

chromosome (i.e., individual). In optimization with GA,

evolution begins with a group of randomly formed indi-

viduals from a population. The fitness score of each indi-

vidual is computed in each generation. The variables of the

solutions are adjusted based on their fitness values. Since

the best individuals are given higher probability to partic-

ipate in enhancing other solutions, the random initial

solutions are very probable to be improved. Based on a

fitness function, chromosomes are selected and certain

genetic operators such as mutation and crossover are

applied to the selected chromosomes to form new ones.

The idea is that these chromosomes evolve and always

create better individuals until they reach the global opti-

mum [89].

6.4.1 AFT versus GAs

Both GAs and AFT are population-based techniques;

however, the key differences between them can be briefed

as follows:
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1. Since GA is similar to DE in which it uses crossover,

mutation and selection operations; the AFT algorithm

does not use these operations.

2. The AFT algorithm uses Marjaneh’s intelligence, while

GA does not use such a parameter and does not save

the best solutions obtained so far.

3. GA evolves and updates its population using crossover,

mutation and selection operations, while AFT

improves its exploration ability with the concept of

random relocation of the thieves that is managed by a

perception probability parameter.

6.5 Covariance matrix adaptation-evolution
strategy

The CMA-ES [90, 91] is an evolutionary algorithm for

nonlinear non-convex optimization problems in continuous

domain. Specifically, it is a second-order approximation

algorithm that estimates the derivatives of a covariance

matrix within an iterative procedure according to the

principle of maximum likelihood. By doing this, it tends to

maximize the probability of the distribution. At each iter-

ation, the members of the new population are sampled from

a multivariate normal distribution N with covariance C 2
Rn�n and mean m 2 Rn. The new individuals at generation

iþ 1 are sampled as:

xiþ1
k 
mi þ riN 0;Ci

� �
k ¼ 1; . . .; k ð41Þ

where ri is the ith step size and xik is the kth individual at

generation i.

The sampled points, k, are ranked in ascending order of

fitness, and the best points, l, are chosen. The mean of the

sampling distribution given in Eq. 41 is updated using

weighted intermediate recombination of these specified

points:

miþ1 ¼
Xl

j¼1

xjX
iþ1
j:k ð42Þ

with

Xl

j¼1

xj ¼ 1; x1 �x2 � . . .�wl [ 0 ð43Þ

where xj are positive weights, and xiþ1
j:k stands for the jth

ranked individual of the k sampling points xiþ1
k . The sample

weights of the standard CMA-ES implementation are

decreased as:

xj ¼ log
k� 1

2
þ 1

� �
� logðjÞ ð44Þ

The covariance matrix can be adapted for the next

generation using a combination of rank-l and rank-one

update as follows:

Ciþ1 ¼ð1� ccovÞCi þ ccov
lcov

piþ1
c pðiþ1ÞT

c

þccov 1� 1

lcov

� �Xl

j¼1

xjy
iþ1
j:k ðyiþ1

j:k ÞT
ð45Þ

With lcov � 1 is the weighting between rank-one update

and rank-l, ccov 2 ½0; 1� is the learning rate for the

covariance matrix update, and yiþ1
j:k ¼ ðXiþ1

j:k � miÞ=ri. The
evolution path piþ1

c and ri are identified by an adaptation

formula [91].

6.5.1 AFT versus CMA-ES

Both CMA-ES and AFT are population-based techniques;

however, the major differences between them are sum-

marized as shown below:

1. The CMA-ES basically parameterizes the multivariate

normal distribution Nðtextbfm; r2CÞ which consists of

three terms: the mean vector m, the step-size r and the

covariance matrix C. On the other hand, the AFT

algorithm does not use these components, rather it uses

Eqs. 5, 10 and 11 to update the position of its search

agents.

2. The CMA-ES uses two evolution paths that accumulate

consecutive steps of the mean vector update for the

cumulative step-size adaptation and the rank-one

update of the covariance matrix. However, the AFT

algorithm does not use such these evolution paths.

3. AFT uses some concepts to assist alternating between

local and global solutions in the update of its search

agents’ position. However, the CMA-ES algorithm

uses a covariance matrix that can be adapted for the

next generation using an integration of rank-l and

rank-one.

6.6 Ant colony optimization

ACO is a meta-heuristic algorithm that distributes the

search activities to so-called ‘‘ants’’ [92]. The activities are

split among agents with simple basic abilities that imitate,

to some extent, the behavior of real ants in foraging. It is

crucial to underline that ACO has not been developed as a

simulation of ant colonies, but to employ the metaphor of

artificial ant colonies and their application as an opti-

mization tool. At the start of processing in ACO, where

there is no information about the path to go from one point

to another, the choice of ants about which path to walk in is

totally random. During processing, the intention is that if

an ant has to choose between different paths at a given
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point, those that have been chosen heavily by the preceding

ants (i.e., those with a high trail level) are chosen with a

higher probability. Generally, ACO approach tries to

address an optimization problem by repeating the next two

steps:

– A pheromone model, as a specific probability distribu-

tion, was used to evolve the candidate solutions over

the solution space;

– The candidate solutions are utilized to adjust the

pheromone values in a manner that is deemed to bias

future sampling toward higher quality solutions.

The choice of ant agents in constructing solution compo-

nents using a pheromone model is probabilistically defined

at each construction step. An ant moves from node i to

node j using the following rule:

qði;jÞ ¼
saði;jÞ � n

b
ði;jÞP

ðsaði;jÞÞ � ðn
b
ði;jÞÞ

ð46Þ

where saði;jÞ is the pheromone value associated with edge

(i, j), nbði;jÞ is the heuristic value associated with edge (i, j),

a is a positive real parameter whose value identifies the

relative importance of pheromone versus heuristic infor-

mation and controls the influence of saði;jÞ, b is a positive

parameter that identifies the relative importance of pher-

omone versus heuristic information and controls the

influence of nbði;jÞ.

Once the solution is built, the ant evaluates the partial

solution to be used using Eq. 47 that specifies how much

pheromone to deposit.

sði;jÞ ¼ ð1� qÞsði;jÞ þ dsði;jÞ ð47Þ

where sði;jÞ is the pheromone value correlated with edge

(i, j), q 2 ð0; 1� is the pheromone evaporation rate and

dsði;jÞ is the amount of pheromone deposited, typically

given by:

skði;jÞ ¼
1=LK if ant K travels on edge ði; jÞ
0 otherwise



ð48Þ

where LK is the cost of the Kth ant’s tour.

6.6.1 AFT versus ACO

ACO and AFT apparently look similar but are quite dif-

ferent. They both present several differences in their for-

mulation and position updating mechanism.

1. Both ACO and AFT work on the effective division in

the search for the optimal solution. In ACO, the idea is

to create a pool of artificial ants that move randomly

around an environment. In AFT, the thieves search for

Ali Baba by exploring and exploiting each area in the

search space using three different cases in the position

updating process.

2. In ACO, the candidate solutions are constructed using a

pheromone model. However, AFT uses the local and

global best solutions of the thieves to locate the

optimum solutions.

3. In ACO, a new solution is created by Eq. 48, which is

conceptually different from the position updating

strategy of AFT given in Eqs. 5 to 11. The updating

strategy of AFT is a kind of directed and undirected

search approach, in which new solutions are forced to

move toward a better solution.

4. The AFT algorithm uses a memory parameter (i.e.,

Marjaneh’s plans) in its updating process. On the other

hand, ACO does not use such a parameter in updating

its new solutions. Apart from this, AFT also uses a

stochastic location updating strategy as shown in

Eq. 10 to improve its exploration feature, while ACO

does not use such a strategy.

5. AFT has two parameters that can be adapted during its

iterative process to enhance exploration and exploita-

tion features and to balance them. However, ACO does

not use any parameters to be adapted over the course of

iterations.

As previously discussed, an effective meta-heuristic must

strike an appropriate balance between exploration and

exploitation. However, there is no rule of thumb [93] to

make this happen. The slight differences in solutions

update and random distributions could have a significant

effect on the performance of the designed algorithms [94].

Therefore, AFT becomes a good competitor to the existing

meta-heuristics.

7 Experimental results and analysis

In this section, to assess the accuracy of the proposed AFT

algorithm, we conducted intensive evaluations on a set of

62 test functions, involving commonly used unimodal,

multimodal, hybrid and composition functions. These

functions involve: (1) 23 benchmark test functions (de-

scribed in Table 33 in ‘‘Appendix A’’), (2) 29 functions

taken from IEEE CEC-2017 benchmark functions [95]

described in Table 34 in ‘‘Appendix B’’, and (3) a set of 10

IEEE CEC-2019 functions (described in Table 35 in

‘‘Appendix C’’). These functions are over and over used in

the literature to test the performance of any new meta-

heuristic algorithm. The experiments designed to verify the

performance of AFT are outlined as follows:
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– First, exhaustive comparative studies were presented to

verify the reliability and accuracy of the AFT algorithm

in relation to other meta-heuristics.

– Second, a set of qualitative measures including search

history, trajectory, convergence curves and average

fitness values were plotted to examine the adequacy of

AFT in addressing several types of test functions.

– Third, the optimization performance of AFT was

studied in light of several development applied to

AFT from several aspects.

– Forth, Friedman’s and Holm’s test methods were used

to verify the significance of the outcomes obtained by

AFT.

7.1 Experimental setup

The results produced by AFT in the optimization of the

above three mentioned benchmark functions are compared

with those produced by other well-regarded algorithms.

The parameter definitions of AFT algorithm and those

comparative algorithms are given in Table 1.

In order to provide a fair comparison between the pro-

posed algorithm and another selected set of algorithms, we

followed the same initialization process for all the com-

pared algorithms. For all experiments, the common

parameter settings for all algorithms are set as follows: The

number of individuals used in the search process is set to

30, the number of iterations is set to 1000, and the maxi-

mum number of function evaluations (NFEs) for all

benchmark functions is set to d � 103, where d represents

the dimension of the test functions. For each function, the

executed runs for each algorithm are repeated 30 times

independently to obtain the statistical results. The stop

condition for all algorithms was set to the maximum

number of iterations. The average fitness (Ave) and stan-

dard deviation (Std) values were computed over thirty

independent runs to explore the accuracy and stability of

the proposed algorithm compared to others. The best scores

are shown in bold throughout this paper.

7.2 Classical benchmark test functions

Twenty-three widely used benchmark test functions were

used to evaluate the overall performance of AFT and to

compare it to other optimization algorithms. These test

functions were carried out under minimization problems

which can be categorized into three main kinds: unimodal

[99], multimodal [96] and fixed-dimension multimodal

[99]. ‘‘Appendix A’’ presents the mathematical description

of these categories. The characteristics of the unimodal

(F1–F7), multimodal (F8–F13) and fixed-dimension multi-

modal (F14–F23) functions are detailed in Table 33. These

three groups of test functions are widely accepted in the

literature as benchmark evaluation functions due to:

– The functions in the first group (i.e., unimodal

functions) have only one global optimum with no local

optimum. This group is usually used to assess the

convergence behavior as well as the exploitation power

of any new or enhanced optimization algorithm.

