
ORIGINAL ARTICLE

Deep embedded self-organizing maps for joint representation learning
and topology-preserving clustering

Florent Forest1,2 • Mustapha Lebbah1 • Hanene Azzag1 • Jérôme Lacaille2

Received: 23 January 2021 / Accepted: 10 July 2021 / Published online: 3 August 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
A recent research area in unsupervised learning is the combination of representation learning with deep neural networks

and data clustering. The success of deep learning for supervised tasks is widely established. However, recent research has

demonstrated how neural networks are able to learn representations to improve clustering in their intermediate feature

space, using specific regularizations. By considering representation learning and clustering as a joint task, models learn

clustering-friendly spaces and outperform two-stage approaches where dimensionality reduction and clustering are per-

formed separately. Recently, this idea has been extended to topology-preserving clustering models, known as self-orga-

nizing maps (SOM). This work is a thorough study on the deep embedded self-organizing map (DESOM), a model

composed of an autoencoder and a SOM layer, training jointly the code vectors and network weights to learn SOM-friendly

representations. In other words, SOM induces a form a regularization to improve the quality of quantization and topology

in latent space. After detailing the architecture, loss and training algorithm, we study hyperparameters with a series of

experiments. Different SOM-based models are evaluated in terms of clustering, visualization and classification on

benchmark datasets. We study benefits and trade-offs of joint representation learning and self-organization. DESOM

achieves competitive results, requires no pretraining and produces topologically organized visualizations.

Keywords Self-organizing maps � Clustering � Visualization � Representation learning � Deep learning � Autoencoder

1 Introduction

After the successes of deep neural networks on supervised

tasks such as classification and regression in various

domains during the last decade, recent research has focused

on learning representations with neural networks for

unsupervised tasks, and cluster analysis in particular.

Representation learning for clustering is currently a very

active research area.

Clustering algorithms are a family of unsupervised

learning algorithms that try to find groups of similar ele-

ments in a data set. However, traditional clustering algo-

rithms tend to be ineffective on high-dimensional data

where similarity measures become meaningless. An intu-

itive solution is to first reduce the dimensionality of data

(while minimizing information loss) and then cluster the

data in a low-dimensional space. This can be achieved by

using for example linear dimensionality reduction tech-

niques such as PCA, or nonlinear models with more

expressive power such as deep autoencoders. In this two-

stage approach, we:

1. Optimize a pure information loss criterion between

data points and their low-dimensional embeddings (this

generally takes the form of a reconstruction loss

between a data point and its reconstruction, e.g., mean

squared error).

& Florent Forest

forest@lipn.univ-paris13.fr

Mustapha Lebbah

mustapha.lebbah@lipn.univ-paris13.fr

Hanene Azzag

azzag@univ-paris13.fr

Jérôme Lacaille

jerome.lacaille@safrangroup.com

1 LIPN (CNRS UMR 7030), Université Sorbonne Paris Nord,

99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse,

France

2 Safran Aircraft Engines, Rond-point René Ravaud,

77550 Moissy-Cramayel, France

123

Neural Computing and Applications (2021) 33:17439–17469
https://doi.org/10.1007/s00521-021-06331-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-6878-8752
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06331-w&domain=pdf
https://doi.org/10.1007/s00521-021-06331-w

2. Optimize a pure clustering criterion using some

clustering algorithm (e.g., k-means quantization error).

In contrast, so-called deep clustering approaches treat

clustering and representation learning as a joint task and

focus on learning representations that are more clustering-

friendly. The principle is to learn a representation space

that preserves a specific prior knowledge, in this case,

cluster structure.

We focus on a specific family of clustering algorithms

called self-organizing map models, which perform simul-

taneous clustering and visualization by projecting high-

dimensional data onto a low-dimensional map (typically

two-dimensional for visualization purpose) having a grid

topology. The grid is composed of units, also called neu-

rons or cells. Each map unit is associated with a prototype

vector from the original data space (also called code vector

indifferently). Self-organizing map algorithms enforce a

constraint on the topology of the map, so that neighboring

units on the map correspond to prototype vectors that are

close in the original high-dimensional space, according to a

distance metric. The most well-known self-organized

model is Kohonen’s self-organizing map (SOM) [27, 28].

Due to their visualization capability and interpretability,

SOMs have been applied across various applications: in the

aerospace industry [5, 12, 14, 15], public health [19, 34],

volcanology [4], among many others. As for clustering,

self-organized models could benefit from representation

learning with neural networks. SOM is part of the more

general family of learning vector quantizers (LVQ), and the

possible combination of deep architectures with LVQ has

already been realized [45].

The deep embedded self-organizing map (DESOM)

model and some of its variants were introduced in previous

works [16, 17]. Studying this particular model is the main

subject of this work, but the combination of autoencoders

and self-organizing maps has been tackled in several other

concurrent works [13, 19, 34, 40]. In a quite different

approach [10], a SOM is trained on the features extracted

by pre-trained convolutional networks. More details will be

given in the background section.

The DESOM model has already been applied in the

literature, to analyze energy consumption of buildings for

smart energy management [43]. It was used in [36] and

extended to jointly learn feature relevance weights. Finally,

it has been applied to seismic facies data in [31]. DESOM

outperformed the other two-stage dimensionality reduction

? SOM methods (such as autoencoder?SOM), and authors

introduced a variant called SDESOM (Sparse DESOM)

with a sparsity constraint on the latent space, which

improved feature extraction and clustering performance.

The goal of joint representation learning and self-orga-

nization is to (1) learn the representation space and the

SOM map simultaneously, without using a two-stage

approach; (2) find a latent space that is more adapted to the

SOM algorithm, according to some quality metric. Using

the term coined by [50], we seek a SOM-friendly space.

The SOM prototypes are then learned in latent space. To

learn this new representation, we use an autoencoder neural

network, composed of an encoder network that maps data

points to the latent space, and a decoder network that

reconstructs latent points into vectors of the original data

space. For visualization and interpretation of the map, we

need the prototypes to lie in the original feature space, so

we reconstruct them using the decoder part of the autoen-

coder network. This approach very much resembles joint

representation learning and clustering, but with an addi-

tional topology constraint. Our experiments show that this

approach has clear advantages:

• Autoencoders with sufficiently high capacity yield

meaningful low-dimensional representations of high-

dimensional data that facilitate SOM learning and

improve clustering performance.

• Self-organization and representation learning can be

achieved in a single joint task, without a separate

preprocessing step, thus cutting down overall training

time.

After this introduction, the rest of the paper is organized as

follows:

1. A background and related work section introduces

concepts, mathematical notations and references on

self-organizing maps, autoencoders and representation

learning for clustering and SOM.

2. A section is devoted to introducing our main contri-

bution, titled: Deep Embedded SOM (DESOM).

3. The benchmark datasets used in this paper are

described in a datasets section.

4. The experiments section presents results of studies on

DESOM’s hyperparameters and training process.

5. Results of a large clustering and classification bench-

mark are presented in the last section.

Finally, we conclude by summarizing the main points of

our work and discuss future perspectives. Appendix 1

details all performance metrics that are used throughout the

paper to evaluate and compare different aspects of models.

Appendix 2 showcases two examples of large map visu-

alizations. Before going on, here are the main contributions

of this work:

• We provide a background on a novel field, which is the

combination of self-organized clustering algorithms and

representations learning through neural networks.

• We present the Deep Embedded SOM (DESOM), a

model that jointly trains an autoencoder and a self-

17440 Neural Computing and Applications (2021) 33:17439–17469

123

organizing map, using stochastic gradient descent. The

model was already introduced in previous works

[16, 17], with limited experiments and analyses. In this

paper, we conduct more thorough quantitative and

qualitative studies.

• We study the architecture, hyperparameters and training

dynamics of DESOM through extensive experiments

and visualizations.

• We perform a benchmark of several clustering and

SOM-based models on standard datasets, evaluating

clustering performance, visual quality and classification

power.

• In the appendix, we present a collection of internal and

external metrics to evaluate different aspects of SOM

performance.

All the codes (model and performance metrics) are avail-

able online as open-source projects1,2.

2 Background and related work

This section starts by first providing background on self-

organizing maps and autoencoders, and will introduce

notations that will be used throughout the rest of the paper.

Secondly, we will sift through recent research on joint

representation learning for clustering, and more specifically

deep self-organizing maps.

2.1 Self-organizing maps

The self-organizing map (SOM) [27, 28] is a bio-inspired

clustering model that introduces a topological relationship

between clusters. It consists in a network of two layers: an

input layer, and an output layer of interconnected nodes,

often called neurons or units. Typically, the topology of

this layer is chosen as a two-dimensional grid, because it

can be easily visualized. This visualization capability

characterizes SOM as an interpretable clustering method.

The set of input data samples is denoted

X ¼ fxig1� i�N ; xi 2 RD. A self-organizing map is com-

posed of K units, associated with the set of prototype

vectors fmkg1� k�K . In the standard SOM, the prototype

vectors lie in the same space as the input data, i.e., RD. A

data point is projected on the map by finding its closest

prototype vector according to Euclidean distance. The

corresponding map unit is called the best-matching unit

(BMU). We introduce the notation bi for the BMU of xi:

bi ¼ argmin
k
jjxi �mkjj22 ð1Þ

The grid topology allows to define an inter-node distance

dðk; lÞ, which is the topographic distance between units k

and l on the map, here the Manhattan distance (the length

of the shortest path on the map between the two units). We

then define the neighborhood function of the SOM and a

temperature parameter T, controlling the radius of the

neighborhood around a unit. In this work, we will use a

Gaussian neighborhood function, expressed as follows:

KTðdÞ ¼ e�
d2

T2

The temperature T is decreased at each training iteration, as

in simulated annealing. A common choice is exponential

decay, starting from an initial temperature Tmax toward a

final temperature Tmin, i.e., at iteration i:

TðiÞ ¼ Tmax
Tmin
Tmax

� �i=iterations

The original SOM learning algorithm, also called

stochastic algorithm or Kohonen algorithm, takes each

training sample xi and updates every prototype vector by

moving them closer to the point xi. The updates are

weighted by the neighborhood around the best-matching

unit, so that neighboring units receive a large update and

very distant units are not updated at all. This expresses as

the following update rule:

mk mk þ aKT dðbi; kÞð Þðxi �mkÞ ð2Þ

where a is a learning rate that is decreased during training.

The stochastic algorithm is detailed in algorithm 1.

1 https://github.com/FlorentF9/DESOM.
2 https://github.com/FlorentF9/SOMperf.

Neural Computing and Applications (2021) 33:17439–17469 17441

123

https://github.com/FlorentF9/DESOM
https://github.com/FlorentF9/SOMperf

A disadvantage of this algorithm is that it converges

slowly, is sequential and cannot be parallelized. Therefore,

another algorithm was introduced: the batch SOM algo-

rithm. It consists in minimizing following cost function,

called distortion:

LSOMðfmkg;X; b; TÞ ¼ 1

N

XN
i¼1

XK
k¼1
KT dðbi; kÞð Þjjxi �mkjj22

Distortion is not directly differentiable because of the

BMU assignments b. However, it can be empirically

minimized using a dynamic clusters method [7] (similar to

k-means) which alternates between two steps:

1. Assignment of best-matching units using Eq. 3

2. Minimization of distortion by fixing assignments, using

following update rule:

mk
PK

l¼1K
T dðk; lÞð Þ

PN
i¼1 1½bi¼l�xiPK

l¼1KT dðk; lÞð Þ
PN

i¼1 1½bi¼l�
ð3Þ

The batch algorithm pseudo-code is detailed in

algorithm 2.

2.2 Autoencoders

Autoencoders (AE) are neural networks trained to learn to

reconstruct their inputs, in order to extract useful inter-

mediate representations in an unsupervised way while

minimizing information loss during this process [23].

These representations or features can then be used to

improve downstream tasks such as clustering or supervised

learning, that benefit from dimensionality reduction and

higher-level features.

An autoencoder is composed of an encoder network,

mapping the input to an intermediate latent space, and a

decoder network, reconstructing a latent sample back into

original space. In its simplest form, the model is trained to

minimize information loss between input and reconstruc-

tion, taking the form of a reconstruction loss, often the

mean squared error (MSE) for real-valued data. In most

cases, the latent space is chosen to have a much smaller

dimension than input space, called undercomplete autoen-

coders. This forces the network to compress data and not

learn the identity function; thus, it is a form of regular-

ization. This is the family of AE we will use in this work.

