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Abstract
Reinforcement learning (RL) is a popular machine learning paradigm for game playing, robotics control, and other

sequential decision tasks. However, RL agents often have long learning times with high data requirements because they

begin by acting randomly. In order to better learn in complex tasks, we argue that an external teacher can often significantly

help the RL agent learn. OpenAI Gym is a common framework for RL research, including a large number of standard

environments and agents, making RL research significantly more accessible. This article introduces our new open-source

RL framework, the HUMAN INPUT PARSING PLATFORM FOR OPENAI GYM (HIPPO Gym), and the design decisions that went into

its creation. The goal of this platform is to facilitate human-RL research, making human-in-the-loop RL more accessible,

including learning from demonstrations, learning from feedback, or curriculum learning. In addition, all experiments can

be conducted over the internet without any additional software needed on the client’s computer, making experiments at

scale significantly easier.

Keywords Reinforcement learning � Human-in-the-loop AI � Human-AI interaction � Human subject studies �
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1 Introduction

Reinforcement learning (RL) is a type of machine learning

that lets virtual or physical agents learn through experi-

ence, often finding novel solutions to difficult problems and

exceeding human performance. RL has had many exciting

successes, including video game playing [35], robot-

ics [32], stock market trading [7], and data center opti-

mization [13]. Unfortunately, there are still relatively few

real-world, deployed, RL success stories. One reason is that

learning a policy can be very sample inefficient (e.g., Open

AI Five used 180 years of simulated training data per day

via massive parallelism on many servers [40]). One reason

for this is that RL has traditionally focused on how agents

can learn from the ground up.1 While such research is
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absolutely important, we argue that we need to also better

allow RL agents to learn from others, whether programs,

agents, or humans.2 Cheating should be encouraged!3

Rather than the typical RL setting, in order to reduce the

potentially substantial costs of environmental interactions

and compute (in terms of time, money, wear and tear on the

robot, etc.) and to provide better initial performance, we

consider how an RL student can receive help from a tea-

cher via additional guidance. Our long-term interest in such

research is to enable RL to be successfully deployed in

more real-world scenarios by focusing exploration and

jumpstarting initial behavior to quickly reach high quality

policies. For example, our Human-Agent Transfer (HAT)

algorithm [55] used 3 min of human guidance to save 7 h

of agent learning time in a simulated soccer environment.

While such initial successes like HAT are encouraging,

many questions must be addressed before these techniques

can reliably improve RL performance. Such approaches

will allow existing programs and humans to provide

guidance to an RL agent, significantly improving RL

algorithms so that they can learn better performance faster,

relative to (1) learning without external guidance and (2)

existing human/agent guidance algorithms.

This article has two goals. First, to highlight open and

exciting problems, relative to existing work, and to

encourage additional research in this area. Second, to

introduce an open-source software platform that enables

human-in-the-loop RL experiments to easily scale to hun-

dreds or thousands of users.

Section 2 provides a very brief introduction to rein-

forcement learning. Section 3 discusses different methods

for allowing a student agent to learn how to complete

sequential decision tasks with a human or agent teacher.

Section 4 motivates why additional research on human-in-

the-loop RL is critical, due in part to the large number of

open questions. Section 5 describes our novel framework,

argues why it is an ideal platform for enabling such

experiments, and provides two examples of how the

framework could be used. Section 6 concludes (Fig. 1).

2 Reinforcement learning background

Reinforcement learning considers the problem of how an

agent should act in an environment over time to maximize

a reward signal (in expectation). We can formalize the

interaction of an agent with its environment as a Markov

Decision Process (MDP).

An MDP M is a 5-tuple ðS;A; p; r; cÞ, where S is the set

of states in the environment, A is the set of actions the

agent can execute, pðs0js; aÞ is the transition function that

gives the probability of reaching state s0 from s after taking

action a, r(s) is the reward function that gives the imme-

diate reward for reaching state s, and c is a (0, 1] discount

factor.

At each discrete time step t, the agent uses its current

state to select an action according to its policy pðsÞ. The
goal is to learn to approach or reach an optimal policy, pH,
which maximizes the expected discounted sum of rewards

from now until the end of an episode at time T (or 1 in the

non-episodic case):
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There are many ways to try to learn to reach, or approxi-

mate, pH, including model-free methods that learn how to

act in the environment and model-learning methods that

can incorporate planning. One common approach is to not

learn p directly, but to instead learn an action-value func-

tion that estimates how good a given action will be in some

state when following the current policy:
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Eventually, q-values should converge toward qpH , at which

point the agent would have learned the optimal policy, pH.
Most real-world domains do not have only tabular states

or actions—to learn in continuous states spaces and/or with

continuous action spaces, some type of function approxi-

mation is necessary. Currently (deep) neural networks are

often used. For an introduction to such learning methods,

please see [52].