– The functions in the second and third sets (i.e.,

multimodal and fixed-dimension multimodal functions)

have several local optimum and more than one global

Table 1 Parameter setting values of the AFT algorithm and other

algorithms

Algorithm Parameter Value

All algorithms Population size 30

Number of iterations 1000

AFT a0, a1 1.0, 2.0

b0, b1 0.1, 2.0

MFO [96] Convergence constant [- 1, - 2]

Logarithmic spiral 0.75

SOA [97] Control parameter (A) [2, 0]

f c 2

CSA [98] flight length (fl) 2.0

Awareness probability (AP) 0.1

SHO [99] Control parameter (h) [5, 0]

M Constant [0.5, 1]

GWO [100] Control parameter (a) [2, 0]

MVO [45] Wormhole Existence Prob. [0.2, 1]

Traveling distance rate [0.6, 1]

SCA [101] Number of elites 2

PSO [85] c1, c2 1.8, 2

w [0.9, 0.1]

GSA [44] Alpha, G0 20, 100

Rnorm, Rpower 2, 1

GA [102] Crossover 0.9

Mutation 0.05

DE [87] Crossover 0.9

Scale factor (F) 0.5

SSA [11] Control parameter (c1) 0.5

DA [57] Coefficient (s) [0.2, 0]

Coefficient (e) [0.1, 0]

Coefficients (a, c, f) [0, 0.2]

WOA [103] Control vector (a) [2, 0]

ACO [92] b, q, a [2, 0.5, 0.3

CMA-ES [90] k, l 4þ 3lnðnÞ,k=2
wi¼1;...;l ln kþ1

2

� �
� lnðiÞ

cc, ccov 4=ðnþ 4Þ, 2

ðnþ
ffiffi
2

p
Þ2

cr, dr 4=ðnþ 4Þ, c�1
r þ 1
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optimum. These functions are effective in examining

the ability of AFT to avoid the local optimums and in

evaluating its exploration feature.

The average processing times elapsed by AFT and other

comparative algorithms in optimizing the classical bench-

mark test functions are given in Table 2 and graphically

illustrated in Fig. 8.

It can be seen that AFT outperforms other algorithms as

it takes less processing time than other algorithms.

Therefore, it can be deduced that the computational effi-

cacy of AFT is much better than other competitors.

7.2.1 Performance of AFT in unimodal functions

As discussed above, the unimodal functions (F1–F7) are

beneficial to assess the exploitation capability of opti-

mization algorithms. The average fitness and standard

deviation results of AFT and other algorithms are displayed

in Table 3. These values are recorded after running the

experiments 30 times for each algorithm.

It can be seen from Table 3 that the performance of AFT

is very efficient compared to other competitors. In partic-

ular, the AFT algorithm scored the best scores for functions

F4, F5 and F6. Also, it achieved the best score equally with

SHO algorithm for functions F1, F2 and F3. From an

engineering point of view, it does not matter whether the

algorithm finds the optimal result such as 10E-05 or 10E-

25; both are considered zero. It is clear that the SHO

algorithm is a competitive algorithm such that it got the

best scores for functions F1 and F3. Although SHO got the

best results for functions F1 and F3, the difference between

it and AFT is of a very small value. The SOA algorithm

obtained the best results for function F7. Once again, the

proposed AFT algorithm got the best standard deviation

values for functions F4–F6. These outcomes clearly indi-

cate that the AFT algorithm is robust, reliable and highly

effective compared to other widely used algorithms in the

literature. The AFT algorithm achieved either the best

score or competitive results in functions F1–F7. The very

small values of STD of the AFT algorithm reveal the high

level of stability that this algorithm has.

7.2.2 Performance of AFT in multimodal functions

In order to evaluate the capabilities of optimization algo-

rithms for local optimum avoidance and exploration

potency, the multimodal (F8–F13) and fixed-dimension

multimodal (F14-F23–) are employed in the literature as

benchmark functions for evaluating algorithms for this

purpose. The outcomes are given in Tables 4 and 5 to show

the Ave and Std, over 30 independent runs, for all the

compared algorithms in multimodal and fixed-dimension

multimodal functions, respectively.

The results shown in Table 4 point out that the perfor-

mance of AFT is also very efficient when employed to

solve multimodal problems. Particularly, the AFT algo-

rithm scored the best scores for functions F8, F10, F12 and

F13. GSA got the second best score for function F13, and

SHO got the best scores for functions F9 and F11, where the

results of SHO in these functions are nearly close to the

results released by the AFT algorithm. These outcomes

once again confirm the reliability and stability of AFT

since it has very small values for Std.

The results given in Table 5 confirm the superiority of

AFT, which gained the best mean fitness values, either

individually or equally with other algorithms. The CSA

was competitive and got the best average fitness equally

with the proposed AFT algorithm in F14, F16, F17 and F18
test functions. Although the AFT algorithm did not achieve

the best average fitness values for F19 and F20, its results

are very comparable to those algorithms that obtained the

Table 2 Average running time of AFT and other meta-heuristic

algorithms

Algorithm Average time (in seconds)

Ali Baba and the forty thieves 1.1043

Moth flame optimization 2.2362

Seagull optimization algorithm 1.2245

Crow search algorithm 1.1045

Spotted hyena optimizer 1.3269

Grey wolf optimizer 1.2536

Covariance matrix adaptation-ES 1.5114

Ant colony optimization 1.4332

Particle swarm optimization 2.0241

Gravitational search algorithm 1.2965

Genetic algorithm 1.3668

Differential evolution 1.6354

Fig. 8 Average running time of the proposed algorithm and other

optimization algorithms
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best fitness in these two cases (i.e., GSA and SHO). The

outcomes in Table 5 indicate that the average fitness values

of AFT are better than other algorithms on most of the test

functions. With regard to the values of Std, AFT performed

better than other algorithms in six out of ten test functions

(F14, F17 to F21). This supports the fact that we previously

concluded that AFT has a high degree of stability when

applied to different search spaces. The results in Tables 4

and 5 indicate that AFT is in the first rank, in terms of the

average fitness value, in twelve out of sixteen test functions

(i.e., F8, F10, F12 to F18 and F21–F23). This reinforces that

AFT has good exploration ability when it is employed in

these search problems.

7.3 Performance of self-adaptive AFT algorithm

The amendment value of the self-adaptive tracking dis-

tance of AFT algorithm, or referred to as SAFT, is com-

puted using the ratio of the current tracking distance and

perception potential constants of the search agents over the

course of iterations. The SAFT algorithm has two main

parameters, referred to as h and q, that influence the search
performance. These parameters are the adjustment fre-

quency and opportunity of the tracking distance constant,

respectively. Small values for h and q may cause the search

agent to frequently move, which implies that the search

agent will have a difficulty in converging. On the other

hand, large values for h and q make the search agent to lose

the globally optimum area, and converge to a locally

optimum area that leads to early convergence. To locate the

best settings for h and q, several experiments were per-

formed on some of the unimodal functions with different

values for these parameters, where h 2 1; 2; 3f g and

q 2 0:2; 0:5; 0:8f g. The results obtained based on these

parameter settings after running the experiments 30 times

are shown in Table 6.

It is evident from the results shown in Table 6 that the

parameter settings h ¼ 3 and q ¼ 0:2 are the best settings.

7.4 Performance of hierarchical AFT algorithm

To illustrate the performance of the hierarchical AFT

(HAFT) algorithm, it is tested on 23 benchmark functions

with various dimensions. The parameter settings of HAFT

are given as follows: T0 ¼ 1, L ¼ 100, n ¼ 30 and

T ¼ 1000. The experimental results obtained by HAFT

which consist of mean and standard deviation values are

given in Table 7.

Table 7 presents that HAFT can effectively and effi-

ciently find optimal solutions for many benchmark func-

tions. This indicates that HAFT is efficacious in balancing

the search capability of AFT between exploration and

exploitation in order to boost its accuracy from the onset to

the end of the optimization process. A comparison between

HAFT in Table 7 and AFT in Tables 3, 4 and 5 shows that

HAFT has better performance.

7.5 Evaluation of the balance of exploitation
and exploration of AFT

The multimodal function with fixed dimension F16 shown

in Eq. 49 is used as an example to illustrate the evaluation

of the balance response of AFT.

F16ðx1; x2Þ ¼ 4x21 � 2:1x41 þ
1

3
x61 þ x1x2 � 4x22 þ 4x42

ð49Þ

In Eq. 49, the range of x1 and x2 is set to: �5� xi � 5 with

the dimension set to 2. Figure 9 shows the performance

behavior yielded by AFT in the function F16, over 500

iterations, in terms of evaluating the balance given by

Eqs. 24 and 25.

Table 6 Results of SAFT for different values of h and q on some unimodal benchmark functions

F1 F2 F3 F4 F5

h ¼ 2, q ¼ 0:5 1.35E-71 ± 4.21E-71 1.89E-32 ± 5.13E-32 1.03E-43 ± 3.21E-43 3.11E-27 ± 7.01E-27 1.19E?00 ± 1.92E?00

h ¼ 1;q ¼ 0:2 1.30E-78 ± 3.73E-78 8.33E-34 ± 2.15E-33 1.56E-48 ± 4.62E-48 2.36E-29 ± 3.52E-29 7.97E-01 ± 1.68E?00

h ¼ 1;q ¼ 0:5 3.79E-73 ± 1.00E-72 5.63E-33 ± 1.48E-32 4.01E-42 ± 1.26E-41 1.87E-26 ± 3.85E-26 3.98E-01 ± 1.26E?00

h ¼ 1;q ¼ 0:8 1.28E-65 ± 2.35E-65 1.77E-30 ± 3.23E-30 6.37E-37 ± 1.92E-36 2.26E-24 ± 3.59E-24 3.98E-01 ± 1.26E?00

h ¼ 2;q ¼ 0:2 3.47E-78 ± 9.82E-78 3.38E-34 ± 1.06E-33 2.56E-49 ± 7.18E-49 7.34E-30± 1.50E-29 3.98E-01 ± 1.26E?00

h ¼ 2;q ¼ 0:8 2.20E-65 ± 3.73E-65 1.52E-29 ± 3.21E-29 3.74E-38 ± 7.30E-38 1.14E-23± 2.33E-23 5.18E-15 ± 1.13E-14

h ¼ 3;q ¼ 0:2 5.09E-80 ± 1.09E-79 2.73E-36 ± 4.68E-36 1.84E-49 ± 5.79E-49 5.32E-30 ± 1.05E-29 1.19E?00 ± 1.92E?00

h ¼ 3;q ¼ 0:5 9.49E-73 ± 2.58E-72 3.85E-32 ± 8.39E-32 1.27E-44 ± 2.91E-44 6.89E-27 ± 9.79E-27 7.97E-01 ± 1.68E?00

h ¼ 3;q ¼ 0:8 4.35E-66 ± 1.22E-65 9.73E-30 ± 2.34E-29 3.61E-39 ± 6.10E-39 3.28E-24 ± 7.29E-24 7.97E-01 ± 1.68E?00
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In Fig. 9, five points (1), (2), (3), (4) and (5) have been

chosen to represent the diversity of solutions and the bal-

ance assessments of each of them. Point (1) represents a

premature stage of the AFT algorithm where the balance

evaluation values of XPL% and XPT% are 90 and 10,

respectively. With these percentage, AFT works with a

clear direction to explore the search space. With this effect,

it can be inferred that the solutions preserve a high dis-

persion of the search space. Point (2) correlates with 70

iterations, where at this position, the balance evaluation

conserves a value of XPL% = 70 in conjunction with

XPT% = 30. In this position, AFT fundamentally conducts

exploration with a low degree of exploitation. Points (3)

and (4) correspond to 75 and 100 iterations, respectively,

where the balance assessments have exploration and

exploitation values of XPL%= 25, XPT% = 75, XPL% =

05 and XPT% = 95, respectively. At these percentage, the

behavior of AFT was flipped to promote more exploitation

than exploration. Under these configurations, the solutions

are spread out in several bunches which reduces the overall

diversity. Finally, point (5) implements the last juncture of

the AFT algorithm. In such a situation, the AFT algorithm

sustains a perspicuous trend to the exploitation of the top

found solutions without taking into account any explo-

ration strategy.