However, overcomplete autoencoders are also useful, and

they use different regularization criteria, see for example

denoising AE [46] or sparse AE [2, 39]. The encoder and

17442 Neural Computing and Applications (2021) 33:17439–17469

123

decoder can be deep nonlinear neural networks, able to

learn richer representations than linear methods such as

principal component analysis (PCA). The latent space can

be either continuous or discrete, by using quantization in

latent space (see [47] for a review on quantized autoen-

coders). Here, we will only consider continuous latents.

Finally, a probabilistic extension is the variational

autoencoder family (VAE) [26, 41]. VAE are generative

models that enforce a probabilistic structure on latent space

in order to sample from it, and improve the robustness of

learned codes. While this is promising, our work will only

use deterministic AE.

2.3 Representation learning for clustering

Reviews on deep clustering are available in [1] and [37].

To our knowledge, the first work of this kind was proposed

in 2014 by authors of [42]. They propose to jointly learn

representations with an autoencoder and clusters using k-

means in latent space. The AE reconstruction loss is reg-

ularized by the k-means loss, and the training procedure

alternates between updating the AE network and the cluster

centers using k-means. Another early approach, deep

embedded clustering (DEC) [49], jointly learns represen-

tations and soft cluster assignments by optimizing a Kull-

back–Leibler (KL) divergence that minimizes within-

cluster distance, by pushing latent points together to form

clusters; IDEC [20] improves on this approach by opti-

mizing the reconstruction loss jointly with the KL-diver-

gence. The deep clustering network (DCN) [50] combines

representation learning with k-means clustering using

stochastic gradient descent in an alternating training pro-

cedure, to alternately update the autoencoder weights,

cluster assignments and centroid vectors, similarly to [42].

They introduce the term k-means-friendly space to describe

the regularizing effect of joint training that improves

clustering performance. More recently, [11] overcame the

non-differentiability of hard cluster assignments by intro-

ducing a smoothed version of the k-means loss with sim-

ulated annealing. Deep clustering methods have been

applied to image clustering in particular, leveraging con-

volutional network architectures [9, 21].

Most recent approaches perform latent space clustering

using generative models such as variational autoencoders

(VAE) [8, 24] or generative adversarial networks (GAN)

[22, 38, 51] with a Gaussian mixture model (GMM) prior

in latent space, achieving state-of-the-art results. While

most approaches rely on (soft) k-means or GMM as the

clustering component, the framework has been extended to

mean-shift clustering [33].

2.4 Deep self-organizing maps

Although less attention has been given to self-organizing

map models than pure clustering, this attention raised in

2018 and 2019, with several works on this subject.

In [10], authors have shown evidence that using higher-

level features extracted by convolutional layers of pre-

trained networks improves SOM quality, as measured by

several external label-oriented indices but also visual

quality. However, we think these results are somewhat

biased because the features are extracted from a network

that was pretrained in a supervised manner on the same

dataset. Thus, the top layers were trained to learn a feature

space where the classes are well-separated. Of course, this

will help the subsequent SOM to separate the classes and

improve the label-oriented results. Maybe the performance

improvements would have been lower using features from

a network that was pretrained on another generic dataset,

e.g., ImageNet. Therefore, although the idea is to use a

generic pretrained network for feature extraction in order to

have a completely unsupervised process, the experiments

in the paper differ from this intent.

Other works, including ours, are based on unsupervised

neural networks, namely autoencoders. An early approach,

deep neural maps [40], combines a denoising AE, the soft

clustering loss from [49] and a SOM. Their procedure

alternates between (1) assigning and updating cluster cen-

ters using the SOM stochastic algorithm (2) optimize the

representations, regularized by the KL-divergence cluster-

ing term. They compared this approach with other

dimensionality reduction and visualization tools; however,

they did not quantitatively assess the clustering or self-

organization performance. [13] proposes the denoising

autoencoder self-organizing map (DASOM) and several

variants in an extensive study on the combination of a

nonlinear denoising autoencoder (DAE) with SOM. The

Deep Embedded SOM (DESOM) model, subject of this

paper, was introduced in [16, 17]. Another series of work

performing joint representation learning with a SOM is the

SOM-VAE model, introduced in [19]. Their model is based

on the VQ-VAE (Vector Quantization Variational

Autoencoder) model which enables to train variational

autoencoders (VAEs) with a discrete latent space [44]. [19]

have added a topology constraint on the discrete latent

space by modifying the loss function of VQ-VAE. Their

loss function is composed of three terms: the VAE evi-

dence lower bound (ELBO) reconstruction loss, the vector

quantization loss (VQ) and the SOM loss. However, there

are many important differences between our DESOM

model and SOM-VAE. First, SOM-VAE utilizes a discrete

latent space to represent the SOM prototypes, whereas in

DESOM, the SOM is learned in a continuous latent space.

Neural Computing and Applications (2021) 33:17439–17469 17443

123

Secondly, they use a fixed window neighborhood to update

the map prototypes, whereas we use a Gaussian neigh-

borhood with exponential radius decay. Finally, the

DESOM model presented in this work is based on a

deterministic autoencoder and not a VAE. The Deep

Probabilistic SOM (DPSOM) [34], a very recent unpub-

lished work improving on the SOM-VAE, achieves state-

of-the-art clustering results and proposes an inter-

pretable application in the public health domain. Their loss

function combines the ELBO (without discrete quantiza-

tion), a KL-divergence clustering loss and a SOM loss with

fixed neighborhood. Table 1 summarizes the properties of

the different deep SOM models.

3 Deep embedded self-organizing map

3.1 Architecture

This work is based on the DESOM model introduced in

[16, 17]. Therefore, we will first present the model

architecture, its loss function, hyperparameters and training

procedure. We propose an approach where self-organiza-

tion of the prototypes and representation learning through a

deterministic autoencoder are performed jointly by

stochastic gradient descent (SGD). The architecture is

illustrated in Fig. 1. The encoder and decoder networks are

generic and can be fully connected, convolutional or even

recurrent [16]. In this work, we experiment with a fully

connected (DESOM) and a convolutional (ConvDESOM)

version.

The architecture is composed of three neural network

modules: an encoder, a decoder and a SOM layer. The

encoder projects the inputs onto a latent, intermediate

space. The SOM is trained in this latent space and receives

encoded inputs. The decoder reconstructs the latent code

back into original space, trying to match the input as clo-

sely as possible.

Table 1 Comparison of the

properties of deep SOM models
Model Latent AE Rec. loss SOM loss Joint Pretraining

ConvSOM [10] Continuous AE MSE SOM 7 U

DASOM [13] Continuous DAE MSE SOM U U

DESOM (ours) Continuous AE MSE SOM U 7

Deep neural maps [40] Continuous AE MSE KL?SOM U U

SOM-VAE [19] Discrete VQ-VAE ELBO VQ?SOM U U

DPSOM [34] Continuous VAE ELBO KL?SOM U U

Fig. 1 DESOM architecture and gradients paths. The input x is projected into latent space by the encoder We, where the SOM prototypes mk are

learned via the SOM loss LSOM. Latent samples z are reconstructed using the decoder Wd via the reconstruction loss LR

17444 Neural Computing and Applications (2021) 33:17439–17469

123

3.2 Loss function

The encoder and decoder parameter weights are, respec-

tively, notedWe andWd. The encoding function is denoted

by fWe
and the decoding function by gWd

. Thus, zi ¼
fWe
ðxiÞ 2 RL is the embedded version of xi in the inter-

mediate latent space, and ~xi ¼ gWd
ðfWe
ðxiÞÞ 2 RD is its

reconstruction by the decoder. Our goal is to jointly opti-

mize the autoencoder network weights and the SOM pro-

totype vectors. For this task, we define a hybrid loss

function composed of two terms, that can be written as:

LðWe;Wd;m1; . . .;mKÞ ¼ LRðWe;WdÞ þ cLSOMðWe;m1; . . .;mKÞ

ð4Þ

The first term LR is the autoencoder reconstruction loss.

We use a mean squared error loss, which corresponds to

reconstructing the mean of a Gaussian output distribution:

LR ¼
1

N

XN
i¼1
Li
R ¼

1

N

X
i

jj~xi � xijj22

The second term is the self-organizing map loss, denoted

LSOM. It depends on the set of parameters fmkg1� k�K and

on the best-matching units, denoted bi, assigning a latent

data point to its closest prototype according to Euclidean

distance, i.e.:

bi ¼ argmin
k
jjzi �mkjj22

The expression of the self-organizing map loss is:

LSOM ¼
1

N

XN
i¼1
Li
SOM ¼

1

N

X
i

XK
k¼1
KT dðbi; kÞð Þjjzi �mkjj22

The gamma c coefficient is a hyperparameter that trades off

between minimizing the autoencoder reconstruction error

and the self-organizing map error. Therefore, the SOM loss

acts as a SOM-guided regularizer.

3.3 Topological organization interpretation

The SOM loss can be decomposed into two terms, the first

one being the squared distance between the best matching

unit and the latent point, and the second one corresponding

to the topological relationship with neighboring units.

LSOM ¼
1

N

XN
i¼1

XK
k¼1
KT dðbi; kÞð Þjjzi �mkjj22

¼ 1

N

XN
i¼1
KT dðbi; biÞð Þjjzi �mbi jj

2 þ
X
k 6¼bi
KT dðbi; kÞð Þjj2zi �mkjj22

" #

¼ 1

N

XN
i¼1
jjzi �mbi jj

2
2 þ

1

N

XN
i¼1

X
k 6¼bi
KT dðbi; kÞð Þjjzi �mkjj22

For large values of T, the second term is prevalent and

leads to topological organization. When the temperature

approaches zero, the first term prevails and the SOM loss

becomes identical to a k-means loss, where the centroids

correspond to the map prototypes:

lim
T!0
LSOM ¼

1

N

X
i

jjzi �mbi jj
2
2 ¼ Lk�means

Thus, when temperature is close to zero, the hybrid loss

function 4 can be written as follows:

lim
T!0
L ¼ LR þ cLk�means

Hence, our model becomes identical to the DCN model

[50] or the DKM model [11] (at the end of their hyper-

parameter annealing).

3.4 Training procedure

We use a joint training procedure, optimizing both the

network parameters and the prototypes by backpropagation

and stochastic gradient descent. The assignments to the

best-matching units are fixed between each optimization

step, as it is non-differentiable. Thus, the weighting terms

wi;k � KT dðbi; kÞð Þ become simple coefficients for each

data point and prototype, constant with respect to the net-

work parameters and the prototypes. The gradients of the

loss function w.r.t. autoencoder weights and prototypes are

easy to derive if we consider the assignments to be fixed at

each step.

oL
oWe

¼ oLR

oWe
þ c

oLSOM

oWe

oL
oWd

¼ oLR

oWd

oL
omk
¼ c

oLSOM

omk

The gradients for a single data point xi are:

Neural Computing and Applications (2021) 33:17439–17469 17445

123

oLi
R

oWe
¼ 2ðgWd

ðfWe
ðxiÞÞ � xiÞ

ogWd
ðfWe
ðxiÞÞ

oWe

oLi
R

oWd
¼ 2ðgWd

ðfWe
ðxiÞÞ � xiÞ

ogWd
ðfWe
ðxiÞÞ

oWd

oLi
SOM

oWe
¼ 2

XK
k¼1

wi;kðfWe
ðxiÞ �mkÞ

ofWe
ðxiÞ

oWe

oLi
SOM

omk
¼ 2wi;kðmk � fWe

ðxiÞÞ

The paths of the gradients of the loss function are illus-

trated on Fig. 1. We optimize Eq. 4 using minibatch

stochastic gradient descent (SGD), with a learning rate lr
(in our experiments Adam is used instead, but the equations

are derived for vanilla SGD). Minibatch SGD is a standard

technique used to train autoencoders and deep clustering

models [1, 19, 46], and as we optimize all parameters

jointly, the SOM distortion loss is optimized in the same

manner. Using batch gradient descent would not be prac-

tical for large data sets and result in slow convergence. On

the other side, using a batch size of 1 (as in the stochastic

Kohonen algorithm) would also be inefficient to train the

AE and in particular would not benefit from parallelized

implementations. Given a batch B of nb samples, the

encoder’s weights are updated by:

We We �
lr
nb

X
i2B

oLi
R

oWe
þ c

oLi
SOM

oWe

� �
ð5Þ

The decoder’s weights are updated by:

Wd Wd �
lr
nb

X
i2B

oLi
R

oWd
ð6Þ

And finally, the map prototypes are updated by the fol-

lowing update rule:

mk mk �
lr
nb

X
i2B

c
oLi

SOM

omk
ð7Þ

By expanding the prototypes update rule 7, we obtain an

expression somewhat in between of the stochastic SOM

and the batch SOM algorithms presented in the previous

section (see Eqs. 2 and 3), that we can call minibatch

SOM:

mk mk þ 2c
lr
nb

X
i2B
KT dðbi; kÞð Þðzi �mkÞ ð8Þ

As in batch SOM, we alternate between BMU assignments

and minimization, but minimization happens via a gradient

descent step as in stochastic SOM. Thus, we think opti-

mizing SOM with our procedure is a sound choice.