3 Current speedup approaches

There are many existing approaches leveraging knowl-

edge—for instance, even using batch or offline RL can be

considered ‘‘existing knowledge.’’ For an overview, please

see our recent survey [6]. In this article, we specifically

focus on a student-teacher framework, where the teacher

2 RL agents could theoretically treat all input as sensory input,

considering it part of the environment. However, it is more practical

to program in the ability to leverage advice, rather than requiring the

agent to learn the about the special significance, and interpretation, of

advice.
3 Of course, there are also good reasons not to include external

information. For instance, it may be much more fruitful to spend time

and resources developing better algorithms that can directly benefit

from Moore’s law and its analog to computational improvements

[51]. While this may indeed be a better approach in the long run, we

argue that including these kinds of biases can help agents solve

difficult RL problems today, without waiting for more powerful

algorithms that have yet to be developed.
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can be a human, an RL agent, or a program, and the student

is an RL agent.

The goals for such an approach can be to

1. allow an RL student to improve its learning perfor-

mance (relative to learning without guidance from a

teacher);

2. ensure that the student’s final performance is not

harmed by a suboptimal teacher;

3. minimize the cognitive load or stress on the human

teacher;

4. minimize the amount of advice needed from the

teacher; and

5. make the best use of whatever advice is provided by

the teacher.

A teacher could proactively provide advice [53] because it

knows better than the student, a student could ask for

advice [12] because it knows when it is confused, or a

combination of both could happen simultaneously [2, 11].

Furthermore, the advice could be provided up front (e.g., a

human records a number of demonstrations for an

agent [3]) or could be provided over time (e.g., a demon-

strator could provide new labels over time [45]). The

guidance could be free or costly, and unlimited or finite.

This section briefly reviews a selection of existing

approaches where an RL student can improve its learning

performance. Generally, we assume a teacher’s goals are

aligned with the student and its performance is (at least

initially) better than the student (Fig. 2).

3.1 Programmatic teachers

If the teacher is an RL agent, transfer learning [54] can

often be used to directly bring the teacher’s ‘‘brain’’ (e.g.,

its q-values) possibly with some adaptation, into the stu-

dent. But, in many cases this is infeasible because the

teacher’s knowledge is not directly accessible or is

incompatible with the student’s knowledge representation.

More flexible methods like action advising allow a

teacher to tell the student what action to perform on the

current timestep. As long as the teacher can suggest an

action, it does not matter whether the agent uses a neural

network, a table, a PID controller, or even a carefully hand-

coded policy. The advice could be provided if the student is

uncertain and it asks the teacher for help [12], the teacher

may proactively provide guidance when it thinks the stu-

dent is about to make a large mistake [53], or a combina-

tion of the two [2]. There is typically a fixed teaching

budget (e.g., a constraint) or a set teaching cost (e.g., a

multi-objective or optimal stopping problem). As long as

the student eventually stops receiving advice, the optimal

policy is guaranteed not to change [58]. Existing methods

often use heuristics to decide when to request/provide

guidance, but a teacher could also learn how to teach [16],

or agents could both learn when to ask for, and provide,

guidance [39, 48] simultaneously.

3.2 Human teachers

In the case of a human teacher, a transfer learning approach

that directly uses the teacher’s learned policy or q-values,

is no longer available. But methods like action advising

still apply. Other methods, such as leveraging demonstra-

tions, can be used by programmatic teachers but are even

more common with human teachers. For instance,

demonstrations can help initialize a neural net-

work [15, 20] that an RL agent uses for representation

learning and/or to help learn a policy. Demonstrations

could also be used to train a classifier to estimate what

action the demonstrator would take in any state [55, 57].

Another type of guidance is human feedback—the partic-

ipant could give qualitative feedback (‘‘good robot’’ vs.

‘‘bad robot’’) that the agent could directly learn

from [24, 28, 30], or the agent could learn from a combi-

nation of this feedback and the environmental

reward [8, 25]. To help the student learn, a human could

also provide: a curriculum of tasks of increasing difficulty

for the agent to help it learn [41], a shaping reward [4, 37],

natural language advice [29], salient regions of the state

space [18], and advice as statements in logic [31] or

code [44].

4 Selected open problems

While the previous section gave a brief overview to

existing approaches, there are still many open questions.

