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Abstract
The present study is related to design a novel multi-fractional multi-singular Lane–Emden model (MFMS-LEM) by

keeping the ideas of the literature LEM and by extension of the work of doubly singular multi-fractional LEM. This

mathematical novel MFMS-LEM is numerically treated by applying the fractional Meyer neuro-evolution intelligent solver

(FMNEICS). The optimization is performed using the mutual heuristics of fractional Mayer wavelet neural networks

(FMW-NN), the global search aptitude of genetic algorithms (GAs) and interior-point algorithm (IPA), i.e., FMW-NN-

GAIPA. The derivation steps, details of the singular points, fractional terms, shape factors and singular points are also

provided. The modeling strength of MW-NN is implemented to characterize the novel model in the sagacity of mean

squared error of objective function and network optimization is performed with the integrated capability of GAIPA. The

authentication, perfection and verification of FMNEICS is checked for three diverse cases of the novel model which are

conventional via relative studies through the reference solutions based on accuracy, stability, robustness and convergence

procedures. Furthermore, the explanations via the statistical measures validate the value of the designed stochastic solver

FMW-NN-GAIPA.

Keywords Artificial neural networks � Multi-fractional model based on Lane–Emden � Multi-singular systems �
Mayer wavelet neural networks � Interior-point algorithm � Genetic algorithms

1 Introduction

The system based on fractional order signified with dif-

ferential equations of fractional order and integer terms

have been widely deliberated due to the numerous appli-

cations in control systems, physics, engineering and

mathematical sciences. The study of fractional calculus

involving different operatives has become one of the most

valuable and interesting topics for the research community

during the last thirty years. To mention some operators,

have supreme significance are the Caputo operator [1],

Erdelyi–Kober operator [2], Weyl–Riesz operator [3],

Riemann–Liouville [5] and Grunwald–Letnikov operator

[5]. Keeping the ideas of these fractional-based operatives,

the researchers are interested to investigate these operators

in different fields like as fractional viscoplasticity modeling

[6–8], parameter estimation problem for input nonlinear

control autoregressive systems [9], dynamical studies of

earth systems [10], reactive power planning involving

FACTS devices [11], edge exposure in road hurdle [12],

& Juan L. G. Guirao

juan.garcia@upct.es; jlgarcia@kau.edu.sa

Zulqurnain Sabir

zulqurnain_maths@hu.edu.pk

Muhammad Asif Zahoor Raja

rajamaz@yuntech.edu.tw

Tareq Saeed

tsalmalki@kau.edu.sa

1 Department of Mathematics and Statistics, Hazara

University, Mansehra, Pakistan

2 Future Technology Research Center, National Yunlin

University of Science and Technology, 123 University Road,

Section 3, Douliou, Yunlin 64002, Taiwan, R.O.C.

3 Department of Applied Mathematics and Statistics, Technical

University of Cartagena, Hospital de Marina,

30203 Cartagena, Spain

4 Nonlinear Analysis and Applied Mathematics (NAAM)-

Research Group, Department of Mathematics, Faculty of

Science, King Abdulaziz University,

P.O. Box 80203, Jeddah 21589, Saudi Arabia

123

Neural Computing and Applications (2021) 33:17287–17302
https://doi.org/10.1007/s00521-021-06318-7(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-2788-809X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06318-7&amp;domain=pdf
https://doi.org/10.1007/s00521-021-06318-7


reactive power flow systems [13], reaction problem of

surface–volume [14], optimization of reactive power dis-

patch problems [15], behaviors study in the real ingredients

[16], power signals parameter estimation [17], modeling of

viscoelastic systems [18], power systems [19], theory of

electromagnetic established on the concepts of fractional

calculus [20], higher order models based on singular points

[21], nanofluids-based mathematical models [22], mathe-

matical models for tiny hardware implants [23], LC-elec-

tric circuit fractal models [24], financial market forecasting

[25], physics [26], nuclear engineering [27], control sys-

tems [28], recommender systems [29], engineering-based

dynamics [30], system identification [31] and some other

fields, see [32–35].

Several singular studies are found in the literature that

are always difficult to solve using the conventional/tradi-

tional analytical and numerical schemes, in which one of

the famous studies is Lane–Emden singular system

(LESS). The LESS is a historical model and has many

applications like astrophysics, spherical cloud of gas and

quantum mechanics. The LESS is famous due to the

involvement of singularity at the origin. There are many

numerical schemes that have been implemented to solve

this famous LESS [36–42]. The generic form of the LESS

is given as [43–45]:

d2S

dy2
þ u

y

dS

dy
þ hðSÞ ¼ pðyÞ;

Sð0Þ ¼ a1;
dSð0Þ

dy
¼ a2:

8
>><

>>:

ð1Þ

The singularity appears on y = 0 and the value of the

shape vector is u� 1. The idea of the present study is to

construct a multi-fractional multi-singular Lane–Emden

model (MFMS-LEM) that comes in the mind by general-

izing the LESS and the extension of the work of Sabir et al.