3.5 Implementation

The code for the DESOM model is available as an open-

source project3. It was implemented in the Keras frame-

work. The main novelty of our model is a new custom layer

called SOM layer. Its parameters are the set of SOM code

vectors in latent space, i.e., a K � L matrix where K is the

number of prototypes (e.g., 64 for an 8� 8 map) and L is

the dimensionality of the latent space. The outputs of this

layer are defined as the pairwise squared Euclidean dis-

tances between the input batch and the prototypes: this

allows to express the SOM loss as a simple weighted sum,

using the neighborhood weight terms wi;k.

First, the autoencoder is initialized either randomly

using the Glorot uniform initializer, or by pretraining, and

SOM parameters are initialized either at random with an

encoded data sample, or by a standard SOM (this choice is

studied in the experiments). At each iteration, the tem-

perature is updated using exponential decay. Then, we

perform inference on the current batch to obtain the pair-

wise distances between latent samples and SOM proto-

types, in order to compute the weights wi;k using the

neighborhood function. Finally, we perform a training step

to update all parameters. In addition, we collect losses and

performance metrics at a fixed interval on the training and

test sets, using the library SOMperf4 [18].

3 https://github.com/FlorentF9/DESOM.
4 https://github.com/FlorentF9/SOMperf.

17446 Neural Computing and Applications (2021) 33:17439–17469

123

https://github.com/FlorentF9/DESOM
https://github.com/FlorentF9/SOMperf

The training procedure of DESOM is detailed in algo-

rithm 3, omitting the test set for sake of brevity. Differently

from the original version of DESOM [17], we also try

updating the self-organizing map not at every training

iteration, but only every update_interval iterations,

introducing an additional hyperparameter. This follows

remarks from [20] and [32] and should help better training

the encoder. To achieve this, we set all gradients coming

from the SOM loss to zero between each update interval.

The impact of this update interval will be mentioned in the

next section. Finally, the number of iterations is set to train

until convergence of the loss for every data set.

3.6 Training parameters

Across all experiments, we use rectangular SOM topolo-

gies with d being the Manhattan distance between units

(each unit has four direct neighbors, excepted on the map

borders). For optimization, we use Adam with lr ¼ 0:001,

b1 ¼ 0:9, b2 ¼ 0:999. The Tmin parameter defines the final

neighborhood radius at the end of training. It has a direct

impact on the trade-off between quantization and topo-

graphic error: by choosing a Tmin smaller than 1, the

prototype vectors will be finetuned locally and improve

quantization; however, it may harm the topology of the

map. This choice depends on the priority of the practi-

tioner. In our experiments, we set Tmin to 0.1, in order to

obtain good quantization and clustering, and we observed

no visual degradation of the map. This will be further

discussed. Tmax is always set equal to the map size, in order

to organize all units in the early stage of training. Similarly,

the trade-off between quantization and topology also

depends on the number of training iterations. This fact is

illustrated by the learning curves (Fig. 6) and is discussed

thereafter. In this work, we choose to not use early stop-

ping, and to train until full convergence. All other param-

eters such as map size, latent space dimension, gamma c,
pretraining, initialization and batch sizes are studied in the

experiments. As there is a large number of parameters, we

recapitulate them in Table 2. The last column indicates

whether the value of the parameter is modified and studied

in the experiments section; otherwise, it is fixed to the

value indicated in the default value column.

Table 2 DESOM training

parameters
Parameter Notation Default value Studied in experiments

Gamma c 10�3 U

Latent code dimension L 10 U

Map grid topology – rectangular 7

Distance between units dð�; �Þ Manhattan 7

Map size – 8� 8 U

Initial temperature Tmax 8.0 U

Final temperature Tmin 0.1 U

Iterations – convergence 7

Batch size nb 256 U

Learning rate lr 0.001 7

First moment decay b1 0.9 7

Second moment decay b2 0.999 7

Neural Computing and Applications (2021) 33:17439–17469 17447

123

4 Architecture and hyperparameter study

In previous works [16, 17], experiments and benchmarks

used a single architecture and only two hyperparameters

were studied: the weighting between reconstruction loss

and SOM loss (gamma c), and the use of autoencoder

pretraining. However, the DESOM model is governed by

other hyperparameters that are coupled in the training

process. After introducing the datasets used in our experi-

ments in the first paragraph of this section, a thorough

exploration of architecture and training hyperparameters

and their influence on performance metrics is the goal of

the experiments detailed in the second paragraph. The

subsequent paragraph discusses initialization strategies for

the AE and SOM weights. In the third paragraph, we study

the learning dynamics of DESOM, in particular the evo-

lution of learning curves and the interaction between its

two components (AE and SOM), with different parame-

ters.1 Then, the next paragraph studies the visual quality of

prototypes for image datasets. The performance metrics

used here are all described in Appendix . All experiments

are run 10 times to obtain meaningful means and standard

deviations, displayed on the graphs. We insist on the fact

that unlike our previous work, where training and test sets

were concatenated (as is often done in unsupervised

learning), here we use the standard train/test split (see

Table 3) and always report results on the test set (unless

specified otherwise).

4.1 Datasets

We experiment, evaluate and compare models on four

different classification benchmark datasets, three image

datasets and one text dataset:

• MNIST [29]: the MNIST dataset consists in 70000

grayscale images of handwritten digits, of size 28-by-28

pixels. We used the dataset available in the Keras

library, divided the pixel intensities by 255 to obtain

floating-point values between 0 and 1, and flattened the

images to 784-dimensional vectors (except for the

convolutional architecture).

• Fashion-MNIST [48]: the Fashion-MNIST dataset was

designed as a drop-in replacement for the original

MNIST dataset, but with images of clothing instead of

digits, and provides a more challenging classification

task. The dataset is also available in Keras, and we

applied the same preprocessing.

• USPS: this dataset also consists in images of grayscale

handwritten digits and contains 9298 16-by-16 pixel

digits. We downloaded it from the Kaggle website and

did not perform any preprocessing.

• REUTERS-10k [30]: the REUTERS-10k dataset is

built from the RCV1-v2 corpus, that contains 804,414

English news stories labeled with a category tree, with a

total of 103 topics. REUTERS-10k is created by

restricting the documents to 4 root categories (corpo-

rate/industrial, government/social, markets and eco-

nomics), excluding documents with multiple labels,

then sampling a subset of 10000 examples and

computing TF-IDF features on the 2000 most

Table 3 Dataset statistics
Dataset Description Total Train Test Classes Dimension

MNIST Images (digits) 70,000 60,000 10,000 10 784

Fashion-MNIST Images (clothing) 70,000 60,000 10,000 10 784

USPS Images (digits) 9298 7291 2007 10 256

REUTERS-10k Text (tf-idf) 10,000 7769 2231 4 2000

Table 4 Comparison of external clustering metrics (purity and NMI)

with different values of hyperparameter gamma. Best performance in

bold underlined. Bold values correspond to results with no statisti-

cally significant difference to the best (p-value[0.05 after pairwise t

test)

c MNIST Fashion-MNIST

Pur NMI Pur NMI

10�4 .929 ± .004 .652 ± .003 :759� :006 :543� :004

10�3 :934� :004 .658 ± .004 .751 ± .009 .541 ± .004

10�2 .911 ± .006 .639 ± .006 .737 ± .007 .529 ± .005

0.1 .876 ± .008 .609 ± .006 .721 ± .005 .520 ± .004

0.5 .836 ± .033 .584 ± .016 .718 ± .009 .517 ± .006

1.0 .810 ± .025 .566 ± .019 .715 ± .012 .517 ± .007

10.0 .114 ± .000 .006 ± .003 .678 ± .008 .484 ± .007

c USPS Reuters-10k

Pur NMI Pur NMI

10�4 .837 ± .014 .573 ± .009 .795 ± .019 .352 ± .012

10�3 :857� :011 :592� :010 .808 ± .017 .364 ± .011

10�2 .839 ± .013 .583 ± .008 .801 ± .017 .352 ± .014

0.1 .815 ± .014 .566 ± .007 .809 ± .014 .365 ± .016

0.5 .806 ± .018 .561 ± .012 :819� :020 :371� :012

1.0 .806 ± .013 .559 ± .006 .804 ± .030 .354 ± .027

10.0 .760 ± .029 .523 ± .021 .466 ± .101 .062 ± .078

17448 Neural Computing and Applications (2021) 33:17439–17469

123

frequently occurring words. We downloaded the raw

RCV1-v2 topics and tokens and used the same code as

in [20] to build the dataset.

The properties of each dataset are described in Table 3. In

particular, we use the default train/test splits. These data-

sets were selected because they all have a high dimen-

sionality (256 to 2000) and can benefit greatly from the

representation learning through a deep neural network.

Using Euclidean distance directly on a high-dimensional

space, as is done in traditional SOM, is known to be

problematic, as explained in Sect. 1. Image datasets also

have the advantage of being easily visualized on a self-

organizing map. Finally, these datasets were used in many

previous works on deep learning-based clustering models,

allowing direct comparisons.

In the following paragraphs, we study the influence of

five fundamental parameters: the gamma c hyperparameter,

the latent code dimension, the map size and the nature of

the autoencoder (fully connected or convolutional). All

other parameters that are either related to initialization or to

training dynamics are fixed to reasonable values and will

be studied later.

4.1.1 Gamma c parameter study

This parameter defines the relative weight of reconstruction

and SOM in the loss function. We evaluate external clus-

tering metrics on four datasets for different values of

gamma, ranging from 10�4 to 10 (see Table 4). Our goal is

not to cross-validate and find the best value according to

some external quality metric, as we are in an unsupervised

setting, but to find a reasonable order of magnitude across

multiple datasets.

The gamma hyperparameter is a trade-off between

preserving information (obtaining good reconstructions)

and SOM clustering. As the SOM loss takes larger values

than the reconstruction loss, gamma must be set smaller

than one. A good value is c ¼ 10�3 across all datasets; it

represents the optimum for MNIST, USPS, and is within

the variance interval for Fashion-MNIST and Reuters-10k

(for the latter dataset, variance of our AE is very high).

Higher values of gamma lead to degenerate solutions for

the encoder and decoder, which translates into low scores

across all datasets, and the autoencoder being unable to

produce any reconstructions. This is due to the fact that the

model tries hard to optimize the SOM loss, which is much

easier to optimize than the reconstruction loss as we

observed during our experiments, thus neglecting code

quality.

Figure 2 represents SOM quantization and topographic

error as a function of gamma (for MNIST). Quantization

error exhibits the trade-off between the reconstruction and

SOM clustering: it decreases with gamma, as high gamma

values result in the SOM being more finetuned. As a

drawback, this finetuning also increases topographic error,

as can been seen on the rightmost graph. Behavior is

similar for other datasets.

As a conclusion, DESOM is not very sensitive to gamma

as long as it stays in the right order of magnitude, and we

select c ¼ 10�3 for the rest of the paper, in accordance with
the unsupervised setting (even if better results could be

obtained by choosing an adapted value for each dataset).

4.1.2 Latent code dimension study

Authors in [34] have found that DEC performed better with

a lower-dimensional AE latent space (L ¼ 10), while their

VAE performed better with a higher code dimension

(L ¼ 100).

Let us assume that the size of the self-organizing map

has been fixed by the user. The dimensionality of the latent

space where this SOM will be learned is expected to be a

determining parameter. Concretely, we expect following

behavior: on the one hand, a latent space too small will

result in a loss of information and a lower performance as

measured by external indices (label-based). However, the

SOM may fit the latent code space very well and produce

high latent quality metrics (e.g., latent quantization error).

On the other hand, with a large latent space, the autoen-

coder will not use all latent variables to extract useful

features and likely overfit the training set, and in addition,

the low-dimensional SOM will have difficulties to fit this

high-dimensional space (translating into low latent quality

metrics). A straightforward experiment consists in com-

paring performance metrics with different latent space

dimensions, leaving all other parameters unchanged.

