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Abstract
This article investigates the cooperative tracking control of multiple homogeneous uncertain nonholonomic wheeled

mobile robots with state constraints. Transforming each mobile robot system into a chained form, a cooperative learning

control scheme based on the adaptive neural network is proposed. Firstly, a virtual control law is designed for the kinematic

model of the constrained chain system combined with the barrier Lyapunov function (BLF). Then, radial basis function

neural networks (RBF NNs) are exploited to deal with the unknown nonlinear dynamics in the mobile robot system, a

robust term is introduced to compensate for the NN approximation errors and the external disturbance, and the Moore–

Penrose inverse is adopted to avoid the violation of state constraints. Communication network is used to realize the online

sharing of NN weights of each mobile robot individuals, such that locally accurate identification of the unknown nonlinear

dynamics with common optimal weights can be obtained. As a result, the learned knowledge can be reused in the

cooperative learning control tasks and the trained network model has better generalization capabilities than the normal

decentralized learning control. Finally, numerical simulation verifies the effectiveness of the control scheme.

Keywords Nonholonomic wheeled mobile robot � Neural network � State constraint � Learning � Cooperative control

1 Introduction

Multi-robot system, in which all robots cooperate to

complete the control tasks by exchanging information with

others, has broad application prospects. Due to its higher

efficiency, greater flexibility, adaptability to unknown

environments, and cooperative capability, multi-robot

system can effectively utilize resources, enhance the reli-

ability of the system, and improve the quality of per-

forming tasks than a single robot. In a multi-mobile robot

system, the function and complexity of all individuals are

concentrated and amplified instead of simple linear super-

position, and thus, the cooperation among individuals

embodies the ability of the system. These advantages have

attracted many researchers’ attention and prompted them to

devote considerable effort to approaches on the cooperative

control of multiple mobile robots [1–6].

In the tracking control of multi-mobile robots, many

achievements have been made [7–16]. In particular, the

authors of [7] established a new framework for formation

modeling of mobile robots based on graph theory and

related the change of formation to that of graphic structure.

In [9–11], the formation control of multiple nonholonomic

mobile robots is converted into a state consensus problem,

and then the distributed kinematic controller and adaptive

dynamic controller are designed such that all robots move

along the reference trajectories and converge asymptoti-

cally to the desired geometric pattern. Despite the wealth of

literature, there still remain many challenges, one of which

is the uncertainty of nonlinear modeling. The modelling

uncertainties have a strong detrimental effect on the non-

linear distributed control systems, making the motion

control more demanding. In [17] and [18], the full
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knowledge of the system model is assumed to be known

and the nonlinear uncertainty is not considered. A dynamic

controller design method is proposed in [19] when the

robot dynamics is known, and the torque control input of

the follower includes both its own dynamics and the lea-

der’s dynamics. In [20–22], the distributed formation

control of the non-holonomic wheeled mobile robot was

realized by using neural network to solve the unstructured

and unmodeled dynamics in the robot system.

Mobile robots usually perform relatively simple but

highly repetitive tasks. From the perspective of techno-

logical development, it is a trend and inevitable to improve

their work efficiency and reduce energy consumption.

Reasonable and effective use of the knowledge acquired

from the control process can avoid many invalid behaviors

and ensure the efficient execution of control tasks, that is,

learning control methods can bring obvious social and

economic benefits in practical engineering applications. In

the aforementioned adaptive neural network control

methods, although the consensus between all the robots

could still be obtained, the weight information in the neural

network control process is not fully exploited. Determin-

istic learning theory using RBF NN has been fully

researched, such as [23–26], where the unknown closed-

loop dynamics of nonlinear system can be accurately

approximated by RBF neural network and the learned

knowledge can be recycled in learning control. However,

the learning of neural networks occurs in a completely

distributed manner when the deterministic learning theory

is used in multi-robot systems, i.e., the robot individuals

did not share the NN weights with others and each robot

achieved learning of nonlinear approximation indepen-

dently. The learned knowledge of each robot is only

applicable to the specific reference trajectory since the

diversity of reference trajectory assigned to each robot,

resulting in the generalization capability of the trained

network model, is limited. Inspired by [27], the superior

learning ability of NNs can be developed when the robots

are allowed to share the neural weights. The approximation

space of the neural network can be expanded while the

weights of all robots converge to their common optimal

values.

Additionally, considering operation safety, the physical

limitation of the actuator, the mechanical manufacture, and

other factors, there are usually various constraints in the

actual control system. Due to the consideration of the

operating performance and safety of the robot system,

restricting the operation area of some key variables (such

as system output variables) is called state constraint.

Ignoring the state constraint may lead to serious perfor-

mance degradation, system instability, and even equipment

damage. To solve the state constraint in nonlinear systems,

some decent methods have been proposed, such as model

predictive control [28, 29], error transformation function

[30], and barrier Lyapunov function [31]. For the strictly

feedback nonlinear systems with output constraints, a

control method using tan-BLF function is proposed in [32]

to realize the asymptotic tracking for the reference trajec-

tory without violating the constraints. In [33], an adaptive

neural network controller is designed with BLF method to

address the tracking control of n-link robot with full state

constraint and uncertainty. In the cooperative control of

multiple robots, the control performance of the robot sys-

tem can be greatly improved if the stable tracking with the

state constraints of each individual satisfied can be real-

ized, thus avoiding collision and other safety accidents.

Motivated by the above discussion, the cooperative

trajectory tracking control and unknown nonlinear

dynamics learning for multiple homogeneous mobile

robots with state constraints are addressed in this paper.

Specifically, all robots in the multi-robot system are con-

sidered identical uncertain systems and assigned different

desired trajectories. Utilizing RBF NNs to approximate the

unknown nonlinear dynamics, a cooperative control

scheme is proposed, where the robots communicate with

others through an undirected topology to exchange their

estimated NN weights. In contrast to the previous results,

the contributions of the proposed cooperative learning

scheme can be summarized as follows.

1. All mobile robots realize the tracking control perfor-

mance for their own desired trajectory. Simultane-

ously, the states of each mobile robot are guaranteed

within the constraint range.

2. The unknown nonlinear dynamics of each mobile robot

is local accurately identified by RBF NNs and the

exponential convergence of the neural weights is

ensured, which means that these converged weights

can be recycled to effectively improve the cooperative

learning control of multi-robot system.

3. This control scheme enables multiple robots to learn

the unknown nonlinear dynamics of the system in a

cooperative manner, such that the learned knowledge

of all robots could reach consensus. The neural weights

obtained are optimal over a larger domain consisting of

the union of the tracking orbits of all robots, resulting

that the trained network model has better generaliza-

tion ability than that in the traditional decentralized

learning method.

The remains of this paper are organized as follows. In Sect.

2, some preliminaries on graph theory and problem state-

ment are presented. Section 3 describes the design proce-

dure of the adaptive cooperative control scheme in detail.

Using the experience knowledge, the static neural learning

controller is developed in Sect. 4. The numerical
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simulation results are provided in Sect. 5. Finally, Sect. 6

concludes the study.

2 Preliminaries and problem statement

2.1 Notation and graph

In this paper, we use the following notations. R and Rþ
represent the set of real numbers and positive numbers,

respectively. I denotes the identity matrix for any dimen-

sion. 1n is an n-dimensional column vector whose elements

are all 1. We denote I½k1; k2� ¼ ½k1; k1 þ 1; :::; k2� for two

integers k1\k2. The notation A� B represents the Kro-

necker product of matrices A and B [34].