This section highlights questions related to different types

of teachers and related to evaluation.

Fig. 1 A student agent can both learn by interacting with the

environment, and directly or indirectly from a teacher. Examples of

assistance include suggesting or forcing the student to execute an

action, adding additional information to the student’s state, and

creating a more informative reward signal
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4.1 Teacher-dependent approaches

This section considers open problems that depend on the

type of teacher: both human and programmatic teachers,

teachers that are agents, and teachers that are human.

4.1.1 Human or programmatic teachers

both can allow an RL student to decide when or where it

should ask for advice. For instance, assuming advice is not

free or infinite, value of information (VOI) estimates could

help determine when an agent should ask for advice. This

VOI estimate will not only depend on the student’s current

performance and uncertainty, but also on the estimated

quality of the teacher’s advice, and the cost for this advice.

It is not clear yet when it is better for the student to request

guidance (because it knows what it does not know) or

better for the teacher to provide proactive guidance (be-

cause it understands the task better). While this research is

easier to conduct with programmatic teachers because data

are more plentiful, it is ultimately an even more important

for a human teacher, because humans will provide rela-

tively less advice.

Existing work (including our own) almost exclusively

focuses on demonstrating that a particular method can help

improve student learning, rather than understanding where

and why different kinds of guidance work best. For

instance, a teacher providing an action suggestion may be

particularly useful if the agent has a large action space. In

contrast, providing reward feedback may be preferable if

the teacher is unable to make fast, low-level action deci-

sions and the environmental reward signal is sparse.

While most current work focuses on a single student and

a single teacher, other combinations are possible. For

instance, if there are multiple teachers, a student could

decide which of multiple teachers to query based on their

abilities [27]. Or, in contrast, multiple students could have

access to a single teacher, and the students could coordi-

nate among themselves to decide which one asks for

guidance [9].

4.1.2 Agent teachers

must consider when and where to proactively provide

advice. In addition to heuristic and learned methods, there

could also be advanced modeling methods. In addition to

the teacher estimating the student’s policy or the student’s

performance, a deeper level of understanding could allow it

to provide more targeted and impactful advice. In the limit,

if the teacher fully knew the environment, the student’s

prior knowledge, and the student’s learning algorithm, it

could treat teaching as a planning problem [43] where it

figured out the optimal set of advice to provide to find the

most efficient learning outcome.

4.1.3 Human teachers

introduce many additional challenges. For instance, we

now worry about trying to keep them engaged [26], how

they might naturally teach [23] or prefer to teach, or when

one method is perceived to be more difficult to teach (e.g.,

via the NASA TLX [19]).

The participant’s background may have a direct impact

on the usefulness of their guidance or their comfort pro-

viding such guidance. For instance, our prior work [36]

found a statistically significant (with large effect size)

correlation between gender, task framing, and the partici-

pant’s self-reported interest in a robotic task. We had also

found that there was a correlation between teleoperating a

UAV with gaming experience [47]. Other work on robot’s

learning from demonstration via keyboard interaction [50]

showed that non-roboticists interacted significantly differ-

ently from roboticists, which affected the performance of

some algorithms—we want to make sure our methods work

for many different kinds of people, not just researchers in

an AI lab! We recommend recruiting and studding inter-

actions with diverse set of participants (e.g., different

technology exposure, gender, age, education, video game

experience, views on AI, and AI backgrounds).

We should better understand how the participant’s pro-

ficiency in a task, the participant’s understanding of the

task, and whether the agent is explainable or inter-

pretable [21, 42] affects the quality of the participant’s

advice, and the resultant quality of the student’s learning.

Many studies on human-in-the-loop RL (again, includ-

ing some of our own), leverage partially trained agents as a

stand-in for human advice. However, it is not clear how

such automated teachers differ from actual humans. It is

Fig. 2 An agent could learn using reinforcement learning alone, or it

could leverage just 3 min of human demonstrations to significantly

improve the performance, e.g., the time needed to reach a perfor-

mance of 14, by using the HAT algorithm [55]
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likely that there are differences such that a method tuned

on automated teachers should be modified for human

teachers, and vice versa. Similarly, if we were able to

create more realistic teaching agents, the difference

between automated teachers and human teachers could be

reduced.

Other future studies could also consider questions such

as:

• How do be best explain to human participants how to

provide the most useful feedback for a particular type of

learning algorithm?

• How do we understand what type of modality a human

participant would prefer to use when teaching, and

why?

