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Abstract
Many industrial and metallurgical processes require powders within a specific size range which may not be readily

available from conventional processes. Thus, mechanical alloying (MA) has been exploited as an important attrition

process for obtaining the desirable particle sizes of powders. However, MA is highly stochastic, depends on several

parameters, and often relies on expensive and time-intensive experimentations. Therefore, developing a good model

that can accurately predict the process can eliminate these challenges. This study, therefore, proposed an artificial neural

network (ANN)-based mathematical equation for predicting the particle size of AZ61 magnesium alloy after MA. Three

input parameters comprising rotation speed, charge ratio, and milling time were used to develop the model. Its s for

training, validation, and testing datasets was greater than 93%, an indication of its high prediction ability. Furthermore, the

proposed model was compared with a multilinear regression (MLR) model by means of root-mean-square error (RMSE)

and mean absolute error (MAE) analyses. Results showed that the RMSE and MAE of the ANN model were considerably

lower than that of the MLR model. This further established the accuracy and high predictability of the ANN model.

Additionally, sensitivity analysis revealed that rotation speed was the most significant parameter influencing particle size

during MA. The developed model is useful for predicting the particle size of AZ61 powder, optimizing the MA process,

and eliminating expensive and time-intensive experimentations.
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1 Introduction

Magnesium (Mg)-based alloys are characteristically light-

weight, and therefore, they exhibit high specific strengths

[1, 2]. In the automotive and aerospace industries, the

motivations to increase fuel efficiency, cut down on vehicle

emissions, and reduce global warming have spurred

researchers to turn to Mg-based materials [3, 4]. Two basic

processing methods are employed to manufacture Mg-

based components either through the powder metallurgy

(PM) or melting techniques. PM technique is a near-net

shape and relatively simple fabrication process that

involves pressing of Mg-based powders into desirable

compact shape and application of heat and/or pressure (a

process called sintering) to densify the component and

impact the necessary properties. However, many powders

cannot be used without a further reduction of their sizes to

facilitate easy pressing into desired shapes and enhance

diffusion during the sintering process. For instance, fine-

sized, free-flowing powders are required for metal powder

injection molding and additive manufacturing processes

[5], while some sintering studies have shown that powder

particle sizes less than 100 lm readily absorb microwaves

at 2.45 GHz, which results in rapid microwave sintering

and densification [1, 6].

Hence, high-energy mechanical milling/alloying (MA)

is a useful method for producing powders with refined and

reduced particle sizes. In this process, metal powders with

milling media (e.g., balls or blobs) are loaded into a suit-

able container and subjected to grinding action. Tumbling
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action from the milling causes repetitive welding and

fracturing of the metal powder. Thus, MA has also been

applied for homogeneously mixing different powders and

extending the limit of solid solubility [5], which is difficult

to achieve using the melt processing technique. Besides,

MA is also employed in the production of advanced

materials including dispersion-strengthened superalloys

[7, 8] and nanocrystalline composite materials [9, 10].

However, the mechanisms of MA have not been fully

unraveled due to the high randomness of the process and

the complex interrelationship between many dependent and

independent variables [11]. For instance, MA of ductile

powders involves repetitive plastic deformation and frac-

turing of the powders. These processes are greatly influ-

enced by several parameters, such as charge ratio (milling

ball-to-metal powder mass ratio), types and sizes of milling

balls, milling atmosphere, process control agent, and miller

type [12]. Any wrong combination of these processing

variables results in an undesirable final product, such as

particle agglomeration due to excessive cold welding [13].

Therefore, it is imperative to precisely control this

process with the aim of optimizing it. One approach is to

develop models that furnish a better understanding of the

process and thus provide information on the general trends

of the evolution of particle sizes. Besides, successful

models help in the identification of critical processing

parameters and reduction of expensive and time-intensive

experimentations [14]. Some researchers utilized empiri-

cal/phenomenological models to describe the chain of

events during MA [14]. Furthermore, a system dynamic

model was used to optimize ball size, milling speed, and

milling time to realize optimum size reduction in a metal-

matrix nanocomposite [9]. Despite the insights revealed by

these models, they are not easily and accurately replicated

in reality. This is attributed to the stochastic nature of the

MA process, the complexity of the models, use of many

oversimplified assumptions required to formulate the

models, and the varied process parameters involved [15].

