
REVIEW

Neural machine translation: past, present, and future

Shereen A. Mohamed1 • Ashraf A. Elsayed1 • Y. F. Hassan1 • Mohamed A. Abdou2

Received: 18 October 2020 / Accepted: 26 June 2021 / Published online: 9 July 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Deep neural networks (DNN) have achieved great success in several research areas like information retrieval, image

processing, and speech recognition. In the field of machine translation, neural machine translation (NMT) has been able to

overcome the statistical machine translation (SMT), which has been the dominant technology for a long-term span of time.

The recent machine translation approach, which consists of two sub networks named an encoder and a decoder, has gained

state-of-the-art performance on different benchmarks and for several language pairs. The increasing interest of researchers

in NMT is due to its simplicity compared to SMT which consists of several components tuned separately. This paper

describes the evolution of NMT. The different attention mechanism architectures are discussed and the purpose of each.

The paper also presents some toolkits that are developed specifically for research and production of NMT systems. The

superiority of NMT over SMT is discussed, as well as the problems facing NMT.

Keywords Neural machine translation � Attention mechanism � Self-attentional transformer � Convolutional sequence to

sequence

1 Introduction

Neural machine translation has emerged as a new approach

in the field of automatic machine translation a few years

ago. Despite its short age, NMT has gained great popularity

among researchers in this field because of the promising

translation results achieved, in addition to the simplicity of

its structure [1]. NMT consists of an end-to-end single

large neural network. This network contains two sub net-

works, namely: the encoder and the decoder. To translate a

sentence from the source language into its corresponding in

the target language, the encoder receives the words in the

source sentence and converts them into semantic vector

representations. This representation is used by the decoder

to generate the target sentence word by word [2].

Since its appearance as a new paradigm in the late 1980s

and early 1990s by researchers at IBM T.J. Watson

Research Center [3], SMT has been the predominant

technique in the field of machine translation. Different

approaches have been developed including Phrase-based

[4], Syntax-based [5], and Hierarchical phrase-based [6].

These approaches have been dominant for a long time and

have been used in many applications because of their

superiority over other methods.

NMT has proven to be the first approach able to chal-

lenge SMT technologies. At the IWSLT 2015 evaluation

expedition, NMT was able to overcome state-of the-art

phrase-based machine translation systems on English-

German, the language pair famous for its difficulty due to

morphology and grammatical differences [1].

NMT has many advantages over SMT [7, 8]:

• The SMT system consists of several components tuned

separately. In contrast, The NMT model is a large end-

to-end single network that consists of two sub recurrent

neural network: the encoder and the decoder.

& Shereen A. Mohamed

shereen.nafie@alexu.edu.eg

Ashraf A. Elsayed

ashraf.elsayed@alexu.edu.eg

Y. F. Hassan

y.fouad@alexu.edu.eg

Mohamed A. Abdou

m.abdou@pua.edu.eg

1 Department of Mathematics and Computer Science, Faculty

of Science, Alexandria University, Alexandria, Egypt

2 Informatics Research Institute, City of Scientific Research

and Technological Applications, Alexandria, Egypt

123

Neural Computing and Applications (2021) 33:15919–15931
https://doi.org/10.1007/s00521-021-06268-0(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06268-0&domain=pdf
https://doi.org/10.1007/s00521-021-06268-0

• While the SMT system needs many features that are

accurately defined to do the translation, the NMT model

depends on a training corpus to learn the translation

task, with less or no feature engineering effort by

linguists or engineers.

• In contrast to SMT, NMT can seize potential long-

distance dependencies and complicated word alignment

information

• The NMT model does not require a large memory

space, such as those used by the SMT to store a

translation model, a reordering model and a language

model.

Recently, the machine translation research field is going

neural. To give some indication of the speed of change: In

2015, only one neural machine translation system was

submitted at the shared task for machine translation orga-

nized by the Conference on Machine Translation (WMT).

In 2017, almost all submitted machine translation systems

were neural.

The paper is organized as follows: Section 2 reviews

some of the attempts at developing a NMT system, which

have been conducted during the last wave of neural net-

works research. Also, the integration of neural models in

conventional SMT systems. Section 3 describes the emer-

gence of pure NMT systems, and the encoder-decoder

structure used in these systems. Section 4 introduces the

three architectures of attention mechanism. Section 5 dis-

cusses the performance of these architectures on different

benchmarks, with a brief description of the benchmarks

and the BLEU metric. Section 6 presents some toolkits that

are developed specifically for research and production of

NMT systems. Section 7 shows some of the challenges

facing NMT. Finally, the conclusions are drawn in Sect. 8.

2 Background

The use of neural networks in automatic machine transla-

tion attracted the attention of many researchers in the

1990s. In 1997, Forcada and Neco [9] developed a model

that could perform simple translation tasks. The model

consisted of two feedforward neural networks which they

called the encoder and the decoder. The input strings were

received symbol by symbol, and an internal representation

was produced by the encoder. This representation was

passed to the decoder, which in turn produced the corre-

sponding translation. Castaño et al. [10] developed a model

to tackle a simple pseudo-natural machine translation task.

The model used a simple recurrent network as the basic

architecture. The source sentence was received at the input

layer word by word, and both preceding and following

contexts of the input word were presented to the network.