• Can we account for biases in how people naturally

teach to learn better from them?4

4.2 Where and how to evaluate

This section considers the difference between evaluation

methodologies when the teacher is programmatic or is

human.

4.2.1 Evaluation with programmatic teachers

is relatively easy because data are plentiful. A teacher,

whether a control method, a hard-coded program, or a RL

agent, can run indefinitely in simulation to generate data,

helping us understand where and how different kinds of

teacher and student approaches do or do not work. Such

methods are excellent for producing statistical significance

and would apply in real-world settings where such a tea-

cher exists. However, it is not currently clear if and when

experiments conducted with programmatic teachers will

directly apply to human teachers.

4.2.2 Evaluation with human teachers

is again more difficult. While there are some guides toward

how to start testing human-AI [1] or human-ML [33]

algorithms, few machine learning researchers have exten-

sive human subject study experience. This can require non-

trivial ramp-up times for researchers.

Some types of human subject experiments need very

specific hardware, such as for visual emotion recogni-

tion [10], gaze tracking [46], or EEG control [22].

However, we believe that many of these types of human-in-

the-loop RL experiments can be conducted over the web

with a standard computer. We recently created the HUMAN

INPUT PARSING PLATFORM FOR OPENAI GYM (HIPPO Gym,

Fig. 3) project [38], which has been released as open

source.5 This framework allows easy development and

deployment of human subject studies, allowing participants

to interact with OpenAI Gym environments like Atari [5]

and MuJuCo [56] over the internet. HIPPO Gym currently

supports demonstrations, feedback, mouse clicks (e.g.,

identifying student mistakes [14]), and task speed adjust-

ment. It can run on standalone servers or be easily inte-

grated into Amazon’s Web Service and Amazon’s

Mechanical Turk. We will continue to develop this code-

base to allow for additional kinds of interactions and

include implemented learning algorithms for different

types of guidance. Our hope is that better standardization

among human-in-the-loop RL experiments and experi-

menters would make this research more accessible and

replicable.

By designing and running many human subject studies

with hundreds of participants, we will better understand

what types of guidance are more or less useful. For

instance, a teacher providing an action suggestion may be

particularly useful if the agent has a large action space,

while providing reward feedback may be preferable if the

teacher is unable to make fast, low-level decisions. A

related goal is to discover general guidelines about when a

human teacher would prefer to provide one type of guid-

ance by asking participants to interact with a student in

multiple ways. This approach allows us to not only quan-

titatively measure the impact of student learning, but also

to elicit human teacher preferences (e.g., interviews and a

5-point Likert scale questions) and measure if these cor-

relate with perceived task difficulty (e.g., the NASA

TLX [19]).

5 HIPPO Gym

We have designed, implemented, tested, and released the

HIPPO Gym to meet the desiderata discussed in previous

sections for conducting experiments with human teachers.

5.1 Design principles

HIPPO Gym is built around three core features: modular-

ity, so that different functions and features can be reused;

ease of implementation, so that an RL researcher can

quickly get up to speed without a deep understanding of

web programming; and inclusion of many examples, so

4 For example, in our past work [41], we biased our curriculum

learning algorithm to better take advantage of a pattern we found in

human participants. Similarly, in a game theory setting, we know

human participants are not perfectly rational, and leveraging theories

like quantal response equilibrium [34] and the anchoring effect [17]

can help better predict and understand human behavior. 5 An overview can also be found at https://hippogym.irll.net/.
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that the researcher can begin quickly understanding the

benefits and capabilities of the framework without a large

up-front time investment.

HIPPO Gym consists of three primary components: a

front-end website for collecting human inputs; a websocket

server for connecting the website to an agent and envi-

ronment; and the cloud infrastructure for deploying

experiments. Each component is independent and in prac-

tice a researcher may only need to change the websocket

server code to integrate their agent/environment in order to

run an experiment (see Fig. 3).

Ease of use by experimenters (not network engineers)

was a critical factor in the development, common lan-

guages (python and json) were chosen due to the general

familiarity with these tools within the research community.

Additionally, the user-facing website is statically deployed

and maintained so that any researcher anywhere can use

this component with no effort on their part (unless they

would prefer to host on their own webserver). Finally, the

cloud infrastructure is set up on Amazon Web Services

(AWS) so that any researcher with appropriate permissions

deploy a research project with only a single command and

a configuration file, without requiring significant infras-

tructure. Instructions and code for using and understanding

this infrastructure are available to anyone, so that with a

small effort this rapid deployment can be recreated for any

group of researchers. However, it is also not mandatory as

deployed infrastructure could be as simple as a server sit-

ting on a researcher’s desk.