In the context of multiple nonholonomic wheeled

mobile robot systems with interconnected communication

graphs, an undirected graph G ¼ ðV; EÞ is composed of a

finite set of nodes V ¼ f1; 2; :::; Lg and a set of edges

E � V � V. The graph G is called undirected if for every

ði; jÞ 2 E also ðj; iÞ 2 E, otherwise it is called directed. An

undirected graph with undirected paths between every pair

of distinct nodes is said to be connected. The weighted

adjacency matrix of the undirected graph G is a nonnega-

tive matrix A ¼ ½aij� 2 RL�L, where aii ¼ 0 and

aij [ 0 ) ðj; iÞ 2 E. The Laplacian of the graph G is

denoted by L ¼ ½lij� 2 RL�L, where lii ¼
PL

j¼1 aij and lij ¼
�aij if i 6¼ j. Thereby, given a matrix A ¼ ½aij� 2 RL�L

satisfying aii ¼ 0; i 2 I½1; L� and aij [ 0; i; j 2 I½1; L�, we

can always define an undirected graph G such that A is the

weighted adjacency matrix of the graph G and G is called a

graph of A. It is known that at least one eigenvalue of L is

at the origin and all nonzero eigenvalues of L have positive

real parts. Moreover, according to Lemma 4 in [35], L has

one eigenvalue at the origin and all other L� 1 eigenvalues

have positive real parts if and only if the undirected graph

G is connected.

2.2 Uniformly locally exponential
stable and cooperative uniformly locally
persistent excitation

Consider the following system

_x ¼ f ðt; xÞ; xðt0Þ ¼ x0; t� t0 ð1Þ

where f : ½t0;1Þ �Rn ! Rn is piecewise continuous in t

and locally Lipschitz in x, and f ðt; 0Þ ¼ 0. Denote the

solution of the system (1) from the initial condition ðt0; x0Þ
as x(t).

Definition 1 (ULES [36]) The equilibrium point x ¼ 0 is

uniformly locally exponential stable (ULES), if there exist

constants c1; c2 and r[ 0, for 8t[ t0 and 8ðt0; x0Þ 2
Rþ � Br (Br denotes the open ball with the radius being r,

i.e., Br :¼ fx 2 Rn : xk k\rg), the solution of system (1)

satisfying

xðt; t0; x0Þk k	 c1 x0k ke�c2ðt�t0Þ; t� t0 ð2Þ

Definition 2 (cooperative ul-PE [37]) A group of matrix-

valued functions Siðt; xiÞ; i ¼ 1; :::; L is said to satisfy the

cooperative uniformly locally persistent excitation (coop-

erative ul-PE) condition, if there exist positive constants a
and T0, for every r[ 0, such that, for 8ðt0; xi0Þ 2 Rþ � Br

with t� t0, all corresponding solutions satisfy

Z tþT0

t

XL

i¼1

Siðs; xiðs; t0; xi0ÞÞSiðs; xiðs; t0; xi0ÞÞTds� aIm

ð3Þ

Consider the following time-varying system

_x1

_x2

� �

¼ Aðt; xÞ Bðt; xÞT

�Cðt; xÞ �Dðt; xÞ

" #
x1

x2

� �

¼: Fðt; xÞx; xðt0Þ ¼ x0

ð4Þ

where x1 2 Rn; x2 2 Rm are state variables and

x ¼ ½xT1 ; xT2 �
T
. A : ½t0;1Þ�Rnþm ! Rn�n;B : ½t0;1Þ

�Rnþm ! Rm�n, C : ½t0;1Þ �Rnþm ! Rm�n;D : ½t0;1Þ
�Rnþm ! Rm�m are state-dependent system matrices.

Assuming that D(t, x) is positive semi-definite, to analyze

the exponential stability of (4), the following assumptions

are needed.

Assumption 1 [27] There exists r[ 0 and /M [ 0 such

that maxf Bðt; xÞk k; Dðt; xÞk k; dBðt;xðtÞÞ
dt

�
�
�

�
�
�g	/M for all

t[ t0 and ðt0; xi0Þ 2 Rþ � Br.

Assumption 2 [27] There exists r[ 0 and symmetric

matrices such that Pðt; xÞBðt; xÞT ¼ Cðt; xÞT ; ATðt; xÞ
Pðt; xÞ þ Pðt; xÞAðt; xÞ þ _Pðt; xÞ ¼ �Qðt; xÞ for all t[ t0
and ðt0; xi0Þ 2 Rþ � Br. And 9pm; qm; pM; qM [ 0 such that

pmIn 	Pðt; xÞ	 pMIn; qmIn 	Qðt; xÞ	 qMIn

Lemma 1 [37] Under Assumptions 1 and 2 where r[ 0 is

an arbitrary fixed constant, system (4) is ULES for

8ðt0; xi0Þ 2 Rþ � Br, if there exists positive constants a
and T0 such that
Z tþT0

t

½Bðs; xðs; t0; x0ÞÞBðs; xðs; t0; x0ÞÞT

þ Dðs; ðs; t0; x0ÞÞ�ds� aIm; 8t� t0

ð5Þ
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Lemma 2 [27] Consider a time-varying bounded block

diagonal matrix Bðt; vðtÞÞ : ½t0;1Þ �RLl ! RLm�Ln

where Biðt; viðtÞÞ : ½t0;1Þ �Rm�nði� 1; :::LÞ and the

Laplacian matrix L 2 RL�L of an undirected connected

graph, assuming that Biðt; viðtÞÞ is cooperative-ul PE, then
Z tþT0

t

½Bðs; vðsÞÞBðs; vðsÞÞT þ qðL � ImÞ�ds� aILm ð6Þ

where q is a positive constant.

2.3 Problem statement

Considering a multi-robot system composed of L ðL[ 1Þ
nonholonomic wheeled mobile robots with the same

mechanical and electrical structure (see Fig. 1), each of

which can be modeled as [38]

_qi ¼ SðqiÞgi ð7Þ

MðqiÞ _gi þ Cðqi; _qiÞgi þ XðqiÞgi þ GðqiÞ
þ FðqiÞ þ sdi ¼ BðqiÞui

ð8Þ

where i 2 I½1; L�, qi ¼ ½xci; yci; hi�T and gi ¼ ½vi;xi�T rep-

resent the pose and velocity vector of the ith mobile robot

system, respectively. SðqiÞ 2 R3�2 represents the kine-

matic matrix, MðqiÞ 2 R2�2 denotes the bounded positive

definite symmetric matrix, Cðqi; _qiÞ 2 R2�2 is the vector of

Coriolis and centripetal forces, XðqiÞ 2 R2�2 is the

velocity transformation matrix, GðqiÞ 2 R2�1 denotes the

vector of gravitational torque, FðqiÞ 2 R2�1 is the friction

vector, sdi 2 R2�1 is the bounded external disturbance,

BðqiÞ 2 R2�1 represents the input transformation matrix

and ui ¼ ½ui1; ui2�T is the voltage input.

Assume that all mobile robots are homogeneous, for

each i 2 I½1; L�, the detailed relevant parameters and

matrices in (7) and (8) are as follows

SðqiÞ ¼
cos hi 0

sin hi 0

0 1

2

6
4

3

7
5; MðqiÞ ¼

1

ku1

m 0

0 J

� �

;

Cðqi; _qiÞ ¼
0 0

0 0

� �

; XðqiÞ ¼
ku2

ku1

2=r2 0

0 2R2=r2

� �

;

GðqiÞ ¼
0

0

� �

; BðqiÞ ¼
1=r 1=r

R=r � R=r

� �

;

ku1 ¼ ngks=ra; ku2 ¼ ngkbku1

ð9Þ

where m is the mass, J denotes the moment of inertia of the

robot, r denotes the radius of driving wheels , 2R denotes

the distance between the driving wheels, ra; ks; kb; ng are

the armature resistance, the motor torque constant, the back

electromotive force coefficient, and the gear ratio of the

actuator, respectively.