Consequently, the suitability of artificial neural network

(ANN) as a powerful and versatile modeling approach has

been investigated by a number of scholars. ANN is part of

the soft computing methods that imitates the human brain

in the processing of information. Similar to the human

brain, ANN is made up of interconnected neurons. One

important feature of ANN is its ability to integrate all

processing parameters into a single model [16]. Besides,

ANN is characterized by high parallelism, nonlinearity,

and extensive learning and generalization capabilities.

Security features to guard against data theft and infiltration

are key requirements to deploying ANN [17]. Nonetheless,

some encouraging results on applying ANN for particle

size prediction in MA have been reported. Hamzaoui et al.

[18] apply ANN to predict to the magnetic properties of

nanocrystalline Fe–Ni alloy from milling process parame-

ters [18]. Similarly, ANN has been employed to predict the

morphological characteristics of nanocomposite WC–MgO

powders from high-energy planetary ball milling parame-

ters [15]. Likewise, Lemine and Louly [10] utilize ANN to

correlate the processing conditions of the planetary ball

mill to the crystallite size of ZnO. The effect of processing

parameters and the densification behavior of Al-based/ B4C

composite powders have also been investigated using ANN

[19, 20].

Recently, Akhlagi et al. develop an ANN model that

describes the effect of some process parameters on the

powder particle size characteristics of Al and B4C powders

during MA [12]. Many of these works report very

encouraging results because ANN predictions are generally

more accurate than other models. However, these ANN-

based models have not been applied to Mg-based powders

and do not present any equation that can relate the input

with the output parameters. Therefore, this work develops

an ANN-based mathematical equation for predicting the

particle size of AZ61 powder during mechanical alloying.

2 Brief description of ANN

ANN models are created by varying the connection of

neurons that form a network. The feed-forward (FF) ANN

is a typical network architecture in which the neurons are

organized into different layers (multilayer perceptron,

MLP) with unidirectional interconnections. FF-ANN is

considered to be extremely nonlinear and capable of

solving complex problems in different scientific fields

including estimation of circuit parameters, prediction of

microbial growth curves, and prediction of blast-induced

ground vibrations in quarries [16, 21, 22]. An MLP consists

of three layers of interconnected neurons: input, hidden,

and output layers. The function of the hidden neurons is to

process the information received from the input layer and

relay them to the output layer.

For the network to function effectively, various learning

algorithms have been proposed. A learning process

involves updating network architecture by changing the

connection weights that are derived from the available

training patterns. The performance of the network

improves by iteratively updating the weights over time

[22]. One of the most popular algorithms is the back-

propagation (BP) ANN. BP-ANN is also an MLP com-

prising an input layer that takes the input variables, one or

more hidden layers to capture the nonlinearity in the data,

and an output layer with nodes representing the dependent

variables [16].

Each of the input variables (xi) in the input layer is

transmitted to the neurons in the hidden layer by
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multiplying with a corresponding connection weight (wji).

For each neuron, all the input signals are summed and

added to a threshold value or bias (hj). The corresponding

output (Yj) at a node in the output layer is determined by

subjecting the summed input signals to a transfer function

(f), such as a linear or nonlinear function. In BP, the pre-

dicted output is compared with the target to obtain an error

value. This error is then propagated backwards from the

output layer through the hidden layer to the input layer to

adjust the connection weight. This process is repeated until

the error falls within a pre-specified tolerance. A BP-ANN

process can be summarized by the following equation:

Yj ¼ f hj þ
Xn

i¼1

wjixi

 !
ð1Þ

where Yj represents the output variable; hj the bias of the

hidden layer; n the number of neurons in the hidden layer;

wji the connection weight between the input layer and the

hidden layer; xi the input variable; and f the transfer

function.