The model generated the translation one word at a time,

where the word associated to the neuron with the maximum

value was considered the output word. Input and output

words were represented by vectors and a specific output

neuron was used to mark the end of the translation.

It is noticed that those models were struck in a similar

way to the current approaches, but the datasets used in the

training were not large enough to support the achieved

results. The available computational resources at that time

were far less than required.

Despite the decline in the popularity of neural networks,

which could not fulfill its promises, especially in the field

of industry, the development continued in laboratories and

universities.

With the availability of big data, and the recent progress

in hardware and software, which includes the development

of GUI units and the implementation of libraries that

enable the use of GUIs in neural networks processing,

interest in the development of neural translation methods

has been resurrected. Research has started with the inte-

gration of neural-based components into traditional statis-

tical machine translation systems. In 2007, Schwenk [11]

used a neural language model for large vocabulary con-

tinuous speech recognition. The developed model was

evaluated on three different languages, using several large

vocabulary speech recognition tasks. The model achieved a

significant reduction in word error, and results showed the

possibility of using the model in a real-time speech rec-

ognizer. In 2012, Schwenk [12] proposed a neural trans-

lation model that learns the translation probabilities of pairs

in phrase-based SMT, using continuous representations. It

worked as follows: First, the input layer receives the one-

hot representations of the n - 1 previous words in a

vocabulary. Then, these words are projected on the next

layer to form continuous representations of words. One or

more hidden layers, which use tanh non-linear activation

function, follow this embedding layer. Finally, the output

layer estimates the posterior possibilities of all words in the

vocabulary, using a softmax normalization. The proposed

model could successfully predict the translation for phrase

pairs not seen in the training data, also, it could predict a

set of the most possible translations given a source phrase.

Evaluation of the model, using the English/French IWSLT

task, showed an improvement in the BLEU score.

Neural-based approaches sneaked into several SMT

components. Other works included replacing other tradi-

tional models (e.g., reordering model, pre-ordering model,

etc.) with neurals. But, because of the lack of GPU units or

the experience to use in the training, this integration of

neural models was slowly adopted.

15920 Neural Computing and Applications (2021) 33:15919–15931

123

3 Evolution of NMT

The development of pure neural machine translation sys-

tems has started with the use of convolutional models and

sequence-to-sequence models. In 2013, Kalchbrenner and

Blunsom [13] introduced a class of continuous translation

models that translates a sentence from a source language

into a target language. The class consisted of two models:

The first model used convolutional layers to generate a

sentence representation based on the continuous represen-

tations of the words in the source sentence. This source

sentence representation in turn is used to generate words

for the target sentence. The second model starts by esti-

mating the length of the target sentence. Then, it generates

a representation for the 4-g in the source sentence. From

the 4-g representation, the model creates a representation

for the sentence that has the predicted length of the target.

What is worth mentioning in this work (1) To the best of

our knowledge, these models are the first pure NMT

models. They were not presented as components to be

integrated into SMT to improve performance. Also, no

external components from SMT or any other approaches

were used in their designs. (2) Although the CNN network

was used extensively in image processing, this work pro-

vided the first detailed explanation of the CNN’s use in

texts. The drawback of using CNN in text space, like

machine translation, is the inability to pick up dependency

between words which are some distance apart, or to learn

structural information.

In 2014, Sutskever et al. [14] presented an approach that

used a multilayered Long Short-Term Memory (LSTM) to

translate sentences from English to French. The first LSTM

layers were used to convert the input sequence to a vector

of fixed length. This vector was used to generate the output

sequence using another LSTM layer. The system consisted

of an ensemble of 5 deep LSTMs, and used a simple left-

to-right beam-search decoder.

The quantitative analysis the authors carried out showed

that the LSTM performed well on long sentences, and

learned sentence representations that are sentient to word

order. Although they did not provide an explanation for the

motive for reversing the word order in the source sen-

tences, the authors showed that doing so further improved

the performance of LSTM. Evaluation of the system

reported a close to the state-of-the-art performance of the

conventional phrase-based machine translation system, and

has shown an achievement of 34.8 BLEU on the WMT 14

English to French test set.

In 2014, Cho et al. [15] conducted a study to explore the

characteristics of NMT using two models: Recurrent neural

network (RNN) Encoder–Decoder, and a proposed gated

recursive convolutional neural network. The first model

used an RNN with the gated hidden unit in building both

the encoder and the decoder. The second model replaced

the RNN in the encoder with a proposed gated recursive

convolutional neural network. Both models used an enco-

der-decoder structure, where the encoder converted vari-

able-length source sentences into fixed-length vector

representations. Then, the decoder used these representa-

tions to generate the variable-length target sentences.

Evaluation of the two models was conducted on French-

to-English translation. The results showed high accurate

translation of short sentences without unknown words, but

this translation performance decreased rapidly with the

increase in the length of sentences and the number of

unknown words. The authors declared that their most

obvious explanatory hypothesis is that using a fixed-length

vector to represent an input sentence, whatever its length,

sacrifices some important information in the sentence. The

results also showed a good performance of the proposed

gated recursive convolutional network in learning the

grammatical structure of the source sentences.