These intuitions are confirmed by Table 5, showing that

a latent space dimension too low or too high both hurt the

model’s performance. An optimal value exists: it is L ¼ 10

for MNIST, Fashion-MNIST and USPS, but not for Reu-

ters-10k, suggesting that the optimal value depends on the

intrinsic dimensionality of the latent factors of variation in

the data distribution. Latent quantization error, represented

as a function of L on Fig. 3, naturally varies like
ffiffiffi
L
p

.

When not mentioned, we use a latent dimension equal to

10, even if better results could be obtained by tuning the

dimension for each dataset (to remain in an unsupervised

setting).

4.1.3 Map size study

This paragraph studies the influence of the SOM map size

(number of neurons) on the results. The shape is kept

Neural Computing and Applications (2021) 33:17439–17469 17449

123

square, with equal width and height, varying between 5 and

20 units.

Metrics behave as expected, i.e., clustering purity nat-

urally increases with map size, as there are more clusters,

but NMI decreases (see Appendix 1 for definitions of

clustering performance metrics). Quantization error

improves while topographic error increases; combined

error shows a minimum around size 8� 8 on MNIST and

Fashion-MNIST, which corresponds to the size we use

throughout the paper, to compare with previous works (see

Fig. 2 Quantization and topographic error as a function of gamma on MNIST, Fashion-MNIST and USPS

17450 Neural Computing and Applications (2021) 33:17439–17469

123

Fig. 4). On USPS and Reuters-10k, the underlying mani-

fold seems to require fewer units. SOM entropy and class

scatter index (the number of label groups formed on the

map) vary proportionally to the number of units.

4.1.4 Convolutional architecture study

The fact that CNN-based deep clustering models tend to

outperform similar approaches using dense autoencoders

can be seen in [1]. We compare the standard DESOM with

a [500, 500, 2000, 10] fully connected encoder with a

convolutional version, ConvDESOM [16]. The Con-

vDESOM autoencoder architecture is similar to the one

used in [34]: 4 convolutional layers with [32, 64, 128, 256]

filters of size 3� 3, and 2� 2 max pooling after each

convolution. We use no batch normalization and activa-

tions are basic ReLUs. We also apply it to MNIST and

Fashion-MNIST datasets.

From the comparison in Table 6, the convolutional

architecture is superior in terms of clustering purity and

NMI, but slightly hurts quantization and topographic

errors. On most other metrics we compared, ConvDESOM

is equivalent to DESOM. As a conclusion, a convolutional

AE performs better on images, but makes little difference

on toy datasets, as the fully connected version is able to

learn sufficient representations, but we believe that for

larger, more complex and high-dimensional data, Con-

vDESOM or other architectures should produce superior

results.

4.2 Initialization and pretraining

We now study the influence of initialization and pretrain-

ing. Usually, we seek a good initial solution for the model

parameters and avoid local minima. In our model, two

components must be initialized: AE and SOM.

AE pretraining Pretraining the autoencoder consists in

training it with only the reconstruction loss before per-

forming the joint task. There are several ways to pretrain an

autoencoder: traditional end-to-end training, stacked

denoising autoencoders [46] (also called layer-wise pre-

training), RBM pretraining [23], etc. End-to-end training

can be problematic because it could learn the identity

function (but not an issue in case of undercomplete

autoencoders), is less robust and prone to overfitting. Pre-

training is used in most deep clustering approaches, either

layer-wise [24, 49, 50], RBM [42] or end-to-end [11], and

improves results. We compared the two following strate-

gies for DESOM:

• No pretraining.

• Pretraining the AE in a simple end-to-end fashion for

100 epochs using MSE reconstruction loss.

SOM initialization The SOM weights are initialized using

one of the following strategies:

• Random initialization: SOM weights are initialized

with a random sample of encoded samples (taken

without replacement).

Table 5 Comparison of purity and NMI with different latent code dimensions (L). Best performance in bold underlined. Bold values correspond

to results with no statistically significant difference to the best (p-value[0.05 after pairwise t test)

L MNIST Fashion-MNIST

Pur NMI Pur NMI

2 .768 ± .012 .552 ± .011 .688 ± .023 .499 ± .010

5 .901 ± .010 .628 ± .007 .736 ± .011 .530 ± .005

10 :931� :007 :654� :006 :756� :008 :542� :003

20 .925 ± .006 .647 ± .006 .752 ± .008 .542 ± .003

50 .921 ± .006 .641 ± .005 .747 ± .009 .541 ± .004

100 .921 ± .004 .643 ± .004 .747 ± .006 .541 ± .003

L USPS Reuters-10k

Pur NMI Pur NMI

2 .800 ± .013 .563 ± .007 :840� :010 :375� :012

5 .843 ± .004 .583 ± .006 .808 ± .016 .360 ± .012

10 :855� :010 :591� :008 .800 ± .024 .358 ± .017

20 .828 ± .010 .571 ± .007 .794 ± .028 .353 ± .022

50 .817 ± .012 .562 ± .011 .789 ± .030 .346 ± .017

100 .806 ± .021 .558 ± .012 .787 ± .019 .344 ± .015

Neural Computing and Applications (2021) 33:17439–17469 17451

123

• SOM initialization: a standard SOM is trained for 10

epochs on the encoded dataset (we used the minisom5

package).

Other more sophisticated initialization schemes do exist

(using for instance principal components), but we limit

ourselves to these two simple strategies.

Initial temperature In the case when the AE is pretrained

and SOM is initialized, we may not want to disturb the map

topology and only finetune the prototypes and

Fig. 3 Latent quantization error as a function of latent space dimension

Fig. 4 Quantization, topographic and combined errors as a function of

the map size (5� 5, 8� 8, 10� 10 and 20� 20) for Fashion-

MNIST. Quantization improves with map size, while topographic

error increases. Combined error acts as a trade-off and indicates 8� 8

as a good compromise

5 https://github.com/JustGlowing/minisom.

17452 Neural Computing and Applications (2021) 33:17439–17469

123

https://github.com/JustGlowing/minisom

representations. Thus, we might try to use a very small

initial temperature (e.g., Tmax ¼ 0:1). We try following

initial temperatures:

• Tmax ¼ 0:1 (local finetuning)

• Tmax ¼ 8:0 (self-organization across the entire map

size)

To summarize, this results in eight combinations of

possible initializations. Some results are displayed in

Fig. 5. As for all other experiments, we performed 10 runs

for meaningful means and standard deviations. The first

observation is that SOM initialization has no effect at all on

the final results in terms of clustering (purity and NMI) or

SOM quality (quantization and topographic errors). Sec-

ond, AE pretraining deteriorates the model’s performance.

The only improvement is the NMI when Tmax ¼ 0:1, but a

small initial temperature naturally leads to a higher topo-

graphic error, as the prototypes are locally finetuned and

global topology is not preserved well. It suggests that the

best solution is found when reconstruction and SOM loss

are optimized jointly from the beginning. The lowest

topographic error is achieved by random AE and SOM

initialization with Tmax ¼ 8:0, which is the setting we use

throughout all other experiments. To conclude, initializa-

tion and pretraining do not lead to performance improve-

ments; in our benchmarks, none will be used. This allows

to cut training time drastically, as AE pretraining time has

the same order of magnitude DESOM full joint training

(about the half, see Table 12 in the last paragraph).

Table 6 Comparison between

DESOM and ConvDESOM in

terms of purity, NMI,

quantization and topographic

errors, for MNIST and Fashion-

MNIST

Method MNIST

Pur NMI QE TE

DESOM .934 ± .004 .658 ± .004 5:843� 0:016 0:605� 0:039

ConvDESOM :948� :004 :673� :005 5.980 ± 0.038 0.610 ± 0.034

Method Fashion-MNIST

Pur NMI QE TE

DESOM .751 ± .009 .541 ± .004 4:756� 0:009 0:537� 0:029

ConvDESOM :758� :004 :546� :002 4.777 ± 0.017 0.538 ± 0.045

Fig. 5 Performance metrics (purity, NMI, quantization and topographic errors) with different combinations of pretraining (with or without) and

initialization (random or SOM)

Neural Computing and Applications (2021) 33:17439–17469 17453

123

4.3 Training parameters and learning dynamics

4.3.1 Learning curves

Learning curves representing the evolution of losses and

metrics during training on the training and test set (see

Fig. 6) show that our model converges, and does not

overfit. To preserve space, curves are only included for the

MNIST dataset, and for c ¼ 10�3, unless specified. An

interesting behavior is that of topographic error, which first

rapidly decreases, but then increases back until conver-

gence (when temperature T reaches Tmin). It shows the

trade-off between self-organization and the autoencoder’s

reconstruction quality (very low at the beginning) as well

as the resulting clustering quality. A practitioner could thus

choose to use an early stopping strategy, to obtain a lower

topographic error, but it would harm the quality of repre-

sentations and clustering. For this reason, we choose to

train until convergence in this work.

4.3.2 Latent space evolution

We visualize the evolution of latent space during training

using the UMAP (Uniform Manifold Approximation and

Projection) dimensionality reduction technique [35]. We

choose this method instead of the widely used t-SNE

projection, because it runs orders of magnitude faster (the

MNIST test set with 10000 points is projected in a few

seconds only, compared with several minutes for t-SNE),

and it is also able to effectively visualize the local and

global structures of the data distribution. Figure 7 displays

the MNIST test set and DESOM map after 0, 10, 20 and 40

epochs. Points are colored according to their target class

(digit). We clearly see that the DESOM objective (with

SOM regularization) pushes points together to form clus-

ters, and that map prototypes are self-organized in latent

space. Note that we cannot interpret the SOM grid topology

because of the UMAP projection, but we can still note that

‘‘similar’’ digits have strong connections: 4 and 9, 1 and 7,

etc.

The visualizations on Fig. 8 show the joint representa-

tion learning and self-organization: epoch after epoch, the

reconstruction quality of the prototypes improves (upper

part of the figure), and well-organized regions are emerging

on the map, with samples of the same class gathering in the

same units (bottom part).

SOM update interval When using hybrid loss functions

composed of terms with different optimization dynamics, it

is common to update each term at different intervals. To

prevent one term to prevail too much on the other, it may

be optimized less frequently than the other. In our case, the

SOM term is optimized faster, thus we tried to update it

only every 10 or 100 SGD steps, while the reconstruction

loss is updated at every step. However, no impact was

observed.

Gamma c parameterThe gamma hyperparameter con-

trols the relative weight of reconstruction and SOM in the

optimization of the DESOM loss function. Its influence on

training can be visualized on Fig. 9, representing L (total

loss), LR and LSOM learning curves for different values of

Fig. 6 Learning curves for loss, purity, NMI, quantization and topographic error for MNIST

17454 Neural Computing and Applications (2021) 33:17439–17469

123

gamma. We see that the SOM loss has a higher amplitude,

hence using c\1.

If its value is too high, LSOM is optimized too quickly,

leaving a higher reconstruction loss. The comparison of

both loss terms on Fig. 10 makes clear the trade-off on c,
leading to different final values for each term. As we have

seen previously, c ¼ 10�3 is an optimal value across

datasets in terms of clustering quality, as we can see on

Fig. 11 which presents the learning curves of purity and

NMI for different values of gamma.

Batch size Training a SOM using minibatch stochastic

gradient descent (here with the Adam optimizer) is unusual

as it corresponds neither to the original stochastic Kohonen

algorithm nor the batch version. However, it produces good

results, even better than the standard SOM training (this

was found in [19] and [17]). Let us denote nb the batch size,

i.e., the number of samples in each minibatch. The Koho-

nen algorithm would correspond to nb ¼ 1, and the batch

algorithm to nb ¼ N with N the total number of training

samples.

Throughout our experiments, we use nb ¼ 256, as it is a

common practice in deep learning to use the largest pos-

sible batch size in order to exploit GPU parallelization and

accelerate training (the limit being graphics memory). In

this experiment, we studied the impact of batch size on

DESOM training, and made nb vary in powers of two from

16 to 256. To be comparable, we adapted the number of

iterations to keep the overall number of epochs constant

(i.e., 10000 iterations for nb ¼ 256, 20000 for nb ¼ 128,

etc.). Final external clustering metrics on the test set are

Fig. 7 UMAP visualization of latent space after 0, 10, 20 and 40 training epochs

Neural Computing and Applications (2021) 33:17439–17469 17455

123

presented in Fig. 12, and are clearly in favor of using the

largest possible batch size.

On the other hand, SOM quality metrics such as quan-

tization, topographic and combined errors are not sensitive

to the batch size (see Fig. 13).