3 Data and model development

3.1 Materials and methods

Water-atomized AZ61 magnesium alloy powder was

sourced from Tangshan Weihao Magnesium Powder Co.,

Ltd, China. Particle size of the as-received powder varied

between 120 and 300 lm. A planetary ball mill (QM-3SP2,

Nanjing University Instrument Plant) was used for the

mechanical alloying (MA) process. MA was conducted at

300, 350, and 400 rpm for 5 to 15 h. Charge ratios (ratio of

the mass of milling ball-to-metal powder, BPR) were 5:1,

10:1, and 20:1. To minimize cold welding, cyclohexane at

30 vol.% was used as a process control agent. After

charging the powder and milling balls, the vial was evac-

uated by means of a vacuum pump for 20 min to reduce

powder oxidation. The size of the milled powder was

determined by analyzing the SEM images obtained for

each combination of processing parameters, i.e., rotation

speed, charge ratio, and milling time. A minimum of three

images were analyzed for each combination of the pro-

cessing variables.

3.2 Development of BP-ANN model

A three-layer BP-ANN model was developed to predict the

particle sizes of AZ61 powder subjected to MA. The model

had three neurons in the input layer, viz.: rotation speed

(S), charge ratio (C), and milling time (t) in the input layer

and one single neuron (i.e., particle size) in the output

layer. The optimal number of neurons in the hidden layer

was determined by trial and error as there is no established

rule for determining it in the literature [16]. Eventually, a

model with five neurons in the hidden layer was selected.

The transfer function in the input layer was tan-sigmoid,

while purelin was used in the output layer. Twenty-seven

data points were generated from the experimental data to

build the model. The experimentally generated datasets

were adequate to successfully build a suitable ANN model

as some researchers, such as Monjezi et al. [23] and Zhao

et al. [24], used lower number of datasets to develop

suitable and acceptable ANN models. The range of the data

is given in Table 1

The BP-ANN model was developed using the built-in

neural network toolbox of MATLAB�. The data were

randomly divided into three sets comprising training

(70%), testing (15%), and validation (15%). Prior to

modeling, the data were scaled within the range of -1 to 1

by means of Eq. 2:

x�i ¼ k1 þ k2 � k1ð Þ
Zi � Zmin
� �

Zmax�Zminð Þ ð2Þ

where x�i is the scaled parameter, k1 and k2 represent the

normalization range, Zi the data to be scaled, and Zmax and

Zmin are the max and min of Zi in the dataset.

Scaling is useful for avoiding under- and overfitting,

preventing a large number from over-riding a smaller

number, and rendering the data compatible with the

adopted tan-sigmoid transfer function [16]. 70% of the data

were used for training the network, 15% for validation, and

the remaining 15% for testing.

4 Results and discussion

4.1 Effect of charge ratio on the average particle
size of AZ61 powder during MA

Figure 1 shows the effect of charge ratio (BPR) on the

average particle size of AZ61 after 15 h of MA at 350 rpm.

It is apparent that the higher the charge ratio, the more

Table 1 Range of data used for model development

Parameter Symbol Range Unit

Input data

Rotation speed S 300–400 rpm

Charge ratio C 5–20 –

Milling time t 5–15 H

Output data

Particle size P 19.1764–222.0946 lm
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reduction in particle size that is achieved. For instance, at a

BPR of 5:1, the average particle size measures 161.11 lm,

which is further, reduced to 107.33 lm at 10:1 BPR.

Moreover, when the BPR rises to 20:1, finer particles are

obtained (34.62 lm). Several authors have shown that the

BPR is an indication of the milling energy supplied to the

MA process [5, 13]. The higher the BPR, the higher the

collisions per unit time, and consequently, more energy is

transferred to the powder. This explains the greater

reduction in particle size realized at 20:1 BPR, as shown in

Fig. 1. Similar particle size reduction at a higher BPR has

been reported for Al-Zr powder [25] and Fe-NbC [26]

composite.

