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Abstract
In this paper, we propose an analytical approach based on the Laplace transform and Mittag–Leffler functions combining

with linear matrix inequality techniques to study finite-time stability of fractional-order neural networks (FONNs) with

time-varying delay. The concept of finite-time stability is extended to the fractional-order neural networks and the delay

function is assumed to be non-differentiable, but continuous and bounded. We first prove some important lemmas on the

existence of solutions and on estimation of the Caputo derivative of specific quadratic functions. Then, new delay-

dependent sufficient conditions for finite-time stability of FONNs with time-varying delay are derived in terms of a

tractable linear matrix inequality and Mittag–Leffler functions. Finally, a numerical example with simulations is provided

to demonstrate the effectiveness and validity of the theoretical results.

Keywords Fractional derivative � Neural networks � Finite-time stability � Time-varying delay � Laplace transform �
Mittag–Leffler functions

1 Introduction

In the real world, neural networks have been found

everywhere such as in weather forecasting and business

processes because neural networks can create simulations

and predictions for complex systems and relationships

[1–6]. It is well-known that fractional-order systems

(FOSs) have attracted much attention due to their important

applications in various areas of applied sciences over the

past decades [7–9]. Fractional analysis has been considered

and developed in the context of neural networks as artificial

neural networks, Hopfield neural networks, etc. In fact, the

fractional-order derivative provides neurons with a funda-

mental and general computational ability that contributes to

efficient information processing and frequency-indepen-

dent phase shifts in oscillatory neuronal firings [10–16]. So

far, most of the existing literature have concerned with

Lyapunov asymptotic stability, however, in many practical

cases, one concerns the system behavior on finite-time

interval, i.e., finite-time stability (FTS) [17]. The concept

of FTS has been developed to control problems, which

concern the design of admissible controllers ensuring the

FTS of the closed-loop system. Many valuable results on

finite-time control problems such as finite-time stabiliza-

tion, finite-time optimal control, adaptive fuzzy finite-time

optimal control, etc. have been obtained for this type of

stability, see, [18–21] and the references therein. There-

fore, problem of finite-time stability for neural networks

described by fractional differential equations has attracted

a lot of attention from scientists. It is notable that most of

the results on the stability of FOS neural networks did not

consider time delay. In many practical applications, time

delay is well-known to be unavoidable and it can cause

oscillation or instability of the system.
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There are various approaches to studying FTS for FOSs

with delays including Lyapunov function method, Gron-

wall and Holder inequality approach, etc. The authors of

[22–24] studied FTS of linear FOSs by using a generalized

fractional Gronwall inequality lemma. In [25], Yang et al.

studied FTS of fractional-order neural networks (FONNs)

with delay. Chen et al. in [26] used some Holder-type

inequalities to propose new criteria for FTS. Combining the

Holder inequality and Gronwall inequality, Wu et al. [27]

obtained sufficient conditions for FTS of FONNs with

constant delay. Based on this approach the authors of

[28, 29] developed the similar results for the systems with

proportional constant delays. On the other hand, noting that

the Lyapunov–Krasovskii function (LKF) method is one of

the powerful techniques to studying stability of dynamical

systems with delays, however, the LKF method can not be

helpfully applied for fractional-order time-delay systems.

The difficulty lies in the finding LKF to apply the fractional

Lyapunov stability theorem. In [30–33], the authors used

fractional Lyapunov stability theorem to find appropriate

LKF for FOSs with time-varying delay, however, the proof

of the main theorem provides a gap due to a wrong

application of fractional Lyapunov stability theorem.

Hence, it is worth investigating the stability of FONNs with

time-varying delay. In the paper [34], the authors provided

some sufficient conditions for the FTS of singular frac-

tional-order systems with with time-varying delay. Very

recently, to avoid finding LKF the authors of [35]

employed fractional-order Razumikhin stability theorem to

derive criteria for H1 control of FONNs with time-varying

delay. To our knowledge, problem of FTS for fractional-

order neural networks with time-varying delays has not yet

been fully studied in the literature.