4 Introducing the attention mechanism

Given a source sentence x, NMT tries to find the target

sentence y that maximizes the conditional probability of

y given x. training of a NMT system aims to fit a param-

eterized model to achieve this conditional distribution for

sentence pairs in a parallel training corpus. Although

convolutional and sequence-to-sequence have proposed to

learn this conditional distribution and provided a good

translation accuracy, this accuracy was reduced as the

length of the input sentence increased. These models have

adopted an encoder–decoder approach that compress all the

necessary information of a source sentence into a fixed-

length vector, which made it difficult for the models to

handle long sentences, especially those longer than the

training sentences. This problem has been solved with the

introduction of the attention mechanism.

Attention mechanism has achieved great popularity and

has been used in various fields. In the field of machine

translation, the three architectures used are: Stacked RNN

with Attention, Self-attentional Transformer, and Fully

Convolutional Models (ConvSeq2Seq).

4.1 Stacked RNN with attention

In 2015, and to address the problem of fixed-length vectors,

Bahdanau et al. [16] proposed a model that extends the

encoder-decoder approach by allowing automatic search

for portions of a source sentence, which have relevance to

prediction of a target word, without explicitly forming

these portions as a hard segment. Instead of encoding a

Neural Computing and Applications (2021) 33:15919–15931 15921

123

whole input sentence into a vector of fixed-length, the

model converts it into a sequence of vectors. Each time

during the decoding process, the decoder searches the input

sentence for the words that have the most relevant infor-

mation to generate the target word. The target word is

predicted based on a context vector of all relevant words,

and all previously predicted target words. The model is

shown in Fig. 1

Assume x = x1, x2, …, xm, …, xM is a sentence of M

words in the source language, and y = y1,y2 …, yn, …, yN
is a sentence of N words in the target language. The

introduced model works as follow [17, 18]:

• The input sentence x is passed through a bidirectional

RNN encoder to generate a sequence of hidden states.

The encoder consists of a forward RNN that reads the

sentence from left to right and produce the hidden states

h~. And a backward RNN that reads the sentence from

right to left and produce the hidden states h

where:

hm
�! ¼ ;~ hm�1

��!
; xm

� �

ð1Þ

hm
 � ¼ ;

hmþ1
 ��

; xm

� �

ð2Þ

where ;~ and ;

are RNN.

• Both hm
�!

and hm
 �

are concatenated to provide the

hidden state hm for the word xm

hm ¼ hm
�!

; hm
 �h i

ð3Þ

• To predict a word yn, the model uses the following

conditional probability:

p ynjx; y\n; hð Þ ¼ g yn�1; sn; cn; hð Þ ð4Þ

where g :ð Þ is a non-linear function, sn is the hidden state
corresponding to yn, cn is context vector, and h is a set

of model parameters.

• The decoder consists of a single RNN. The hidden

states of the decoder are calculated as:

sn ¼ f sn�1; yn�1; cn; hð Þ ð5Þ

where f is a RNN.

• Now, there are two loose ends: the encoder and the

decoder. To tie them together, a context vector cn is

used:

cn ¼
X

M

m¼1
A hð Þn;mhm ð6Þ

• A hð Þ is an alignment matrix, in which each element

A hð Þn;m refers to the contribution of the source word xm

in the generation of the target word yn. It is calculated

as follow:

A hð Þn;m¼
exp a sn�1; hm; hð Þð Þ

PM

m
‘ ¼1

exp a sn�1; h
m
‘ ; h

� �� � ð7Þ

Where a sn�1; hm; hð Þ measures how well xm is aligned to

yn.

Although this attention mechanism has been first intro-

duced for machine translation, now it is used widely in

neural architectures for several applications in sentiment

classification, text summarization, question answering and

others. This is due to the following advantages [19]:

• It presents the state-of-the-art for several applications

like machine translation, sentiment analysis, and part-

of-speech tagging

• It improves both performance and interpretability of the

neural models. Neural models have been considered as

black-box models. This attention mechanism helps in a

better understanding of how these models work to

produce the output

• It helps overcome some of the problems that face

RNNs, like the decrease in performance that accompa-

nies the increase in the sentence length. The alignment

matrix is computed on each word in the input sentence.

So, the context vector is not influenced by the sentence

length.

The main drawbacks of this architecture are [20, 21]:

• Lack of parallelism: Recurrent models align symbol

positions in both the input and the output sequences to

steps in computation time. Generation of hidden states

at time t requires knowing of the input symbol at time t,Fig. 1 The architecture of the Stacked RNN with Attention generating

the candidate target word yn, given an input sentence (X1, X2, X3,

…, XM

15922 Neural Computing and Applications (2021) 33:15919–15931

123

and the hidden state at time t-1. This workflow of

recurrent models prevents parallel training of examples.

• Each time the decoder produces an output element, the

model must go through the entire input sequence. This

consumes considerable time that increases with the

lengths of the source and target sequences.

• This architecture is not suitable for ‘‘online’’ tasks

where the production of the output elements begins

once the input sequence is partially observed.

4.2 Self-attentional transformer

With the aim to preclude sequential computations that exist

in recurrent models, Vaswani et al. [22] proposed the self-

attentional transformer. Self-attention, also called intra-at-

tention, is the mechanism of attention that generates a

representation for a sequence by relating different positions

of it. In addition to learning dependencies between inputs

and outputs, the self-attentional transformer also learns

intra-input and intra-output dependencies. The model is

shown in Fig. 2.