4.2 Effect of milling time and milling speed
on the average particle size of AZ61 powder
during MA

The data presented in Fig. 2 show that there is a correlation

between milling time, milling speed, and the resulting

average particle size. Generally, the higher the speed, the

more reduction in particle size is achieved. Milling speed is

particularly important as it contributes to the energy

required for particle size refinement [13]. Therefore, the

faster the rotation of the mill, the more energy is committed

to the powder. This is why after 10 h of milling size

reduction is 163.11, 142.59, and 19.62 lm at 300, 350, and

400 rpm, respectively. This is in agreement with the sub-

missions in some earlier studies on the MA of Ti powder

[27] and gas atomized Al88Ce8Fe4 powders [28]. However,

there is a critical speed above which the milling balls will

be pinned to the walls of the milling vial and comminution

will not occur [5]. From the results presented in Fig. 2, it

can be deduced that this critical point has not been

exceeded at 400 rpm, the maximum vial rotation speed

utilized in this study.

Likewise, increasing milling time results in higher par-

ticle size reduction. This is indicated by the plot shown in

Fig. 2. Keeping the milling speed constant at 300 rpm,

particle size reduces from 173.18 lm, through 163.11 lm
to 95.00 lm after 5, 10, and 15 h, respectively. This

observation is also similar to that recorded at 350 and

400 rpm. In a commercially pure Ti powder subjected to

MA, the authors show that a longer milling time results in

finer powder particle [27].

4.3 Neural network architecture

The proposed BP-ANN is shown in Fig. 3. It is a 3–5–1

three-layer BP-ANN architecture consisting of three neu-

rons in the input layer, five neurons in the hidden layer, and

a single neuron in the output layer. The input layer employs

a tan-sigmoid transfer function, while the output layer uses

a purelin transfer function. Data limitation is a general

problem in many aspects of materials science. The avail-

ability of samples, equipment, and cost is usually the major

reasons behind data limitations. Since there is no general

ground-rule established in the literature that specifies the

minimum or the maximum number of datasets required in

an ANN model, the results of the proposed models are

reliable and applicable for the prediction of the particle size

of milled AZ61 powder. This is because several studies

have used less than the twenty-seven data points used in

this study to develop various ANN models. Monjezi et al.

Fig. 1 Plot of mean particle size against charge ratio at 350 rpm

Fig. 2 Plot of mean particle size against milling time for different vial

rotation speeds Fig. 3 Three-layer 3–5–1 BP-ANN architecture

17614 Neural Computing and Applications (2021) 33:17611–17619

123



[23] use 20 dataset to predict blast-induced ground vibra-

tion. On the other hand, Zhao et al. [24] apply only 16

datasets to develop a BP neural network for predicting the

flexural strength of open-porous Cu-Sn-Ti composites.

Therefore, the results of the proposed model presented here

are reliable and applicable for the prediction of the parti-

cles size of milled AZ61 powder. Figure 4 shows the

regression plots for the training, validation, and test data.

The R values are above 93% and the graphs show that there

is a good fit between the predicted normalized particle size

and the normalized target particle size. This clearly indi-

cates that the network model can accurately predict the

particle size of the AZ61 powder after MA.

4.4 Formulation of a mathematical equation
for predicting particle size during MA

The mathematical representation of a trained ANN can be

derived from the weights, biases, and transfer functions

used in formulating the network. This equation can be

generalized as

Y ¼ fo Wo � fi Wi � xþ Bið Þ½ � þ Bof g ð3Þ

where Wo and Wi are the weights vectors of the output and

input layers, respectively; Bo and Bi are the biases vectors

of the output and input layers, respectively; x normalized

input vector; and fo and fi are the transfer functions used at

the output and input layers, respectively. In the current

work, fo is purelin, while fi is tan-sigmoid function.