[46]. The following mathematical steps have been applied

as [47]:

y�v df

dyf
yv

dg

dyg

� �

SðyÞ þ hðSÞ ¼ pðyÞ; ð2Þ

where v shows a positive real valued number and p(y) is

a forcing function. For the derivation of the MFMS-LEM,

the values of f and p can be chosen as:

f ¼ 3; p ¼ a; where 0\a\1: ð3Þ

Equation (2) is updated using the above equation as

follows:

y�v d3

dy3
yv

da

dya

� �

SðyÞ þ hðSÞ ¼ pðyÞ: ð4Þ

The simplified form of the above equation is written as:

d3

dy3
yv

da

dya

� �

SðyÞ ¼ xu
daþ3

dyaþ3
SðyÞ þ 3vyv�1 daþ2

dyaþ2
SðyÞ

þ 3vðv� 1Þyv�2 daþ1

dyaþ1
SðyÞ

þ vðv� 1Þðv� 2Þyv�3 da

dya
SðyÞ:

ð5Þ

Hence, the obtained form of the mathematical model

becomes as:

daþ3

dyaþ3
SðyÞ þ 3v

y

daþ2

dyaþ2
SðyÞ þ 3vðv� 1Þ

y2

daþ1

dyaþ1
SðyÞ

þ vðv� 1Þðv� 2Þ
y3

da

dya
SðyÞ þ hðSÞ ¼ pðyÞ;

Sð0Þ ¼ 0; Sð0:5Þ ¼ A; Sð1Þ ¼ B:

8
>>>>><

>>>>>:

ð6Þ

The obtained mathematical form of the model provided

in the above equation is named as MFMS-LEM. The shape

factor values are 3v, 3vðv� 1Þ and vðv� 1Þðv� 2Þ,
respectively, whereas the singularity appears three times at

the variables y, y2 and y3 in the 2nd, 3rd and 4th terms,

respectively. Moreover, a shows the fractional order and it

appears four times as a; aþ 1, aþ 2 and aþ 3. The third

and fourth terms vanish for v = 1 and shape factor reduces

to 3. The further mathematical details for deriving such

system can be seen in [46].

1.1 Problem statement and associated work

The purpose of the current work is to form a MFMS-LEM

and numerically investigated by the stochastic computing

technique for solving the MFMS-LEM defined in Eq. (6)

using the fractional Mayer wavelet neural networks (FMW-

NN) under the optimization of global search effectiveness

of genetic algorithms (GAs) and interior-point algorithm

(IPA), i.e., FMW-NN-GAIPA. The meta-heuristic-based

intelligent computing solvers have been broadly imple-

mented to analyze the singular/non-singular, linear/non-

linear and biological models using neural networks using

the optimization of swarming/evolutionary computing

approaches [48–55]. Few relevant potential equations

include seasonal groundwater table depth prediction [56],

optimization of power dispatch problems representing

Algerian electricity grid [57], aeromechanical optimization

of compressor [58], solution of the nonlinear corneal shape

model [59], optimization in biodiesel production [60],

solving the nonlinear electrical circuit models [61], fore-

casting of streamflow discharges [62], parameter estima-

tion problems of power signal models [63], estimation of

the soil temperature [64], optimization of electrically

stimulated muscle models [65], prediction of rainfall time

series [66] and attenuation of noise interferences [67]. The
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authors are inspired based on these operative contributions

to design the computing numerical solver for solving the

MFMS-LEM.

1.2 Novelty and contribution

The originality of the current work is itemized as follows

as:

• A novel MFMS-LEM is considered using the sense of

typical LESS and numerically solved by using a novel

design of FMNEICS that have been considered by the

fractional Mayer wavelet neural networks using the

optimization of global search competence of GAs aided

with local rapid search of IPA.

• The obtained numerical outcomes of the newly

designed MFMS-LEM are compared using the

FMNEICS from accessible exact/true results that val-

idate its correctness, stability and convergence.

• The reliable performance of the designed FMNEICS is

further enhanced via the statistical studies in terms of

Nash Sutcliffe efficiency (NSE), root-mean-square error

(R.MSE), semi-interquartile range (S.I.R) and Theil’s

inequality coefficient (TIC) measures.