5.2 Code structure

This section outlines the structure of the released HIPPO

Gym code.

5.2.1 Front-end website

Once human participants are recruited (via email, Ama-

zon’s Mechanical Turk, etc.), they can access the front-end

user interface. The IRL Lab hosted version lives at https://

Fig. 3 Overview of the component structure of HIPPO Gym. Note that the AWS Infrastructure is optional and can be replaced by any server

setup
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irll.net and is configurable through the use of URL query

strings and websocket messages. The functional compo-

nents of the page (buttons, inputs, and information dis-

plays) are determined by the websocket message from the

server—a researcher can determine how this web page

looks and functions without ever changing its code.

Additionally, the project and user IDs, as well as server

location, debugging features, and even look and feel via css

are controlled via URL query strings. By changing the link

to the page, a researcher can control all of these aspects.

There is little need for a researcher to do any browser-

specific coding.

Examples of the front end for Breakout and Lunar

Lander are in Fig. 4 and Ms. Pac-Man is shown in Fig. 5.

5.2.2 Back-end websocket server

This layer provides communication between the user

interface (UI) in the browser and the agent/environment. At

its core, this component sends UI feature instructions to the

front end, along with the frame image for the current step

in the environment, and then receives and parses input

messages from the browser to provide the relevant infor-

mation to the experimenter’s code. There are also functions

for saving data and (if appropriate) uploading that data into

cloud storage for later use.

The back end is written in python and uses json for

websocket messaging. This combination is not the most

efficient and in fact limits concurrent users on a single

server. However, based on the nature of our targeted

research projects, these limitations are far outweighed by

the familiarity of researchers with these technologies

allowing for much faster development and iteration of

experiments.

Fig. 4 In HIPPO Gym, breakout could be trained with positive and negative human feedback (left) and Lunar Lander could be trained by giving

demonstrations (right)

Fig. 5 This screenshot shows the training Ms. Pac-Man in HIPPO

Gym by using a set number of good/bad feedbacks and demonstra-

tions. Note additional options, which can be easily (de)activated,

include increase speed, decrease speed, start, stop, pause, reset, train

offline, and train online
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5.2.3 Infrastructure

Infrastructure for any complex project distributed over the

web can become quite complex. Given that researcher’s

time is best spent doing research and not managing

infrastructure, we aimed to remove as much infrastructure

work as possible. The front-end component is statically

deployed on a content delivery network (CDN) and man-

aged by the IRL Lab. Any researcher may use this

deployed version for their experiments, removing an entire

piece of infrastructure from their process. The front-end

code is also open sourced and available through GitHub

should anyone want to host their own version or should the

IRL Lab hosted version become unavailable.

Server infrastructure becomes more difficult to abstract

away. At the base level, HIPPO Gym can be run on any

machine, optionally via containerization, by passing either

the IP address or the domain name of the machine via

query string to the front end. This is especially useful

during development and testing of an experiment, and may

work in production for small-scale experiments, or exper-

iments that require a very specific hardware configuration.

In general, however, this is not the best setup for produc-

tion deployment of an experiment. Therefore, we created a

distributed system of AWS services to provide all of the

necessary infrastructure (DNS, on-demand containerized

servers, long-term data storage, SSL certificates, etc.) to

researchers with a simple configuration file and a single

command. This allows our group to deploy and update

experiments without touching any infrastructure while still

benefiting from all the advantages of AWS cloud services.

Should another group or individual wish to replicate the

setup for themselves, all the required code and setup

instructions are available via GitHub.

Functionally, the infrastructure works as such: the front

end is statically hosted with the CloudFront CDN. When a

user lands on the page, information is read from the query

string of the link that brought them to the page and the

correct project is loaded, or the ‘game’ page starts imme-

diately pointing to the given server address. A loaded

project may have defined pre-game pages including ques-

tionnaires and consent forms. During the pre-game phase

the AWS Elastic Container Service is used to start a server

for this individual user, the servers are all ephemeral,

created when there is a user and destroyed after the user

session is complete in order to substantially reduce costs. In

order to support SSL, a DNS entry is made in Route53 (the

AWS DNS Service), which will point to the just-created

server. The front end will then connect to the new server

via websocket. The server will pass information about the

required UI inputs and they will be loaded along with the

first frame of the game. The user then participates in the

game in the manner intended by the researcher. When the

trial completes the user is shown the next page, often a

thank you page, but possibly a redirect elsewhere, further

instructions, or even another game page. Once the server is

no longer required, the saved data from the trial is uploaded

to S3 (AWS Simple Storage Service), which provides an

easily accessible long-term file storage, and the server is

then destroyed. If a user abandons a trial before completing

an experiment, the server has a fail-safe timeout, after

which it will be destroyed. This system is extremely cost

effective because the infrastructure only has cost when

there is a live participant—there is no substantial idle time.