Both the encoder and the decoder consist of a stack of 6

identical layers. Each encoder layer contains two main

components: a multi-head self-attention mechanism, and

position-wise feed forward network. Each decoder layer

contains three main components: a masked multi-head self-

attention mechanism, a multi-head self-attention mecha-

nism, and position-wise feed forward network. Residual

connections exist around each of the main components,

followed by layer normalization.

The model works as follow [23]:

• Both the input and the target sentences are passed

through embedding layers to generate word vectors

WE 2 Rdm�V ; where dm is the model size, and V is the

size of the vocabulary

• These word vectors are then multiplied by a scaling

factor of
ffiffiffiffiffiffi

dm
p

• To preserve the position information, position encod-

ings of sinusoids are applied and summed to the source

and target scaled word vectors

4.3 The encoder layer

• The multi-head self-attention sublayer: implements

multi-head dot-product self-attention. Assumes x = (x1,

…xT) is the input to the layer, and z = (z1, …, zT) is the

self-attention output, where xi; zi 2 Rdm . In the case of a

single-head:

• First, keys, values, and queries are calculated as follow,

respectively:

ki ¼ xiWK ð8Þ
vi ¼ xiWV ð9Þ
qi ¼ xiWQ ð10Þ

where WK , WV , and WQ are learnable transformation

matrices.

next: Similarity scores between query and key vectors

are calculated using the following equation:

eij ¼
1
ffiffiffiffiffiffi

dm
p qi k

T
j ð11Þ

Then, the softmax function is applied on these similarity

scores to get the attention coefficients

aij ¼
exp eij

PT
l¼1 exp eil

ð12Þ

An output zi is calculated as the convex combination of

attention coefficients with value vectors followed by a

linear transformation

Fig. 2 The architecture of the self-attentional transformer used for

learning intra-input and intra-output dependencies

Neural Computing and Applications (2021) 33:15919–15931 15923

123

zi ¼
X

T

j¼1
aij vj

 !

WF ð13Þ

where WF is a linear transformation matrix.

• In the case of multi-head, the key, value, and query

vectors are split into L vectors. Equations from (1) to

(5) are executed in parallel for each of the L vectors.

The outputs of Eq. (6) are first concatenated before

being linearly transformed by WF .

• The position-wise feed forward network: This sublayer

keeps track of the order of the sentence by generating

encodings of the absolute positions of the words in the

sentence. The residual connections around the layers

retain the positional embeddings across the network.

4.4 The decoder layer

• The masked multi-head self-attention sublayer: per-

forms multi-head self-attention with a modification to

prevent positions from appearing at subsequent

positions.

• The multi-head self-attention sublayer: performs the

inter-attention between the encoder and the decoder.

This time, the query vector gets its input from the

decoder layer. And both the key and value vectors gets

their inputs from the last layer of the encoder.

• The position-wise feed forward network: similar to the

encoder

The self-attentional transformer provides two advan-

tages: (1) Parallelization of Sequence-to-sequence: by

replacing recurrence with attention and encoding word

positions in both input and output sentences, which con-

sequently leads to reduced training time. (2) Reduction of

sequential computation: it decreases the number of opera-

tions needed to learn dependencies between subsequent

words.

Despite the state-of-the-art performance achieved by

this architecture, it suffers from the following drawbacks

[24, 25]:

• Extraction of unimportant information: it assigns credits

to all values regardless of how extent they are

correlated to the query. This leads to lack of focus on

relevant information and paying attention to irrelevant

portions in the context.

• The quadratic increase of computation costs: the self-

attention mechanism computes dot products for every

pair of words in the source and target sentences. The

computational costs increase quadratically with the

sentence length, which makes this architecture difficult

to use with long sequences.

4.5 Convolutional sequence to sequence

In 2017, Gehring et al. [26], at the Facebook AI Research

(FAIR), have proposed this architecture, which is based

completely on convolutional neural networks (CNNs). The

reasons the researchers choose this network are:

1. In contrast to RNNs, CNNs do not account on the

computations of the previous time step, thus, they

allow parallel processing of every token in a sentence

2. Despite CNNs encode a representation for a context of

fixed-size, this size can be increased using stacks of

CNNs layers on top of each other.

Multi-layer CNNs make a hierarchical representation of

the input sequence, thus, close input tokens interact at

lower layers and far tokens at higher layers. This way,

long-range dependencies can be captured by a shorter path.

The model is shown in Fig. 3.

Assume x = (x1, xm) is a sentence of m words in the

source language, and y = (y1, yn) is a sentence of n words

in the target language. The introduced model works as

follow [27, 28]:

• The source sentence x is embedded in a distributional

space as w = (w1, …,wm) where wj 2 Rf is a column in

Fig. 3 The architecture of the convolutional Sequence to Sequence

generating the target Sentence ‘‘Sie stimmen zu’’, given the input

‘‘They agree’’

15924 Neural Computing and Applications (2021) 33:15919–15931

123

an embedding matrix D 2 RV�f where f is the embed-

ding dimension, and V is the size of the vocabulary

• To keep track of the sentence order, each word position

is assigned an embedding as well. A position embed-

ding p = (p1, …, pm) that contains absolute positions of

words in x is generated, where pj 2 Rf .