• Beside the soundly accurate results for the MFMS-LEM

by the FMNEICS, smooth operations, ease of under-

standing, exhaustive applicability and robustness are

other valued compensations.

1.3 Organization of the work

The other parts of this paper are concisely labeled as: The

designed approach is presented in Sect. 2 to solve the

MFMS-LEM. The mathematical steps for the performance

measures are defined in Sect. 3. The comprehensive out-

comes to solve the projected model are provided in Sect. 4

and the conclusion along with the future research details

are provided in the last Sect.

2 Methodology based on the FMNEICS

This current section is associated with the material acces-

sible for FMNEICS-based computing intelligent solver and

execution process for the MFMS-LEM using the FMW-

NN-along with the Mayer wavelet functions. The structure

for designing the error-based merit function, system of

differential equations and the optimization procedure using

the GAIPA are introduced elaborative in this section.

2.1 Merit function: FMWNN

The models based on ANN are implemented to provide the

numerical results of numerous fractional order models

[68–70]. In this procedure, ŜðyÞ shows the proposed solu-

tion of the system model, DaŜðyÞ and DðnÞŜðyÞ show the

respective form of the fractional ath and nth order deriva-

tives. The terminologies of these network systems in the

form of continuous mapping are shown as:

ŜðyÞ ¼
Xj

i¼ 1

biqðwiyþ qiÞ;

DaŜðyÞ ¼
Xj

i¼1

biD
aqðwiyþ qiÞ;

DðnÞŜðyÞ ¼
Xj

i¼1

biD
ðnÞqðwiyþ qiÞ;

ð7Þ

where, j shows the number of neurons, while b, w and

q are vector component forms W, given as follows:

W ¼ ½b;w; q�; for b ¼ ½b1; b2; . . .; bj�;
w ¼ ½w1;w2; . . .;wj� and q ¼ ½q1; q2; . . .; qj�:

The activation kernel based on Mayer wavelet function

is provided as [46]:

qðyÞ ¼ 35y4 � 84y5 þ 70y6 � 20y7: ð8Þ

The simplified system (7) form using Eq. (8) is given as

follows:

ŜðyÞ ¼
Xj

i¼1

bj 35ðwjyþ qjÞ4 � 84ðwjyþ qjÞ5 þ 70ðwjyþ qjÞ6 � 20ðwjyþ qjÞ7
� �

;

DaŜðyÞ ¼
Xj

i¼1

bj
35Daðwjyþ qjÞ4 � 84Daðwjyþ qjÞ5 þ 70Daðwjyþ qjÞ6

�20Daðwjyþ qjÞ7

0

@

1

A;

DðnÞŜðyÞ ¼
Xj

i¼1

bj
35DðnÞðwjyþ qjÞ4 � 84DðnÞðwjyþ qjÞ5 þ 70DðnÞðwjyþ qjÞ6

�20DðnÞðwjyþ qjÞ7

0

@

1

A:

ð9Þ

Neural Computing and Applications (2021) 33:17287–17302 17289

123



The arbitrary form of the FMWNN is implemented for

solving the novel MFMS-LEM associated with the acces-

sibility of ‘‘W,’’ i.e., appropriate weight. Furthermore, the

fractional order ‘‘a’’ is fixed with care to solve the

dynamics of MFMS-LEM as given in Eq. (6). In order to

get the approximate ANN weights, one may explore the

approximation theory using the mean squared error to get a

fitness function n as given below:

n ¼ n1 þ n2: ð10Þ

Here, n1 and n2 are the merit functions associated with

the differential model and the boundary conditions of the

novel MFMS-LEM provided in Eq. (6), respectively.

These merits function are mathematical defined as:

n1 ¼ 1

N

Xj

i¼1

daþ3

dyaþ3
Ŝj þ

3v

yj

daþ2

dxaþ2
Ŝj þ

3vðv� 1Þ
y2
j

daþ1

dyaþ1
Ŝj

þ vðv� 1Þðv� 2Þ
y3
j

da

dya
Ŝj þ hðŜjÞ � pj

0

B
B
B
@

1

C
C
C
A

2

;

ð11Þ

n2 ¼ 1

2
ðŜ0Þ2 þ ðŜ0:5 � AÞ2 þ ðŜNÞ2

� �
; ð12Þ

for

Ŝj ¼ Ŝ yj
� �

; pj ¼ p yj
� �

; hðSÞ ¼ hðŜjÞ; yj ¼ jh

and Nh ¼ 1:

One may regulate to solve the novel MFMS-LEM as

shown in Eq. (6) with the obtainability of suitable ‘‘W,’’

such that, n ! 0, the estimated form of the results of ANN

becomes approximately the same as the ideal/exact solu-

tions, i.e., ½Ŝ ! S�.