Motivated the above discussion, in this paper, we

investigate problem of FTS for a class of FONNs with

time-varying delay. Especially, the time-varying delay

considered in the FONNs is only required to be continuous

and interval bounded. The contribution of this paper is

twofold. First, considering FONNs with interval time-

varying delay, we propose some auxiliary lemmas on the

existence of solutions and on estimating the Caputo

derivative of some specific quadratic functions. Second,

using a proposed analytical approach based on the factional

calculus combining with LMI technique, we provide suf-

ficient conditions for FTS. The conditions are established

in terms of a tractable LMI and Mittag–Leffler functions. It

should be noted that the proposed approach of Laplace

transforms and inf–sup method has not yet seen in the field

of FONNs with time-varying delay, and the stability con-

ditions obtained in this paper are delay-dependent and

novel.

The article is structured as follows. Section 2 presents

formulation of the problem and some auxiliary technical

lemmas. In Sect. 3, the main result on FTS is presented

with an illustrative example and its simulation.

Notations. Rþ denotes the set of all real positive num-

bers; Rn denotes the Euclidean n� dimensional space with

its scalar product x>y; Rn�r denotes the space of all

ðn� rÞ-matrices; A> denotes the transpose of A; matrix A

is positive semi-definite ðA� 0Þ if x>Ax� 0; for all x 2 Rn;

A is positive definite ðA[ 0Þ if x>Ax[ 0 for all x 6¼ 0;
A�B means A� B� 0; Cð½�s; 0�;RnÞ denotes the set of

vector valued continuous functions from ½�s; 0� to Rn;

2 Preliminaries

We first recall from [7] basic concepts of fractional cal-

culus and some auxiliary results for the use in next section.

Definition 1 [7] For a 2 ð0; 1Þ and f 2 L1½0; T �; the frac-

tional integral Iaf ðtÞ; the Riemann derivative Da
Rf ðtÞ and

the Caputo derivative Da
Cf ðtÞ of order a; respectively are

defined as

Iaf ðtÞ ¼ 1

CðaÞ

Z t

0

ðt � sÞa�1f ðsÞds;

Da
Rf ðtÞ ¼

d

dt
ðI1�af ðtÞÞ; Da

Cf ðtÞ ¼ Da
Rðf ðtÞ � f ð0ÞÞ;

where CðsÞ ¼
R1
0

e�tts�1dt; s[ 0; t 2 ½0; T � is the Gamma

function.

The function

Ea;bðzÞ ¼
X1
n¼0

zn

Cðnaþ bÞ ; z 2 C; a[ 0; b[ 0

denotes Mittag–Leffler function. The Laplace transform of

the integrable function g(.) is defined by

L½gðtÞ�ðsÞ ¼
R1
0

e�stgðtÞdt:

Lemma 1 [7] Assume that f1ð:Þ; f2ð:Þ are exponentially

bounded integrable functions on Rþ; and 0\a\1; b[ 0:

Then

(1) L½Da
Cf1ðtÞ�ðsÞ ¼ saL½f1ðtÞ�ðsÞ � sa�1f1ð0Þ;

(2) L½ta�1Ea;aðbtaÞ�ðsÞ ¼
1

sa � b
;

L½EaðbtaÞ�ðsÞ ¼
sa�1

sa � b
;

(3) L½f1 � f2ðtÞ�ðsÞ ¼ L½f1ðtÞ�ðsÞ � L½f2ðtÞ�ðsÞ;

where f1ðtÞ � f2ðtÞ :¼
Rt
0

f1ðt � sÞf2ðsÞds:

Consider the following FONNs with time-varying delay:
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Da
CxiðtÞ ¼ �mixiðtÞ þ

Pn
j¼1

aijfjðxiðtÞÞ þ
Pn
j¼1

bijgjðxjðt � dðtÞÞÞ;

xiðhÞ ¼ /iðhÞ; h 2 ½�d2; 0�; i ¼ 1; n;

8><
>:

ð1Þ

or in the matrix form:

Da
CxðtÞ ¼ �MxðtÞ þ Ff ðxðtÞÞ þ Ggðxðt � dðtÞÞÞ; ð2Þ

where xðtÞ ¼ ðxiðtÞ; :::; xnðtÞÞ> is the state; the delay d(t)

satisfies 0\d1 � dðtÞ� d2; 8t� 0; /ðtÞ ¼
ð/iðtÞ; :::;/nðtÞÞ

>
is the initial condition with the norm

k/k ¼ sup
h2½�d2;0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

j/iðhÞj2
s

;

the variation functions

f ðxÞ ¼ ðf1ðx1ÞÞ; . . .; fnðxnÞÞ>; gðxÞ ¼ ðg1ðx1ÞÞ; . . .; gnðxnÞÞ>;

satisfy f ð0Þ ¼ 0; gð0Þ ¼ 0; and for all n; g 2 R; i ¼ 1; n :

9li [ 0 :jfiðnÞ � fiðgÞj � lijn� gj;

9ki [ 0 :jgiðnÞ � giðgÞj � kijn� gj;
ð3Þ

M ¼ diagðm1;m2; . . .;mnÞ; F ¼ ðaijÞn�n; G ¼ ðbijÞn�n are

the connections of the jth neuron to the ith neuron at time t.

Definition 2 Let c1; c2; T be given positive numbers.

System (1) is FTS with respect to ðc1; c2; TÞ if

k/k2 � c1 ) kxðtÞk2 � c2; t 2 ½0; T�:

Lemma 2 If / 2 Cð½�d2; 0�;RnÞ and the condition (3)

holds, then system (1) has a unique solution

x 2 Cð½�d2; TÞ;RnÞ:

Proof From Volterra integral form of system (2) we have

xðtÞ ¼ xð0Þ þ Ia½�MxðtÞ þ Ff ðxðtÞÞ þ Ggðxðt � dðtÞÞÞ�;

and consider the function

HðyÞðtÞ ¼
/ð0Þ þ Ia½vyðtÞ� if t� 0;

/ðtÞ if t 2 ½�d2; 0Þ;

�

where

vyðtÞ ¼ �MyðtÞ þ Ff ðyðtÞÞ þ Ggðyðt � dðtÞÞÞ:

Note that the function vyðtÞ is continuous on [0, T] if y 2
Cð½�d2; T �;RnÞ: So we can see that function Hð�Þ maps

Cð½�d2; T �;RnÞ into Cð½�d2; T �;RnÞ: In fact from the

uniform continuity of vyðtÞ on [0, T], there is a d[ 0 such

that for all t1; t2 2 ½0; T�; t2 � t1; and

jt1 � t2j � d ) jvyðt1Þ � vyðt2Þj � e;

hence

jHðyÞðt1Þ � HðyÞðt2Þj �
e

CðaÞ
���
Zt2

0

sa�1ds
���þ 1

CðaÞ sup
s2½0;T �

jvyðsÞj
���
Zt1

t2

sa�1ds
���

� e
CðaÞ

Ta

a
þ 1

CðaÞ sup
s2½0;T �

jvðsÞj
��� ta2
a
� ta1

a

���;

which also shows the continuity of H(y)(t) on ½�d2; T �:
Next, for t 2 ½0;T �; y; z 2 Cð½�d2;T �;RnÞ :

jvyðtÞ � vzðtÞj� jMjjyðtÞ � zðtÞj þ jFjjf ðyðtÞÞ � f ðzðtÞÞj
þ jGjjgðyðt � dðtÞÞÞ � gðzðt � dðtÞÞÞj

� ðjMj þ jFjmax
i

li þ jGjmax
i

kiÞ

sup
s2½�d2;T �

jyðsÞ � zðsÞj;

which leads to

jHðyÞðtÞ � HðzÞðtÞj� c1t
a

CðaÞa sup
s2½�d2;T �

jyðsÞ � zðsÞj;

where c1 ¼ jMj þ jFjmax
i

li þ jGjmax
i

ki: Similarly, by

induction, we have for m ¼ 1; 2:::

jHmðyÞðtÞ � HmðzÞðtÞj � c1

tma

Cðmaþ 1Þ sup
s2½�d2;T �

jyðsÞ � zðsÞj;

sup
s2½�d2;T �

jHmðyÞðsÞ � HmðzÞðsÞj

� c1T
ma

Cðmaþ 1Þ sup
s2½�d2;T �

jyðsÞ � zðsÞj:

Besides, the space Cð½�d2; T�;RnÞ with the norm kyk ¼

sup
s2½�d2;T �

jyðsÞj is a Banach space. Hence,

Hmð�Þ : Cð½�d2; T �;RnÞ ! Cð½�d2; T �;RnÞ

is a contraction map with this sup norm as m enough large.