• Both embeddings are combined to get a word repre-

sentation e = (w1 ? p1, …, wm ? pm). The same

process is applied to the output elements that were

already generated by the decoder to produce output

element representations q = (q1, …, qn) that are being

fed back into the decoder

• The architecture employs a shared CNN block structure

to compute the intermediate states for both the encoder

and the decoder, using a fixed number of input elements

(words). Assuming l-th block, the output states of the

encoder are zl ¼ zl1; . . .; z
l
m

� �

, and the output states of

the decoder are hl ¼ hl1; . . .; h
l
n

� �

• Each block has a one dimensional CNN, followed by a

non-linearity consisting of gated linear units. Each

generated intermediate state holds information over k

input elements, where k is the kernel width. To handle

the increased number of input elements, blocks can be

stacked on top of each other. Non-linearities allow the

network to either exploit the whole input field, or to

focus on some words.

• Each convolution kernel takes a concatenation of k

input elements as input and maps them to one output

element. The following layers run on the k elements

produced by the previous layer. Simple gating mech-

anism is carried out on the convolution output by the

gated linear units

• Residual connections are added between the input of

each convolution and the output of the block. for the l-

th layer of the decoder, the residual connections

calculate the convolution unit i as:

hli ¼ v Wl hl�1i�k
2
; . . .; hl�1iþk

2

h i

þ blw

� �

þ hl�1i ð14Þ

Where Wl and blw are the parameters of the convolution

kernel.

4.6 The multi-step attention

For each decoder layer, there is a separate attention

mechanism. This attention is calculated as follows:

• The current decoder state hli and the embedding of the

previous target word gi are used to compute the decoder

state summary

dli ¼ wl
dh

l
i þ bld þ gi ð15Þ

• the attention weights for a certain state i and a source

word j is calculated as the dot-product between dli and

each output of the last encoder block u:

alij ¼
exp dli :z

u
j

� �

Pm
t¼1 exp dli :z

u
t

� � ð16Þ

• for the current decoder layer, The conditional input is

calculated as

cli ¼
X

m

j¼1
alij zuj :ej

� �

ð17Þ

Where ej is the input word embedding that can give point

information about a specific input word. cli is added to the

output of the corresponding decoder layer hli, and used as

part of the input to hlþ1i .

The advantages of convolutional Sequence to Sequence

are [26]: (1) Parallelization of Sequence-to-sequence: all

computations required to be performed during the training

can be done in parallel, thus maximizing the utilization of

GPUs. (2) Better optimization: the architecture can be

better optimized thanks to the presence of a fixed number

of gated linear units independent of the input length.

The main drawbacks of this architecture are [22, 29]: (1)

the attention functionality depends on the presence of a

multi-layer convolution structure, the weighted context

from the encoder side would be of less impact in the

Absence of this architecture. (2) the Convolutional

sequence to sequence performs a set of operations to cal-

culate the dependencies between positions in input and

output. The number of operations increases linearly as the

distances between these positions increase.

5 Discussion

Attention mechanism has proved superior performances

not only in machine translation, but in other fields such as

sentiment classification, text summarization and question

answering. In the previous section, three attention mecha-

nisms have been represented: Stacked RNN with Attention,

Self-attentional Transformer, and Convolutional Sequence

to Sequence. Evaluation of these mechanisms has been

performed on the English-French and English-German

datasets from the WMT 14, and the English-Romanian

dataset from the WMT 16. And the BLEU metric has been

used to measure translation accuracies.

5.1 Datasets & benchmarks

The workshop on statistical machine translation (WMT)

[30] is an annual prestigious scientific gathering for

Neural Computing and Applications (2021) 33:15919–15931 15925

123

discussing all emerging trends in the area. The WMT 14

was the ninth workshop; it examined translation between

10 language pairs including the English-French and Eng-

lish-German. Moreover, the WMT 16 examined translation

between 12 language pairs including English-Romanian.

The WMT 14 English-French dataset [31] provides five

parallel corpora: Europarl v7, news commentary, UN cor-

pus, and two crawled corpora (more than 40.5 million

sentence pairs). The WMT 14 English-German dataset [31]

contains three parallel corpora: Europarl v7, news com-

mentary, and one crawled corpora (about 4.5 million sen-

tence pairs). Finally, WMT 16 English-Romanian dataset

[32] contains two parallel corpora: Europarl v8 and a

corpus of news articles (about 610,320 sentence pairs).

The BLEU (BiLingual evaluation understudy) [33]

metric could be considered as a low-cost and language-

independent algorithm for evaluating the quality of an

automatic translation. It compares sequences of words of

the obtained translation output (candidate translation) with

that of the reference translation, to find to what extent they

are similar. The more they match, the better the candidate

translation is. BLEU’s output is a value between 0 and 1.

The closer the value to 1, the more similar candidate and

reference sentences are.

5.2 Results comparison

With the motivation to tackle the problem of using a fixed-

size vector to encode the source sentence, Bahdanau et al.