Property 1 The matrix _MðqiÞ � 2Cðqi; _qiÞ is skew sym-

metric, that is xT ½ _MðqiÞ � 2Cðqi; _qiÞ�x ¼ 0; 8x 2 Rn.

Assumption 3 All physical parameters of each mobile

robot model including actuator dynamics are unknown

constants and lie in a compact set.

Assumption 4 In the feedback control, the pose qi and the

velocity gi of the mobile robot are measurable and

available.

To facilitate processing, choosing the following differ-

ential homeomorphism mapping xi ¼ ½xi1; xi2; xi3�T ¼
XðqiÞ 2 R3 and state transformation

gi ¼ ½gi1; gi2�
T ¼ KðqiÞni 2 R2

xi1 ¼ hi
xi2 ¼ xci cos hi þ yci sin hi
xi3 ¼ xci sin hi � yci cos hi

8
><

>:
; gi ¼

xi3 1

1 0

� �
ni1
ni2

� �

ð10Þ

system (7) and (8) can be converted into the following

chained form

_xi1 ¼ ni1
_xi2 ¼ ni2

_xi3 ¼ xi2ni1

8
><

>:
ð11Þ

M1ðxiÞ _ni þ C1ðxi; _xiÞni þ X1ðxiÞni þ G1ðxiÞ
þ F1ðxiÞ þ ~sdi ¼ B1ðxiÞui

ð12Þ

where i 2 I½1; L�, xi is the state vector, ni ¼ ½ni1; ni2�T is the

new velocity vector of the transformed system and

Fig. 1 The sample model of a NWMR
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M1ðxiÞ ¼ KTðqiÞMðqiÞKðqiÞ
C1ðxi; _xiÞ ¼ KTðqiÞ½MðqiÞ _KðqiÞ þ CðqiÞKðqiÞ�

G1ðxiÞ ¼ KTðqiÞGðqiÞ
F1ðxiÞ ¼ KTðqiÞFðqiÞ

X1ðxiÞ ¼ KTðqiÞXðqiÞKðqiÞ
B1ðxiÞ ¼ KTðqiÞBðqiÞKðqiÞ

~sdi ¼ KTðqiÞsdi

ð13Þ

Remark 1 The interested reader may find a necessary and

sufficient condition for existence of the mentioned trans-

formation in [39].

Property 2 According to property 1, it can be known that
_M1ðxiÞ � 2C1ðxi; _xiÞ is skew symmetric, i.e.,

xT ½ _M1ðxiÞ � 2C1ðxi; _xiÞ�x ¼ 0;8x 2 Rn.

Assumption 5 The external disturbances of each mobile

robot are bounded satisfying k~sdik	 d
i with d
i being an

unknown positive constant.

The desired trajectory of each mobile robot is required

to satisfy the nonholonomic constraint, i.e., there is a

desired velocity vector gi;d satisfying _qi;d ¼ Sðqi;dÞgi;d.

Therefore, there exists a similar transformation xi;d ¼
Xðqi;dÞ 2 R3 and a state feedback gi;d ¼ Kðqi;dÞni;d such

that we can obtain the following desired trajectory and

reference dynamics for generating the desired trajectory

_xi1;d ¼ ni1;d
_xi2;d ¼ ni2;d
_xi3;d ¼ xi2;dni1;d

8
><

>:

_ni;d ¼ fi;dðvi;d; tÞ 8i 2 I½1; L�

ð14Þ

where xi;d ¼ ½xi1;d; xi2;d; xi3;d�T , vi;d ¼ ½xTi;d; _xTi;d�
T
, and

fi;dðvi;d; tÞ represents a vector of known continuous non-

linear function.

Remark 2 The diversity of reference trajectories assigned

to each mobile robot is to excite different unknown

dynamics, thereby expanding the search space for optimal

RBF NN weights.

Given the multi-robot system represented in (11 and 12)

and the reference dynamics in (14), there exists a non-

negative matrix called the adjacency matrix

A ¼ ½aij�; i; j 2 I½1; L�, such that all the elements repre-

senting the connected relationship between robots in A are

arbitrary nonnegative numbers satisfying

aii ¼ 0; i 2 I½1; L�. Let G ¼ ðV; EÞ be an undirected graph

about A, and V ¼ f1; :::; Lg correspond to nodes repre-

senting L mobile robots, then ði; jÞ 2 E if and only if

aij [ 0. For the desired trajectory, the reference dynamics

(14), and the communication topology graph G, the fol-

lowing assumptions are considered.

Assumption 6 All the states in the reference model (14)

remain uniformly bounded, i.e., 8i 2 I½1; L�;
vi;d ¼ ½xTi;d; _xTi;d�

T 2 Xi, where Xi � R6 is a compact set. In

addition, the correlated desired trajectory uðvi;dðtÞÞ starting

from uðvi;dð0ÞÞ is periodic.

Assumption 7 The communication topology G is undi-

rected and connected.

The above assumption is made without loss of gener-

ality. Assumption 6 helps to prove the partial PE condi-

tions, the system stability, and the convergence of

estimated parameters of the proposed distributed control

network. Assumption 7 contributes to verifying the gen-

eralization ability of the neural network model.

Cooperative tracking objective: Given a multi-robot

system consisting of L identical wheeled mobile robots

(11) and (12), the system operates in an undirected con-

nected and weighted network topology G. The control

objective of this paper is to design a cooperative learning

control scheme, such that

1. Each mobile robot can track its own desired trajectory

and the designed virtual velocities, while ensuring that

all signals are bounded and the state constraints are not

violated, i.e.,

jxi3j 	 li;s1; jxi2j 	 lis;2;

jni1j 	 li;s31; jni2j 	 li;s32 8ti � 0;2 I½1; L�
ð15Þ

where li;s1; li;s2; li;s31; li;s32 are positive constants.

2. In the adaptive cooperative tracking control, all mobile

robots can obtain the local accurate approximation of

the unknown nonlinear dynamics and the estimated

weights of neural network convergence to their com-

mon optimal weights. The acquired knowledge can be

reused in subsequent cooperative control tasks to avoid

re-adaptive computation and obtain better control

performance.

Remark 3 When the kinematics model (7) of the non-

holonomic mobile robot is converted into the chained

model (11), xi1 ¼ hi represents the orientation angle of the

mobile robot and the position coordinates xi; yi is converted

to the corresponding new state variables xi2; xi3 by an

orthogonal transformation. Therefore, it is reasonable to

consider the case that state variables xi2; xi3 are constrained

but xi1 is free.
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3 Adaptive cooperative control
scheme based on RBF NN

Lemma 3 [40] For any positive constant vector le 2 Rn,

the following inequality is applicable for any vector x 2 Rn

satisfying jxj\jlej:

ln
lTe le

lTe le � xTx
	 xTx

lTe le � xTx
ð16Þ

3.1 Kinematic controller

We define the state tracking error as xieðtÞ ¼ xi;dðtÞ � xiðtÞ;
the error dynamics of each chained mobile robot system

can be obtained from (11) and (14) as

_xi1;e ¼ ni1;d � ni1
_xi2;e ¼ ni2;d � ni2
_xi3;e ¼ xi2;eni1;d þ xi2ðni1;d � ni1Þ

ð17Þ

It is necessary to design appropriate feedback laws ni1 and

ni2 to asymptotically stabilize the kinematic model (11)

without the state constraints being violated. For this pur-

pose, assuming that the designed control law ni1 can

guarantee the stability of xi1;e-subsystem, the remaining

error dynamics _xi2;e, _xi3;e are considered.