Applying the fixed-point theorem, we derive the existence

of a unique solution x 2 Cð½�d2; T �;RnÞ: h

Lemma 3 [34] For d[ 0 and N[ 0; if function S :

½�d;N� ! Rþ is non-decreasing and satisfies

SðtÞ� aSð0Þ þ bSðt � dÞ; a[ 1; b� 0; t� 0;

then
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SðtÞ� Sð0Þa
X½N=d�þ1

j¼0

bj; 8t 2 ½0;N�:

3 Main result

This section provides new conditions for FTS of system (1)

in term of a tractable LMI and Mittag–Leffler condition.

Before proving the theorem, let us denote [d] by the integer

part of d and

c ¼ d2

2 max
i

k2
i

; In ¼ diagf1; . . .; 1g 2 Rn�n;

E11 ¼� 2PM � d2Pþ bmax
i

l2i In;E12 ¼ PF; E21

¼ ½PF�>; E13 ¼ PG;

E31 ¼½PG�>; E22 ¼ �bIn; E33 ¼ �cP; E44 ¼ In � P;

E55 ¼P� 2In; all the others Eij ¼ 0:

Theorem 1 Let c1; c2; T be given positive numbers. System

(1) is FTS with respect to ðc1; c2; TÞ if there exist a number

b[ 0 and a symmetric matrix P[ 0 such that

E11 E12 : : E15

� E22 : : E25

: : : : :

� � : : E55

0
BBB@

1
CCCA\0 ð4Þ

kmaxðPÞ
kminðPÞ

Eaðd2T
aÞ

X½T=d1�þ1

j¼0

ðEaðd2T
aÞ � 1Þj\ c2

c1

: ð5Þ

Proof Let us consider the following non-negative quad-

ratic functional VðxðtÞÞ ¼ xðtÞ>PxðtÞ: Since the solution

x(t) may not be non-differentiable, we propose the fol-

lowing result on estimating Caputo derivative of V(x(t)). h

Lemma 4 For the solution xðtÞ 2 Cð½�d2; T�;RnÞ; the

Caputo derivative Da
CðVðxðtÞÞÞ 2 Cð½0; T �;RnÞ exists and

Da
C½VðxðtÞÞ� � 2xðtÞ>PDa

CxðtÞ; t� 0:

To prove the lemma, we note that xðtÞ 2 Cð½�d2; T �;RnÞ
(by Lemma 2), the function

uðtÞ ¼ �MxðtÞ þ Ff ðxðtÞÞ þ Ggðxðt � dðtÞÞÞ;

is continuous on [0, T]. Hence, we get

��� xðtÞ � xð0Þ
ta

� uð0Þ
Cðaþ 1Þ

��� ¼
���
Rt
0

ðt � sÞa�1ðuðsÞ � uð0ÞÞds

taCðaÞ

���

� sup
s2½0;t�

���uðsÞ � uð0Þ
���
���
Rt
0

ðt � sÞa�1ds

taCðaÞ

���

¼ 1

Cðaþ 1Þ sup
s2½0;t�

���uðsÞ � uð0Þ
��� ! 0;

as t ! 0: In the other words,

c0 :¼ lim
t!0

xðtÞ � xð0Þ
ta

¼ uð0Þ
Cðaþ 1Þ : ð6Þ

Consequently,

lim
t!0

VðxðtÞÞ � Vðxð0ÞÞ
ta

¼ 2
�
xð0Þ; Puð0Þ

Cðaþ 1Þ
�
: ð7Þ

It is easy to calculate the following integral
Z t

nt

VðxðtÞÞ � VðxðsÞÞ
ðt � sÞaþ1

ds ¼
Z t

nt

ðxðtÞ � xðsÞ; 2PxðtÞÞ
ðt � sÞaþ1

ds

�
Z t

nt

ðxðtÞ � xðsÞ;P½xðtÞ � xðsÞ�Þ
ðt � sÞaþ1

ds

¼I1ðt; nÞ � I2ðt; nÞ:
ð8Þ

From Theorem 2.2 of [36] it follows that Da
Cx ¼ u 2

Cð½0; T �;RnÞ; and when n ! 1�; we have

jI1ðt; nÞj ¼
���
� Z t

nt

xðtÞ � xðsÞ
ðt � sÞaþ1

ds; 2PxðtÞ
����

� sup
0\t� T

���
Z t

nt

xðtÞ � xðsÞ
ðt � sÞaþ1

ds
���2 sup

t2½0;T �
jPxðtÞj ! 0;