A large batch size is preferable as it improves both the

solution and training speed due to parallelization.

4.4 Prototype image sharpness

As explained in the previous section, in case of image

datasets, it is important for visualization that the SOM

prototypes are realistic and not suffering from the blurring

that can be caused by averaging. It is clear that k-means

and standard SOM will produce a certain amount of blur,

because they compute a (weighted) average of input ima-

ges in original space. DESOM also computes a weighted

average, but in the latent space of autoencoders. Our

intuition is that the reconstructed prototype images would

not suffer as much from this issue, because autoencoders

learn a flattened latent space where linear operations (ad-

dition, interpolation, etc.) are meaningful (for example, [6]

use linear interpolation and extrapolation for data aug-

mentation and produce realistic outputs).

In Fig. 14, we represented an example of a prototype

image of a 5 digit from the MNIST dataset, obtained by

four different models. First, a standard SOM applied on the

raw pixels; then, a SOM applied on the encoded dataset,

using a standard autoencoder (AE?SOM); thirdly, the

DESOM model; and finally, ConvDESOM. This basic

visual inspection confirms that the prototypes learned by

the deep models have better quality and are less blurred

than the standard SOM, and with no surprise, the best

visual quality is obtained with the convolutional variant

ConvDESOM.

In order to quantify this ‘‘blurriness’’ or, equivalently,

the ‘‘sharpness’’ of prototype images compared with the

original samples, we introduce the prototype sharpness

ratio (PSR) in Appendix 1. A good score should be very

close to 1. Prototype sharpness ratio scores on benchmark

image datasets for SOM, DESOM, ConvDESOM and

variants are presented in Table 10, results section. On

MNIST, SOM obtains a PSR of 0.720, while DESOM and

ConvDESOM obtain, respectively, 1.030 and 1.045.

5 Experimental results

This section is dedicated to evaluation and comparison of

various clustering and SOM-based methods in a large

benchmark, in terms of clustering, visualization and clas-

sification performance. As previously, all experiments are

run 10 times to obtain meaningful means and standard

deviations, and use the standard train/test split (see

Table 3), always reporting results on the test set (unless

specified otherwise). On the four benchmark datasets, we

evaluate different aspects and tasks. First, we assess clus-

tering quality with respect to external labels, using purity

and NMI. Then, we measure clustering and self-organiza-

tion through SOM’s quality indices in original and latent

space. More qualitatively, we also assess the visual quality

of the obtained maps, using the reconstructed prototypes.

Fig. 8 (Top) decoded prototypes (bottom) samples projected on U-matrix and colored by class after 0, 10, 20 and 40 training epochs

17456 Neural Computing and Applications (2021) 33:17439–17469

123

Lastly, we compare different methods on a classification

task, where the goal is to discriminate classes when the

number of clusters equals the number of target classes,

using unsupervised clustering accuracy.

Fig. 9 Evolution of losses for different values of gamma

Fig. 10 Evolution of reconstruction loss and SOM loss for different values of the gamma hyperparameter, which trades off between optimizing

the reconstruction and SOM loss functions.

Neural Computing and Applications (2021) 33:17439–17469 17457

123

5.1 Compared methods

The benchmarks compare following SOM-based methods:

• SOM: our implementation of a SOM in Keras (equiv-

alent to DESOM with identity encoder and decoder)

and trained by SGD.

• AE1SOM: two-stage approach, where SOM is learned

on the encoded dataset using a pretrained autoencoder,

Fig. 11 Evolution of clustering quality (purity and NMI) for different values of the gamma hyperparameter. Small values lead to better

clustering, but at cost of topology

Fig. 12 Purity and NMI for different batch sizes. Larger batch sizes improve clustering results overall

Fig. 13 Quantization, topographic and combined errors for different batch sizes. Medium values (64 or 128) seem preferable, but difference is

negligible

17458 Neural Computing and Applications (2021) 33:17439–17469

123

resulting in the DESOM model without joint optimiza-

tion of the AE and SOM.

• DESOM-AE1SOM: same approach, but using the AE

from a pretrained DESOM model, to study the impact

of the SOM-guided regularization.

• DESOM: Deep Embedded SOM with joint representa-

tion learning and self-organization.

The maps are always 8� 8-sized, excepted in the classi-

fication task, where we also compare a one-dimensional

#classes 9 1 map. The AE has always the same architec-

ture as in previous experiments, i.e., [500, 500, 2000, 10]

fully connected symmetric, except in ConvDESOM. We

also include k-means (from scikit-learn module), AE?k-

means and DESOM-AE?k-means, with 64 prototypes, as a

baseline, even if it cannot be directly compared because it

lacks self-organization.

When using SOM, practitioners often need inter-

pretable high-level regions on the map, that discriminate

between different classes or behaviors of the studied phe-

nomenon. A common technique is to apply a subsequent

clustering on the obtained prototypes, in order to reduce the

number of clusters. They will often use a hierarchical

clustering (HC) algorithm, as in [12]. Thus, we evaluate the

class discrimination power of the previously listed models,

but without removing the topology constraint between the

prototypes. In order to do so, the number of clusters must

be reduced to the number of target classes. We compare

three different methods:

• Perform k-means clustering on the map prototypes with

k = #classes.

• Perform Ward hierarchical clustering (HC) on the map

prototypes with #classes clusters.

• Directly train a one-dimensional, wire-shaped map of

size #classes 91.

On this task, we measure purity, NMI and unsupervised

clustering accuracy, the unsupervised counterpart of

supervised classification accuracy.

Results are put in perspective with baseline state-of-the-

art SOM-based models (SOM-VAE [19], DPSOM [34])

and deep clustering models (k-means, DEC, IDEC [20],

DCN [50], DKM [11] and VaDE [24]), keeping in mind

that these are pure clustering models and do not produce a

Fig. 14 Examples of (reconstructed) prototype images for SOM,

AE?SOM, DESOM and ConvDESOM (from left to right). With

standard SOM, images are blurry due to averaging in original space.

The best visual quality is obtained by ConvDESOM

Table 7 Clustering performance

of k-means and SOM-based

models according to purity and

NMI. Best performance among

SOM-based models in bold

underlined. Bold values

correspond to results with no

statistically significant

difference to the best (p-value[
0.05 after pairwise t test)

Method MNIST Fashion-MNIST

Pur NMI Pur NMI

k-means (k ¼ 64) .845 ± .011 .581 ± .006 .718 ± .006 .514 ± .002

AE?k-means .946 ± .004 .672 ± .005 .764 ± .005 .548 ± .003

DESOM-AE?k-means .932 ± .005 .656 ± .006 .754 ± .008 .542 ± .003

SOM (8� 8) .832 ± .010 .576 ± .005 .712 ± .002 .513 ± .002

AE?SOM :935� :005 :666� :005 :758� :007 .542 ± .005

DESOM-AE?SOM .933 ± .005 .655 ± .005 .756 ± .007 :543� :003

DESOM (8� 8) .934 ± .004 .658 ± .004 .751 ± .009 .541 ± .004

SOM-VAE (8� 8) [19] .868 ± .003 .595 ± .002 .739 ± .002 .520 ± .002

DPSOM (8� 8) [34] .964 ± .001 .705 ± .001 .764 ± .003 .571 ± .001

Method USPS REUTERS-10k

Pur NMI Pur NMI

k-means (k ¼ 64) .858 ± .007 .598 ± .004 .895 ± .007 .439 ± .007

AE?k-means .874 ± .007 .611 ± .006 .856 ± .016 .392 ± .014

DESOM-AE?k-means .858 ± .010 .592 ± .009 .798 ± .028 .360 ± .018

SOM (8� 8) .848 ± .009 .595 ± .007 .554 ± .046 .225 ± .063

AE?SOM .849 ± .015 :611� :010 .782 ± .020 .323 ± .018

DESOM-AE?SOM .852 ± .007 .589 ± .007 .799 ± .021 .355 ± .017

DESOM (8� 8) :857� :011 .592 ± .010 :808� :017 :364� :011

Neural Computing and Applications (2021) 33:17439–17469 17459

123

self-organized map. Values are taken directly from the

papers (references in the results Tables 7 and 11), and were

in some cases reported for the entire dataset, and not only

the hold-out test set.

5.2 Clustering benchmark

Results of the clustering benchmark are displayed in

Table 7. The first statement that is not surprising but

clearly confirmed here, is that reducing dimensionality with

neural networks improves clustering quality, also in the

case of SOM. If we compare SOM vs. AE?SOM, every

time there is a considerable performance gain.

Overall, AE?SOM (two-stage training) and DESOM

(joint training) have similar performance across the first

three datasets, with an advantage for AE?SOM. However,

DESOM outperforms AE?SOM by a fair margin (approx.

?3% in purity and ?10% in NMI) on REUTERS-10k,

where the AE alone struggles to find good representations

for the high-dimensional text data (the AE even decreases

performance for k-means). Thus, the joint training of

DESOM does not bring consistent quantitative benefits in

terms of purity or NMI, as seen in deep clustering

approaches, but it is at least close to the two-stage approach

and much faster to train (no pretraining). Using the AE of

DESOM in a two-stage approach yields similar or lower

scores than joint training with DESOM. On Reuters-10k,

we see that DESOM-AE has learned a better code than the

standard AE.

As noted by [19] and in our previous work [17], the

SOM trained by SGD with Adam achieves much higher

clustering quality than standard SOM implementations, and

benefits from GPU acceleration. Thus, we did not include

another SOM implementation in this work.

Comparing with other SOM-based models, DESOM

consistently outperforms SOM-VAE on MNIST and

Fashion-MNIST according to purity and NMI, but is sec-

ond to the very recent DPSOM model, achieving state-of-

the-art results on both datasets. However, it is difficult to

directly compare with these models, because they use a

variational autoencoder (VAE), and the authors do not

measure other metrics than purity and NMI (e.g., topo-

graphic organization). We believe the superiority of

DPSOM is partly due to using a VAE. Its regularization of

the latent space through a Gaussian prior leads to extracting

better representations, reflected by the class labels used by

purity and NMI, as well as better generalization (prevent-

ing overfitting on training samples). Then, they also opti-

mize a soft clustering loss (similar to DEC [49]), in

addition to the SOM loss (with only 4 neighbors), while we

directly optimize SOM distortion with a Gaussian neigh-

borhood. This also helps pure clustering quality. However,

authors do not evaluate other aspects such as SOM quality

(topographic organization).

Tables 8 and 9 present quantization, topographic and

combined errors as well as topographic product in original

and latent space for all datasets. In original space, com-

parison between SOM and DESOM shows that generally

DESOM obtain inferior quantization and topology (ex-

cepted on Reuters-10k). Joint representation learning

implies a trade-off on SOM training: deep representations

enable learning meaningful clusters with respect to latent

factors (e.g., classes), but has an impact on the self-orga-

nization of SOM. The same metrics can be defined in latent

space (see Appendix 1), to compare the AE?SOM,

DESOM-AE?SOM and DESOM approaches. Here, results

clearly point toward the advantage of the regularized,

SOM-friendly latent space, because quantization and

topology are by far superior with DESOM’s autoencoder

than with the non-regularized AE. Latent quantization,

topographic and combined errors are similar for DESOM-

AE?SOM and DESOM, but much higher for AE?SOM.

Latent topographic products are closer to zero for every

dataset, meaning that the map is less stretched or distorted

in DESOM’s latent space.

5.3 Visualization

In this paragraph, we visualize and compare maps of image

datasets obtained by SOM, DESOM and ConvDESOM.

For image datasets, we can directly visualize the prototypes

or reconstructed prototypes using the decoder. Maps for

MNIST and Fashion-MNIST are shown on Figs. 15

and 16. We clearly see the regions corresponding to dif-

ferent classes and smooth transitions between them. The

advantage of fitting the map in latent space instead of the

original high-dimensional space is visible when comparing

the prototypes learned by SOM and DESOM. With SOM,

they are very blurred (caused by averaging of data vectors

in original space), compared with the decoded prototypes

of DESOM. A few SOM prototypes are not realistic sam-

ples; however, the topographic organization looks

smoother with SOM (this was quantified in previous

paragraphs). Visually, the best map is obtained with Con-

vDESOM, as the reconstruction quality is higher.

In order to assess quantitatively the visual quality of

prototypes, we measure prototype sharpness ratio (PSR) for

each model (see Table 10). A value close to 1 indicates

sharpness close to the original samples, whereas a lower

value points toward blurriness. SOM prototypes are blurry

and obtain a low PSR, around 0.7. Models equipped with

an autoencoder obtain scores close to 1 and statistically

equivalent, with an advantage for DESOM.