Introduce the following variables

zi1 ¼ xi3;d � xi3 ð18Þ

zi2 ¼ ai � xi2 ð19Þ

where ai is a virtual variable to be designed.

Choose the following BLF candidate

V2 ¼ 1

2

XL

i¼1

ln
l2i;e1

l2i;e1 � z2
i1

þ ln
l2i;e2

l2i;e2 � z2
i2

 !

ð20Þ

where li;e1 ¼ li;s1 � Xi1, li;e2 ¼ li;s2 � Xi2, jxid;3j 	Xi1,

jaij 	Xi2, Xi1 and Xi2 are positive constants, then differ-

entiating V2 with respect to time leads to

_V2 ¼
XL

i¼1

zi1 _zi1
l2i;e1 � z2

i1

þ zi2 _zi2
l2i;e2 � z2

i2

 !

¼
XL

i¼1

zi1½xi2;eni1;d þ xi2ðni1;d � ni1Þ�
l2i;e1 � z2

i1

þ zi2ð _ai � ni2Þ
l2i;e2 � z2

i2

" #

¼
XL

i¼1

zi1½ðxi2;d � ai þ zi2Þni1;d�
l2i;e1 � z2

i1

þ zi2ð _ai � ni2Þ
l2i;e2 � z2

i2

" #

þ
XL

i¼1

zi1xi2ðni1;d � ni1Þ
l2i;e1 � z2

i1

ð21Þ

We design ai and ni2 as follows

ai ¼ xi2;d þ ðl2i;e1 � z2
i1Þki1zi1ni1;d ð22Þ

ni2 ¼ _ai þ ðl2i;e2 � z2
i2Þki2zi2n

2
i1;d þ

l2i;e2 � z2
i2

l2i;e1 � z2
i1

zi1ni1;d ð23Þ

where ki1 [ 0, ki2 [ 0 are design constants.

Substituting (22) and (23) in (21), one can write

_V2 ¼ �
XL

i¼1

½ðki1z2
i1 þ ki2z

2
i2Þn2

i1;d� þ
XL

i¼1

zi1xi2ðni1;d � ni1Þ
l2i;e1 � z2

i1

ð24Þ

Now, designing the kinematic tracking control law ni1 for

xi1;e-subsystem as

ni1 ¼ ni1;d þ ki3xi1;e ð25Þ

with ki3 [ 0 being a design constant.

Considering

V1 ¼ 1

2

XL

i¼1

x2
i1;e ð26Þ

and differentiating V1, we have

_V1 ¼ �
XL

i¼1

ki3x
2
i1;e 	 0 ð27Þ

Then, it is easy to obtain that limt!1 xi1;eðtÞ ¼ 0, which

means that limt!1ðni1;d � ni1Þ ¼ 0. As a consequence, the

kinematic tracking problem can be solved based on the

following Lemma [41].

Lemma 4 Under Assumptions 6 and the designed control

laws (23 and 25), the equilibrium point xie ¼ 0 of the

closed-loop system obtained from the error dynamic system

(17) is ‘globally asymptotically stable’ with exponential

convergence, i.e., there exist a class j-function c and a

constant r[ 0 such that, for any ti;0 � 0 and any

xieðti;0Þ 2 R3, the solutions xieðtiÞ exist for every ti � ti;0
and satisfy

jxieðtiÞj 	 dcðjxieðti;0ÞjÞexpð�rðti � ti;0ÞÞ ð28Þ

with a constant d ¼ dðti;0Þ� 0 which only depends on ti;0.

In addition, according to Lemma 3, we have that

jzijj\li;ej; 8t[ 0; j ¼ 1; 2 when the initial conditions sat-

isfying zijð0Þ\li;ej; j ¼ 1; 2. Then it is straightforward that

xi3ðtÞ\li;e1 þ Xi1 ¼ li;s1, xi2ðtÞ\li;e2 þ Xi2 ¼ li;s2 from

xi3 ¼ zi1 þ xi3;d, xi2 ¼ zi2 þ ai, jxi3;dj 	Xi1, jaij 	Xi2.

Therefore, the designed control laws (23) and (25) can

prevent the state variables violating the state constraints in

(15).
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3.2 Cooperative neural network controller
design

Defining the velocity tracking error as

zi3 ¼ niv � ni ð29Þ

where niv ¼ ½niv;1; niv;2�T with niv;1 and niv;2 representing the

virtual velocity control laws designed in (25) and (23),

respectively.

The control objective now is to design the control input

ui for the dynamic system (12) so that the actual velocity ni
can track the virtual velocity control law niv with the state

variables ni1; ni2 being within the constraints.

The dynamics of the chain system (12) can be rewritten

as

_ni ¼ M�1
1 ðxiÞ½B1ðxiÞui � C1ðxi; _xiÞni � X1ðxiÞni

� G1ðxiÞ � F1ðxiÞ � ~sdi� ¼ .i
ð30Þ

where C1ðxi; _xiÞ;X1ðxiÞ;G1ðxiÞ;F1ðxiÞ are uncertain, and

.i ¼ ½.i;1; .i;2�
T
.

Combining (29) and (30), the error dynamics of the

robot system can be expressed as

M1 _zi3 ¼ f ðXiÞ � C1zi3 þ ~sdi � B1ui; 8i 2 I½1; L� ð31Þ

where f ðXiÞ ¼ M1
_niv þ C1niv þ X1ni þ G1 þ F1 represents

the unknown nonlinear dynamics of the mobile robot. We

use RBF NNs to estimate f ðXiÞ as

f ðXiÞ ¼ W
TUiðXiÞ þ �i; 8i 2 I½1; L� ð32Þ

where UiðXiÞ ¼ ½/i1ðXiÞ; :::/iNðXiÞ�T with /i1ðXiÞ �
/iNðXiÞ being the Gaussian radial basis functions, N being

the RBF NNs node number, Xi ¼ ½ _nTiv; n
T
iv; _xi3; xi3�

T
being

the input vector of NNs, W
 being the common ideal

weight matrix and �i being the approximate error satisfying

k�ik	 �
i .

Lemma 5 [42] Considering the function f ¼ ðb� b̂ÞTðq�
_bÞ; b; b̂; q 2 Rn; fi 	 bi 	#i where i denotes the ith element

of the vector, if
_̂b ¼ jðf; #; qÞq where jðf; #;qÞ is a

diagonal matrix composed of

jðfi; #i; qiÞ ¼
0; if b̂i 	 fi; qi 	 0

0; if b̂i �#i; qi � 0

1; otherwise

8
><

>:
ð33Þ

then f\0.

Since B1 contains unknown parameters, we use B̂1 to

estimate it and apply Lemma 5 to restrict B̂1 in an appro-

priate range so that it is invertible.

Defining B1ui ¼ KTUibi and using b̂i to estimate bi, we

can get that

B1ui ¼ B̂1ui � ~B1ui ¼ KTUib̂i � KTUi
~bi ð34Þ

where ~bi ¼ b̂i � bi is the estimation error and

Ui ¼
ui1 þ ui2 0

0 ui1 � ui2

� �

; bi ¼ ½1=ri;Ri=ri�T

According to (34), the error dynamics can be acquired as

M1 _zi3 ¼ f ðXiÞ � C1zi3 þ ~sdi � B̂1ui þ KTUi
~bi ð35Þ

for all i 2 I½1; L�.
According to the Moore–Penrose inverse, we have that

zTi3ðzTi3Þ
þ ¼ 0 zi3 ¼ ½0; 0�T

1 zi3 6¼ ½0; 0�T

(

ð36Þ

Then, we design the control input for system (12) as

ui ¼ B̂�1
1 ŴT

i UiðXiÞ þ Kvizi3 þ ksisignðzi3Þ
�

þ ðzTi3Þ
þ zi3;1ð _niv;1 � .i;1Þ

l2i;e31 � z2
i3;1

þ
zi3;2ð _niv;2 � .i;2Þ
l2i;e32 � z2

i3;2

 

þ
ki4;1z

2
i3;1

l2i;e31 � z2
i3;1

þ
ki4;2z

2
i3;2

l2i;e32 � z2
i3;2

!#

; 8i 2 I½1; L�

ð37Þ

where Ŵi is employed to estimate the common optimal

weight W
, ki4;1; ki4;2; ksi [ 0 are design constants, Kvi is

the gain matrix, and ksisignðzi3Þ is the robust term with

signðzi3;jÞ ¼
1; zi3;j [ 0

�1; zi3;j\0

0; zi3;j ¼ 0

8
><

>:
j ¼ 1; 2; ð38Þ

Assumption 8 Each wheeled mobile robot individual can

exchange its estimated weights with its neighbor robot.