2.2 Optimization of the network

The parameter-based optimizations for the FMWNN is

conducted with the competency of hybrid learning ability

of GAIPA, a combination of global and local search

methodology, to solve the novel design of MFMS-LEM as

shown in Eq. (6).

GAs are an efficient global optimization procedure for

constrained/unconstrained problems or tasks that are

expressed to the mathematical modeling process using the

natural genetic systems. The separate frequent population

is updated in GAs, i.e., candidate results of the optimiza-

tion task and has the competence for solving the numerous

optimization systems by merging the reproduction tools via

the selection, crossover, operators; mutation and elitism.

Recently, GA is used to be exploited to the optimal weight

design for the frames of steel space [71], parameter doc-

umentation of the nonlinear multivariable models [72],

nonlinear Bratu model optimization [73], control

construction robot of car model [74], optimization of the

layer thickness using the multilayer piezoelectric trans-

ducer [75], active noise control systems [76], parameter

estimation using the plane waves of electromagnetic [77],

solution of nonlinear singular Flierl–Petviashivili systems

[78], load dispatch integrated model connecting both wind

and thermal generators [79] and dynamics analysis for the

model of heartbeat [80]. The indolence and slowness of the

GA using the hybridization with the IPA can be promoted

during the optimization process.

IPA is a rapid and efficient local search approach for the

adjustment of optimization tasks in various submissions in

the diversity of areas. IPA fits to well-ordered solvers based

on convex optimization, which can be explored for both

types of the systems constrained and unconstrained. Some

transmuted applications addressed competently by IPA are

the image restoration [81], economic load dispatch prob-

lems [82], semi-definite programming [83], optimization of

noise control system without identification of secondary

path [84], onboard powered-descent guidance [85], non-

smooth contact dynamics [86] and localization of dynamic

forces [87]. The parameter settings of the neurons in

FMWNNs, settings of parameters for both GA and IPA

algorithms should be done with care, after extensive

experimentation and with experience for better perfor-

mance of FMWNN-GAIPA, a small variation in these

parameter results in divergence or trapping into local

minimum.

3 Performance measures

Four different performance procedures named as R.MSE,

TIC, ENSE and S.I.R are presented to solve the novel

MFMS-LEM in this section. These measures are used to

verify and validate the worth of the design

scheme FMWNN on different parameters for the perfect

modeling. The mathematical notations of these measures

R.MSE, TIC, ENSE and S.I.R for the true results S and the

proposed results Ŝ are given as:

R:MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X j

i¼1
Sj � Ŝj
� �2

r

; ð13Þ

TIC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P j
i¼1 Sj � Ŝj

� �2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P j
i¼1 S

2
j

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P j
i¼1 Ŝ

2
j

q� � ; ð14Þ

NSE ¼ 1 �
P j

i¼1 Sj � Ŝj
� �2

P j
i¼1 Sj � Sj

� �2
;

(

Sj ¼
1

n

Xj

i¼1

Sj; ð15Þ

ENSE ¼ 1 � NSE; ð16Þ
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S:I:R ¼ �0:5 � Q1 � Q3ð Þ;
Q1 ¼ 1st quartile & Q3¼3rd quartile:

(

ð17Þ

4 Results and simulations

In this section, the detail of the numerical results to solve

three different variants of the novel MFMS-LEM is pre-

sented. Single input/output and the structure of hidden

layers using the Mayer neural networks is implemented to

model Eq. (6) with the help of networks presented in

Eqs. (10–12), whereas the Matlab build package for ‘‘op-

timization’’ toolbox is exploited to train the weights of

FMWNN models to solve the MFMS-LEM using ‘‘GA’’

together with ‘‘fmincon’’ routine of algorithm ‘‘IPA.’’ The

numerical results of the proposed FMWNN using the

GAIPA for sixty independent runs are drawn to solve the

novel MFMS-LEM and outcomes are portrayed with suf-

ficient numerical as well as graphical presentation to assess

the accuracy and convergence.