7.6 Chaotic maps for AFT

This work integrates four chaotic maps into one of the

components of AFT. This is to further study and investigate

the effectiveness of chaos theory in improving exploration

and/or exploitation of AFT. Chaotic maps are applied to

define the selection probability of the defined cases of AFT

which is directed to promote its performance degree. The

four chaotic maps selected in this study are listed in

Table 8.

The set of chaotic maps shown in Table 8 was selected

with different behaviors with the initial point set to 0.7 for

each of them. As mentioned earlier, chaotic maps are used

to manipulate the selection process of the defined three

cases of the AFT algorithm, where this process was defined

by a probability of rand. Here, chaotic maps were used to

provide chaotic behaviors for this probability. The final

value from the chaotic map should lie within the range of

[0, 1]. The proposed Chaotic AFT (CAFT) algorithm is

benchmarked on 23 benchmark test functions with chaotic

iterative (I), circle (C), logistic (L) and piecewise (P) se-

lection operators. The results are averaged over 30 inde-

pendent runs. The mean and standard deviation results of

the best solutions found at the last iteration are reflected in

Table 9.

Considering the results of Table 9, it can be said that

chaotic maps improve the performance of AFT not only in

terms of exploitation but also exploration. These results are

superior to the corresponding ones of the standard AFT as

shown in Tables 3, 4 and 5.

Table 7 Experimental results of

HAFT algorithm in standard

benchmark test functions

F Ave Std

F1 3.19E-74 1.73E-73

F2 7.65E-33 2.97E-32

F3 2.32E-45 9.65E-44

F4 1.63E-25 5.61E-24

F5 6.19E-01 1.05E-01

F6 0.00E?00 0.00E?00

F7 3.12E-01 2.48E-01

F8 - 1.07E?03 2.17E?02

F9 1.79E-01 1.41E-01

F10 2.00E-20 1.10E-19

F11 2.00E-01 1.08E-01

F12 3.36E-12 8.37E-12

F13 8.74E-34 4.78E-33

F14 9.98E-01 0.00E?00

F15 3.32E-04 1.13E-04

F16 - 1.0316 6.77E-16

F17 3.97E-01 0.00E?00

F18 2.99 1.00E-15

F19 - 3.86 2.71E-16

F20 - 2.31 1.11E-02

F21 - 3.48 1.19E?00

F22 - 5.01 2.79E-01

F23 - 6.73 1.59E-01
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Fig. 9 Performance of AFT during 500 iterations which describes the

balance evaluation given by Eqs. 24 and 25
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7.7 Analysis of the number of clusters of AFT

To investigate the degree of population interaction of the

AFT algorithm using the PIN method reported in [83, 84],

it is tested with different numbers of clusters c in the

optimization of a group of 23 benchmark functions. The

parameter c is set as follows: c 2 3; 7; 11. The other

parameters of AFT are remained the same during each

experiment. The AFT algorithm is run 30 times for each

function, and the mean and standard deviation are obtained

and displayed in Table 10.

It can be found from Table 10 that the effect of popu-

lation interaction is reasonably positive and can signifi-

cantly augment the performance of AFT in optimization.

Table 8 Four different types of

chaotic maps used to improve

AFT

No. Name Chaotic map Range

1 Iterative [104] xiþ1 ¼ sinðapxi Þ; a ¼ 0:7 ð�1; 1Þ
2 Circle [105] xiþ1 ¼ mod xi þ b� ð a

2pÞsinð2pxiÞ; 1
� �

; a ¼ 0:5; b ¼ 0:2

3 Logistic [104] xiþ1 ¼ axið1� xiÞ; a ¼ 4 (0, 1)

4 Piecewise [106]

xiþ1 ¼

xi
P

0� xi\P

xi � P

0:5� P
P� xi\0:5

1� P� xi
0:5� P

0:5� xi\1� P P ¼ 0:4

1� xi
P

1� P� xi\1

8>>>>>>>><
>>>>>>>>:

(0, 1)

Table 9 Results of the CAFT algorithm on F1 –F23 with several chaotic selection operators

F CAFT-C CAFT-I CAFT-L CAFT-P

Ave Std Ave Std Ave Std Ave Std

F1 1.08E-67 3.19E-67 2.19E-84 4.20E-84 2.80E-56 7.37E-56 1.21E-46 6.59E-46

F2 1.03E-29 4.22E-29 3.07E-36 9.46E-36 3.53E-26 1.05E-25 3.07E-21 8.80E-21

F3 4.93E-31 2.63E-30 1.06E-41 3.11E-41 1.48E-29 4.09E-29 3.01E-14 1.65E-13

F4 4.94E-20 2.18E-19 5.79E-07 2.52E-06 1.188E-17 2.96E-17 2.71E-04 1.45E-03

F5 1.12E?00 1.64E?00 4.37E?00 2.27E?00 8.89E-01 1.47E?00 1.036E?01 1.64E?01

F6 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

F7 4.84E-01 3.28E-01 5.74E-01 3.15E-01 5.87E-01 2.43E-01 4.99E-01 2.82E-01

F8 - 3.08E?03 2.46E?02 - 3.07E?03 3.46E?02 - 3.02E?03 2.17E?02 - 3.04E?03 3.34E?02

F9 1.86E?01 7.21E?00 1.99E?01 7.81E?00 1.86E?01 7.80E?00 2.17E?01 8.20E?00

F10 3.85E-02 2.10E-01 7.70E-02 2.93E-01 6.45E-15 1.79E-15 5.49E-02 3.00E-01

F11 1.79E-01 1.01E-01 1.85E-01 1.10E-01 1.66E-01 9.25E-02 2.00E-01 1.35E-01

F12 1.14E-01 5.69E-01 9.32E-02 3.07E-01 3.71E-30 2.01E-29 9.32E-02 4.01E-01

F13 1.34E-32 5.56E-48 1.34E-32 5.56E-48 1.34E-32 5.56E-48 4.22E-23 2.31E-22

F14 9.98E-01 4.12E-17 9.98E-01 1.00E-16 9.98E-01 5.83E-17 9.98E-01 9.21E-17

F15 4.97E-04 3.70E-04 4.11E-04 3.22E-04 3.68E-04 2.32E-04 4.36E-04 3.59E-04

F16 - 1.0316 6.77E-16 - 1.0316 6.77E-16 - 1.0316 6.71E-16 - 1.0316 6.71E-16

F17 3.978E-01 0.00E?00 3.978E-01 0.00E?00 3.978E-01 0.00E?00 3.978E-01 0.00E?00

F18 2.99E?00 2.03E-15 2.99E?00 4.73E-16 2.99E?00 1.23E-15 2.99E?00 1.30E-15

F19 - 3.862 2.68E-15 - 3.862E?00 2.69E-15 - 3.862E?00 2.71E-15 - 3.862E?00 2.69E-15

F20 - 3.318 2.17E-02 - 3.31E?00 3.01E-02 - 3.314E?00 3.01E-02 - 3.31E?00 2.17E-02

F21 - 5.12 2.53E-01 - 8.29E?00 2.49E?00 - 7.79E?00 2.56E?00 - 7.95E?00 2.55E?00

F22 - 5.99 2.38E-01 - 8.44E?00 2.61E?00 - 8.99E?00 2.37E?00 - 7.43E?00 2.84E?00

F23 - 6.77 1.98E-01 - 9.05E?00 2.51E?00 - 9.45E?00 2.19E?00 - 7.92E?00 2.85E?00
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The performance of AFT is the best at c ¼ 3 according to

the mean rank while it is not seriously different from other

values of c. According to Tables 10 as well as 3, 4 and 5, it

is evident that AFT with the use of PIN is somewhat out-

performing the standard AFT in optimization.

7.8 Qualitative analysis of AFT

The qualitative results, including search landscapes, con-

vergence curves, average fitness curves in logarithmic

shapes, search history and trajectory of the first individual,

associated with the AFT algorithm in solving a selected set

of test functions, are shown, for up to 200 iterations, in

Fig. 10.

The qualitative metric measures used to plot the curves

in Fig. 10 can be interpreted as follows:

• Convergence curves these curves are used to describe

how well AFT converges toward the optimum global,

which demonstrates its ability in fulfilling exploration

and exploitation phases. They show the best solutions

found after each iteration. It is observed that the fitness

value of the convergence curves gets better after each

iteration. The convergence curves of the unimodal

functions F1, F3 and F5 have some slight differences

with those of the multimodal functions F11 and F13 and

the fixed-dimension multimodal function F16. This is

mainly ascribed to the fact that unimodal functions have

only one global optimum with no local optimum.

Broadly, AFT provides a fast convergence response for

F1 and F3, has a sensible convergence response for F5
and F13, and shows the optimal convergence for F11 and

F16. As shown in the convergence curves, the AFT

algorithm first explores the search space, and most of

the thieves move toward the optimal areas of the search

space in the first 50 iterations.

• Average fitness curves these curves characterize the

average fitness values of the thieves at the end of each

iteration. They indicate that, as iterations proceed, the

average fitness values decline. This underscores that

AFT not only improves the global best fitness of one

thief, but also improves the fitness of all thieves.

• Search history this drawing shows the search history of

the thieves during their search for the global optimum.

It can be observed that the sample point of the unimodal

functions F1, F3 and F5 are distributed in promising

Table 10 The results obtained

by the AFT algorithm with

different number of clusters (c)