5.3 Current Abilities

Currently, HIPPO Gym works well with discrete action

space environments from OpenAI Gym including Classic

Control and Box2D environments. Continuous action space

environments are compatible but require some additional

configuration on the part of the researcher.

Available human inputs (all optional) include: all

directions, fire, start, pause, stop (end trial), reset (end

episode), increase/decrease frame rate, positive feedback

(good), negative feedback (bad). It is also possible for a

researcher to define other inputs for which they wish to

define an action. Users are also able to click on the game

window, recording the x and y coordinates, which may be

used for identifying points of interest or identifying

errors [14].

Feedback or information can be passed to the user. This

information will typically include a score and progress

information, but a budget bar is also available that shows

how many points of feedback have been given out of a set

maximum.

An optional debug mode facilitates development by

showing all of the websocket messages in real time.

The base repository for HIPPO Gym includes example

integration of both TAMER [24] and COACH [30] algo-

rithms using tile coding for the Mountain Car environment.

5.4 Example results: learning
from demonstration

Smart and Kaelbling [49] showed how human demonstra-

tions can be used to bootstrap learning. In the first phase of

the two-phase approach, the human controls an agent while

the agent performs a single Q-learning update for each

hs; a; r; s0i tuple. In phase 2, the RL agent learning on its

own using Q-learning. One of the authors used HIPPO

Gym to play Lunarlander-v2 in OpenAI Gym for 120

episodes, and then allowed the agent to learn on its own

using DQN. During both phases, we record the current

policy and then test it after learning.
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Figure 6 shows results using a mix of human demon-

strations, where the human sometimes successfully navi-

gates the lander to the goal state, but sometimes fails, and

almost never optimally. The shaded area represents the

standard deviation learning over 10 independent trials on

the same demonstration data. DQN reaches an average

performance of 187 after 300 independent learning trials,

where as these results show learning from demonstration

significantly reduce the time needed by the agent to learn

independently, similar to Smart and Kaelbling.

5.5 Example results: learning from human
feedback

The TAMER algorithm [24] can also be used for an agent

to learn in Lunar Lander. In this case, we remove the

environmental reward and the agent may only learn to try

to maximize human feedback. On every timestep, the

human can provide no feedback, positive feedback (good),

or negative feedback (bad).

Figure 7 shows TAMER updating weights in a neural

network to try to maximize the human’s feedback. The

human can provide feedback for the first 5 episodes, after

which the agent must perform on its own. While the agent

performs lower than 200 after the human leaves, it is still

quite good compared to training autonomously for only 20

episodes (where an autonomously learning agent would

typically have a reward of roughly -200). For comparison,

a trained Sarsa agent could also give feedback to the

TAMER agent at random intervals, but for the same total

amount of feedback as the human. In this case, the TAMER

agent does not see a significant drop when the Sarsa agent

stops providing feedback to the TAMER agent. However,

final performance is not as high when using an agent as a

teacher, suggesting that the human teacher is able to pro-

vide feedback at more important times in the TAMER

agent’s training.

5.6 Future enhancements

In the future, in addition to increased documentation and

inevitable bug fixes, we plan the following enhancements:

• Implement more OpenAI Gym compatible environ-

ments such as Mar.io and Minecraft-type environments.

• Allow the user to fast forward and rewind in order to

provide feedback.

• Provide code supporting additional algorithms that can

learn from human teachers (with or without an

additional environmental reward) out of the box.

• Introduce more generalized agent examples that are not

specific to any particular function approximator.

6 Conclusion

This article has summarized some current approaches that

allow RL students to learn from human or agent teachers,

as well as important open questions. It also introduced

HIPPO Gym, an open-source framework for human subject

studies in human-RL collaboration. While this article does

not provide novel scientific hypotheses or contribute new

algorithms, we hope that this collection of open questions

Fig. 6 Human demonstrations are provided in phase 1 and then the

agent learns autonomously in phase 2. Although the performance of

the demonstrations is far from optimal, the deep Q-learning agent is

able to use these demonstrations to quickly achieve a near-optimal

performance in less than half the time of an agent without such

demonstrations

Fig. 7 A member of the IRL lab used positive and negative feedback

to train an agent to learn lunar lander with no environmental reward
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and this new tool can significantly improve our community

to conduct such research. For example, there have been

multiple studies where a ‘‘human’’ teacher is simply a fixed

agent, but we argue that ‘‘real human teachers’’ are more

realistic to many final use cases, and may provide different

insights than agent teachers. Our hope is that by outlining

and motivating these questions, and providing a way for

researchers to more quickly conduct human experiments,

this article will enable a new generation of researchers to

begin studying these important questions at the intersection

of machine learning and human subjects.