Example 1 Consider the MFMS-LEM shown in the

model (6) after multiplying by y3 for both sides is given as:

y3 daþ3

dyaþ3
SðyÞ þ 3y2 daþ2

dyaþ2
SðyÞ þ 3vðv� 1Þy daþ1

dyaþ1
SðyÞ

þ vðv� 1Þðv� 1Þ da

dya
SðyÞ þ y3hðSÞ ¼ y3pðyÞ ¼ jðyÞ;

Sð0Þ ¼ 0; Sð0:5Þ ¼ A; Sð1Þ ¼ B:

8
>>>>><

>>>>>:

ð18Þ

where,

jðyÞ ¼ ylþ3 � yrþ3 þ y3

Cðlþ 1Þ
Cðl� a� 2Þ y

l�a�3 � Cðr þ 1Þ
Cðr � a� 2Þ x

r�a�3

� �

þ 9y2 Cðlþ 1Þ
Cðl� a� 1Þ y

l�a�2 � Cðr þ 1Þ
Cðr � a� 1Þ x

r�a�2

� �

þ 18y
Cðlþ 1Þ
Cðl� aÞ y

l�a�1 � Cðr þ 1Þ
Cðr � aÞ y

r�a�1

� �

þ 6
Cðlþ 1Þ

Cðl� aþ 1Þ y
l�a � Cðr þ 1Þ

Cðr � aþ 1Þ y
r�a

� �

:

ð19Þ

Here the l and r values are taken as positive.

The simplified form of Eq. (18) using Eq. (19) is written

as:

y3 daþ3

dyaþ3
SðyÞ þ 3y2 daþ2

dyaþ2
SðyÞ þ 3vðv� 1Þy daþ1

dyaþ1
SðyÞ

þ vðv� 1Þðv� 1Þ da

dya
SðyÞ þ hðSÞ

¼ ylþ3 � yrþ3

þ y3 Cðlþ 1Þ
Cðl� a� 2Þ y

l�a�3 � Cðr þ 1Þ
Cðr � a� 2Þ x

r�a�3

� �

þ 9y2 Cðlþ 1Þ
Cðl� a� 1Þ y

l�a�2 � Cðr þ 1Þ
Cðr � a� 1Þ x

r�a�2

� �

þ 18y
Cðlþ 1Þ
Cðl� aÞ y

l�a�1 � Cðr þ 1Þ
Cðr � aÞ y

r�a�1

� �

þ 6
Cðlþ 1Þ

Cðl� aþ 1Þ y
l�a � Cðr þ 1Þ

Cðr � aþ 1Þ y
r�a

� �

Sð0Þ ¼ 0; Sð0:5Þ ¼ �0:0313; Sð1Þ ¼ 0:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

The true solution of the MFMS-LEM given in Eq. (20)

is shown as:

SðyÞ ¼ yl � yr: ð21Þ

For the particular values of l = 5 and r = 4, the updated

form of the exact solutions is given as:

SðyÞ ¼ y5 � y4: ð22Þ

The merit function for Eq. (20) is designed as:

n ¼ 1

N

Xj

i¼1

y3
j

daþ3

dyaþ3
j

Ŝj þ 9y2
j

daþ2

dyaþ2
j

Ŝj þ 18yj
daþ1

dyaþ1
j

Ŝj

þ6
da

dyaj
Ŝj þ y3

j hðŜjÞ � ylþ3
j þ yrþ3

j

�y3
j

720

Cð3 � aÞ y
2�a � 120

Cð2 � aÞ y
1�a

� �

�9y2
j

720

Cð4 � aÞ y
3�a � 120

Cð3 � aÞ y
2�a

� �

�18yj
720

Cð5 � aÞ y
4�a � 120

Cð3 � aÞ y
3�a

� �

�6
720

Cð6 � aÞ y
5�a � 120

Cð5 � aÞ y
4�a

� �

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

2

þ 1

3
Ŝ0

� �2þ Ŝ0:5 þ 0:0313
� �2þ ŜN

� �2
� �

:

ð23Þ

Three MFMS-LEM cases are considered for different a
values, i.e., a ¼ 0:1; 0:2 and 0.3. In order to find the per-

formance of these three cases of the presented MFMS-

LEM, the optimization through the hybrid combination of

GAIPA using the global/ local search capabilities is per-

formed. The whole procedure repeats for a sixty indepen-

dent runs to produce a larger dataset based on the

parameters of ANN. The mathematical terminologies
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attained by one optimized parameter sets of proposed

FMWNN-GAIPA for all cases of the novel MFMS-LEM

are provided as:

Equations (24–26) represent the proposed numerical

outcomes and the plots for all the cases of the novel

MFMS-LEM are provided in Fig. 1, particularly subfig-

ures (a-c). The comparison plots of the best, worst and

mean results are provided in Fig. 1, particularly subfig-

ures (d-f) for each case of the MFMS-LEM. It is observed

in the figures that the values for the best, worst and mean

results are overlapped consistently. These perfect result

comparisons indicate the correctness of the designed

approach. The plots of performance measures are also

drawn in Fig. 1, particularly in subfigure (g) for all cases of

the MFMS-LEM. One can understand that the values-based

performance for RMSE on the basis of the best results for

cases 1, 2 and 3 lie around 10–05 to 10–06, the TIC values

are found around 10–09 to 10–10. The ENSE values for case

1 are found around 10–08 to 10–09, while the other two cases

for ENSE values lie around 10–09 to 10–10. One can easily

claim that the calculated results based on these perfor-

mance measures are accurate and thus show very good

performance for solving all the cases of the MFMS-LEM.

The best values of the absolute error (AE) for solving all

ŜC�1 ¼ �0:132 35ð0:035y� 0:5497Þ4 � 84ð0:035y� 0:5497Þ5 þ 70ð0:035y� 0:5497Þ6 � 20ð0:035y� 0:5497Þ7
� �

� 8:4655 35ð0:0008y� 0:153Þ4 � 84ð0:0008y� 0:153Þ5 þ 70ð0:0008y� 0:153Þ6 � 20ð0:0008y� 0:153Þ7
� �

þ 0.9463 35ð�0.156y� 0:195Þ4 � 84ð�0.156y� 0:195Þ5 þ 70ð�0.156y� 0:195Þ6 � 20ð�0.156y� 0:195Þ7
� �

þ � � � � 0.3233 35ð1.2929y� 0.317Þ4 � 84ð1.2929y� 0.317Þ5 þ 70ð1.2929y� 0.317Þ6 � 20ð1.2929y� 0.317Þ7
� �

;

ð24Þ

ŜC�2 ¼ 0:7991 35ð0:1437yþ 1:0243Þ4 � 84ð0:1437yþ 1:0243Þ5 þ 70ð0:1437yþ 1:0243Þ6 � 20ð0:1437yþ 1:0243Þ7
� �

� 2:5483 35ð0.3447yþ 0.7363Þ4 � 84ð0.3447yþ 0.7363Þ5 þ 70ð0.3447yþ 0.7363Þ6 � 20ð0.3447yþ 0.7363Þ7
� �

þ 0.0010 35ð�1:291yþ 2:0509Þ4 � 84ð�1:291yþ 2:0509Þ5 þ 70ð�1:291yþ 2:0509Þ6 � 20ð�1:291yþ 2:0509Þ7
� �

þ � � � þ 7.9045 35ð�0:181yþ 0.0370Þ4 � 84ð�0:181yþ 0.0370Þ5 þ 70ð�0:181yþ 0.0370Þ6
�

�20ð�0:181yþ 0.0370Þ7
�
;

ð25Þ

ŜC�3 ¼ �0:101 35ð�0:086y� 0:124Þ4 � 84ð�0:086y� 0:124Þ5 þ 70ð�0:086y� 0:124Þ6 � 20ð�0:086y� 0:124Þ7
� �

� 0.0003 35ð1:2639y� 0:825Þ4 � 84ð1:2639y� 0:825Þ5 þ 70ð1:2639y� 0:8252Þ6 � 20ð1:2639y� 0:8252Þ7
� �

þ 0.1400 35ð�0.452yþ 0.002Þ4 � 84ð�0.452yþ 0.002Þ5 þ 70ð�0.452yþ 0.002Þ6 � 20ð�0.452yþ 0.002Þ7
� �

þ � � � þ 0:0043 35ð�0:213yþ 0.455Þ4 � 84ð�0:213yþ 0.455Þ5 þ 70ð�0:213yþ 0.455Þ6
�

�20ð�0:213yþ 0.455Þ7
�
:

ð26Þ
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(a) Case 1: ANN weights (b) Case 2: ANN weights (c) Case3: ANN weights

(d) Case 1: Solution of MFMS-
               LEM

(e) Case 2: Solution of MFMS-
LEM

(f) Case 3: Solution of MFMS-
LEM

Best solutions to solve each class of the novel MFMS-LEM

(g) Best performance measures to solve each class of the novel MFMS-LEM

(h) Best AE values to solve each class of the novel MFMS-LEM

Fig. 1 Result plots, a–c for the trained weights, approximate solutions (d–f), best performance measures (h) and AE best values (g) to solve each

class of novel MFMS-LEM
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cases of the novel MFMS-LEM is plotted in Fig. 1, par-

ticularly in subfigure (h). It is seen that most of the AE

values for all cases of the novel MFSE-LEM lie around

10–05 to 10–07 that indicate the correctness of the designed

ANN-GA-IPA scheme.