[16] proposed the Stacked RNN with Attention. To analyze

the model performance, they trained and tested it using

sentences of length up to 30 words. Then, sentences of

length up to 50 words. And finally, sentences of length

greater than 50 words. Evaluation of the proposed model

on the English-French parallel corpora from the WMT

2014 translation task showed a significant improvement in

comparison with the basic encoder-decoder. This

improvement was obvious, especially with long sentences.

Also, the results showed a translation performance com-

parable to existing phrase-based statistical machine trans-

lation systems.

The Convolutional Sequence to Sequence model pro-

posed by Gehring et al. [26] showed a remarkable superi-

ority over the model of bahdanau et al. Also, the model

achieved a new state-of-the-art when evaluated on the

WMT 16 English-Romanian dataset, and a comparable

BLEU score on the WMT 14 English-German dataset.

Compared to the RNN stack with attention, the Convolu-

tional sequence to sequence provides a shorter path to

capture dependencies between words which are some dis-

tance apart. Also, the computational complexity is far less.

Vaswani et al. [22] were able to avoid the drawbacks of

RNN and CNN by developing a model based solely on

attention mechanisms. The model achieved a comparable

results on the WMT 14 English-German dataset, and a

state-of-the-art BLEU score on the WMT 14 English-

French translation task. It requires a training time less than

the models based on CNN or RNN layers. In comparison to

the Convolutional sequence to sequence, the Convolutional

sequence to sequence consumes time to calculate the

dependencies between positions in input and output. This

time increases linearly as the distances between these

positions increase. While, the calculation of these depen-

dencies depends on a fixed number of operations in Self-

attentional Transformer. Tables 1 and 2 show the perfor-

mance of the attention mechanisms presented in [16, 22,

and 26] through the WMT14 English-French dataset and

WMT14 English-German dataset, respectively. From these

tables, it could be concluded that Vaswani [22] surpassed

the other models in both execution time and RNN perfor-

mance. On the other hand, Gehring [26] was not too far

from Vaswani [22] in BLEU score in the English-French

dataset. Furthermore, Gehring [26] analyzed an English-

Romanian dataset and achieved 30.02 BLEU score.

6 Toolkits

There is a wide spread of toolkits that has been mainly

implemented to support research, development, and

deployment of neural machine translation systems. This

number of toolkits is increasing as more are being devel-

oped. According to the tally by nmt-list [34], there are 55

toolkits. Some of the hopeful toolkits are OpenNMT,

XNMT, Nematus, SOCKEYE.

6.1 OpenNMT

OpenNMT [35], the open-source toolkit launched in

December 2016, has been developed for neural machine

translation and neural sequence modeling. There are three

implementations of OpenNMT for both academic and

industrial purposes. They have been developed taking into

consideration simplicity of use, ease of extension, and

efficiency and state-of-the-art accuracy. These implemen-

tations are:

• OpenNMT-lua: the original project developed

with LuaTorch.

• OpenNMT-py: a clone of OpenNMT-lua that has been

developed using PyTorch. This implementation has

been initially created by the Facebook AI research

team, and is especially suited for research.

• OpenNMT-tf: another alternative of OpenNMT-lua

written with TensorFlow. It benefits from the

15926 Neural Computing and Applications (2021) 33:15919–15931

123

tensorFlow features to serve high-performance model

and focus on large-scale experiments.

6.2 XNMT [36]: The extensible neural machine
translation toolkit

XNMT is a toolkit that focuses on modular code design,

and enables rapid iteration in research, and replicable and

dependable results. It can be used in the fields of: Machine

translation, speech recognition, and multi-tasked machine

translation/parsing. What distinguishes this toolkit from

others is the reduced time to convert the idea into a prac-

tical experimental environment, testing of these ideas using

a large number of parameters, and production of correct

and reliable search results. The toolkit has been developed

taking into consideration:

• The use of modular code design. So, it is easy to modify

code and swap between the different parts of the model.

• Implementation of the toolkit in Python, the standard

programming language in the research community.

• The use of DyNet framework, which makes it possible

to implement complex networks with dynamic struc-

ture, handle batch operations, or rely on autobatching.

• Support of standard NMT models, optimization tech-

niques, multi-task learning, and encoders for speech

6.3 Nematus [37]

An open-source toolkit that has been developed on the

basis of the dl4mt-tutorial [38]. It has been implemented in

Python, setting a high priority in translation accuracy,

usability, and extensibility.

Although Nematus has implemented its encoder-de-

coder architecture with an attention mechanism similar to

that of Bahdanau et al., it has introduced some modifica-

tions, like:

• Initialization of the decoder hidden state with the mean

of the source annotation

• Implementation of a new conditional GRU with

attention.