ð9Þ

when n ! 1�; and

x ¼ xð0Þ þ c0t
a þ x0; x0 2 Ha

0 ½0; T �; t 2 ð0; T �:

Hence, for 0� nt� s\t� T ; n 2 ð0; 1�; we obtain that

��� xðtÞ � xðsÞ
ðt � sÞa

����
���c0

ta � sa

ðt � sÞa
���þ

��� x0ðtÞ � x0ðsÞ
ðt � sÞa

���

¼c0

ðt � sÞaca�1

ðt � sÞa þ
��� x0ðtÞ � x0ðsÞ

ðt � sÞa
���;

� kðnÞ :¼ c0a½1=n� 1�1�a

þ sup
0� s\t�T ;jt�sj � Tð1�nÞ

��� x0ðtÞ � x0ðsÞ
ðt � sÞa

���;

where c 2 ðs; tÞ: Thus, as n ! 1�; we get
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jI2ðt; nÞj ¼
Z t

nt

ðxðtÞ � xðsÞ;P½xðtÞ � xðsÞ�Þ
ðt � sÞaþ1

ds

� Tað1 � nÞa

a
kPkkðnÞ2 ! 0;

ð10Þ

because kðnÞ is independent on s; t; and x0 2 Ha
0 ½0; T �:

From (8), (9), (10), as n ! 1�;

sup
0\t�T

���
Z t

nt

ðt � sÞ�a�1ðVðxðtÞÞ � VðxðsÞÞÞds
��� ! 0: ð11Þ

Using Theorem 2.2 of [36] and (7), (11) gives

9Da
CVðxðtÞÞ 2 C½0; T� and

Da
CðVðxðtÞÞÞð0Þ ¼ 2

�
xð0Þ;Pvð0Þ

�
;

Da
CðVðxðtÞÞÞ ¼

VðxðtÞÞ � Vðxð0ÞÞ
taCð1 � aÞ

þ a
Cð1 � aÞ

Z t

0

VðxðtÞÞ � VðxðsÞÞ
ðt � sÞaþ1

ds; t 2 ð0; T �:

ð12Þ

Besides we have Da
Cx 2 C½0; T� and

ðDa
CxÞð0Þ ¼Cðaþ 1Þ uð0Þ

Cðaþ 1Þ ¼ uð0Þ;

ðDa
CxÞðtÞ ¼

1

Cð1 � aÞ

� xðtÞ � xð0Þ
ta

þ a
Cð1 � aÞ

Z t

0

xðtÞ � xðsÞ
ðt � sÞ1þa ds

�
:

ð13Þ

The identities (12) and (13) lead to Da
CðVðxðtÞÞÞ �

2ðxðtÞ;PDa
CxðtÞÞ ¼ 0; t ¼ 0 and for t 2 ð0; T � to

Da
CðVðxðtÞÞÞ � 2ðxðtÞ;PDa

CxðtÞÞ

¼ �VðxðtÞ � xð0ÞÞ
taCð1 � aÞ � a

Cð1 � aÞ

Z t

0

VðxðtÞ � xðsÞÞ
ðt � sÞaþ1

ds

� 0;

which completes the proof of Lemma 4.

To finish the theorem’s proof, denoting

nðtÞ ¼ ½xðtÞ; f ð�Þ; gð�Þ�>; f ð�Þ ¼ f ðxðtÞÞ; gð�Þ ¼ gðxðt � dðtÞÞÞ;

we obtain, by using Lemma 4, that

Da
CVðxðtÞÞ� 2xðtÞ>PDa

CxðtÞ

¼2xðtÞ>P
�
�MxðtÞ þ Ff ðxðtÞÞ þ Ggð�Þ

�

� 2xðtÞ>P
�
�MxðtÞ þ Ff ðxðtÞÞ þ Ggð�Þ

�

� bf ð�Þ>f ð�Þ � cgð�Þ>Pgð�Þ þ bmax
i

l2i xðtÞ>xðtÞ

� d2xðtÞ>PxðtÞ þ d2VðxðtÞÞ þ cgð�Þ>Pgð�Þ
¼nðtÞ>½Eij�3�3nðtÞ þ d2VðxðtÞÞ þ cgð�Þ>Pgð�Þ
� d2VðxðtÞÞ þ cgð�Þ>Pgð�Þ;