By referring to Table 2, Eq. 3 can be transformed to

Pnorm ¼ �0:73161þ /1 þ /2 þ /3 þ /4 þ /5 ð4Þ

where Pnorm is the normalized particle size.

The unknown variables in Eq. 4 can be obtained from

the parameters contained in Table 2 as

/1 ¼ 0:72119 � tanhb1 ð5Þ
/2 ¼ 1:30223 � tanhb2 ð6Þ
/3 ¼ 1:38506 � tanhb3 ð7Þ
/4 ¼ �0:24613 � tanhb4 ð8Þ
/5 ¼ �2:35384 � tanhb5 ð9Þ

Fig. 4 Regression graphs for

training, validation, test, and

whole datasets
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The unknown variables in Eqs. 5–9 can be transformed

into Eqs. 10–14 by using the values presented in Table 2:

b1 ¼ 2:34007S� 4:05438C þ 0:87849t � 2:08853 ð10Þ
b2 ¼ 3:36672Sþ 1:06733C þ 3:51236t þ 1:60816 ð11Þ
b3 ¼ 2:34007S� 4:05438C þ 0:87849t þ 5:29558 ð12Þ
b4 ¼ �1:99231S� 1:91939C þ 0:04739t � 2:21190

ð13Þ
b5 ¼ 1:24444S� 0:02016C þ 1:39798t þ 0:67019 ð14Þ

To formulate the ANN-derived mathematical equation

for predicting particle size, Pnorm in Eq. 4 is denormalized

to Pdenorm as shown below

Pdenorm ¼ 178:4893Pnorm þ 104:9082 ð15Þ

Equation 15 can be used to predict the particle size of

AZ61 powder subjected to MA. This equation is validated

by comparing its output with that of the ANN-predicted

values. The result is presented in Fig. 5. It can be seen that

the correlation coefficient is exactly 1, which implies that

the derived equation is an exact replica of the predicted

outputs of the ANN model.

4.5 Comparison of ANN model with a multilinear
regression model

Multilinear regression (MLR) analysis describes a linear

relationship between one dependent variable and multiple

independent variables. The relationship is derived from the

principle of minimizing the sum of the squares of the dif-

ferences between the dependent and independent variables.

Generally, MLR can be represented as

Y ¼ bo þ b1x1 þ b2x2 þ � � � þ bnxn þ k ð16Þ

where Y and x are the dependent and independent variables,

respectively; bo is the intercept; b1 to bn are the coefficients

of the independent variables; and k is the error of the

predictor.

Compared with multi-nonlinear regression (MNLR),

several past studies have shown that there is no significant

difference between the performances of both regression

types [29–33], and in some cases, MLR outperforms the

MNLR model [32, 33]. Analogous to the works of Enay-

atollahi et al. [34], Mehrdanesh et al. [35], and Akhlagi

et al. [12], the performance of the ANN model in this work

is compared with an MLR model.

Similar to the ANN model, the MLR model uses three

independent variables [rotation speed, (S), charge ratio (C),

and milling time (t)] and one dependent variable, i.e.,

particle size (P). MLR analysis is performed with the aid of

Microsoft Excel�, and the resulting model equation is

presented as follows:

P ¼ 304:6818� 0:2489S� 3:7896C � 4:56855t ð17Þ

In Eq. 17, P is the particle size (lm), S is the rotation

speed (rpm), C is the charge ratio, and t is the milling time

(h).