Visualizations of larger maps are available in

Appendix 2.

17460 Neural Computing and Applications (2021) 33:17439–17469

123

5.4 Classification benchmark

The classification task consists in discriminating classes

when the number of clusters equals the number of target

classes. The number of clusters is reduced by applying a

subsequent k-means or hierarchical clustering on top of the

8� 8 map prototypes. Purity, NMI and unsupervised

clustering accuracy results are displayed in Table 11. The

HC approach, often used by practitioners, is more efficient

than the k-means approach in most cases.

On MNIST and Fashion-MNIST, the DESOM?HC

approach consistently outperforms every other method on

all three metrics. It obtains 81% accuracy on MNIST,

which challenges deep clustering methods without self-

organization constraints, such as DEC [49]. The

AE?SOM?HC method is also very competitive. On

Fashion-MNIST, the DESOM-based methods are clearly

superior. Generally, reducing dimensionality with an AE

greatly improves results, but USPS is an exception with

SOM?HC performing better than AE?SOM?HC. We

assume this is due to the relatively low dimension of this

dataset (256). However, DESOM?HC still achieves the

best unsupervised clustering accuracy, which is the most

important metric for this task. Lastly, on Reuters-10k the

DESOM-based approaches again produce the best classi-

fication results. This time, DESOM?k-means performs

best, but DESOM?HC is statistically equivalent.

These results demonstrate that DESOM’s self-organiz-

ing map prior has enabled to learn a SOM-friendly repre-

sentation that improves classification accuracy when

classifying the map prototypes with HC or k-means.

DESOM performs best on all four datasets is terms of

purity, NMI and accuracy, the only exception being NMI

on USPS.

The one-dimensional DESOM achieves decent results

and even the best on Reuters-10k, showing that the very

high-dimensional TF-IDF features benefit from joint

learning. It even outperforms k-means, which has no

topology constraint. However, such a map provides much

less information on the data distribution and topology than

a larger two-dimensional map.

5.5 Training time

We report training times of the compared methods for

MNIST in Table 12. All models were trained on a

RTX2080 GPU card in our lab, with a batch size of 256.

Autoencoder end-to-end pretraining for 100 epochs lasts 2

mins. The training time of SOM (our SGD-based Keras

implementation) is also 2 mins for 10000 iterations, giving

a total training time of about 4 mins for the two-stage

AE?SOM approach. This is identical to DESOM, which

trains in 4 mins. If AE pretraining was necessary for

DESOM, training time would jump to a total of 6 minutes,

Table 8 Comparison between

SOM and DESOM using

internal quality indices in

original space. Best

performance in bold underlined.

Bold values correspond to

results with no statistically

significant difference to the best

(p-value[0.05 after pairwise t

test)

Method MNIST

QE TE CE TP

SOM (8� 8) 5:345� 0:004 0:518� 0:037 15:78� 0:662 �0:073� 0:004

DESOM (8� 8) 5.848 ± 0.016 0.597 ± 0.033 21.74 ± 0.643 -0.104 ± 0.004

Method Fashion-MNIST

QE TE CE TP

SOM (8� 8) 4:537� 0:008 0:477� 0:037 12:40� 0:654 �0:026� 0:007

DESOM (8� 8) 4.755 ± 0.007 0.536 ± 0.035 15.22 ± 0.941 -0.046 ± 0.005

Method USPS

QE TE CE TP

SOM (8� 8) 3:693� 0:005 0:474� 0:025 10:35� 0:378 �0:055� 0:007

DESOM (8� 8) 4.025 ± 0.018 0.556 ± 0.041 14.62 ± 0.649 -0.082 ± 0.005

Method Reuters-10k

QE TE CE TP

SOM (8� 8) 42.70 ± 0.108 0:595� 0:311 102:4� 21:26 -0.206 ± 0.015

DESOM (8� 8) 41:81� 0:102 0.754 ± 0.072 113.8 ± 7.927 �0:147� 0:005

Neural Computing and Applications (2021) 33:17439–17469 17461

123

a ?50% increase. Overall, these SGD-based, GPU-accel-

erated methods are orders of magnitudes faster than stan-

dard SOM implementations that cannot handle datasets of

this size in a reasonable time. Finally, we think that these

low training times make SOM and DESOM very effective

tools for surveying large, high-dimensional datasets.

6 Reproducibility

Reproducibility is of utmost importance in machine

learning research. We took special care that all our

experiments and benchmarks are fully reproducible. First,

the implementation of the model is open source and

available online at https://github.com/FlorentF9/DESOM.

It uses the popular framework Keras. The repository pro-

vides instructions on how to use the model with the data-

sets used in our experiments, and external datasets also can

be used with minimal effort, in order to apply our model on

various use cases. All the hyperparameters and knobs of the

model have default values, but they can all be tuned and are

not hard-coded. To reproduce experiments, we have cre-

ated a Linux shell script for each experiment and bench-

mark that automatically lauches the training procedures

with the right parameters. Results of each experiment and

run are saved to disk into plain files, and can be aggregated

using a provided script to obtain averages and standard

deviations. This allows to reproduce any experiment or

benchmark by running a single shell script. In addition, the

performance metrics are also open source, available at

https://github.com/FlorentF9/SOMperf, making sure that

the exact values reported in the tables of this paper can be

reproduced. Finally, our experiments generated a vast

amount of graphs and tables (for every experiment, metric,

hyperparameter, dataset, etc.); only a few of them are

included and discussed in this paper, but we make them all

available in the companion repository.

7 Conclusion and perspectives

DESOM is an unsupervised learning algorithm that jointly

trains an autoencoder and the code vectors of a self-orga-

nizing map in a continuous latent space in order to survey,

cluster and visualize large, high-dimensional datasets. It is

one of the first members of what we could call the deep

SOM family, along with several other recent concurrent

works. Joint optimization allows to integrate

Table 9 Comparison between

SOM, AE?SOM and DESOM

using internal quality indices in

latent space. Best performance

in bold underlined. Bold values

correspond to results with no

statistically significant

difference to the best (p-value[
0.05 after pairwise t test)

Method MNIST

Q̂E T̂E ĈE T̂P

AE?SOM (8� 8) 1.231 ± 0.029 0:510� 0:047 4.429 ± 0.287 -0.066 ± 0.002

DESOM-AE?SOM (8� 8) 0:205� 0:008 0.514 ± 0.031 0:713� 0:017 �0:055� 0:003

DESOM (8� 8) 0:205� 0:008 0.534 ± 0.026 0.727 ± 0.058 20.057 – 0.005

Method Fashion-MNIST

Q̂E T̂E ĈE T̂P

AE?SOM (8� 8) 0.960 ± 0.026 0:532� 0:022 3.973 ± 0.250 -0.059 ± 0.007

DESOM-AE?SOM (8� 8) 0:166� 0:003 0.572 ± 0.037 0.664 ± 0.041 �0:044� 0:003

DESOM (8� 8) 0.167 ± 0.003 0.556 ± 0.035 0:661� 0:036 20.045 – 0.005

Method USPS

Q̂E T̂E ĈE T̂P

AE?SOM (8� 8) 3.926 ± 0.151 0.689 ± 0.104 19.88 ± 2.737 -0.098 ± 0.007

DESOM-AE?SOM (8� 8) 0:278� 0:009 0:554� 0:033 1:174� 0:085 �0:065� 0:005

DESOM (8� 8) 0.280 ± 0.007 0.563 ± 0.031 1.184 ± 0.037 20.069 – 0.003

Method Reuters-10k

Q̂E T̂E ĈE T̂P

AE?SOM (8� 8) 30.00 ± 0.867 0.934 ± 0.017 270.7 ± 13.72 -0.146 ± 0.010

DESOM-AE?SOM (8� 8) 0.527 ± 0.017 0.710 ± 0.035 3.391 ± 0.401 20.071 – 0.007

DESOM (8� 8) 0:524� 0:015 0:696� 0:065 3:102� 0:289 �0:069� 0:004

17462 Neural Computing and Applications (2021) 33:17439–17469

123

https://github.com/FlorentF9/DESOM
https://github.com/FlorentF9/SOMperf

dimensionality reduction to SOM learning, and to seek a

SOM-friendly latent space that improves the performance

of SOM. The goal of this paper is to extend and provide

further insights to the previous conference papers. The

model is governed by several hyperparameters impacting

training and performance, in particular the trade-off

between clustering and self-organization. This work pre-

sented experiments and visualizations in order to under-

stand these effects. In our experiments, we found that

reducing dimension with an autoencoder vastly improves

SOM clustering with respect to latent factors of variation.

We also found that the learned latent space does not in

general improve quantitative clustering quality compared

with the representations produced by a pure autoencoder

model; however, DESOM results are on par with the two-

stage approaches (AE?SOM), while requiring no pre-

training at all and thus cutting down training time, which is

an important criterion when quickly exploring large data-

sets. Training time is only a few minutes on medium-sized

benchmark datasets. On a classification task where the goal

Table 10 Prototype sharpness

ratio (PSR). Closest to 1 is best.

Best performance in bold

underlined. Bold values

correspond to results with no

statistically significant

difference to the best (p-value[
0.05 after pairwise t test)

Method MNIST Fashion-MNIST USPS

SOM (8� 8) 0.720 ± 0.005 0.703 ± 0.005 0.769 ± 0.005

AE?SOM (8� 8) 1.083 ± 0.012 0:834� 0:011 0.777 ± 0.016

DESOM-AE?SOM (8� 8) 1.034 ± 0.011 0.825 ± 0.010 1.041 – 0.021

DESOM (8� 8) 1:030� 0:005 0.832 ± 0.013 1:027� 0:020

ConvDESOM (8� 8) 1.045 ± 0.027 0.829 ± 0.009 -

Fig. 15 Prototypes (decoded) visualized on SOM, DESOM and ConvDESOM maps for MNIST

Fig. 16 Prototypes (decoded) visualized on SOM, DESOM and ConvDESOM maps for Fashion-MNIST

Neural Computing and Applications (2021) 33:17439–17469 17463

123

is to discriminate between target classes, after post-clus-

tering the SOM code vectors, DESOM consistently out-

performs comparable models.

Not every aspect has been tackled in this work. We

conducted experiments using a fully connected or convo-

lutional autoencoder network, but an extension to

sequences with a recurrent autoencoder is possible. In

addition, the model could be extended to the variational or

adversarial frameworks (VAE or GAN), which could

improve the quality of learned representations and provide

us with a generative model. We also did not try different

SOM neighborhood functions and radius decays, assuming

Table 11 Classification performance when number of clusters equals number of classes. Best performance among SOM-based models in bold

underlined. Bold values correspond to results with no statistically significant difference to the best (p-value[0.05 after pairwise t test)

Method MNIST Fashion-MNIST

Pur NMI Acc Pur NMI Acc

k-means (k =#classes) .591 ± .026 .501 ± .020 .533 ± .038 .583 ± .018 .513 ± .012 .549 ± .040

AE?k-means .820 ± .019 .754 ± .013 .801 ± .027 .544 ± .010 .524 ± .012 .489 ± .017

DESOM-AE?k-means .770 ± .025 .701 ± .018 .744 ± .045 .625 ± .014 .590 ± .009 .586 ± .014

DEC [20] – .837 .866 – – –

IDEC [20] – .867 .881 – – –

DCN [50] – .810 .830 – – –

DKM [11] – .796 ± .009 .840 ± .022 – – –

VaDE [24] – – .945 – – –

SOM (8� 8)?KM .559 ± .053 .485 ± .041 .510 ± .071 .538 ± .023 .499 ± .024 .498 ± .035

SOM (8� 8)?HC .641 ± .030 .612 ± .027 .598 ± .035 .550 ± .032 .536 ± .022 .491 ± .041

AE?SOM?KM .773 ± .051 .728 ± .032 .728 ± .073 .485 ± .041 .461 ± .032 .439 ± .048

AE?SOM?HC .822 ± .024 .788 ± .030 .791 ± .026 .528 ± .029 .550 ± .026 .480 ± .032

DESOM-AE?SOM?KM .743 ± .049 .690 ± .033 .720 ± .057 .588 ± .024 .583 ± .012 .535 ± .033

DESOM-AE?SOM?HC .747 ± .041 .681 ± .036 .721 ± .056 .598 ± .042 .586 ± .036 .553 ± .047

DESOM (8� 8)?KM .751 ± .048 .696 ± .036 .717 ± .065 .587 ± .044 .582 ± .025 .536 ± .053

DESOM (8� 8)?HC :824� :024 :793� :025 :810� :032 :613� :035 :604� :019 :571� :036

DESOM (#classes 9 1) .790 ± .017 .720 ± .020 .779 ± .033 .563 ± .019 .553 ± .011 .546 ± .025