Using the consensus theory and the communication

topology among the mobile robot individuals, we design

the weight update law of ŴT
i as

_̂Wi ¼ CwU
T
i ðXiÞzi3 � q

XL

j¼1

aijð ~Wi � ~WjÞ ð39Þ

where i 2 I½1; L�, q[ 0 is a design parameter and Cw is a

design positive definite diagonal gain matrix.

Remark 4 When q ¼ 0, the weight update law (39) of

cooperative learning degenerates to

_̂Wi ¼ CwU
T
i ðXiÞzi3; 8i 2 I½1; L� ð40Þ

which is called the weight update law of decentralized

learning. Since there is no information exchange among

mobile robots through communication network, the decen-

tralized learning control results that each robot can realize

local accurate identification of unknown nonlinear dynamics

for its own system; however, the experience knowledge
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acquired by independent learning is limited and it does not

have good generalization ability.

Meanwhile, the following parameter adaptive laws are taken

_̂bi ¼ jiCibU
T
i zi3 ð41Þ

where Cib is a design positive definite diagonal gain matrix.

Theorem 1 Given the closed-loop dynamics composed of

the multi-robot system (11) and (12), the reference model

(14), the designed control input (37), the weight update law

(39), and the parameter adaptive law (41), for the recur-

rent orbit wi of the input vector Xi, if there exists a suffi-

cient large compact set Ni such that Xi 2 Ni; 8i 2 I½1;N�,
then, for any initial conditions Zið0Þ satisfying the state

constraint and Ŵið0Þ, we have that: (i) all signals in the

closed-loop system are uniformly bounded, and by select-

ing proper parameters, each mobile robot can track its own

desired trajectory and the corresponding virtual velocity

control law without violating state constraints ; (ii) along

the recurrent orbit wiðXiðtÞÞjt�Ti
, the estimated weights Ŵi

partially converge to a small neighborhood of their com-

mon optimal value W
, then for all i 2 I½1;L�, the unknown
nonlinear dynamics f ðXiÞ can be obtained by ŴT

i UiðXiÞ
and �WT

i UiðXiÞ in the form of

�Wi ¼ mean
t2½ti1;ti2�

Ŵi ¼
1

ti2 � ti1

Z ti2

ti1

ŴiðrÞdr ð42Þ

where ½ti1; ti2�ðti2 [ ti1 [ TiÞ is a time interval.

Proof (i) Consider the following BLF candidate

V ¼ V2 þ
1

2

XL

i¼1

ln
l2i;e31

l2i;e31 � z2
i3;1

þ ln
l2i;e32

l2i;e32 � z2
i3;2

 !

þ 1

2

XL

i¼1

zTi3M1zi3 þ
1

2

XL

i¼1

trð ~WT
i C

�1
w

~WiÞ þ
1

2

XL

i¼1

~bTi C
�1
ib

~bi

ð43Þ

where li;e31 ¼ li;s31 � Xi31, li;e32 ¼ li;s32 � Xi32,

jniv;1j 	Xi31, jniv;2j 	Xi32, Xi31 and Xi31 are positive con-

stants, ~Wi ¼ Ŵi �W represent the weight estimation error.

Differentiating (43) with respect to time leads to

_V ¼
XL

i¼1

zi1 _zi1
l2i;e1 � z2

i1

þ zi2 _zi2
l2i;e2 � z2

i2

 !

þ
XL

i¼1

zi3;1 _zi3;1
l2i;e31 � z2

i3;1

þ zi3;2 _zi3;2
l2i;e32 � z2

i3;2

þ zTi3M1 _zi3 þ
1

2
zTi3 _M1zi3

 !

þ
XL

i¼1

ðtrf ~WT
i C

�1
w

_~Wig þ ~bTi C
�1
ib

_~biÞ

ð44Þ

Substituting (23), (25), (30), (35), (37), (39), (41) in (44)

and combining Property 2, we can get

_V ¼�
XL

i¼1

½ðki1z2
i1 þ ki2z

2
i2Þn

2
i1;d þ zTi3Kvizi3�

�
XL

i¼1

zTi3ðzTi3Þ
þ ki4;1z

2
i3;1

l2i;e31 � z2
i3;1

þ
ki4;2z

2
i3;2

l2i;e32 � z2
i3;2

" #

þ
XL

i¼1

ð1 � zTi3ðzTi3Þ
þÞ

zi3;1ð _niv;1 � .i;1Þ
l2i;e31 � z2

i3;1

 !" #

þ
XL

i¼1

ð1 � zTi3ðzTi3Þ
þÞ

zi3;2ð _niv;2 � .i;2Þ
l2i;e32 � z2

i3;2

 !" #

þ
XL

i¼1

zi1xi2ðni1;d � ni1Þ
l2i;e1 � z2

i1

þ
XL

i¼1

ðzTi3ð�i þ ~sdiÞ � ksikzi3kÞ

� q
XL

i¼1

~WT
i Cw

�1
XL

j¼1

aijðŴi � ŴjÞ
" #

ð45Þ

Note that

q
XL

i¼1

~WT
i Cw

�1
XL

j¼1

aijðŴi � ŴjÞ
" #

¼ q
XL

i¼1

~WT
i Cw

�1
XL

j¼1

aijðŴi �W
 � ðŴj �W
Þ
" #

¼ q
XL

i¼1

~WT
i Cw

�1
XL

j¼1

aijð ~Wi � ~WjÞ
" #

¼ q ~W
T
Cw

�1ðL � IÞ ~W

ð46Þ

where ~W ¼ ½ ~WT
1 ; ~WT

2 ; :::; ~WT
L �

T
and L is the Laplacian

matrix associated with the communication graph G, of

which all nonzero eigenvalues have positive real parts.

Since q[ 0 and Cw is positive diagonal matrix, this

implies that

q
XL

i¼1

~WT
i Cw

�1
XL

j¼1

aijðŴi � ŴjÞ
" #

	 0 ð47Þ

Considering the following inequality

zTi3ð�i þ ~sdiÞ	 kzi3kk�i þ ~sdik ð48Þ

and simplifying (45), we can obtain
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_V 	 �
XL

i¼1

½ðki1z2
i1 þ ki2z

2
i2Þn

2
i1;d þ zTi3Kvizi3�

�
XL

i¼1

ðksi � �i þ ~sdik kÞ zi3k k þ
XL

i¼1

zi1xi2ðni1;d � ni1Þ
l2i;e1 � z2

i1

þ
XL

i¼1

½ð1 � zTi3ðzTi3Þ
þÞ

zi3;1ð _niv;1 � .i;1Þ
l2i;e31 � z2

i3;1

 !

�

þ
XL

i¼1

½ð1 � zTi3ðzTi3Þ
þÞ

zi3;2ð _niv;2 � .i;2Þ
l2i;e32 � z2

i3;2

 !