Acknowledgements All authors contributed to writing this article.

Taylor conceptualized and directed the project, secured funding, and

was the primary author on this paper. Nissen drove back-end code

development, testing, and documentation; lead the integration with

Amazon Web Services; and took lead on user testing. Wang drove the

front-end code development, testing, and documentation. Navidi

provided the initial approach for interacting with OpenAI agents over

a website, as well as assisted with code reviews. We appreciate help

and feedback from other students in the IRL Lab, including Calarina

Muslimani, Rohan Nuttall, and Volodymyr Tkachuk.

Declarations

Conflicts of interest The authors have no conflicts of interest to

declare that are relevant to the content of this article.

References

1. Amershi S, Weld D, Vorvoreanu M, Fourney A, Nushi B, Col-

lisson P, Suh J, Iqbal S, Bennett PN, Inkpen K, Teevan J, Kikin-

Gil R, Horvitz E (2019) Guidelines for human-AI interaction. In:

Proceedings of the 2019 CHI conference on human factors in

computing systems, CHI’19, pp 1–13. Association for Computing

Machinery, New York, NY, USA. https://doi.org/10.1145/

3290605.3300233

2. Amir O, Kamar E, Kolobov A, Grosz B (2016) Interactive

teaching strategies for agent training. In: Proceedings of inter-

national joint conference on artificial intelligence (IJCAI)

3. Argall BD, Chernova S, Veloso M, Browning B (2009) A survey

of robot learning from demonstration. Robot Autonom Syst

57(5):469–483. https://doi.org/10.1016/j.robot.2008.10.024

4. Behboudian P, Satsangi Y, Taylor ME, Harutyunyan A, Bowling

M (2020) Useful policy invariant shaping from arbitrary advice.

In: Proceedings of the adaptive and learning agents workshop at

the AAMAS-20 conference

5. Bellemare MG, Naddaf Y, Veness J, Bowling M (2013) The

arcade learning environment: an evaluation platform for general

agents. J Artif Intell Res 47(1):253–279

6. Bignold A, Cruz F, Taylor ME, Brys T, Dazeley R, Vamplew P,

Foale C (2020) A conceptual framework for externally-influenced

agents: an assisted reinforcement learning review. arXiv preprint

2007.01544

7. Burhani H, Ding GW, Hernandez-Leal P, Prince S, Shi D, Szeto

S (2020) Aiden—reinforcement learning for order execution.

https://www.borealisai.com/en/blog/aiden-reinforcement-learn

ing-for-order-execution/. Accessed 1 Feb 2021

8. Cederborg T, Grover I, Isbell C, Thomaz A (2015) Policy shaping

with human teachers. In: International joint conference on arti-

ficial intelligence (IJCAI)

9. Chernova S, Veloso MM (2010) Confidence-based multi-robot

learning from demonstration. Int J Soc Robot 2(2):195–215.

https://doi.org/10.1007/s12369-010-0060-0

10. Cui Y, Zhang Q, Allievi A, Stone P, Niekum S, Knox WB (2020)

The empathic framework for task learning from implicit human

feedback. In: arXiv 2009.13649

11. Da Silva FL, Warnell G, Costa AHR, Stone P (2020) Agents

teaching agents: a survey on inter-agent transfer learning.

AAMAS 34(9)

12. Da Silva FL, Hernandez-Leal P, Kartal B, Taylor ME (2020)

Uncertainty-aware action advising for deep reinforcement learn-

ing agents. In: Proceedings of AAAI conference on artificial

intelligence

13. DeepMind AI reduces Google data centre cooling bill by 40%.

https://deepmind.com/blog/article/deepmind-ai-reduces-google-

data-centre-cooling-bill-40 (2016). Accessed 1 Oct 2020

14. de la Cruz Jr GV, Peng B, Lasecki WS, Taylor ME (2015)

Towards integrating real-time crowd advice with reinforcement

learning. In: The 20th ACM conference on intelligent user

interfaces (IUI). https://doi.org/10.1145/2732158.2732180

15. de la Cruz Jr GV, Du Y, Taylor ME (2019) Pre-training with non-

expert human demonstration for deep reinforcement learning.