ð14Þ

because of kf ð�Þk2 � max
i

l2i kxðtÞk2; and ½Eij�3�3\0 (by

the condition (4)). Let

UðtÞ ¼ Da
CVðxðtÞÞ � d2VðxðtÞÞ; t� 0: ð15Þ

Using the Laplace transform (by Lemma 1-(i)) to the both

sides of (15) gives

L½UðtÞ�ðsÞ ¼ saL½VðxðtÞÞ�ðsÞ � sa�1Vðxð0ÞÞ
� d2L½VðxðtÞÞ�ðsÞ;

equivalently

L½VðxðtÞÞ�ðsÞ ¼ ðsa � d2Þ�1sa�1Vðxð0ÞÞ
þ ðsa � d2Þ�1L½UðtÞ�ðsÞ:

Applying Lemma 1 -(ii), (iii), we obtain that

L
h
Vðxð0ÞÞEaðd2t

aÞ�ðsÞ ¼ðsa � d2Þ�1sa�1Vðxð0ÞÞ

L
h
ta�1Ea;aðd2t

aÞ � UðtÞ�ðsÞ ¼ðsa � d2Þ�1L½UðtÞ�ðsÞ;

hence

L½VðxðtÞÞ�ðsÞ

¼ L
h
Vðxð0ÞÞEaðd2t

aÞ þ ta�1Ea;aðd2t
aÞ � UðtÞ

i
ðsÞ:

Taking the inverse Laplace transform to the derived

equation gives

VðxðtÞÞ ¼ Vðxð0ÞÞEaðd2t
aÞ

þ
Z t

0

UðsÞ
ðt � sÞ1�a Ea;aðd2ðt � sÞaÞds:

ð16Þ

Using (14) and the inequality (3) we have

UðtÞ� cgð�Þ>Pgð�Þ � 2cgð�Þ>gð�Þ

� 2cmax
i
½ki�2

Xn
i¼1

jxiðt � dðtÞÞj2

� d2xðt � dðtÞÞ>Pxðt � dðtÞÞ ¼ d2Vðxðt � dðtÞÞÞ;

then
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sup
s2½0;t�

UðsÞ� d2 sup
h2½�d2;t�d1�

VðxðhÞÞ: ð17Þ

From (16) and (17) it gives

VðxðtÞÞ�Vðxð0ÞÞEaðd2t
aÞ þ sup

s2½0;t�
UðsÞ

Z t

0

Ea;aðd2ðt � sÞaÞ
ðt � sÞ1�a ds

�Vðxð0ÞÞEaðd2t
aÞ þ ðEaðd2t

aÞ � 1Þ
sup

h2½�d2;t�d1�
VðxðhÞÞ;

Moreover, we have

sup
h2½�d2;t�

VðxðhÞÞ�Eaðd2T
aÞVðxð0ÞÞ

þ ½Eaðd2T
aÞ � 1� sup

h2½�d2;t�d1�
VðxðhÞÞ:

ð18Þ

Applying Lemma 3 with SðtÞ ¼ sup
h2½�d2;t�

VðxðhÞÞ; a ¼

Eaðd2T
aÞ; b ¼ Eaðd2T

aÞ � 1; and from (18) it follows that

sup
h2½�d2;t�

VðxðhÞÞ� q sup
h2½�d2;0�

VðxðhÞÞ� qkmaxðPÞk/k2;

ð19Þ

, where q ¼ Eaðd2T
aÞ

P½T=d1�þ1

j¼0

ðEaðd2T
aÞ � 1Þj: For t 2

½0; T�; the conditions (5) and (19) show that

Time(sec)
0 1 2 3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5

3

3.5

4

c1=1

c2=4

||x(t)||2

||x(t)||2

c
1
=1, c

2
=4

Fig. 1 Time history of kxðtÞk2

of the system with a ¼ 0:5
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3.5