�

þ
XL

i¼1

zTi3ðzTi3Þ
þ ki4;1z

2
i3;1

l2i;e31 � z2
i3;1

þ
ki4;2z

2
i3;2

l2i;e32 � z2
i3;2

" #

ð49Þ

where ksi � �i þ ~sdik k.

When zi3 ¼ ½0; 0�T , we have _V ¼ _V2 and the globally

asymptotically stability of the system can still be drawn.

Otherwise, when zi3 6¼ ½0; 0�T , we have

_V 	 �
XL

i¼1

½ðki1z2
i1 þ ki2z

2
i2Þn

2
i1;d þ zTi3Kvizi3�

þ
XL

i¼1

ðksi � �i þ ~sdik kÞ zi3k k þ
XL

i¼1

zi1xi2ðni1;d � ni1Þ
l2i;e1 � z2

i1

þ
XL

i¼1

ki4;1z
2
i3;1

l2i;e31 � z2
i3;1

þ
ki4;2z

2
i3;2

l2i;e32 � z2
i3;2

 !

ð50Þ

With the help of Lemma 4 and the fact of

limt!1ðni;v1 � ni1;dÞ ¼ 0, one can conclude that V is non-

increasing and converges to a limiting value Vlim � 0, and

zi1; zi2; zi3;1; zi3;2; ~Wi; ~b are bounded. By Assumption 6 and

the error dynamics (35), _zi1; _zi2; _zi3;1; _zi3;2;
_~Wi;

_~b are boun-

ded, which implies that €V is bounded and _V is uniformly

continuous. Thus, by Barbalat’s lemma, limt!1 _VðtÞ ¼ 0,

which means that lim
t!1

zi1 ¼ zi2 ¼ zi3;1 ¼ zi3;2 ¼ 0 and xe !
0 from the definition of zi1; zi2; zi3. Due to the existence of

the robust term ksisignðzi3Þ, the tracking error will converge

to a small neighborhood of zero.

From Lemma 3, we have that

jzi3;1j\li;e31; jzi3;2j\li;e32; 8t[ 0 when the initial condi-

tions satisfying zi3;1ð0Þ\li;e31; zi3;2ð0Þ\li;e32. Combined

with ni1 ¼ niv;1 � zi3;1; ni2 ¼ niv;2 � zi3;2; jniv;1j 	Xi31; jniv;2j
	Xi32, it can be obtained that

jni1ðtÞj\Xi31 þ li;e31 ¼ li;s31; jni2ðtÞj\Xi32 þ li;e32 ¼ li;s31

. Therefore, the designed control input ui can guarantee the

state variables ni1 and ni2 not violating the constraints.

(ii) Based on the localized property of RBF NN, for all

i 2 I½1; L�, the error dynamics of system (35) can be

expressed as

_zi3 ¼ M�1
1 ½W
TUiðXiÞ þ �i � ðKvi þ C1Þzi3

� Ŵi
T
UiðXiÞ þ c�

¼ M�1
1 ½W
T

i UiiðXiÞ þ �ii � ŴT
iiUiiðXiÞ � ŴT

i�iUi�iðXiÞ
� ðKvi þ C1Þzi3 þ c�

¼ M�1
1 ½� ~WT

iiUiiðXiÞ � ðKvi þ C1Þzi3 þ cii�
ð51Þ

where cii ¼ ~sdi þ �ii
0 � ksisignðzi3Þ � ðzTi3Þ

þ ½zi3;1ð
_niv;1�.i;1Þ

l2
i;e31

�z2
i3;1

þ zi3;2ð _niv;2�.i;2Þ
l2
i;e32

�z2
i3;2

þ ki4;1z
2
i3;1

l2
i;e31

�z2
i3;1

þ ki4;2z
2
i3;2

l2
i;e32

�z2
i3;2

� þ KTUi
~bi. Along the

union of the tracking orbits wi ¼ wii [ ::: [ wiL after Ti, the

subscript i and �i represent the regions close to and far away

from the tracking orbits w1;w2; :::;wL, respectively; Ŵii

and ~Wii are the local estimated weights and the corre-

sponding estimation error of each mobile robot, respec-

tively; �ii
0 ¼ �ii � ŴT

i�iUi�iðXiÞ ¼ OðiiÞ is the NN

approximation error along the tracking orbits;

�ii ¼ ½�ii;1; �ii;2�T , and W
T
i UiiðXiÞ¼ ½W
T

i;1Uii;1ðXiÞ;W
T
i;2

Uii;2ðXiÞ�T
Along the tracking orbits wijt[ Ti

, the neural weight

update law (39) can be rewritten as

_~Wii ¼ _̂Wii ¼ CwU
T
iiðXiÞzi3

� q
XL

j¼1

aijð ~Wii � ~WjiÞ; 8i 2 I½1; L�
ð52Þ

Since

q
PL

j¼1

a1jð ~W1i � ~WjiÞ

..

.

q
PL

j¼1

aLjð ~WLi � ~WjiÞÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼ qðL � IÞ ~Wi ð53Þ

where ~Wi ¼ ½ ~WT
1i; :::;

~WT
Li�

T
.

Introduce a state transformation Ei ¼ zi3=., where . is a

design constant for handling the bounded perturbations,

and the overall closed-loop adaptive learning system can be

described by

_E
_~W i

" #

¼
� �M �K �

�M

.
UT

i

.CwU
T
i �qðL � IÞ

�
E

~W i

� �

þ �
�M

.
ci

0n

2

4

3

5

2

6
4

ð54Þ
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where E ¼ ½ET
1 ; :::;E

T
L �

T
, �M ¼ ðI �M�1

1 Þ,
�K ¼ diagfðKv1 þ C1;1Þ; :::; ðKvL þ C1;LÞg,

Ui ¼ diagfU1iðX1Þ; :::;ULiðXLÞg, ci ¼ ½c1i; :::; cLi�T .

Remark 5 The introduced state transformation Ei ¼ zi3=.
is used to guarantee the perturbations � �Mci=. arbitrarily

small by choosing a large ., and then system (54) can be

regarded as a small perturbed system.

Assumption 1 can be verified based on the boundedness

of V, and Assumption 2 can be verified by choosing

P ¼ CwI;Q ¼ Cwð �M �K þ �KT �MTÞ. From the proof of the

boundedness of Ei, for i 2 I½1; L�, there exists finite time Ti
such that the state tracking errors zi1; zi2; zi3;1; zi3;2 tend to a

neighborhood of zero for ti [ Ti. Moreover,

xi3;d; _xi3;d; ni;d; _ni;d are periodic according to Assumption 6,

and then we have ni;d ! niv; _niv ! _ni;d; _xi3 ! _xi3;d; xi3 !
xi3;d after Ti, i.e., for 8t[ Ti, the input of RBF NN Xi ¼
½ _nTiv; n

T
iv; _xi3; xi3�

T
is periodic. According to Definition 2, the

cooperative ul-PE condition of UiðXiÞ is satisfied. On the

basis of Lemma 1, the nominal part of (54) is ULES, which

means that ðE; ~WiÞ converges to a neighborhood close to

zero. From the definition of ~Wii ¼ Ŵii �W

i , all robots

converge to a neighborhood close to the common optimal

weight W

i and a consensus between all the robots is

achieved. The convergence of Ŵi ! W

i implies that,

along the periodic trajectory wiðXiÞjt�Ti
, for all i 2 I½1; L�,

we have

f ðXiÞ ¼ W
T
i UiðXiÞ þ �i ¼ ŴT

i UiðXiÞ � ~WT
i UiðXiÞ þ �i

¼ ŴT
i UiðXiÞ þ �i;1 ¼ �WT

i UiðXiÞ þ �i;2

ð55Þ

where �i;1 ¼ �i � ~WT
i UiðXiÞ ¼ Oðk�ikÞ ( ~WT

i ! 0). The last

equality is obtained according to (42), where �Wi is the

corresponding sub-vector of �W along the periodic trajec-

tory wiðXiÞjt�Ti
and �i;2 is the approximation error using

�WT
i UiðXiÞ. It is apparent that �i;2 ¼ Oðk�i;1kÞ after a tran-

sient time.