F c ¼ 3 c ¼ 7 c ¼ 11

Ave Std Ave Std Ave Std

F1 2.64E-78 8.20E-78 5.0E-74 1.0E-73 4.49E-72 8.89E-72

F2 9.48E-35 1.87E-34 1.136E-32 2.32E-32 6.35E-30 1.62E-29

F3 1.83E-34 3.11E-34 2.62E-19 8.28E-19 8.81E-12 2.67E-11

F4 2.26E-06 3.54E-06 2.45E-04 5.23E-04 1.74E-03 3.22E-03

F5 5.36E?00 2.12E?00 4.87E?01 7.58E?01 4.33E?01 8.35E?01

F6 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

F7 4.72E-01 3.53E-01 4.73E-01 3.24E-01 3.63E-01 2.42E-01

F8 - 2.90E?03 3.09E?02 - 2.78E?03 2.15E?02 - 2.93E?03 3.39E?02

F9 2.26E?01 9.05E?00 2.38E?01 6.86E?00 2.18E?01 9.59E?00

F10 9.01E-11 2.84E-10 3.64E-01 6.17E-01 9.81E-01 1.08E?00

F11 1.45E-01 4.65E-02 1.47E-01 3.19E-02 1.67E-01 8.53E-02

F12 5.92E-01 1.76E?00 9.33E-02 1.50E-01 1.07E-01 1.76E-01

F13 1.34E-32 2.88E-48 7.16E-20 2.26E-19 1.09E-03 3.47E-03

F14 9.98E-01 7.40E-17 9.98E-01 0.00E?00 9.98E-01 0.00E?00

F15 3.07E-04 1.08E-19 4.47E-04 4.04E-04 5.51E-04 4.66E-04

F16 - 1.0316 0.00E?00 - 1.0316 1.04E-16 - 1.0316 1.04E-16

F17 3.978E-01 0.00E?00 3.978E-01 0.00E?00 3.978E-01 0.00E?00

F18 2.99 8.24E-16 2.99E?00 7.40E-16 2.99E?00 0.00E?00

F19 - 3.862 9.00E-16 - 3.862E?00 9.36E-16 - 3.862E?00 9.36E-16

F20 - 3.31 3.75E-02 - 3.32E?00 4.68E-16 - 3.32E?00 4.68E-16

F21 - 4.12 2.62E?00 - 8.11E?00 2.62E?00 - 8.11E?00 2.63E?00

F22 - 6.74 2.80E?00 - 7.07E?00 2.89E?00 - 9.20E?00 2.54E?00

F23 - 5.10 3.16E?00 - 9.45E?00 2.28E?00 - 7.83E?00 2.84E?00
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areas. In contrast, some of the sample points of the

multimodal and fixed-dimension multimodal functions,

F11, F13 and F16, respectively, are marginally spread

around unpromising areas. This is related to the degree

of difficulty of these test functions. As the search

history drawings demonstrate, the sample points are

0
100

1

100

104

0

2

0-100 -100 0 100 200
10-20

100

0 100 200

100

-100 0 100
-100

0

100

0 100 200

-2000

-1000

0

1000

0
100 100

104

0

5

0-100 -100 0 100 200
10-10

100

0 100 200
10-10

100

1010

-100 0 100
-100

0

100

0 100 200
-2000

0

2000

4000

0
200 200

1010

10

0 0-200 -200 0 100 200
100

105

0 100 200
100

1010

-20 0 20

-20

0

20

0 100 200

0

100

200

0
500

50

500

100

0 0-500 -500 0 100 200
100

102

0 100 200
100

105

-500 0 500
-500

0

500

0 100 200

-5

0

5

10 104

0
5

5

5

10

0 0-5 -5 0 100 200
100

1010

0 100 200
100

-50 0 50
-50

0

50

0 100 200
-400
-200

0
200
400

-2
1

0

1

2

0 0-1 -1 0 5

100

0 50 100

100

105

-5 0 5
-5

0

5

0 100 200

-4

-2

0

2

Fig. 10 Qualitative results of AFT for test functions F1, F3, F5, F11, F13 and F16: Search landscapes, convergence curves, average fitness curves of

all thieves, search histories and trajectories in the first dimension of the first thief
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roughly scattered around the correct optimum solution,

and thus, this constitutes a visual evidence of the ability

of AFT in exploitation. This means that the thieves

quickly explore the whole search space at first and

gradually move toward the global optimum.

• Trajectory this plot depicts the thieves’ path in the first

dimension. Displaying the trajectory of the thieves

across all dimensions complicates the analysis process;

thus, we have stored and illustrated the search path of

the thieves in one dimension. This search plot presents

the exploitation and exploration capacities of AFT.

Figure 10 shows that the thieves go through abrupt

fluctuations in the initial phases, progressive variations

after the initial phases, and a steady situation in the final

stages. This confirms the ability of AFT in exploring the

search space at the initial stages of the search and

exploiting the global optimum areas in the consequent

stages.

Overall, the metric measures presented in Fig. 10 show that

AFT is able to efficiently explore the search space, exploit

each promising area, avoid local optimal solutions, achieve

high levels of accuracy and reasonably converge toward

optimality.

7.9 Performance of AFT in CEC-2017 benchmark

With the aim of further challenging the proposed AFT

algorithm, a challenging and a recent benchmark test suite,

IEEE CEC-2017, was used. This test suite composes of 30

functions with varying difficulty levels. It should also be

pointed out that due to the unstable behavior of the C-2017-

f2 function, particularly for higher dimensions, it has been

set aside from this test suite [107]. Thus, out of the 29

benchmark test functions, there are 2 unimodal functions

(C-2017-f1 and C-2017-f3), 7 simple multimodal functions

(C-2017-f4 - C-2017-f10), 10 hybrid functions (C-2017-f11

- C-2017-f20) and 10 composition functions (C-2017-f21 -

C-2017-f30). These benchmark test functions include many

properties of real-world problems, and thus, in the litera-

ture, many algorithms were examined on these test prob-

lems. The performance of AFT in this test suite is

compared with a set of well-known comparative algorithms

previously reported promising performance in the litera-

ture. The parameter settings for each optimization algo-

rithm are discussed in Subsect. 7.1 and listed in Table 1.

Table 11 shows the optimization results of AFT and

different methods in this test suite. The results of other

algorithms were taken from reference [47].

The results in Table 11 bear out the ascendancy of the

AFT algorithm over others in optimizing very challenging

optimization functions. The AFT algorithm again reported

the best average fitness values in twenty-eight out of

twenty-nine benchmark test functions. With regard to the

Std values, AFT performed significantly better than other

algorithms in twenty-one out of twenty-nine test functions.

This sustains the fact that we formerly inferred that AFT

has a high degree of stability when applied to various

search domains and test beds. These findings indicate that

AFT ranks first in terms of the powerful in exploration and

exploitation capabilities, which then turns to obtain high

performance in both of the accuracy and standard deviation

values. This achievement is a further evidence of the ability

of AFT to excel well-studied meta-heuristic algorithms

while achieving highly competitive results with high per-

formance methods in complex test functions.

7.10 Performance of AFT in CEC-C06 2019
benchmark

A set of ten benchmark functions, named IEEE CEC-C06

2019, have been developed by Professor Suganthan and his

colleagues [108] for use in evaluating single-objective

optimization problems. Table 35 in ‘‘Appendix C’’

describes this group of test functions. These benchmark

functions are designed to be scalable. The functions CEC04

- CEC10 are shifted and rotated, while CEC01 - CEC03 are

neither shifted nor rotated. Table 1 shows the parameter

settings of AFT and other optimization algorithms, and a

description of these parameter settings is presented in

Subsect. 7.1.

The average fitness and standard deviation values were

computed to compare between the accuracy of AFT and

other algorithms. The results of DA, WOA, and SSA were

taken from [109]. Table 12 displays the Ave and Std values

for the AFT algorithm and other algorithms when used to

search for the global optimum in the CEC-C06 2019

benchmark test functions.

The outcomes presented in Table 12 show that the AFT

algorithm ranked first in six out of ten functions (i.e.,

CEC01, CEC05 and CEC07-CEC10) in terms of the

average fitness. The MFO algorithm is in the second place

since it achieved the best Ave values in the CEC02 and

CEC03 functions, while the MVO algorithm got the best

Ave in the CEC04 function. Nevertheless, the results

obtained by AFT in CEC02, CEC03 and CEC04 are

comparable. In terms of measuring the stability of AFT, the

value of Std was calculated and compared with that of other

competitive algorithms. The AFT algorithm gained the

least values of Std in seven out of ten CEC-C06 functions.

This once again confirms that AFT has the most stable re-

sults when compared to other algorithms.
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Table 11 Optimization results of the AFT algorithm and other algorithms in IEEE CEC-2017 test functions

F AFT EO PSO GWO GSA CMA-ES

Ave Std Ave Std Ave td Ave Std Ave Std Ave Std

C-2017-

f1

100.00 9.77E-

12

2465.30 2206.20 3959.60 4456.60 325132 107351 296.0 275.10 100.00 0.00E100

C-2017-

f3

300.00 2.98E-

14

300.00 2.40E-08 300.00 1.90E-10 1538.00 1886.02 10829.20 1620.74 300.00 0.00E100

C-2017-

f4

400.00 4.60E-

14

404.48 0.79 405.94 3.28 409.50 7.55 406.60 2.92 400.00 0.00E100

C-2017-

f5

509.94 5.05 510.73 3.67 513.06 6.54 513.5 6.10 556.70 8.40 530.18 58.32

C-2017-

f6

600.00 2.42E-
05

600.00 1.50E-04 600.24 0.98 600.60 0.88 621.60 9.01 682.10 35.43

C-2017-

f7

717.39 6.08 720.93 5.74 718.98 5.10 729.80 8.60 714.60 1.55 713.40 1.63

C-2017-

f8

808.94 2.77 809.51 2.9176 811.39 5.47 814.30 8.26 820.5 4.69 828.90 52.98

C-2017-

f9

900.00 3.05E-
14

900.00 2.27E-02 900.00 5.90E-14 911.30 19.53 900.00 6.90E-14 4667.30 2062.80

C-2017-

f10

1260.66 206.03 1418.70 261.63 1473.30 214.97 1530.50 286.67 2694.6 297.62 2588.10 414.47

C-2017-

f11

1101.98 1.35E-
01

1105.20 502.18E-

02

1110.50 6.28 1140.20 54.13 1134.70 10.45 1111.30 25.44

C-2017-

f12

1265.37 715.12 10340 9790.60 14532 11260 625182 1126443 702723 42075.40 1629.60 198.11

C-2017-

f13

1318.49 52.81 8023.00 6720.8 8601.10 5123.60 9842.30 5633.43 11053 2110.55 1323.62 78.32

C-2017-

f14

1401.98 17.98 1463.30 32.49 1482.10 42.46 3403.53 1953.33 7147.5 1489.52 1452.10 55.98

C-2017-

f15

1504.99 25.14 1585.60 48.012 1714.30 282.89 3806.60 3860.66 18001 5498.67 1509.63 16.43

C-2017-

f16

1600.02 15.23 1649.00 50.915 1860.00 127.65 1725.78 123.85 2149.70 105.80 1815.34 230.13

C-2017-

f17

1711.26 9.53 1731.60 18.071 1761.60 47.50 1759.61 31.29 1857.7 108.32 1830.14 175.83

C-2017-

f18

1825.29 92.32 12450 11405 14599 11852.20 25806.10 15766.90 8720.50 5060.10 1825.92 13.53

C-2017-

f19

1907.48 17.38 1951.50 47.11 2602.80 2185.02 9866.10 6371.09 13670 19168 1920.54 28.68

C-2017-

f20

2008.58 21.51 2020.60 22.28 2085.10 62.25 2075.60 52.04 2272.30 81.72 2494.84 242.65

C-2017-

f21

2200.00 36.45 2307.50 20.96 2281.70 54.02 2317.10 7.00 2357.70 28.20 2324.76 67.76

C-2017-

f22

2200.00 1.57 2297.40 18.40 2314.80 66.10 2310.10 16.75 2300.00 7.2E-02 3532.41 847.62

C-2017-

f23

2300.00 8.38 2615.80 5.5298 2620.80 9.23 2616.40 8.47 2736.50 39.14 2728.8 243.1

C-2017-

f24

2500.00 105.22 2743.80 6.904 2692.20 108.20 2741.70 8.73 2742.2 5.52 2704.43 73.42

C-2017-

f25

2600.02 19.51 2934.30 19.76 2924.00 25.02 2938.00 23.61 2937.50 15.36 2932.01 20.87

C-2017-

f26

2600.00 97.23 2967.80 164.98 2952.10 249.66 3222.50 427.02 34407.50 628.73 3457.75 598.94

C-2017-

f27

3089.24 11.90 3091.30 2.2414 3116.20 24.99 3104.10 21.81 3259.50 41.66 3137.56 21.37
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7.11 Statistical test analysis

The average fitness and standard deviation of the results

tabulated in Tables in 3, 4, 5, 11 and 12 presented a gen-

eral view of the performance of AFT and to what extent

AFT was stable during the 30 independent runs. The

qualitative analysis presented in Sect. 7.8 clarified the

exploitation and exploration skills that the AFT has, but did

not interpret to what degree. This subsection presents sta-

tistical analysis using Friedman’s and Holm’s tests [110] to

exhibit the statistical significance of the results in

Tables 3, 4, 5, 11 and 12 and do not statistically deviate

from the results of other competitors.