4

c1=1

c2=4

||x(t)||2

||x(t)||2

c
1
=1, c

2
=4

Fig. 2 Time history of kxðtÞk2

of the system with a ¼ 0:6
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kxðtÞk2 � xðtÞ>PxðtÞ
kminðPÞ

�
sup

h2½�d2;t�
VðxðhÞÞ

kminðPÞ

� q
kmaxðPÞ
kminðPÞ

k/k2 � q
kmaxðPÞ
kminðPÞ

c1 � c2;

which shows that system (1) is FTS with respect to

ðc1; c2; TÞ:

Remark 1 Note that the numbers c1; c2; do not involve in

the LMI (4), we find the solutions P; b by solving LMI (4)

and the condition (5) can be easily verified.

Remark 2 Theorem 1 proposed delay-dependent sufficient

conditions for finite-time stability of FONNs with interval

time-varying delay, which is a non-differentiable function,

extends some existing results obtained in [23, 30–33],

where the time delay is assumed to be differentiable.

Moreover, for the case fractional derivative order a ¼ 1;

system (1) is reduced to normal fractional-order neural

networks with time-varying delay and some existing results

on FTS of such systems obtained in [4, 34, 37–39] can be

derived from Theorem 1.

Remark 3 It should be pointed out that the advantage of

our paper was proposing an approach based on the Laplace

transform combining with the inf–sup method to study

stability of FONNs with interval time-varying delay with-

out using the fractional Lyapunov stability theorem.

Example 1 Consider FONNs (1) with the following system

parameters

a ¼0:5; dðtÞ ¼ 0:1 þ 0:05j sinðtÞj;

M ¼
1 0

0 1

� �
; A ¼

1 � 1

0 1

� �
; B ¼

1 0

1 1

� �
;

the neuron activation functions f ; g : R2 ! R2 defined by

f ðxÞ ¼ðf1ðx1Þ; f2ðx2ÞÞ>; gðxÞ ¼ ðg1ðx1Þ; g2ðx2ÞÞ>;

f1ðtÞ ¼f2ðtÞ ¼ g1ðtÞ ¼ g2ðtÞ ¼ 0:08
t

1 þ t2
;

for all t 2 R; ðx1; x2Þ 2 R2:
It can be shown that 0\d1 ¼ 0:1� dðtÞ� d2 ¼ 0:15;

f ð0Þ ¼ gð0Þ ¼ 0; and the neuron activation functions

satisfy the Lipschitz conditions (3) with l1 ¼ l2 ¼ k1 ¼
k2 ¼ 0:1: Since the delay function d(t) is non-differen-

tiable, the method used in [20, 30–33] cannot be applied.

We use the LMI algorithm in MATLAB [40] to find

solutions of (4) as

P ¼
1:7413 0:1105

0:1105 1:7544

� �
; b ¼ 5:8115:

In this case, it can be computed that

c ¼ 7:5; kmaxðPÞ ¼ 1:8586; kminðPÞ ¼ 1:6371:

For c1 ¼ 1; c2 ¼ 4; T ¼ 10; we can check the condition

(5) as

Eaðd2T
aÞ

X½T=d1�þ1

j¼0

ðEaðd2T
aÞ � 1Þj kmaxðPÞ

kminðPÞ
c1 ¼ 3:9939\4

Hence, by Theorem 1, the system (1) is FTS with respect to

(1, 4, 10). Figure 1 and Figure 2 demonstrate the time

history kxðtÞk2
of the system with initial condition /ðtÞ ¼

½0:65; 0:65�; t 2 ½�0:15; 0� and a ¼ 0:5; and a ¼ 0:6;,

respectively.

4 Conclusions

In this paper, the finite-time stability problem for a class of

FONNs with interval time-varying delay has been addres-

sed. Based on a novel analytical approach, delay-dependent

sufficient conditions for FTS are proposed. The conditions

are presented in the form of a tractable LMI and Mittag–

Leffler functions. Finite-time stability analysis of FONNs

with unbounded time-varying delay may be interesting

topics to study in the future, and an extension of this study

to non-autonomous FONNs with delays is an open

problem.
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