(a) (b) (c)

(d) (e) (f)

Fig. 2 Convergence plots for all cases of the MFMS-LEM for the Fitness together with the boxplots and histograms and 10 neurons
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The statistical performance values based on the fitness,

RMSE, TIC and ENSE gages together with the histograms/

boxplots values are shown in Figs. 2, 3, 4 and 5. The results

presented in Fig. 2 indicate the performance of the fitness

(a) (b) (c)

(f)(e)(d)

Fig. 3 Convergence plots of the MFMS-LEM using the RMSE together with the boxplots and histograms and 10 neurons
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using the novel MFSE-LEM and outcomes show that the

majority of the values based on fitness, RMSE, TIC and

ENSE found around 10–04—10–08, 10–02—10–06, 10–07—

10–10 and 10–05—10–09 for each case of the novel MFSE-

(a) (b) (c)

(d) (e) (f)

Fig. 4 Convergence plots of the MFMS-LEM using the TIC together with boxplots and histograms and 10 neurons
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LEM. One may accomplish from these obtained results that

a majority of the independent executions achieved very

reasonable and accurate results for all the performance-

based measures.

(a) (b) (c)

(d) (e) (f)

Fig. 5 Convergence plots of the MFMS-LEM using the ENSE together with the boxplots and histograms and 10 neurons
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For precision and accuracy studies further, the statistical

operatives based on minimum (Min), median (Med), and

semi-interquartile range (S.I.R) are calculated for 60

independent runs using the FMWNN-GAIPA and obtained

outcome are tabulated in Table 1 for all cases of the novel

MSMF-LES. The independent trials of the proposed

FMWNN-GAIPA based on the Min for best trials, Med for

median trials and S.I.R operator values are used for one-

half of the difference of 3rd quartile and 1st quartile. The

results of statistical observations as presented in Figs. 2, 3,

4 and 5, one can evidently decipher that the small, reliable

Min, Med, S.D and S.I.R metrics are obtained consistently

that validate the stability, accuracy and performance of the

proposed FMWNN-GAIPA for each case of the novel

designed MSMF-LEM.

The accuracy, convergence and stability of the proposed

neuro-evolution-based methodology FMWNN-GAIPA is

further examined through comparative studies with

FMWNN optimized with global search efficacy of particle

swarm optimization (PSO) algorithm aided with efficient

fine tuning with IPA, i.e., FMWNN-PSOIPA for solving all

three cases of MSMF-LEM for 60 number of autonomous

trails. The procedure and parameter settings of PSO are

adopted as given in the similar reported studies [34, 91],

while the same setting of the parameters is used for IPA as

incorporated for GAs. The results of statistical operatives

based on Min, Med and SIR are calculated for FMWNN-

PSOIPA on the similar procedure as incorporated for

FMWNN-GAIPA for all three cases of MSMF-LEM and

are tabulated in Table 1 for the same inputs. It can be seen

that the values of Min lie around 10–7 to 10–6, for all three

cases of MSMF-LEM by FMWNN-PSOIPA, which is

quite similar to FMWNN-GAIPA. Generally, no noticeable

difference between the results involving GA and PSO but

slight better accuracy is achieved by FMWNN-GAIPA.

However, the said bit better performance of FMWNN-

GAIPA is attained at the cost of 10% to 15% more com-

putation complexity than that of FMWNN-PSOIPA.

5 Conclusions

The present study is about to introduce a mathematical

model for the MSMF-LEM by using the sense of typical

the multi-singular Lane–Emden model with multiple terms

of fractional order, i.e., non-integer, derivatives. The frac-

tional terms, shape factors and singular point details are

also introduced in the designed system at origin three

times, i.e., y ¼ 0, y2 ¼ 0 and y3 ¼ 0. To observe the

perfection and correctness of novel multi-fractional multi-

singular Lane–Emden system, three different cases are

formulated and solved with the prominent structure of

ANNs together with global as well as local search capa-

bilities of genetic algorithm and interior-point algorithms.