However, from the definition of the localization of the

Gaussian RBF NNs, after time Ti along the tracking orbit

wiðXiÞjt�Ti
, we have

ŴTUðXiÞ ¼ ŴT
i UiðXiÞ þ ŴT

�i U�iðXiÞ; 8i 2 I½1; L� ð56Þ

for the neurons with centers far away from the trajectory

wiðXiÞjt�Ti
, the value of kU�iðXiÞk is very small and it

activates the relevant neural weight only slightly. Thus,

both ŴT
�i and ŴT

�i U�iðXiÞ, as well as �WT
�i and �WT

�i U�iðXiÞ,
remain small along the periodic trajectory wiðXiÞjt�Ti

. This

means that, for all i 2 I½1;N�, along the periodic trajectory

wiðXiÞjt�Ti
, the entire RBF NN ŴTUðXiÞ and �WTUðXiÞ can

be used to cooperatively approximate the unknown non-

linear dynamics f ðXiÞ accurately as

f ðXiÞ ¼ ŴT
i UiðXiÞ þ �i;1 ¼ ŴTUðXiÞ þ �1

¼ �WT
i UiðXiÞ þ �i;2 ¼ �WTUðXiÞ þ �2

ð57Þ

with �1 ¼ �i;1 � ŴT
�i U�iðXiÞ ¼ Oð�i;1Þ ¼ Oð�Þ and

�2 ¼ �i;2 � �WT
�i U�iðXiÞ ¼ Oð�i;2Þ ¼ Oð�Þ.

This ends the proof.

Remark 6 In a connected graph, some node is separate and

unable to accept any information from other nodes. The

learning processes of these nodes are independent of each

other, resulting that the neural weights only converge to

their neighborhood within local optimal values rather than

the domain consisting of the union of all state orbits, which

means that a neural network with good generalization

ability could not be obtained.

Remark 7 Theorem 1 shows that the mobile robot indi-

viduals achieve consensus by exchanging weights infor-

mation. Consequently, optimal estimate of the unknown

nonlinear dynamics of the robot is obtained, such that

cooperative tracking control and locally accurate nonlinear

identification with learning knowledge consensus can be

achieved simultaneously. The learned knowledge can be

used in the control task of the reference trajectory within

the orbital union without the retraining process of the

neural network.

4 Cooperative learning controller design

This section focuses on using the experience to obtain

accurate control performance in cooperative control tasks

without re-adjusting the neural weights. To do this, we

design a static neural network learning controller using the

learned knowledge �WTUðXiÞ as

uai ¼ B̂
�1

1 ðxiÞ �W
TUðXiÞ þ Kvizi3 þ ksisignðzi3Þ

�

þ ðzTi3Þ
þ zi3;1ð _niv;1 � .i;1Þ

l2i;e31 � z2
i3;1

þ
zi3;2ð _niv;2 � .i;2Þ
l2i;e32 � z2

i3;2

"

þ
ki4;1z

2
i3;1

l2i;e31 � z2
i3;1

þ
ki4;2z

2
i3;2

l2i;e32 � z2
i3;2

#!

; 8i 2 I½1; L�

ð58Þ

where �WTUðXiÞ ¼ ½ �W1
TU1ðXiÞ; �W2

TU2ðXiÞ �
T

is the

accurate approximation of RBF NN to unknown nonlinear

dynamics along the periodic trajectory wiðXiÞjt�Ti
.
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Theorem 2 Given the closed-loop dynamics composed of

the multi-robot system (11) and (12), the reference model

(14), the designed learning controller can guarantee the

tracking performance of the system.

Proof Consider the following BLF candidate

V ¼ 1

2

XL

i¼1

ln
l2i;e1

l2i;e1 � z2
i1

þ ln
l2i;e2

l2i;e2 � z2
i2

 !

þ 1

2

XL

i¼1

ln
l2i;e31

l2i;e31 � z2
i3;1

þ ln
l2i;e32

l2i;e32 � z2
i3;2

 !

þ 1

2

XL

i¼1

zTi3M1zi3 þ
1

2

XL

i¼1

~bTi C
�1
ib

~bi

ð59Þ

Differentiating (59), it yields

_Vl 	 �
XL

i¼1

½ðki1z2
i1 þ ki2z

2
i2Þn

2
i1;d þ zTi3Kvizi3�

þ
XL

i¼1

ðksi � �2i þ ~sdik kÞ zi3k k þ
XL

i¼1

zi1xi2ðni1;d � ni1Þ
l2i;e1 � z2

i1

þ
XL

i¼1

ð1 � zTi3ðzTi3Þ
þÞ

zi3;1ð _niv;1 � .i;1Þ
l2i;e31 � z2

i3;1

 !" #

þ
XL

i¼1

ð1 � zTi3ðzTi3Þ
þÞ

zi3;2ð _niv;2 � .i;2Þ
l2i;e32 � z2

i3;2

 !" #

þ
XL

i¼1

zTi3ðzTi3Þ
þ ki4;1z

2
i3;1

l2i;e31 � z2
i3;1

þ
ki4;2z

2
i3;2

l2i;e32 � z2
i3;2

" #

ð60Þ

where ksi � �2i þ ~sdik k (�2i is close to �i since the accurate

approximation in the learning period).

Similar to Theorem 1, it can be easily obtained that all

signals in the closed-loop system are bounded and the

tracking errors tend to zero without violating the state

constraints.

5 Numerical simulation

To verify the effectiveness of the proposed cooperative

learning control scheme, numerical simulations of a multi-

mobile robot system, which is composed of L uncertain

wheeled mobile robot subject to state constraints, are car-

ried out.

The associated matrices of all homogeneous mobile

robots are as follows

M1ðxiÞ ¼ k�1
u1

mx2
i3 þ J mxi3

mxi3 m

� �

;G1 ¼
0

0

� �

;

C1ðxi; _xiÞ ¼ k�1
u1

mxi3 _xi3 0

m _xi3 0

� �

; ~sdi ¼
xi3 1

1 0

� �

sdi;

X1ðxiÞ ¼
2ku2

ðku1r2Þ
x2
i3 þ R2 xi3

xi3 1

� �

;F1 ¼
xi3 1

1 0

� �

F

B1 ¼
ðxi3 þ RÞ=r ðxi3 � RÞ=r

1=r 1=r

� �

ð61Þ

with physical parameters being m ¼ 9 Kg, J ¼ 5 Kgm2,

2R ¼ 0:4 m, 2r ¼ 0:1 m, ra ¼ 1:6X, kb ¼ 0:019 V,

ks ¼ 0:2639 Nm=A, ng ¼ 10,

F1 ¼ ½30vi þ 4signðviÞ; 30xi þ 4signðxiÞ�T ,

~sdi ¼ k�1
u1 ½0:1 sin t; 0:1 cos t�T .