The significance level (a) in Friedman’s test is set to

0.05 in the experiments shown below. In case if the p value

calculated by Friedman’s test is equal or less than a, a null

Table 11 (continued)

F AFT EO PSO GWO GSA CMA-ES

Ave Std Ave Std Ave td Ave Std Ave Std Ave Std

C-2017-

f28

2800.00 31.51 3302.70 133.92 3315.90 121.83 3391.20 101.50 3459.40 33.84 3397.62 131.36

C-2017-

f29

3136.95 23.34 3169.90 24.65 3203.80 52.26 3190.50 42.90 3449.50 171.33 3213.52 109.79

C-2017-

f30

3405.88 4358 297113 458560 350650 504857 297688 527757 1303361 363843 304 444815

The best results are written in bold for the purposes of confirming the best algorithm

Table 12 Results of AFT and other meta-heuristic algorithms in IEEE ECE-C06 2019 benchmark test functions

Functions AFT CSA DA WOA

Ave Std Ave Std Ave Std Ave Std

CEC01 3.9876E104 2.3523E103 8.9208E?07 1.1887E?08 543E?08 669E?08 411E?08 542E?08

CEC02 17.3428 3.5361E-14 17.3428 1.0562E-05 78.0368 87.7888 17.3495 0.0045

CEC03 12.7024 3.6134E-15 12.7024 3.6134E-15 13.7026 0.0007 13.7024 0.0

CEC04 45.9001 18.5761 80.7442 41.5589 344.3561 414.0982 394.6754 248.5627

CEC05 1.1677 5.5248E-02 1.1973 1.1800E01 2.5572 0.3245 2.7342 0.2917

CEC06 7.1860 1.1781 9.9243 1.4049 9.8955 1.6404 10.7085 1.0325

CEC07 110.1464 170.3345 205.0339 1.4647E?02 578.9531 329.3983 490.6843 194.8318

CEC08 4.1198 7.8873E-01 4.1259 7.5690E-01 6.8734 0.5015 6.909 0.4269

CEC09 2.3628 1.7099E-02 2.4397 7.5320E-02 6.0467 2.871 5.9371 1.6566

CEC10 19.9984 1.0414E-02 20.0024 6.0518 21.2604 0.1715 21.2761 0.1111

Functions MFO MVO SCA SSA

Ave Std Ave Std Ave Std Ave Std

CEC01 1.7580E?10 3.1999E?10 3.0602E?09 1.8495E?09 3.3725E?09 4.2549E?09 605E?08 475E?08

CEC02 17.3422 7.2268e-15 18.0691 0.35655 17.4672 8.5584e-02 18.3434 0.0005

CEC03 12.7021 2.7755E-04 12.7021 2.1233E-09 12.7025 8.3918E-05 13.7025 0.0003

CEC04 169.8126 208.2712 28.6991 11.4953 1.0590E?03 358.1222 41.6936 22.2191

CEC05 1.2153 0.1522 1.2513 0.10748 2.1658 7.6196E-02 2.2084 0.1064

CEC06 5.6797 2.4962 7.5882 1.2560 10.6791 0.6640 6.0798 1.4873

CEC07 409.0922 311.4702 277.6752 171.3962 716.1605 145.8723 410.3964 290.5562

CEC08 5.5186 0.7223 5.1849 0.6046 5.8788 0.4656 6.3723 0.5862

CEC09 2.8346 0.3887 2.3918 2.2188E-02 80.8171 74.9311 3.6704 0.2362

CEC10 20.1601 0.1848 20.0414 6.2121E-02 20.2904 0.7100 21.04 0.078

The best results are written in bold for the purposes of confirming the best algorithm

Neural Computing and Applications (2022) 34:409–455 439

123



hypothesis is rejected which indicates that there are sig-

nificant differences between the performance of the eval-

uated algorithms. In this study, Friedman’s test is followed

by Holm’s method, as a post hoc test method, to counteract

the problem of various comparisons. The lowest ranked

method by Friedman’s test will be used as a control method

for post hoc analysis.

7.11.1 Statistical test on functions F1–F7

Table 13 shows a summary of the ranking results generated

by Friedman’s test when applied to the results presented in

Table 3.

The p value given by Friedman’s test on the average

results of unimodal functions is 4.280198E-05. Thus, the

null hypothesis of equivalent accuracy is rejected, con-

firming the existence of a statistically significant difference

between the comparative algorithms. It can be observed

from Table 13 that AFT is statistically significant, and it is

the best one among all other algorithms. As shown in

Table 13, the proposed AFT algorithm achieved the best

statistical score on the set of unimodal test functions

studied in this work, followed sequentially by SOA, SHO,

CMA-ES, GWO, ACO, CSA, PSO, GA, DE, GSA and

MFO in the last rank.

After the application of Friedman’s test, Holm’s test

method was used to decide if there were statistically sig-

nificant differences between the AFT algorithm and the

others. Table 14 displays statistical outcomes generated by

Holm’s method when it is applied to the results shown in

Table 13. In Table 14, R0 represents Friedman’s-rank

given to the control method (i.e., AFT), Ri represents

Friedman’s rank given to algorithm i, z represents the

statistical difference between two algorithms, and finally

ES is the effect size of AFT on algorithm i.

Holm’s method in Table 14 rejects the hypotheses that

have p-value � 0:00625. It is apparent from Table 14 that

AFT yielded the best statistical results. In addition to that,

the p-values presented in Table 14 confirm the reliability of

the results generated by AFT in unimodal test functions.

7.11.2 Statistical test on functions F8–F23

Table 15 presents a summary of the ranking results gen-

erated by Friedman’s test when it is applied to the mean

results presented in Table 4.

The p-value generated by Friedman’s test on the average

fitness values of multimodal functions is 0.091583. There is

a statistically significant difference between the compara-

tive algorithms which means that the null hypothesis is

rejected. It is clearly observed from the results shown in

Table 15 that AFT is statistically significant and that it

achieved the best score among other algorithms. In sum,

the ranking results from Friedman’s test, when applied to

multimodal functions in Table 4, are AFT in the first place,

followed in order by CMA-ES, GWO, SOA, PSO, GA, DE,

SHO, ACO, GSA, CSA and MFO at last.

The statistical results generated by Holm’s method on

the results presented in Table 15 concerned with to the

results of Table 4 are shown in Table16.

In Table 16, the hypotheses with p-value � 0:004545

were rejected by Holm’s method. The results in Table 16

confirm that AFT is statistically superior when it is com-

pared to other competitors.

A summary of the ranking results obtained based on

applying Friedman’s statistical test on the average results

in Table 5 is displayed in Table 17.

In Table 17, the proposed AFT outperformed all other

algorithms, with the lowest rank of 2.2 followed in order by

CSA, CMA-ES, DE, GSA, ACO, SHO, MFO, GWO, PSO

and finally SOA.

The statistical results obtained by applying Holm’s test

method to the results presented in Table 15, which are

related to the results reported in Table 5, are shown in

Table 18.

In Table 18, the hypotheses with p value � 0:008333

were rejected by Holm’s test method. The results in this

table illustrate that AFT is statistically the best one, when it

is compared to the others.

7.11.3 Statistical test on IEEE CEC-2017 benchmark

Table 19 displays a summary of the statistical results

obtained by Friedman’s test when it is applied to the

average results shown in Table 11.

The p value obtained by Friedman’s test to the results of

IEEE CEC-2017 test suite is 4.990430E-11. It can be seen

from Table 19 that AFT is statistically the best algorithm

among all other algorithms. As can be noted from Table 19,

AFT has the best statistical score in the IEEE CEC-2017

Table 13 A summary of the

results generated by Friedman’s

test on the average results of

unimodal test functions in

Table 3

Algorithm Rank

AFT 2.714285

MFO 10.0

SOA 2.857142

CSA 6.714285

SHO 3.142857

GWO 4.857142

CMA-ES 4.652321

ACO 5.934213

PSO 6.857142

GSA 7.571428

GA 7.214285

DE 7.285714
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test suite, followed in order by CMA-ES, EO, PSO, GWO,

and GSA. Holm’s test method was then applied to the

results in Table 19 to determine if there were statistically

significant differences between AFT and other algorithms.

The results of this method are presented in Table 20.

It is obvious from Table 20 that the AFT algorithm

delivered the best outcomes.

7.11.4 Statistical test on CEC-C06 2019 benchmark

Table 21 displays the ranking results revealed by the

application of Friedman’s test on the results given in

Table 12.

The p-value computed by Friedman’s test when it was

applied to the average results of CEC-C06 functions in

Table 14 Results of Holm’s

method according to Friedman’s

results in Table 13 with

a ¼ 0:05

i Method z ¼ ðR0 � RiÞ=ES p value a � i Hypothesis

11 MFO 3.780371 1.565945E-4 0.004545 Rejected

10 GSA 2.520247 0.011727 0.005 Rejected

9 DE 2.371997 0.017692 0.005555 Rejected

8 GA 2.334935 0.019546 0.00625 Rejected

7 PSO 2.149623 0.031585 0.007142 Rejected

6 CSA 2.075498 0.037940 0.008333 Rejected

5 ACO 1.916246 0.049940 0.01 Rejected

4 GWO 1.111873 0.266192 0.0125 Not rejected

3 CMA-ES 1.001234 0.665124 0.016666 Rejected

2 SHO 0.222374 0.824022 0.025 Not rejected

1 SOA 0.074124 0.940910 0.05 Not rejected

Table 15 The results generated

by Friedman’s test on the

average results of multimodal

functions in Table 4

Algorithm Rank

AFT 3.966666

MFO 8.666666

SOA 5.25

CSA 7.5

SHO 6.583333

GWO 4.833333

CMA-ES 4.743236

ACO 6.666666

PSO 5.366666

GSA 7.0

GA 5.566666

DE 6.333333

Table 16 Results of Holm’s

method according to Friedman’s

test results in Table 15 with

a ¼ 0:05

i Method z ¼ ðR0 � RiÞ=SE p value a � i Hypothesis

11 MFO 2.161730 0.030638 0.004545 Rejected

10 CSA 1.601281 0.109314 0.005 Not rejected

9 ACO 1.542114 0.138239 0.005555 Rejected

8 GSA 1.361089 0.173485 0.00625 Not rejected

7 SHO 1.1609291 0.245670 0.007142 Not rejected

6 DE 1.040832 0.297953 0.008333 Not rejected

5 SOA 0.520416 0.602773 0.01 Not rejected

4 PSO 0.480384 0.630954 0.0125 Not rejected

3 GWO 0.320256 0.748774 0.016666 Not rejected

2 CMA-ES 0.291537 0.754663 0.025 Not rejected

1 GA 0.500192 0.670181 0.05 Not rejected

Table 17 A summary of the

ranking results obtained based

on Friedman’s test on the aver-

age results shown in Table 5

Algorithm Rank

AFT 2.2

MFO 7.25

SOA 8.05

CSA 5.1

SHO 7.1

GWO 7.3

CMA-ES 6.33

ACO 7.05

PSO 7.55

GSA 6.75

GA 7.699999

DE 6.649999
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Table 12 is 2.535367E-7. As clearly shown in Table 21,

the AFT algorithm is statistically significant as it has the

best score among all the other algorithms. The order of the

algorithms produced after applying Friedman’s test to this

test suite is AFT, CSA, MVO, MFO, SSA, SCA, WOA,

and DA. The statistical results obtained after applying

Holm’s method on these benchmark functions are given in

Table 22.