The BP-ANN model is compared with the MLR model

by means of two different error analyses methods: root-

mean-square error (RMSE) and mean absolute error

(MAE), according to Eqs. 18 and 19 below:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

j¼1

Pj � P�
j

� �2
" #vuut ð18Þ

Table 2 Weights and biases

derived from the ANN

simulation

Neurons Weights Biases

S C t P Bi Bo

1 2.34007 - 4.05438 0.87849 0.72119 - 2.08853 - 0.73161

2 3.36672 1.06733 3.51236 1.30223 1.60816

3 - 1.99231 - 1.91939 0.04739 1.38506 5.29558

4 0.78967 - 2.17309 - 5.80034 - 0.24613 - 2.21190

5 1.24444 - 0.02016 1.39798 - 2.35384 0.67019

Fig. 5 Plot comparing the particle size of BP-ANN-derived equation

with the predicted particle size of BP-ANN
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MAE ¼ 1

n

Xn

j¼1

Pj � P�
j

���
��� ð19Þ

where Pj and P�
j are the measured and predicted values of

particle size after MA.

The results show that the RMSE of the MLR model is

34.62 lm, which is considerably higher than that of the

ANN model (8.4748 lm). Generally, a lower RMSE is

desirable, which indicates a good fit. Similarly, the MAE of

the ANN model is 4.19 lm, which is also lower than

29.66 lm of the MLR model. In this case, a lower MAE is

desirable. Therefore, the ANN model outperforms the

MLR model based on these two error analyses techniques.

Furthermore, the predictive abilities of the two models

are presented in Fig. 6. The coefficient of correlation of the

ANN model is 0.97, which outperforms the 0.46 in MLR

model. This is also an indication that the ANN model is

superior and more reliable compared with the MLR model.

This agrees with the conclusions of some earlier study that

ANN models outperform MLR models in predicting the

particle size distribution of metallic powders [12] and rock

mass fragmentation properties [35].

4.6 Sensitivity analysis

Sensitivity analysis is used to quantify how the output

values of a model are influenced by changes in the input

values of the model. In this work, the cosine amplitude

technique (CAT) is used to measure the sensitivity of each

input parameter in the form of strength values. The higher

the strength value, the more influence an input parameter

has on the output parameter. The expression for CAT is

depicted in the following equation [36]:

rij ¼
Pn

i xiYið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i

Pn
i y

2
i

p ð20Þ

In Eq. (20), xi is the input parameter, Yi is the output

parameter, and n is the number of observations for the

parameters.

Results of the CAT analysis are depicted in Fig. 7. The

highest strength value is exhibited by ‘‘Speed,’’ followed

by ‘‘Charge ratio’’ and ‘‘time,’’ respectively. This indicates

that rotation ‘‘speed’’ is the most significant factor influ-

encing the average particle size of AZ61 during MA. This

is in good agreement with the results and discussion of

Fig. 2. Generally, the higher the speed, the more reduction

in particle size is achieved. Milling speed is particularly

important as it contributes to the energy required for par-

ticle size refinement [13]. Therefore, the faster the rotation

of the mill, the more energy is committed to the powder.

5 Conclusions

An artificial neural network (ANN)-based model has been

successfully developed for predicting the particle size of

AZ61 magnesium alloy powder after mechanical alloying

process. The ANN model utilizes three input parameters

(rotation speed, charge ratio, and milling time) to predict

the average particle. The developed model has an R value

of over 93%, which strongly suggests its high prediction

and precision. Furthermore, a mathematical equation for

predicting the particle size of the powder has been derived

from the ANN model. This can help in optimizing the

process, eliminating expensive and time-intensive experi-

mentations, and minimizing the stochasticity of the pro-

cess. A comparison of the ANN-based model with a

multilinear regression model reveals the superiority and

high predictability of the ANN model. Finally, sensitivity

analysis reveals that rotation speed is the most significant

parameter influencing particle size during MA. One of the

limitations of this study is that the proposed model has not

been applied to other metal/reinforcement systems due to

limited data in the literature. Similarly, just like any other

soft computing-based models, the proposed models will

perform well for the datasets that are within the range of

those used in this study with similar experimental condi-

tions. Hence, the datasets that are outside the data range or

Fig. 6 Comparison of the

predicting ability of the a BP-

ANN model and b MLR models
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obtained from highly different experimental conditions

may be the limitations of this study.
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