USPS REUTERS-10k

Method Pur NMI Acc Pur NMI Acc

k-means (k = #classes) .703 ± .026 .585 ± .019 .660 ± .032 .647 ± .082 .373 ± .085 .589 ± .096

AE?k-means .720 ± .033 .604 ± .026 .680 ± .063 .589 ± .044 .235 ± .046 .538 ± .041

DESOM-AE?k-means .698 ± .027 .575 ± .024 .648 ± .032 .615 ± .067 .257 ± .062 .533 ± .069

DEC [20] – .753 .741 – .498 .737

IDEC [20] – .785 .761 – .498 .756

DCN [50] – – – – .760 .800

DKM [11] – .776 ± .011 .757 ± .013 – .331 ± .049 .583 ± .038

VaDE [24] – – – – – .798

SOM (8� 8)?KM .659 ± .029 .571 ± .016 .629 ± .043 .443 ± .070 .107 ± .099 .434 ± .072

SOM (8� 8)?HC :711� :019 :650� :014 .666 ± .024 .444 ± .028 .105 ± .041 .439 ± .030

AE?SOM?KM .615 ± .027 .540 ± .027 .585 ± .049 .456 ± .058 .115 ± .067 .415 ± .042

AE?SOM?HC .673 ± .056 .591 ± .043 .649 ± .070 .469 ± .057 .128 ± .058 .441 ± .071

DESOM-AE?SOM?KM .639 ± .063 .545 ± .048 .621 ± .067 .571 ± .050 .206 ± .050 .478 ± .061

DESOM-AE?SOM?HC .631 ± .041 .540 ± .035 .610 ± .040 .536 ± .063 .197 ± .061 .467 ± .065

DESOM (8� 8)?KM .636 ± .043 .543 ± .032 .611 ± .058 :573� :059 :210� :063 :510� :073

DESOM (8� 8)?HC .710 ± .023 .633 ± .017 :698� :030 .521 ± .079 .186 ± .095 .486 ± .094

DESOM (#classes 9 1) .683 ± .035 .556 ± .033 .649 ± .038 .661 ± .039 .322 ± .041 .596 ± .045

17464 Neural Computing and Applications (2021) 33:17439–17469

123

that they are only related to the SOM learning and should

not fundamentally change the properties of DESOM.

However, this cannot be excluded due to the interaction

between SOM loss and reconstruction loss. All these per-

spectives are left as future work.

Appendix 1: performance evaluation

Quantitative evaluation of self-organizing maps is not as

straightforward as for supervised classification tasks. To

assess and compare the performance of models, we

implemented and evaluated a collection of metrics that

have been developed in related literature. This literature

spans almost 30 years of history, and implementations are

not easy to find. Thus, we implemented these metrics and

provide them as an open-source library, SOMperf6 [18].

First, SOM performance metrics can be categorized into

two families:

1. Clustering metrics. Any clustering quality measure that

relies solely on the prototype vectors and not on their

topological organization. This encompasses all quality

indices used in clustering literature (e.g., purity,

normalized mutual information (NMI), Rand index,

etc.).

2. Topographic metrics. Under this term, we coin quality

measures that, on the contrary, assess the topological

organization of the model. Some indices also evaluate

the clustering quality, but we call a metrics topographic

as soon as it incorporates the map topology.

On another level, we can also classify them into two well-

known families, depending on the use or not of ground-

truth label knowledge:

1. Internal indices, using only intrinsic properties of the

model and the data.

2. External indices, relying on external ground-truth class

labels to evaluate results, as in supervised

classification.

For instance, quantization error falls into the clustering

metric category (as it measures how the SOM cluster

centers fit the data distribution, without using any topology

information) and is an internal indices (not depending on

external labels). On the other side, the Class Scatter Index

(introduced in [10]) is a topographic metric and an external

indices, as it measures how ground-truth class labels are

organized into groups of neighboring map units.

Clustering metrics

Internal indices

Quantization error Quantization error is the average error

made by projecting data on the SOM, as measured by

Euclidean distance, i.e., the mean Euclidean distance

between a data sample and its best-matching unit. It can be

measured in the original space, using the prototypes

reconstructed by the decoder (QE), or in latent space (Q̂E),

introducing the notations ~bi for the best-matching unit of

data point xi in original space, and bi for the best-matching

unit of zi in latent space.

QEðf ~mkg;XÞ ¼
1

N

XN
i¼1
jjxi � ~mbi jj2

Q̂Eðfmkg;ZÞ ¼
1

N

XN
i¼1
jjzi �mbi jj2

Prototype sharpness ratio In the case of images, we want

the prototype images to be realistic and as sharp as the

original images. When visualizing a self-organized map of

an image dataset, we usually simply visualize the image

corresponding to each prototype vector. If they are blurry

(due to the averaging induced by the SOM algorithm), the

visualization will be of poor quality, even if the quantiza-

tion error is low (because QE is only an average Euclidean

distance). We have chosen a very simplistic way to com-

pute the sharpness of an image, which is the average norm

of pixel gradients, measured in two dimensions. The

sharpness of a SOM is defined as the average sharpness of

its prototypes. This sharpness measure can then be com-

pared with the average sharpness of images in the original

dataset. We introduce the prototype sharpness ratio (PSR),

defined as follows:

PSRðf ~mkg;XÞ ¼
average prototype sharpness

average dataset sharpness

¼
1
K

PK
k¼1 jjr2D ~mkjj22

1
N

PN
i¼1 jjr2Dxijj22

A score lower than 1 means that the prototypes are in

average blurrier than the original images; on the contrary,

if it is larger than 1, they are less blurry (i.e., more crisp or

noisy) than the originals. The closer the PSR is to 1, the

better is the score.

Table 12 Training times on MNIST (60000 samples, batch size 256)

Model Average training time

AE pretraining (100 epochs) 2 min

SOM (10000 iterations) 2 min

AE?SOM (10000 iterations) 4 min

DESOM (10000 iterations) 4 min

6 https://github.com/FlorentF9/SOMperf.

Neural Computing and Applications (2021) 33:17439–17469 17465

123

https://github.com/FlorentF9/SOMperf

External indices

A clustering with K clusters is described by the sets of data

points belonging to each cluster, noted

Q ¼ fQkg; k ¼ 1. . .K. In order to define the external

clustering criteria, we assume that labels are associated

with each data point, corresponding to a set of C different

classes. We note Y ¼ fYjg; j ¼ 1. . .C the sets of elements

belonging to each class.

Purity Purity is one of the most commonly used external

quality indices. It measures the purity of clusters with

respect to ground-truth class labels. To compute the purity

of a clustering Q, each cluster is assigned to the class

which is most frequent in the cluster, and then the accuracy

of this assignment is measured by counting the number of

correctly assigned points and dividing by the total number

of points. Formally:

PurðQ;YÞ ¼ 1

N

XK
k¼1

max
j¼1...C

jQk \ Yjj ð9Þ

High purity is easy to achieve when the number of data

points per cluster is small; in particular, purity is equal to 1

if all points get their own cluster. Thus, purity cannot be

used to trade off the validity of the clustering against the

number of clusters.

Normalized mutual information Normalized mutual

information (NMI) is also one of the most widespread

external clustering indices:

NMIðQ;YÞ ¼ IðQ;YÞ
1
2
HðQÞ þ HðYÞð Þ

where I is mutual information:

IðQ;YÞ ¼
X
k

X
j

PðQk \ YjÞ log
PðQk \ YjÞ
PðQkÞPðYjÞ

¼
X
k

X
j

jQk \ Yjj
N

log
NjQk \ Yjj
jQkjjYjj

and H is entropy:

HðQÞ ¼ �
X
k

PðQkÞ logPðQkÞ ¼ �
X
k

jQkj
N

log
jQkj
N

Unsupervised clustering accuracy Accuracy is the most

common metric used in supervised classification: it corre-

sponds to the number of examples that are assigned to the

correct class divided by the total number of examples in the

dataset. It can also be used in clustering (i.e., unsupervised

classification) as an external quality measure if labels are

available and if the number of clusters is equal to the

number of classes. It consists in the accuracy of the

resulting classification using the best one-to-one mapping

between clusters and class labels. Denoting this mapping

by m, the expression of unsupervised clustering accuracy

is:

AccðQ;YÞ ¼ 1

N
max
m

XK
k¼1
jQk \ YmðkÞj ð10Þ

The best mapping can be found using the Hungarian

assignment algorithm, also known as the Kuhn–Munkres

algorithm.

Topographic metrics

Distortion Distortion is the loss function minimized by the

SOM learning algorithm. It is similar to the within-cluster

sum of squared errors (WSSE) minimized by k-means, but

with an additional topology constraint introduced by the

neighborhood function. It is calculated by the sum of

squared Euclidean distances between each map prototype

and data sample, weighted by the neighborhood function

according to the distance between the sample and the

prototype. As quantization error, it can be measured in the

original data space or in latent space:

Dðf ~mkg;X; TÞ ¼ 1

N

XN
i¼1

XK
k¼1
KT dð ~bi; kÞ

� �
jjxi � ~mkjj22

D̂ðfmkg;Z; TÞ ¼
1

N

XN
i¼1

XK
k¼1
KT dðbi; kÞð Þjjzi �mkjj22

In DESOM, the SOM loss corresponds to latent distortion.

Topographic error Topographic error assesses the self-

organization of a SOM model. It is calculated as the

fraction of samples whose best and second-best matching

units are not neighbors on the map. In other words, this

error quantifies the smoothness of projections on the self-

organized map. Using the notations ~b
k

i and bki for the k-th

best-matching units of xi and zi in original and latent space,

respectively, we define topographic error TE and latent

topographic error T̂E:

TEðf ~mkg;XÞ ¼
1

N

XN
i¼1

1
dð ~b1i ; ~b

2

i Þ[1

T̂Eðfmkg;ZÞ ¼
1

N

XN
i¼1

1dðb1i ;b2i Þ[1

Combined error Combined error [25] is an error measure

that combines and extends quantification and topographic

errors. Its computation is more complex than the previous

indices. For a given data sample xi, we first compute its

two best matching units ~b
1

i and ~b
2

i . Then, we compute a

sum of Euclidean distances from xi to the second BMU’s

prototype vector m ~b
2

i

, starting with the distance from xi to

m ~b
1

i

, and thereafter following a shortest path until m ~b
2

i

,

17466 Neural Computing and Applications (2021) 33:17439–17469

123

going through only neighboring units on the map. Finally,

the combined error (CE) is the average of this distance over

the input samples.

Let p be a path on the map of length P	 1, from pð0Þ ¼
~b
1

i to pðLÞ ¼ ~b
2

i , such that p(k) and pðk þ 1Þ must be

neighbors for k ¼ 0. . .P� 1. The distance along the

shortest path on the map is computed as:

CEi ¼ jjxi � ~m ~b
1

i

jj22 þmin
p

XP�1
k¼0
jj ~mpðkþ1Þ � ~mpðkÞjj22

Finally, the combined error is:

CEðf ~mkg;XÞ ¼
1

N

XN
i¼1

CEi

As usual, we also define combined error in latent space:

ĈEi ¼ jjzi �mb1i
jj22 þmin

p

XL�1
k¼0
jjmpðkþ1Þ �mpðkÞjj22

ĈEðfmkg;ZÞ ¼
1

N

XN
i¼1

ĈEi

Topographic product The topographic product (TP) [3]

measures the preservation of neighborhood relations

between vector space and the map. It depends only on the

prototype vectors and map topology, and is able to indicate

whether the dimension of the map is appropriate to fit the

dataset, or if it introduced neighborhood violations.