As displayed in Table 22, those hypotheses having p-

value � 0:016666 were rejected by Holm’s method. It can

be seen from Table 22 that the AFT algorithm is a robust

algorithm in optimizing the IEEE CEC-2017 and IEEE

CEC-C06 2019 test suites. It is clearly discerned from the

statistical findings presented in this subsection that AFT

has better exploitation skills than exploration ones. This

can be inferred from the results obtained when the AFT

algorithm was applied to unimodal functions compared to

the results obtained in multimodal, hybrid and composition

functions. However, the results showed that this is not a big

concern since the exploration in AFT algorithm is plausible

due to the updating mechanism that this algorithm follows

to explore the search space to a large extent. A small

degree of exploration is usually not sufficient to find the

global optimum solution since in optimization problems

there is always necessity to strike a convenient balance

between exploitation and exploration. These impressive

results make the AFT algorithm applicable for solving real-

world engineering problems as shown below.

Table 18 Results of Holm’s

method according to Friedman’s

test results in Table 17

i Method z ¼ ðR0 � RiÞ=SE p value a � i Hypothesis

11 SOA 4.248189 2.155049E-5 0.004545 Rejected

10 GA 4.031128 5.550959E-5 0.005 Rejected

9 PSO 3.938102 8.2128401E-5 0.005555 Rejected

8 GWO 3.783059 1.549124E-4 0.00625 Rejected

7 MFO 3.752050 1.753939E-4 0.007142 Rejected

6 SHO 3.659024 2.531769E-4 0.008333 Rejected

5 ACO 3.598117 3.218995E-4 0.01 Rejected

4 GSA 3.441963 5.775073E-4 0.0125 Rejected

3 DE 3.3799465 7.249993E-4 0.016666 Rejected

2 CMA-ES 2.225894 0.001613 0.025 Rejected

1 CSA 2.418677 0.015577 0.05 Rejected

Table 19 Ranking results of the

Friedman’s test when applied to

the Ave results shown in

Table 11

Algorithm Rank

AFT 1.155172

EO 2.534482

PSO 3.482758

GWO 4.448275

GSA 5.051724

CMA-ES 2.2543411

Table 20 Results of Holm’s

method based on the results

reported in Table 19

i Method z ¼ ðR0 � RiÞ=SE p value a � i Hypothesis

5 GSA 7.931045 2.173091E-

15

0.01 Rejected

4 GWO 6.702785 2.044828E-

11

0.0125 Rejected

3 PSO 4.737571 2.162948E-6 0.016666 Rejected

2 EO 2.807449 0.004993 0.025 Rejected

1 CMA-

ES

2.160424 0.101043 0.05 Not rejected

Table 21 The ranking results

obtained based on Friedman’s

test on the IEEE CEC-C06 2019

benchmark with a ¼ 0:05

Algorithm Rank

AFT 1.8

CSA 2.9

DA 6.9

WOA 6.699999

MFO 3.25

MVO 3.049999

SCA 6.0

SSA 5.4
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8 Real engineering design problems

To further substantiate the robustness of the proposed AFT

algorithm, its optimization aptitudes were assessed on five

real-world engineering design problems, known as: the

welded beam problem, the pressure vessel problem, the

tension/compression spring problem, the speed reducer

problem and the rolling element bearing problem. What

distinguishes these design problems is that they have a host

of constraints. Hence, in order to be capable of addressing

these design problems, it is crucial for the AFT algorithm

to be well prepared with a constraint handling method.

8.1 Constraint handling

The AFT algorithm was disposed to fit with a static penalty

approach to be talented to deal with the constraints of the

aforementioned engineering design problems while

addressing them, as elaborated in the following

subsections.

fðzÞ ¼ f ðzÞ �
Xm
i¼1

li �maxð0; tiðzÞÞa þ
Xn
j¼1

oj UjðzÞ
 b

" #

ð50Þ

where fðzÞ stands for the objective function, li and oj define
positive penalty constants, tiðzÞ and UjðzÞ are constraint

functions. The values of the parameters b and a were set to

2.0 and 1.0, respectively.

The static penalty approach assigns a penalty value for

each unattainable solution. This feature encouraged us to

use the static penalty function to handle the constrains in

the aforementioned design problems, since it can assist the

search agents of AFT to move in the direction of the fea-

sible search space for the given problems to be solved. The

number of search agents and number of iterations of AFT

in solving the following design problems were set to 30 and

1000, respectively.

8.2 Welded beam design problem

The main goal of this design problem is to lessen the

manufacturing cost of the welded beam design displayed in

Fig. 11 [111].

The elements of the welded beam architecture shown in

Figure 11 are a beam, A and the welding desired to be

attached to the piece, B. The constraints of this design

problem are the bending stress in the beam (h), buckling
load on the bar (Pc), end deflection of the beam (d) in

addition to the shear stress (s). In addressing this problem

to achieve the optimality, it is essential to solve for the

structural parameters of the welded beam structure.

Specifically, the design variables of this problem can be

given as follows: thickness of the weld (h), thickness of the

bar (b), length of the clamped bar (l) and the height of the

bar (t). The variable vector of this problem can be written

as follows: x ¼ ½x1; x2; x3; x4�, where x1, x2, x3 and x4 rep-

resent the values of the variables h, l, t and b, respectively.

This cost function required to lessen the cost of designing

this problem is formulated in the following form:

Fig. 11 A schematic diagram of a welded beam design

Table 22 Results of Holm’s method based on the Friedman’s statistical test results displayed in Table 21

i Method z ¼ ðR0 � RiÞ=SE p value a � i Hypothesis

7 DA 4.6556417 3.229731E-6 0.007142 Rejected

6 WOA 4.473067 7.710540E-6 0.008333 Rejected

5 SCA 3.834057 1.260464E-4 0.01 Rejected

4 SSA 3.286335 0.001015 0.0125 Rejected

3 MFO 1.323662 0.185615 0.016666 Not rejected

2 MVO 1.141088 0.253833 0.025 Not rejected

1 CSA 1.004158 0.315302 0.05 Not rejected
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Minimize:

f ðxÞ ¼ 1:10471x21x2 þ 0:04811x3x4ð14:0þ x2Þ
Subject to the following constraints,

g1ðxÞ ¼ sðxÞ � smax � 0

g2ðxÞ ¼ rðxÞ � rmax � 0

g3ðxÞ ¼ x1 � x4 � 0

g4ðxÞ ¼ 1:10471x21 þ 0:04811x3x4ð14:0þ x2Þ � 5:0� 0

g5ðxÞ ¼ 0:125� x1 � 0

g6ðxÞ ¼ dðxÞ � dmax � 0

g7ðxÞ ¼ P� PcðxÞ� 0

where the remaining variables of the welded beam

design are drawn up as follows:

sðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððs0Þ2 þ ðs00Þ2Þ þ 2s0s00x2

2R

q
; s0 ¼ pffiffi

2
p

x1x2

s00 ¼ MR
J ;M ¼ PðLþ x2

2
Þ;R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1þx3

2

� �2þ x2
2

4

q

J ¼ 2
ffiffiffi
2

p
x1x2

x22
12

þ ðx1 þ x3
2

Þ2
� �
 �

; rðxÞ ¼ 6PL

x4x
2
3

dðxÞ ¼ 4PL3

Ex4x
3
3

;PcðxÞ ¼
4:013

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EGx23x

6
4=36

q

L2
1� x3

2L

ffiffiffiffiffiffi
E

4G

r !

where P ¼ 6000lb; L ¼ 14in, dmax ¼ 0:25inch, E ¼ 30 
106 psi, G ¼ 12  106 psi, dmax ¼ 13600psi, rmax ¼ 30000

psi. The ranges of variables of this design are used as:

0:1� xi � 2:0 when i ¼ 1 and 4 and 0:1� xi � 10:0 when

i ¼ 2 and 3.

A comparison of the best solutions obtained from AFT

and other optimization algorithms reported in the literature

is presented in Table 23.

Succinctly, the results of Table 23 indicate that the AFT

algorithm converges toward the optimal design and offers

the best solution among all other competitors. A statistical

comparison of AFT with other competitors, after 30 inde-

pendent runs, in terms of the best score, worst score,

average score Ave and standard deviation score Std, is

presented in Table 24.

The results of Table 24 expose that AFT again behaves

much better than other optimization algorithms in terms of

average and Std results. This ascertains the degree of

reliability of the AFT algorithm in addressing this design

problem.

8.3 Pressure vessel design problem

The pressure vessel design is another well-respected

engineering problem that has been extensively considered

in optimization [101]. The goal of designing this problem

is to reduce the overall cost of formation represented as the

material and welding of a cylindrical vessel. This is

wrapped at both endings with hemispherical heads. Fig-

ure 12 illustrates a description of a schematic diagram of

this design.

The variables of this design problem can be described as

given: The first variable is the inner radius (R), thickness of

the shell (Ts), length of the cylindrical section of the vessel

without considering the head (L) and the last variable is the

thickness of the head (Th). These variables can be outlined

by a vector as follows: x ¼ ½x1; x2; x3; x4�, where the

parameters of this vector stand for the values of Ts, Th, R

and L, respectively. The problem of the pressure vessel

design can be mathematically defined as follows:

Minimize : f ðxÞ ¼0:6224x1x3x4 þ 1:7781x2x
2
3

þ3:1661x21x4 þ 19:84x21x3

This problem undergoes to four constraints, as outlined

below,

g1ðxÞ ¼ �x1 þ 0:0193x3 � 0

g2ðxÞ ¼ �x2 þ 0:00954x3 � 0

g3ðxÞ ¼ �px23x4 � 4
3
px33 þ 1296000� 0

Table 23 A comparison of the

optimal costs attained by AFT

and other optimization

algorithms for the welded beam

problem

Algorithm Optimal values for variables Optimum cost

h l t b

AFT 0.205729 3.470488 9.036623 0.205729 1.724852

SHO [99] 0.205563 3.474846 9.035799 0.205811 1.725661

GWO [100] 0.205678 3.475403 9.036964 0.206229 1.726995

PSO [85] 0.197411 3.315061 10.00000 0.201395 1.820395

MVO [45] 0.205611 3.472103 9.040931 0.205709 1.725472

SCA [101] 0.204695 3.536291 9.004290 0.210025 1.759173

GSA [44] 0.147098 5.490744 10.00000 0.217725 2.172858

GA [102] 0.164171 4.032541 10.00000 0.223647 1.873971

DE [87] 0.206487 3.635872 10.00000 0.203249 1.836250

The best result is written in bold for the purposes of confirming the best algorithm
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g4ðxÞ ¼ x4 � 240� 0

where 0� x1� 99, 0� x2 � 99, 10� x3 � 200 and

10� x4 � 200.

A comparison of the optimal solutions obtained from the

proposed AFT algorithm and other optimization algorithms

reported in the literature is given in Table 25.