Table 1 Performance of the three attention mechanisms (models) through the WMT 14 English-French benchmark in BLEU

Mechanisms

(Models)

BLEU scores on WMT 14

English-French

Comments

Bahdanau [16]

Up to 30

words

21.50 It is robust to the sentence length

It does not require encoding the whole input sentence, but only the parts related to a particular

word

Bahdanau [16]

Up to 50

words

26.75 It consumes more time, to train the model on sentences more than 50 words, until the

performance on the validation dataset stops improving

Bahdanau [16]

More than 50

words

28.45 It provides a shorter path, Compared to the Bahdanau [16], to capture dependencies between

words which are some distance apart

Gehring [26] 40.51 The computational complexity is far less

Vaswani [22] 41 It is able to avoid the drawbacks of RNN used in Bahdanau [16]

It requires less training time

Table 2 Performance of Gehring [26] and Vaswani [22] attention mechanisms (models) through the WMT 14 English-German benchmark in

BLEU

Mechanisms

(Models)

BLEU scores on WMT 14

English-German

Comments

Gehring [26] 25.16 Time needed to calculate the dependencies between positions in input and output increases

linearly as the distances between these positions increase, which makes it a hard work to

learn dependencies between positions at distance

Vaswani [22] 28.4 The calculation of dependencies between positions in input and output depends on a fixed

number of operations

Neural Computing and Applications (2021) 33:15919–15931 15927

123

• Use of tanh non-linearity function instead of maxout in

the hidden layer before the softmax layer in the

decoder.

• Remove of the additional biases from word embedding

layers in both the encoder and the decoder

• Simpler implementation of the decoder Look, Generate,

Update process

• Instead of using a single word embedding at each time

step in the input sentence, a multiple features repre-

sentation is used. The final embedding of the input

sentence is the concatenation of the embeddings of each

feature.

Nematus has been used in the development of high-

performance systems to some translation tasks at WMT

and IWSLT, as well as in the training of WIPO.

6.4 Sockeye [39]

A free and open-source sequence-to-sequence toolkit that

is Written in Python and built on MXNET library.

SOCKEYE has been developed to be an appropriate plat-

form for the experiments carried out by researchers, as well

as a production software-ready tool for models training and

applying. As stated by the authors, SOCKEYE is the only

toolkit that comprises implementations for the three

attention mechanism techniques: the attention mechanism

by [Schwenk, 2012, Kalchbrenner and Blunsom 2013,

Sutskever et al. 2014, Bahdanau et al. 2014, Luong et al.

2015], attention transformer by [Vaswani et al. 2017], and

fully convolutional networks by [Gehring et al. 2017].

SOCKEYE offers several optimizers, normalization and

regularization techniques. In a comparison of SOCKEYE

against other NMT toolkits, it has achieved competitive

BLEU scores using English–German and Latvian–English

datasets from the 2017 Conference on Machine Translation

(WMT).

SOCKEYE offers a range of features, to name a few:

• Weight tying: sockeye enables sharing of weights for

efficient language modeling and reduction of memory

consumption

• RNN attention types: in the attention mechanism by

Bahdanau et al. a score function is calculated to

generate the attention vector. SOCKEYE gives a wide

range of functions to compute that score function.

• RNN coverage models: in contrast to other approaches

that keep track of the source-language coverage, NMT

does not track the portions of the input sentence that

have been translated. This results in over-generation

and under-generation problems. Recently, some cover-

age models have been proposed. SOCKEYE includes

implementations of different variants of the proposed

coverage modeling

• Optimizers: SOCKEYE makes use of different opti-

mizers from MXNET’s library, like stochastic gradient

descent (SGD) and Adam. besides, SOCKEYE has its

own implementation of other optimizers, like the Eve

optimizer, which is an extension of the Adam

optimizer.

6.5 Marian [40]

An independent and efficient neural machine translation

toolkit written entirely in pure c??, based on dynamic

computation graphs. It has been developed at the Univer-

sity of Edinburgh, and at the Adam Mickiewicz University

in Poznan, with the goal of providing a research tool

capable of defining state-of-the-art systems as well as

producing models that can be deployed across different

devices. Marian has been able to occupy a distinguished

position among other open-source NMT toolkits by pro-

viding many advantages:

• Extensible Encoder-Decoder Framework: It provides

the possibility to incorporate various encoders and

decoders (for example a RNN-based encoder with a

Transformer decoder)

• Efficient Meta-algorithms: it provides implementations

of several effective meta-algorithms like multi-device

(GPU or CPU) training and ensembling of diverse

models

• Automatic batch size adaptation: it adjusts the batch

size with focus on available memory to get both the

maximum speed and memory usage. This ensures that

the memory budget chosen during training is not

exceeded.

Marian has been used as the main translation and

training engine of WIPO, as well as in the development of

several European projects.

6.6 Tensor2tensot [41]

An open source library of deep learning models that has

been developed by Google. It is appropriate for neural

machine translation and has been designed with an

emphasis on making deep learning research faster and

attainable. Tensor2Tensor offers a host of features, to

mention some:

• Researchers can use different devices (CPU, GPU, and

TPU), single or multiple, locally or in the cloud, to train

their models with no or negligible amount of device-

specific code

• As the development of Tensor2Tensor began with an

emphasis on neural machine translation, the library

15928 Neural Computing and Applications (2021) 33:15919–15931

123

contains many of the most effective NMT models and

standard datasets

• It provides support (models and datasets) for tasks in

research areas other than neural machine translation as

well.