For simplicity, L ¼ 3 mobile robots are employed to

perform the cooperative tracking control task by

exchanging weight information via communication net-

works. The desired trajectories of mobile robots are given

as

xc1;d ¼ 0:8 cos t

yc1;d ¼ sin t

h1;d ¼ arctanð _yr= _xrÞ

8
>><

>>:

t1;d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2
c1;d þ _y2

c1;d

q

x1;d ¼
€yc1;d _xc1;d � €xc1;d _yc1;d

_x2
c1;d þ _y2

c1;d

8
>><

>>:

xc2;d ¼ cos t

yc2;d ¼ 0:8 sin t

h2;d ¼ arctanð _yr= _xrÞ

8
>><

>>:

t2;d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2
c2;d þ _y2

c2;d

q

x2;d ¼
€yc2;d _xc2;d � €xc2;d _yc2;d

_x2
c2;d þ _y2

c2;d

8
>><

>>:

xc3;d ¼ 1:2 cos t

yc3;d ¼ sin t

h3;d ¼ arctanð _yr= _xrÞ

8
>><

>>:

t3;d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2
c3;d þ _y2

c3;d

q

x3;d ¼
€yc3;d _xc3;d � €xc3;d _yc3;d

_x2
c3;d þ _y2

c3;d

8
>><

>>:

In accordance with the differential homeomorphism

mapping xd ¼ XðqdÞ 2 R3 and state transformation

gd ¼ KðqdÞnd, for i ¼ 1; 2; 3, the reference model of the

chain system can be obtained as

xi1;d ¼ hi;d
xi2;d ¼ xci;d cos hi;d þ yci;d sin hi;d
xi3;d ¼ xci;d sin hi;d � yci;d cos hi;d

8
><

>:

ni1;d ¼ xi;d

ni2;d ¼ �xi3;dxi;d þ vi;d

�
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and the desired trajectories of the corresponding states

satisfy that jxi3;dj 	Xi1 ¼ 0:2, jaij 	Xi2 ¼ 1,

jnv;1j 	Xi31 ¼ 1:25, jnv;2j 	Xi32 ¼ 0:45. The state con-

straints are selected as jxi3j 	 li;s1 ¼ 0:55,

jxi;2j 	 li;s2 ¼ 1:35, jni1j 	 li;s31 ¼ 2:75, jni2j 	 li;s32 ¼ 1:65,

and then the state error constraints are jzi1j
\li;e1 ¼ li;s1 � Xi1 ¼ 0:35, jzi2j\li;e2 ¼ li;s2 � Xi2 ¼ 0:35,

jzi31j\li;e31 ¼ li;s31 � Xi31 ¼ 1:5, jzi;32j\li;e32 ¼ li;s32�
Xi32 ¼ 1:2.

Firstly, we exploit the designed cooperative tracking

controller (37) with the communication topology graph

shown in Fig. 2, and then, the elements of A ¼ ½aij�N�N are

given as a12 ¼ a21 ¼ a23 ¼ a32 ¼ 1, a11 ¼ a13 ¼ a22 ¼
a31 ¼ a33 ¼ 0. We construct the RBF NNs ŴT

i UiðXiÞ ¼
½ŴT

i1Ui1ðXiÞ; ŴT
i2Ui2ðXiÞ�; i 2 I½1; 3� to approximate the

unknown nonlinear dynamics f ðXiÞ ¼ ½f1ðXiÞ; f2ðXiÞ� using

N ¼ 4 � 5 � 3 � 4 � 3 � 3 ¼ 2160 neurons with the cen-

ters evenly spaced on ½�1:5; 1:5� � ½�2; 2� � ½0; 2��
½�1:5; 1:5� � ½�1; 1� � ½0; 2� and the width being

bj ¼ 1:4; j ¼ 1; 2. The control parameters are chosen as:

ki1 ¼ 1:3, ki2 ¼ 1:5, ki3 ¼ 1:5, ki4;1 ¼ 2, ki4;2 ¼ 2,

Kv;i ¼ diagf60; 60g, ksi ¼ 0:1, 8i 2 I½1; 3�,
Cw ¼ diagf50; 50g, q ¼ 2. The initial states are

x1ð0Þ ¼ ½0:5p; 0; 1�T , n1ð0Þ ¼ ½0; 0�T , x2ð0Þ ¼ ½0:5p; 0;

1:2�T , n2ð0Þ ¼ ½0; 0�T , x1ð0Þ ¼ ½0:5p; 0; 1:4�T , n3ð0Þ ¼
½0; 0�T , and the neural weights Ŵi1; Ŵi2; i 2 I½1; 3� are ini-

tialized to zero.

From Fig. 3, the tracking errors of each mobile robot

converge to a neighborhood of zero, indicating that each

robot realized the tracking of its own desired trajectory.

Figure 4 shows that the constructed RBF NNs achieve good

approximation of the unknown nonlinear dynamics. In

Figs. 5 and 6, partial weights converge (only the weights of

robot 2 are displayed due to the space limited) and the

curve of Ŵi;1

�
�

�
�; Ŵi;2

�
�

�
�; i ¼ 1; 2; 3 is bounded and con-

verges to a common values, reflecting the consensus of

weights. To verify the learning capability of the obtained

NN models, the learned knowledge �Wi ¼ mean

t2½450;500�ŴiðtÞ; i 2 I½1; 3� are obtained as the experience of

cooperative control period. The initial conditions and

control parameters remain the same, and the simulation

results with the learned weights are shown in Figs. 7 and 8.

To further prove the generalization ability of trained

network model, the order of the three mobile robots is

exchanged as seen in Fig. 11. At this time, mobile robots

no longer need to communicate with others to share and

obtain information. Under the same initial conditions and

control parameters, the simulation results are shown in

Figs. 9 and 10. It can be seen that all robots can still

achieve the trajectory tracking with small errors and the

nonlinear uncertain dynamic f ðXiÞ is approximated well by
�WT
i UðXiÞ, illustrating the generalization ability of trained

network model, which is the result of all robots reaching a

consensus on the estimations of optimal weights.

Fig. 2 The communication topology graph
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Fig. 3 The tracking errors of cooperative tracking control
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Fig. 4 The approximation performance of cooperative tracking control

Fig. 5 The convergence of NN weights in cooperative tracking control
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Fig. 6 The norm of NN weights

in cooperative tracking control
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To compare the proposed cooperative learning

scheme with the traditional decentralized learning control

method, the weight update law (40) is utilized for

numerical simulation. Keeping all design parameters and

initial conditions, the convergent weights can still be

obtained after a finite time, but the curves of
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Fig. 7 The tracking errors of cooperative learning control
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Ŵi;1

�
�

�
�; Ŵi;2

�
�

�
�; i ¼ 1; 2; 3 converge to different values as

shown in Fig. 12. Likewise, exchanging the positions of

mobile robots according to the order in Fig. 11 and using

the learned knowledge in decentralized control to perform

the tracking task, the simulation results are shown in

Figs. 13 and 14. It can be seen that the tracking errors are
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Fig. 9 The tracking errors with position exchanged using learned knowledge
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Fig. 10 The approximation performance with position exchanged using learned knowledge
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much larger than that in the cooperative learning control,

and nonlinear uncertain dynamic f ðXiÞ cannot be well

approximated. The above simulation results fully declare

that the cooperative learning control scheme has better

generalization ability than the decentralized learning con-

trol method.

6 Conclusions

This paper investigates the cooperative control of multiple

uncertain mobile robots with state constraints. Using the

consistency theory, adaptive neural networks and the BLF

approach, a cooperative learning control scheme is

designed to guarantee each mobile robot accomplish the

tracking for its own desired trajectory and the learning of

unknown nonlinear dynamics simultaneously. The knowl-

edge of cooperative learning can be stored and reused for

robots to perform the same collaborative control tasks, and

the trained neural network also has good generalization

capability when performing the control task over a domain

consisting of the union of tracking orbits.
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Fig. 12 The norm of NN

weights in decentralized

tracking control
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Fig. 13 The tracking errors of decentralized tracking control

Fig. 11 The exchange order of

the three mobile robots
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