As distinctly perused from Table 25, the AFT algorithm

provided the best design with the minimum cost of about

5885.332773. No other competitor algorithm was capable

to achieve this cost.

The statistical results of the AFT algorithm for the

pressure vessel design problem compared to others, in

terms of the best, average, worst and standard deviation

scores after 30 independent runs, are presented in Table 26.

The statistical results in Table 26 assert that the AFT

algorithm performs better than all other competitors’

algorithms in terms of the best, Ave and Std values obtained

so far.

8.4 Tension–compression spring design problem

The structure of a tension/compression spring design

problem is shown in Fig. 13 [112].

In the tension/compression spring design problem, we

strive to reduce the weight of this design. This optimization

problem is subject to three constraints, which are given as

follows: surge frequency, shear stress and minimum

deflection. The variables of this design problem are the

mean coil diameter (D), wire diameter (d) and the number

of active coils (N). These variables can be characterized as:

x ¼ ½x1; x2; x3�, with the parameters of x represent D, d and

N, respectively. The mathematical representation of this

problem can be described in the following way:

Minimize: f ðxÞ ¼ ðx3 þ 2Þx2x21
This problem is subject to the following constraints:

g1ðxÞ ¼ 1� x3
2
x3

71785x4
1

� 0

g2ðxÞ ¼
4x22 � x1x2

12566ðx2x31 � x41Þ
þ 1

5108x21
� 1� 0

g3ðxÞ ¼ 1� 140:45x1
x2
2
x3

� 0

g4ðxÞ ¼ x1þx2
1:5 � 1� 0

where 0:05� x1 � 2:0, 0:25� x2 � 1:3 and

2� x3 � 15:0.

Table 27 shows a comparison between the AFT algo-

rithm presented in this work and other algorithms reported

in the literature.

Table 24 Statistical results obtained from AFT and other algorithms

for the welded beam design problem

Algorithm Best Ave Worst Std

AFT 1.724852 1.724852 .724852 1.054459E-15

SHO [99] 1.725661 1.725828 1.726064 0.000287

GWO [100] 1.726995 1.727128 1.727564 0.001157

PSO [85] 1.820395 2.230310 3.048231 0.324525

MVO [45] 1.725472 1.729680 1.741651 0.004866

SCA [101] 1.759173 1.817657 1.873408 0.027543

GSA [44] 2.172858 2.544239 3.003657 0.255859

GA [102] 1.873971 2.119240 2.320125 0.034820

DE [87] 1.836250 1.363527 2.035247 0.139485

Fig. 12 A structural representation of the cross section of a pressure

vessel design

Table 25 A comparison of the

results achieved by AFT and

other algorithms for the pressure

vessel design problem

Algorithm Optimal values for variables Optimum cost

Ts Th R L

AFT 12.450698 6.154386 40.319618 199.999999 5885.332773

SHO [99] 0.778210 0.384889 40.315040 200.00000 5885.5773

GWO [100] 0.779035 0.384660 40.327793 199.65029 5889.3689

PSO [85] 0.778961 0.384683 40.320913 200.00000 5891.3879

MVO [45] 0.845719 0.418564 43.816270 156.38164 6011.5148

SCA [101] 0.817577 0.417932 41.74939 183.57270 6137.3724

GSA [44] 1.085800 0.949614 49.345231 169.48741 11550.2976

GA [102] 0.752362 0.399540 40.452514 198.00268 5890.3279

DE [87] 1.099523 0.906579 44.456397 179.65887 6550.0230

The best result is written in bold for the purposes of confirming the best algorithm
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Examining the results of Table 27 in terms of the opti-

mal costs, we can clearly realize that AFT scored the best

solution out of all the optimization algorithms for this

problem and achieved the best design with a cost of

0.012665, which no other competitor has achieved. A

comparison of the statistical results obtained by AFT and

other algorithms reported in the literature for this design

problem is presented in Table 28.

The results in Table 28 divulge that the AFT algorithm

once again acts much better in terms of the statistical

results than other algorithms.

8.5 Speed reducer design problem

The speed reducer design problem is a challenging

benchmark problem due to that this problem comprises of

seven variables [113]. The structural description of a speed

reducer design is shown in Fig. 14.

The prime objective of this problem is to reduce the

weight of the speed reducer, which is subject to the fol-

lowing constraints: transverse deflections of the shafts,

surface stress, bending stress of the gear teeth and stresses

in the shafts [99]. The seven variables of this problem can

be given as follows: the number of teeth in the pinion (z),

the module of teeth (m), the face width (b), the module of

the teeth (m), the diameter of the first shafts (d1), the

diameter of the second shafts (d2), the length of the first

shaft between bearings (l1) and the last design variable is

the length of the second shaft between bearings (l2). These

variables can be represented as follows:

x ¼ ½x1x2x3x4x5x6x7�. The mathematical description of this

design problem can be given as follows:

Minimize:

f ðxÞ ¼ 0:7854x1x
2
2ð3:3333x23 þ 14:9334x3 � 43:0934Þ

� 1:508x1ðx26 þ x27Þ þ 7:4777ðx36 þ x37Þ
þ 0:7854ðx4x26 þ x5x

2
7Þ

This function is subject to eleven constraints, which are

described as follows:

g1ðxÞ ¼ 27
x1x22x3

� 1� 0

g2ðxÞ ¼ 397:5
x1x

2
2
x2
3

� 1� 0

g3ðxÞ ¼ 1:9x3
4

x2x
4
6
x3
� 1� 0

g4ðxÞ ¼
1:93x3

5

x2x
4
7
x3
� 1� 0

g5ðxÞ ¼
½ð745ðx4=x2x3ÞÞ2 þ 16:9� 106�1=2

110x36
� 1� 0

Table 26 Statistical results

obtained from the AFT

algorithm and other algorithms

in solving the pressure vessel

design problem

Algorithm Best Ave Worst Std

AFT 5885.332773 5885.332773 5885.332773 4.178081E-12

SHO [99] 5885.5773 5887.4441 5892.3207 2.893

GWO [100] 5889.3689 5891.5247 5894.6238 013.910

PSO [85] 5891.3879 6531.5032 7394.5879 534.119

MVO [45] 6011.5148 6477.3050 7250.9170 327.007

SCA [101] 6137.3724 6326.7606 6512.3541 126.609

GSA [44] 11550.2976 23342.2909 33226.2526 5790.625

GA [102] 5890.3279 6264.0053 7005.7500 496.128

DE [87] 6550.0230 6643.9870 8005.4397 657.523

Table 27 A comparison of the best solutions achieved by AFT and

other algorithms for the tension/compression spring design problem

Algorithm Optimum variables Optimum weight

d D N

AFT 0.051691 0.356777 11.285441 0.012665

SHO [99] 0.051144 0.343751 12.0955 0.012674000

GWO [100] 0.050178 0.341541 12.07349 0.012678321

PSO [85] 0.05000 0.310414 15.0000 0.013192580

MVO [45] 0.05000 0.315956 14.22623 0.012816930

SCA [101] 0.050780 0.334779 12.72269 0.012709667

GSA [44] 0.05000 0.317312 14.22867 0.012873881

GA [102] 0.05010 0.310111 14.0000 0.013036251

DE [87] 0.05025 0.316351 15.23960 0.012776352

The best result is written in bold for the purposes of confirming the

best algorithm

Fig. 13 A schematic diagram of a tension/compression spring design

446 Neural Computing and Applications (2022) 34:409–455

123



g6ðxÞ ¼
½ð745ðx5=x2x3ÞÞ2 þ 157:5� 106�1=2

85x37
� 1� 0

g7ðxÞ ¼ x2x3
40

� 1� 0

g8ðxÞ ¼ 5x2
x1

� 1� 0

g9ðxÞ ¼ x1
12x2

� 1� 0

g10ðxÞ ¼ 1:5x6þ1:9
x4

� 1� 0

g11xÞ ¼ 1:1x7þ1:9
x5

� 1� 0

where the range of the design variables b;m; z; l1; l2; d1
and d2 were used as 2:6� x1 � 3:6, 0:7� x2 � 0:8,

17� x3 � 28, 7:3� x4 � 8:3, 7:3� x5 � 8:3, 2:9� x6 � 3:9

and 5:0� x4 � 5:5, respectively.

Table 29 displays the best designs and optimum costs

achieved by the AFT algorithm and other algorithms for

the speed reducer design problem.

Table 29 corroborates that AFT provides the optimal

design compared to others with a cost of approximately

2994.471066. The statistical results of AFT and other

competitive methods, over 30 independent runs, for the

speed reducer design problem are tabulated in Table 30.

According to the statistical results in Table 30, the AFT

algorithm found the best results compared to other

promising optimization algorithms.

8.6 Rolling Element Bearing Design Problem

The main goal of this design problem is to make the

dynamic load carrying power of a rolling element bearing

as large as possible. The schematic diagram of this design

problem is shown in Fig. 15 [99].

This problem consists of ten decision variables given as

follows: ball diameter (Db), pitch diameter (Dm), number of

balls (X), inner (fi) and outer (fo) raceway curvature factors,

KDmin, KDmax, e, � and f. The mathematical representation

of this design problem is as follows:

Maximize: Cd ¼ fcX
2=3D1:8

b if D� 25:4mm

Cd ¼ 3:647fcX
2=3D1:4

b if D[ 25:4mm

The constraints and fc of this design problem are pre-

sented as follows:

g1ðxÞ ¼ /0

2sin�1ðDb=DmÞ � X þ 1� 0

g2ðxÞ ¼ 2Db � KDminðD� dÞ� 0

g3ðxÞ ¼ KDmaxðD� dÞ � 2Db � 0

g4ðxÞ ¼ fBw � Db � 0

g5ðxÞ ¼ Dm � 0:5ðDþ dÞ� 0

g6ðxÞ ¼ ð0:5þ eÞðDþ dÞ � Dm � 0

g7ðxÞ ¼ 0:5ðD� Dm � DbÞ � �Db � 0

g8ðxÞ ¼ fi � 0:515

g9ðxÞ ¼ fo � 0:515

fc ¼ 37:91

�
1þ



1:04

1� c
1þ c

� �1:72 fið2fo � 1Þ
foð2fi � 1Þ

� �0:41�10=3��0:3

� c0:3ð1� cÞ1:39

ð1þ cÞ1=3

" #
2fi

2fi � 1

� �0:41

x ¼ ðD� dÞ
2

� 3
T

4
Þ


 �2

þ D

2
� T

4
� Db


 �2

� d

2
þ T

4


 �2

y ¼ 2
ðD� dÞ

2
� 3

T

4


 �
D

2
� T

4
� Db


 �

ð51Þ

Table 28 Statistical results of

the proposed AFT algorithm

and other optimization

algorithms for the

tension/compression spring

design problem

Algorithm Best Ave Worst Std

AFT 0.012665 0.012665 0.012665 3.216681E-10

SHO [99] 0.012674000 0.012684106 0.012715185 0.000027

GWO [100] 0.012678321 0.012697116 0.012720757 0.000041

PSO [85] 0.013192580 0.014817181 0.017862507 0.002272

MVO [45] 0.012816930 0.014464372 0.017839737 0.001622

SCA [101] 0.012709667 0.012839637 0.012998448 0.000078

GSA [44] 0.012873881 0.013438871 0.014211731 0.000287

GA [102] 0.013036251 0.014036254 0.016251423 0.002073

DE [87] 0.012776352 0.013069872 0.015214230 0.000375

Fig. 14 A structural design of a speed reducer problem
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/0 ¼ 2p� 2cos�1 x
y

� �

c ¼ Db

Dm
; fi ¼ ri

Db
; fo ¼ ro

Db
; T ¼ D� d � 2Db

D ¼ 160; d ¼ 90;Bw ¼ 30; ri ¼ ro ¼ 11:033

0:5ðDþ dÞ�Dm � 0:6ðDþ dÞ;
0:15ðD� dÞ�Db � 0:45ðD� dÞ
4�X� 50; 0:515� fi and fo � 0:6

0:4�KDmin � 0:5; 0:6�KDmax � 0:7

0:3� e� 0:4; 0:02� e� 0:1; 0:6� f� 0:85

Table 31 shows a comparison of the best solutions for

the rolling element bearing design obtained by AFT and

other optimization algorithms.