We will note d the Euclidean distance in vector space,

and d the topographic distance on the map. The computa-

tion of TP starts by defining two ratios between the dis-

tance of a prototype j to its k-th nearest neighbor on the

map ndkðjÞ, and to its k-th nearest neighbor in vector space

ndkðjÞ:

Q1ðj; kÞ ¼
d ~mj; ~mnd

k
ðjÞ

� �

d ~mj; ~mnd
k
ðjÞ

� � ; Q2ðj; kÞ ¼
d j; ndkðjÞ
� �

d j; ndkðjÞ
� �

Naturally, we always have Q1	 1 and Q2� 1. The ratios

are combined into a product in order to obtain a symmetric

measure and mitigate local magnification factors:

P3ðj; kÞ ¼
Yk
l¼1

Q1ðj; lÞQ2ðj; lÞ
" # 1

2k

Finally, the topographic product is obtained by taking the

logarithm and averaging over all map units and neighbor-

hood orders:

TP ¼ 1

KðK � 1Þ
XK
j¼1

XK�1
k¼1

logP3ðj; kÞ

TP\0 indicates the map dimension is too low to correctly

represent the dataset; TP ¼ 0 means the dimension is

adequate; and TP[0 indicates a dimension too high and

neighborhood violations. A latent topographic product T̂P

can be defined in exactly the same manner, only replacing

the prototypes ~mj by their latent counterparts mj.

Appendix 2: map visualizations

See Fig. 17.

Fig. 17 20-by-20 DESOM maps of MNIST and Fashion-MNIST

Neural Computing and Applications (2021) 33:17439–17469 17467

123

Acknowledgements This research was funded by the French agency

for research and technology (ANRT) through the CIFRE Grant

2017/1279 and by Safran Aircraft Engines (Safran group).

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Aljalbout E, Golkov V, Siddiqui Y, and Cremers D (2018)

Clustering with Deep Learning: Taxonomy and New Methods.

arXiv:1801.07648

2. Arpit D, Zhou Y, Ngo H, Govindaraju V (2016) Why regularized

auto-encoders learn sparse representation?. In: International

Conference on Machine Learning (ICML) 1:211–223

3. Bauer HU, Pawelzik K, Geisel T (1992) A topographic product

for the optimization of self-organizing feature maps. NIPS

4:1141–1147

4. Carniel R, Jolly AD, Barbui L (2013) Analysis of phreatic events

at Ruapehu volcano, New Zealand using a new SOM approach.

J Volcanol Geotherm Res 254:69–79. https://doi.org/10.1016/j.

jvolgeores.2012.12.026

5. Côme E, Cottrell M, Verleysen M, Lacaille J (2011) Aircraft

engine fleet monitoring using Self-Organizing Maps and Edit

Distance. In: International Workshop on Self-Organizing Maps

and Learning Vector Quantization, Clustering and Data Visual-

ization (WSOM), pp 298–307

6. Devries T and GW Taylor (2017) Dataset augmentation in feature

space. In ICLR Workshop

7. Diday E, Simon JC (1976) Clustering analysis. Springer, Berlin,

Heidelberg, pp 47–94. https://doi.org/10.1007/978-3-642-96303-

2_3

8. Dilokthanakul N, Mediano PA, Garnelo M, Lee MC, Salimbeni

H, Arulkumaran K, and Shanahan M. (2017) Deep unsupervised

clustering with Gaussian mixture variational autoencoders

9. Ghasedi Dizaji K, Herandi A, Deng C, Cai W, and Huang H

(2017) Deep clustering via joint convolutional autoencoder

embedding and relative entropy minimization. In: ICCV,

pp. 5747–5756

10. Elend L, Kramer O (2019) Self-organizing maps with convolu-

tional layers. In: International Workshop on Self-Organizing

Maps and Learning Vector Quantization, Clustering and Data

Visualization (WSOM)

11. Fard MM, Thonet T, and Gaussier E (2018) Deep k-Means:

jointly clustering with k-means and learning representations.

arXiv:1806.10069

12. Faure C, Olteanu M, Bardet JM, Lacaille J (2017) Using self-

organizing maps for clustering and labelling aircraft engine data

phases. In: international workshop on self-organizing maps and

learning vector quantization, clustering and data visualization

(WSOM)

13. Ferles C, Papanikolaou Y, Naidoo KJ (2018) Denoising autoen-

coder self-organizing map (DASOM). Neural Netw 105:112–131.

https://doi.org/10.1016/j.neunet.2018.04.016

14. Forest F, Cochard Q, Noyer C, Cabut A, Joncour M, Lacaille J,

Lebbah M, and Azzag H (2020) Large-scale vibration monitoring

of aircraft engines from operational data using self-organized

Models. In: annual conference of the PHM society

15. Forest F, Lacaille J, Lebbah M, and Azzag H.(2018) A generic

and scalable pipeline for large-scale analytics of continuous air-

craft engine data. In: IEEE international conference on big data

16. Forest F, Lebbah M, Azzag H, and Lacaille J (2019) Deep

architectures for joint clustering and visualization with self-or-

ganizing maps. In: PAKDD workshop on learning data repre-

sentations for clustering (LDRC)

17. Florent F, Lebbah M, Hanane A, Lacaille J (2019) Deep

embedded SOM: joint representation learning and self-organi-

zation. In: European symposium on artificial neural networks,

computational intelligence and machine learning (ESANN)

18. Florent F, Lebbah M, Hanane A, and Lacaille J (2020) A survey

and implementation of performance metrics for self-organized

maps. arXiv:2011.05847

19. Fortuin V, Hüser M, Locatello F, Strathmann H, Rätsch G (2019)

SOM-VAE: interpretable discrete representation learning on time

series

20. Guo X, L Gao, X Liu, and J Yin (2017) Improved deep embedded

clustering with local structure preservation. In: international joint

conference on artificial intelligence (IJCAI), pp. 1753–1759

21. X Guo, X Liu, E Zhu, and J Yin (2017) Deep clustering with

convolutional autoencoders. In: ICONIP

22. W Harchaoui, PA Mattei, A Alamansa, and C Bouveyron (2018)

Wasserstein adversarial mixture clustering. https://hal.archives-

ouvertes.fr/hal-01827775/

23. Hinton GE, Salakhutdinov R (2006) Reducing the dimensionality

of data with neural networks. Science 313:504–507

24. Z Jiang, Y Zheng, H Tan, B Tang, and H Zhou (2017) Variational

deep embedding : an unsupervised and generative approach to

clustering. In: international joint conference on artificial intelli-

gence (IJCAI), pp. 1965–1972

25. Kaski S, Lagus K (1996) Comparing self-organizing maps

26. DP. Kingma and M. Welling (2014) Stochastic gradient VB and

the variational auto-encoder. In: international conference on

learning representations (ICLR) arXiv:1312.6114

27. Kohonen T (1982) Self-organized formation of topologically

correct feature maps. Biol Cybern 43(1):59–69

28. Kohonen Teuvo (1990) The self-organizing map. Proc IEEE

78:1464–1480

29. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86(11):2278–2324

30. Lewis DD, Yang Y, Rose TG, Li F (2004) RCV1: a new

benchmark collection for text categorization research. J Mach

Learn Res 5:361–397

31. Liu Z, Cao J, Chen S, Lu Y, Tan F (2020) Visualization analysis

of seismic facies based on deep embedded SOM. IEEE Geosci

Remote Sens Lett 18(8):1491–1495

32. Q Ma, J Zheng, S Li, and GW Cottrell (2019) Learning repre-

sentations for time series clustering. In: NeurIPS

33. P Madaan and A Maiti (2019) Deep mean shift clustering. PhD

thesis, Indraprastha Institute of Information Technology

34. L Manduchi, M Hüser, G Rätsch, and V Fortuin (2020) DPSOM:

deep probabilistic clustering with self-organizing maps. arXiv:

1910.01590

35. L McInnes, J Healy, and J Melville (2018) UMAP: uniform

manifold approximation and projection for dimension reduction.

arXiv:1802.03426

36. HR Medeiros, PHM Braga, and HF Bassani (2020) Deep clus-

tering self-organizing maps with relevance learning. In: ICML

LatinX in AI Research Workshop

37. Min E, Guo X, Liu Q, Zhang G, Cui J, Long J (2018) A survey of

clustering with deep learning: from the perspective of network

architecture. IEEE Access 6:39501–39514

38. S Mukherjee, H Asnani, E Lin, and S Kannan (2019) Clus-

terGAN: latent space clustering in generative adversarial net-

works. In: Proceedings of the AAAI Conference on Artificial

Intelligence, 33:4610–4617. https://aaai.org/ojs/index.php/AAAI/

article/view/4385

17468 Neural Computing and Applications (2021) 33:17439–17469

123

http://arxiv.org/abs/1801.07648
https://doi.org/10.1016/j.jvolgeores.2012.12.026
https://doi.org/10.1016/j.jvolgeores.2012.12.026
https://doi.org/10.1007/978-3-642-96303-2_3
https://doi.org/10.1007/978-3-642-96303-2_3
http://arxiv.org/abs/1806.10069
https://doi.org/10.1016/j.neunet.2018.04.016
http://arxiv.org/abs/2011.05847
https://hal.archives-ouvertes.fr/hal-01827775/
https://hal.archives-ouvertes.fr/hal-01827775/
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1910.01590
http://arxiv.org/abs/1910.01590
http://arxiv.org/abs/1802.03426
https://aaai.org/ojs/index.php/AAAI/article/view/4385
https://aaai.org/ojs/index.php/AAAI/article/view/4385

39. Andrew Ng (2011) Sparse autoencoder. Technical report, Stan-

ford University, https://web.stanford.edu/class/cs294a/sparseAu

toencoder.pdf

40. M Pesteie, P Abolmaesumi, and R Rohling (2018) Deep neural

maps. In: ICML workshop. arXiv:1810.07291

41. DJ Rezende, S Mohamed, and D Wierstra (2014) Stochastic

backpropagation and approximate inference in deep generative

models. In: International Conference on Machine Learning

(ICML), 4:3057–3070

42. Song C, Huang Y, Liu F, Wang Z, Wang L (2014) Deep auto-

encoder based clustering. Intell Data Anal 18(6):65–76

43. Ullah A, Haydarov K, Haq IUI, Muhammad K, Rho S, Lee M,

Baik SW (2020) Deep learning assisted buildings energy con-

sumption profiling using smart meter data. Sensors 20(3):873

44. A van den Oord, O Vinyals, and K Kavukcuoglu (2017) Neural

discrete representation learning. In: NIPS. arXiv:1711.00937

45. T. Villmann, M. Biehl, A. Villmann, and S. Saralajew (2017)

Fusion of deep learning architectures, multilayer feedforward

networks and learning vector quantizers for deep classification

learning. In: international workshop on self-organizing maps and

learning vector quantization, clustering and data visualization

(WSOM)

46. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA

(2010) Stacked denoising autoencoders: learning useful

representations in a deep network with a local denoising criterion.

J Mach Learn Res 11:3371–3408

47. H Wu and M Flierl (2020) Vector quantization-based regular-

ization for autoencoders. In: Proceedings of the AAAI conference

on artificial intelligence, arXiv:1905.11062

48. H Xiao, K Rasul, and R Vollgraf (2017) Fashion-MNIST: a novel

image dataset for benchmarking machine learning algorithms.

arXiv:1708.07747

49. J Xie, R Girshick, and A Farhadi (2016) Unsupervised deep

embedding for clustering analysis. In: International conference on

machine learning (ICML), vol. 48, arXiv:1511.06335

50. B Yang, X Fu, ND Sidiropoulos, and M Hong (2017) Towards

K-means-friendly spaces: simultaneous deep learning and clus-

tering. In: International Conference on Machine Learning

(ICML), arXiv:1610.04794

51. D Zhu, T Han, L Zhou, X Yang, and YN Wu (2019) Deep

unsupervised clustering with clustered generator model. arXiv:

1911.08459

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:17439–17469 17469

123

https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
http://arxiv.org/abs/1810.07291
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1905.11062
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1511.06335
http://arxiv.org/abs/1610.04794
http://arxiv.org/abs/1911.08459
http://arxiv.org/abs/1911.08459

	Deep embedded self-organizing maps for joint representation learning and topology-preserving clustering
	Abstract
	Introduction
	Background and related work
	Self-organizing maps
	Autoencoders
	Representation learning for clustering
	Deep self-organizing maps

	Deep embedded self-organizing map
	Architecture
	Loss function
	Topological organization interpretation
	Training procedure
	Implementation
	Training parameters

	Architecture and hyperparameter study
	Datasets
	Gamma \gamma parameter study
	Latent code dimension study
	Map size study
	Convolutional architecture study

	Initialization and pretraining
	Training parameters and learning dynamics
	Learning curves
	Latent space evolution

	Prototype image sharpness

	Experimental results
	Compared methods
	Clustering benchmark
	Visualization
	Classification benchmark
	Training time

	Reproducibility
	Conclusion and perspectives
	Appendix 1: performance evaluation
	Clustering metrics
	Internal indices
	External indices

	Topographic metrics

	Appendix 2: map visualizations
	Acknowledgements
	References