Table 1 Statistics values for the proposed FMWNN-GAIPA for each class of the novel designed MSMF-LEM

Method Case Mode Solution of SðyÞ based on statistical values

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FMWNN-

GAIPA

1 Min 4.8E-07 7.9E-07 1.9E-06 5.9E-06 1.4E-06 2.6E-06 9.5E-07 1.1E-08 1.0E-06 9.6E-07

Med 3.8E-05 4.1E-05 3.4E-05 2.7E-05 2.4E-05 2.1E-05 2.0E-05 2.0E-05 1.9E-05 2.0E-05

SIR 5.3E-04 6.4E-04 5.2E-04 3.8E-04 2.9E-04 2.3E-04 1.9E-04 1.3E-04 9.9E-05 7.6E-05

2 Min 2.3E-06 3.5E-06 1.0E-07 4.7E-07 1.8E-06 2.7E-06 3.5E-06 1.2E-06 2.0E-06 1.1E-06

Med 3.1E-05 3.0E-05 2.8E-05 2.5E-05 2.2E-05 2.0E-05 1.9E-05 1.9E-05 1.9E-05 1.7E-05

SIR 4.6E-04 4.7E-04 3.1E-04 2.0E-04 1.4E-04 1.1E-04 7.6E-05 4.8E-05 2.6E-05 1.3E-05

3 Min 1.2E-06 1.3E-07 7.3E-07 2.4E-06 2.8E-06 2.1E-06 1.5E-06 2.8E-06 2.7E-06 1.7E-06

Med 3.2E-05 3.9E-05 3.9E-05 3.3E-05 2.5E-05 2.3E-05 2.3E-05 2.2E-05 2.5E-05 2.4E-05

SIR 4.4E-04 6.0E-04 5.3E-04 4.7E-04 3.8E-04 3.2E-04 2.6E-04 2.1E-04 1.7E-04 1.3E-04

FMWNN-

PSOIPA

1 Min 1.2E-06 1.6E-06 2.5E-06 4.7E-07 1.3E-06 4.6E-06 9.5E-06 2.1E-07 1.7E-07 3.2E-07

Med 2.4E-05 3.1E-05 5.2E-05 5.9E-05 4.3E-05 6.2E-05 3.8E-05 1.0E-04 2.6E-05 3.1E-05

SIR 3.1E-04 4.5E-04 4.1E-04 2.6E-04 1.9E-04 1.3E-04 2.9E-04 3.2E-04 1.0E-04 3.9E-05

2 Min 1.9E-06 3.5E-06 1.1E-06 3.4E-07 2.6E-06 1.6E-06 2.4E-06 2.7E-06 3.2E-06 2.4E-06

Med 1.2E-05 2.4E-05 1.7E-05 4.3E-05 3.1E-05 4.1E-05 5.1E-05 3.7E-05 2.8E-05 2.5E-05

SIR 3.5E-04 2.9E-04 2.7E-04 1.3E-04 2.3E-04 2.4E-04 6.4E-05 3.5E-05 1.3E-05 2.6E-05

3 Min 2.4E-06 2.3E-06 4.2E-06 3.5E-06 1.7E-06 3.2E-06 5.3E-06 7.1E-06 1.4E-06 2.1E-06

Med 1.9E-05 2.7E-05 2.5E-05 2.2E-05 4.7E-05 4.5E-05 1.9E-05 3.5E-05 5.3E-05 1.3E-05

SIR 3.9E-04 9.0E-04 4.2E-04 3.5E-04 2.6E-04 2.1E-04 4.4E-04 1.5E-04 2.6E-04 2.4E-04
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The proposed FMWNN-GAIPA is broadly applied on the

novel multi-fractional multi-singular Lane–Emden system

for three classes to demonstrate the constancy, conver-

gence, accuracy and robustness. The comparison of the

achieved numerical outcomes from the FMWNN-GAIPA

with the true/exact results is presented with order of

matching almost 5–7 decimals of accuracy level, which

validates the exactness and efficiency of the FMWNN-

GAIPA. Furthermore, statistical studies of the designed

FMWNN-GAIPA on 60 runs show accurate and precise

results consistently. Additionally, the computational effi-

ciency of the design FMWNN-GAIPA can be improved

further by use of different definitions of fractional deriva-

tive introduced recently in the literature for smooth, viable

and functioning outcomes. Furthermore, the optimization

procedure based on variant of particle swarm optimization

algorithm can be a good alternative to improve the com-

putational efficacy for learning of design variants of

FMWNNs.

In the future work, one can extend the designed

FMWNN-GAIPA via FMNEICS approach to be imple-

mented to solve the linear/nonlinear stiff, singular and

fractional as well as integer order models arising in dif-

ferent domains including atomic/plasma physics models

[88–90], computational fluidic models [92–94], informa-

tion security systems [95, 96] and biological models

[97–101].
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