As per the optimum costs of the rolling element bearing

design problem reported in Table 31, the AFT algorithm

got the best design with the optimal cost of about

85206.641. The statistical results of AFT and other opti-

mization methods over 30 runs are shown in Table 32.

It may be observed from Table 32 that the AFT algo-

rithm has once again obtained the best optimal solutions for

the rolling element bearing design problem over other

algorithms.

In a nutshell, the general performance of the proposed

AFT algorithm has corroborated its reliability and effi-

ciency in addressing the above five classical engineering

design problems. Therefore, we can deduce that the AFT

algorithm is an appropriate and effective optimizer and is

definitely a promising candidate for solving real-world

contemporary problems.

9 Conclusion and Future Work

This paper has proposed a novel human-based meta-

heuristic algorithm called Ali Baba and the forty thieves

(AFT) for solving global optimization problems. The per-

formance of the AFT algorithm was benchmarked on three

benchmarks of sixty-two basic and challenging test func-

tions taken from the so-called classic benchmark functions,

Table 29 A comparison of the

best results obtained by AFT

and other algorithms for the

speed reducer design problem

Algorithm Optimum variables Optimum cost

b m z l1 l2 d1 d2

AFT 3.5 0.69 17. 7.3 7.715319 3.350214 5.286654 2994.471066

SHO [99] 3.50159 0.7 17 7.3 7.8 3.35127 5.28874 2998.5507

GWO [100] 3.506690 0.7 17 7.380933 7.815726 3.357847 5.286768 3001.288

PSO [85] 3.500019 0.7 17 8.3 7.8 3.352412 5.286715 3005.763

MVO [45] 3.508502 0.7 17 7.392843 7.816034 3.358073 5.286777 3002.928

SCA [101] 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563

GSA [44] 3.600000 0.7 17 8.3 7.8 3.369658 5.289224 3051.120

GA [102] 3.510253 0.7 17 8.35 7.8 3.362201 5.287723 3067.561

DE [87] 3.520124 0.7 17 8.37 7.8 3.366970 5.288719 3029.002

The best result is written in bold for the purposes of confirming the best algorithm

Table 30 Statistical results of

the AFT algorithm and other

optimization algorithms for the

speed reducer design problem

Algorithm Best Ave Worst Std

AFT 2994.471066 2994.471066 2994.471073 1.419722E-06

SHO [99] 2998.5507 2999.640 3003.889 1.93193

GWO [100] 3001.288 3005.845 3008.752 5.83794

PSO [85] 3005.763 3105.252 3211.174 79.6381

MVO [45] 3002.928 3028.841 3060.958 13.0186

SCA [101] 3030.563 3065.917 3104.779 18.0742

GSA [44] 3051.120 3170.334 3363.873 92.5726

GA [102] 3067.561 3186.523 3313.199 17.1186

DE [87] 3029.002 3295.329 3619.465 57.0235

Fig. 15 A schematic view of a rolling element bearing
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IEEE CEC-2017 benchmark functions and IEEE CEC-C06

2019 benchmark functions. Several developments were

conducted for the AFT algorithm from several aspects to

innervate its exploration and exploitation aptitudes.

Extensive comparisons with many well-studied, new and

high-performance algorithms have shown that AFT is

highly reliable and effective in getting near-optimal or

optimal solutions for most of the test functions studied. In

real-world problems, the AFT algorithm was practically

applied to solve five engineering design problems as evi-

dence of its reliability and applicability in addressing real-

life applications. In future work, a parallel optimization

algorithm could be developed by a combination of AFT

algorithm and other algorithms as potential researches to

further improve its performance level. Further expansions

of the AFT algorithm can be developed by adapting,

implementing and testing both binary and multi-objective

version of this algorithm to solve large-scale real-world

problems.

Appendix A. Unimodal, multimodal
and fixed-dimension multimodal functions

A detailed description of the unimodal benchmark func-

tions (F1–F7), multimodal benchmark functions (F8–F13)

and fixed-dimension multimodal benchmark functions

(F14–F23) is tabulated in Table 33.

Table 31 Optimization results of the rolling element bearing design problem achieved by AFT and other algorithms

Algorithm Optimum variables Optimum cost

Dm Db X fi fo KDmin KDmax � e f

AFT 125 21.418 11.356 0.515 0.515 0.4 0.680 0.3 0.02 0.622 85206.641

SHO [99] 125 21.407 10.932 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85054.532

GWO [100] 125 21.351 10.987 0.515 0.515 0.5 0.688 0.300 0.032 0.627 84807.111

PSO [85] 125 20.753 11.173 0.515 0.515 0.5 0.615 0.3 0.051 0.6 81691.202

MVO [45] 125 21.322 10.973 0.515 0.515 0.5 0.687 0.301 0.036 0.610 84491.266

SCA [101] 125 21.148 10.969 0.515 0.515 0.5 0.7 0.3 0.027 0.629 83431.117

GSA [44] 125 20.854 11.149 0.515 0.517 0.5 0.618 0.304 0.02 0.624 82276.941

GA [102] 125 20.775 11.012 0.515 0.515 0.5 0.613 0.3 0.050 0.610 82773.982

DE [87] 125 20.871 11.166 0.515 0.516 0.5 0.619 0.301 0.050 0.614 81569.527

The best result is written in bold for the purposes of confirming the best algorithm

Table 32 Statistical results

obtained from the AFT

algorithm and others for the

rolling element bearing design

problem

Algorithm Best Ave Worst Std

AFT 85206.201105 85206.641021 85207.012231 1.290128E-03

SHO [99] 85054.532 85024.858 85853.876 0186.68

GWO [100] 84807.111 84791.613 84517.923 0137.186

PSO [85] 81691.202 50435.017 32761.546 13962.150

MVO [45] 84491.266 84353.685 84100.834 0392.431

SCA [101] 83431.117 81005.232 77992.482 1710.777

GSA [44] 82276.941 78002.107 71043.110 3119.904

GA [102] 82773.982 81198.753 80687.239 1679.367

DE [87] 81569.527 80397.998 79412.779 1756.902
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Appendix B. IEEE CEC-2017 test suite

A description of the IEEE CEC-2017 benchmark test

functions is shown in Table 34.

Table 34 Characteristics of the IEEE CEC-2017 benchmark test functions

Function No. Function fmin Range Dim Class

C-2017-f1 Shifted and Rotated Bent Cigar function 100 [- 100,100] 10 U

C-2017-f3 Shifted and Rotated Zakharov function 300 [- 100,100] 10 U

C-2017-f4 Shifted and Rotated Rosenbrock’s function 400 [- 100,100] 10 M

C-2017-f5 Shifted and Rotated Rastrigin’s function 500 [- 100,100] 10 M

C-2017-f6 Shifted and Rotated Expanded Scaffer’s function 600 [- 100,100] 10 M

C-2017-f7 Shifted and Rotated Lunacek Bi-Rastrigin function 700 [- 100,100] 10 M

C-2017-f8 Shifted and Rotated Non-Continuous Rastrigin’s function 800 [- 100,100] 10 M

C-2017-f9 Shifted and Rotated Levy Function 900 [- 100,100] 10 M

C-2017-f10 Shifted and Rotated Schwefel’s Function 1000 [- 100,100] 10 M

C-2017-f11 Hybrid function of Zakharov, Rosenbrock and Rastrigin’s 1100 [- 100,100] 10 H

C-2017-f12 Hybrid function of High Conditioned Elliptic, Modified Schwefel and

Bent Cigar

1200 [- 100,100] 10 H

C-2017-f13 Hybrid function of Bent Ciagr, Rosenbrock and Lunache Bi-Rastrigin 1300 [- 100,100] 10 H

C-2017-f14 Hybrid function of Eliptic, Ackley, Schaffer and Rastrigin 1400 [- 100,100] 10 H

C-2017-f15 Hybrid function of Bent Cigar, HGBat, Rastrigin and Rosenbrock 1500 [- 100,100] 10 H

C-2017-f16 Hybrid function of Expanded Schaffer, HGBat, Rosenbrock and

Modified Schwefel

1600 [- 100,100] 10 H

C-2017-f17 Hybrid function of Katsuura, Ackley, Expanded Griewank plus

Rosenbrock, Modified Schwefel and Rastrigin

1700 [- 100,100] 10 H

C-2017-f18 Hybrid function of high conditioned Elliptic, Ackley, Rastrigin,

HGBat and Discus

1800 [- 100,100] 10 H

C-2017-f19 Hybrid function of Bent Cigar, Rastrigin, Expanded Grienwank plus

Rosenbrock, Weierstrass and expanded Schaffer

1900 [- 100,100] 10 H

C-2017-f20 Hybrid function of Happycat, Katsuura, Ackley, Rastrigin, Modified

Schwefel and Schaffer

2000 [- 100,100] 10 H

C-2017-f21 Composition function of Rosenbrock, High Conditioned Elliptic and

Rastrigin

2100 [- 100,100] 10 C

C-2017-f22 Composition function of Rastrigin’s, Griewank’s and Modifed

Schwefel’s

2200 [- 100,100] 10 C

C-2017-f23 Composition function of Rosenbrock, Ackley, Modified Schwefel and

Rastrigin

2300 [- 100,100] 10 C

C-2017-f24 Composition function of Ackley, High Conditioned Elliptic,

Girewank and Rastrigin

2400 [- 100,100] 10 C

C-2017-f25 Composition function of Rastrigin, Happycat, Ackley, Discus and

Rosenbrock

2500 [- 100,100] 10 C

C-2017-f26 Composition function of Expanded Scaffer, Modified Schwefel,

Griewank, Rosenbrock and Rastrigin

2600 [- 100,100] 10 C

C-2017-f27 Composition function of HGBat, Rastrigin, Modified Schwefel, Bent-

Cigar, High Conditioned Elliptic and Expanded Scaffer

2700 [- 100,100] 10 C

C-2017-f28 Composition function of Ackley, Griewank, Discus, Rosenbrock,

HappyCat, Expanded Scaffer

2800 [- 100,100] 10 C

C-2017-f29 Composition function of shifted and rotated Rastrigin, Expanded

Scaffer and Lunacek Bi-Rastrigin

2900 [- 100,100] 10 C

C-2017-f30 Composition function of shifted and rotated Rastrigin, Non-

Continuous Rastrigin and Levy function

3000 [- 100,100] 10 C

U: Unimodal, M: Multimodal, H: Hybrid, C: Composition
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Appendix C. IEEE CEC-C06 2019 benchmark
test functions

A description of the IEEE CEC-C06 2019 benchmark

functions is given in Table 35.
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