Knowl Eng Rev 34. https://doi.org/10.1017/S0269888919000055

16. Fachantidis A, Taylor M, Vlahavas I (2017) Learning to teach

reinforcement learning agents. Mach Learn Knowl Extract 1.

https://doi.org/10.3390/make1010002

17. Furnham A, Boo H (2011) A literature review of the anchoring

effect. J Socio Econ 40:35–42. https://doi.org/10.1016/j.socec.

2010.10.008

18. Guan L, Verma M, Guo S, Zhang R, Kambhampati S (2020)

Explanation augmented feedback in human-in-the-loop rein-

forcement learning. In: arXiv 2006.14804

19. Hart SG, Staveland LE (1988) Development of NASA-TLX (task

load index): results of empirical and theoretical research. Hum

Ment Workl 1(3):139–183

20. Hester T, Vecerı́k M, Pietquin O, Lanctot M, Schaul T, Piot B,

Horgan D, Quan J, Sendonaris A, Osband I, Dulac-Arnold G,

Agapiou JP, Leibo JZ, Gruslys A (2018) Deep Q-learning from

demonstrations. In: Proceedings of AAAI conference on artificial

intelligence

21. Heuillet A, Couthouis F, Dı́az-Rodrı́guez N (2020) Explainability

in deep reinforcement learning. In: arXiv 2008.06693

22. Iturrate I, Montesano L, Minguez J (2010) Robot reinforcement

learning using EEG-based reward signals. In: 2010 IEEE inter-

national conference on robotics and automation, pp 4822–4829.

https://doi.org/10.1109/ROBOT.2010.5509734

23. Knox WB, Glass BD, Love BC, Maddox WT, Stone P (2012)

How humans teach agents: a new experimental perspective. Int J

Soc Robot 4:409–421. https://doi.org/10.1007/s12369-012-0163-

x

24. Knox WB, Stone P (2009) Interactively shaping agents via

human reinforcement: the TAMER framework. In: Proceedings

of the international conference on knowledge capture (KCap)

25. Knox WB, Stone P (2012) Reinforcement learning from simul-

taneous human and MDP reward. In: Proceedings of the inter-

national conference on autonomous agents and multi-agent

systems (AAMAS)

26. Li G, Hung H, Whiteson S, Knox WB (2013) Using informative

behavior to increase engagement in the tamer framework. In: Gini

ML, Shehory O, Ito T, Jonker CM (eds) International conference

on autonomous agents and multi-agent systems, AAMAS’13,

Saint Paul, MN, USA, May 6-10, 2013, pp 909–916. IFAAMAS.

http://dl.acm.org/citation.cfm?id=2485064

27. Li M, Wei Y, Kudenko D (2019) Two-level q-learning: learning

from conflict demonstrations. Knowl Eng Rev 34:e14. https://doi.

org/10.1017/S0269888919000092

23438 Neural Computing and Applications (2023) 35:23429–23439

123

https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1016/j.robot.2008.10.024
https://www.borealisai.com/en/blog/aiden-reinforcement-learning-for-order-execution/
https://www.borealisai.com/en/blog/aiden-reinforcement-learning-for-order-execution/
https://doi.org/10.1007/s12369-010-0060-0
https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-centre-cooling-bill-40
https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-centre-cooling-bill-40
https://doi.org/10.1145/2732158.2732180
https://doi.org/10.1017/S0269888919000055
https://doi.org/10.3390/make1010002
https://doi.org/10.1016/j.socec.2010.10.008
https://doi.org/10.1016/j.socec.2010.10.008
https://doi.org/10.1109/ROBOT.2010.5509734
https://doi.org/10.1007/s12369-012-0163-x
https://doi.org/10.1007/s12369-012-0163-x
http://dl.acm.org/citation.cfm?id=2485064
https://doi.org/10.1017/S0269888919000092
https://doi.org/10.1017/S0269888919000092


28. Loftin R, Peng B, MacGlashan J, Littman ML, Taylor ME,

Huang J, Roberts DL (2015) Learning behaviors via human-de-

livered discrete feedback: modeling implicit feedback strategies

to speed up learning. J Autonom Agents Multi Agent Syst,

pp 1–30. https://doi.org/10.1007/s10458-015-9283-7

29. Luketina J, Nardelli N, Farquhar G, Foerster JN, Andreas J,

Grefenstette E, Whiteson S, Rocktäschel T (2019) A survey of
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