• The library provides a great deal of consistency across

models and problems. a single model can be tried on

several problems, and several models can be tried on a

single problem

6.7 Fairseq [42]

An open-source sequence modeling library based on

PyTorch that has been developed to help researchers train

models for text generation tasks such as machine transla-

tion, language modeling, and text summarization. FAIR-

SEQ has been developed taking into consideration speed,

extensibility, and Benefits for both research and produc-

tion. It provides a set of features:

• Extensibility: it can be extended with user-supplied

plug-ins. This offers the possibility to try new ideas

while making use of existing components

• Reproducibility and forward compatibility: results can

be reproduced in case the training is interrupted and

resumed as the checkpoints keep all the needed data

about the model, optimizer, and dataloader. also,

Models that have been trained on the old versions of

the toolkit will continue to run on new versions

• Batching: source and target sequences are grouped in

mini-batches according to the length of the sequence.

Thus, padding can be minimized

• Multi-GPU training: a model can be trained using

multiple GPUs by making a copy of the model for each

GPU to process sub-batch of data. The toolkit offers

solutions to the idle time problem where most GPUs

wait for the slower ones to finish their work.

• Mixed precision: FAIRSEQ supports both full precision

floating point (FP32) and half precision floating point

(FP16) at training and inference. The toolkit performs

dynamic loss scaling to avoid the problem of under-

flows of activations and gradients resulting from limited

precision of FP16

6.8 Neural monkey

Neural Monkey [43] is an open-source toolkit that has been

developed for neural machine translation and neural

sequence modeling. It has been developed using the Ten-

sorflow machine learning library with the aim of collecting

implementations of modern deep learning methods in

diverse fields, with a main focus on NMT. The toolkit has

been developed taking into consideration:

• The use of abstract building blocks. so, the user does

not need to delve into the details of the implementations

• Support of the quick building of complex models with

multiple encoders and decoders.

• Deploying of trained models either to process batch

data or as a web service.

• Run of models both on CPU and GPU with a minimal

requirements that can be easily installed

• Keeping of the overall structure of a model in an easy-

to-read file

6.9 Challenges facing neural machine
translation

Although its promising results and rapid adoption in

deployments by Google, Systran, and WIPO, neural

machine translation faces several challenges [44]:

• System ambiguity: NMT systems are extremely less

explainable. Research is needed to discover the reasons

why training data make these systems choose a

particular word during decoding.

• Domain mismatch: The same word can have different

translations according to different domains. Therefore,

domain adaptation is a necessary issue to be considered

when developing machine translation. The performance

of a NMT system becomes dramatically worse when

translating out-of-domain sentences. The current

approach to deal with this issue is to train the system

using a general domain training data, then, train it using

in-domain training data. But, more research is needed to

find out other approaches.

• Amount of training data: NMT gives highly accurate

results as long as the training corpus is large. Whenever

the training data size is reduced, the accuracy decreases

sharply.

• Rare words: Because of its limited size, a NMT

vocabulary contains only frequently used words. NMT

systems exhibit weakness in translating out-of-vocab-

ulary or low-frequency words. Several approaches have

been developed to address this challenge, but it is still

an open point of research

• Long sentences: NMT systems give good results when

translating short sentences, they maintain a comparable

level of accuracy up to a sentence length of about 60.

As the sentence becomes long, the translation quality

decreases

Neural Computing and Applications (2021) 33:15919–15931 15929

123

7 Conclusion

The use of DNN in machine translation has begun a few

years ago; nevertheless, it has achieved great success and

high accuracy, surpassing many other approaches including

SMT, which has been the dominant approach of machine

translation for a long period of time. To translate a sentence

from a source language to a target language, the NMT

approach employs 2 sub networks, namely: the encoder and

the decoder. The encoder converts the source sentence

words into some representation, which is used by the

decoder in turn to produce the target sentence. The network

models used in the construction of the Encoder/Decoder

have evolved from the use of the convolutional networks to

the use of the bidirectional RNN, which has been able to

overcome the problem of fixed-length vectors, where the

sentence was represented, regardless of its length, by a

vector of fixed length.

The attention mechanism has been able to improve the

accuracy of translation, where in each time step the deco-

der produces a target word depending on articular words in

the source sentence. Research in the NMT field has shown

some problems that face this technique, like: large vocab-

ulary, rare words, long distance, and domain mismatch.

Despite the proposed solutions to these problems, research

is still continuing to find better solutions.

References

1. Bentivogli L, Bisazza A., Cettolo M, Federico M. (2016). Neural

versus phrase-based machine translation quality: a case study.

arXiv preprint AxXiv:1608.04631

2. Zhang B, Xiong D, Su J, Duan H (2017) A context-aware

recurrent encoder for neural machine translation. IEEE/ACM

Transact on Aud, Speech, Lang Process 25(12):2424–2432

3. Almansor, E. H. (2018). Translating Arabic as low resource

language using distribution representation and neural machine

translation models (Doctoral dissertation).

4. Moussallem D, Wauer M, Ngomo ACN (2018) Machine trans-

lation using semantic web technologies: A survey. J Web Semant

51:1–19

5. Williams P, Sennrich R, Post M, Koehn P (2016) Syntax-based

statistical machine translation. Synth Lectur on Human Lang

Technolog 9(4):1–208

6. Satpathy S, Mishra, S. P, Nayak, A. K. (2019, May). Analysis of

Learning Approaches for Machine Translation Systems. In 2019

International Conference on Applied Machine Learning

(ICAML) (pp. 160–164). IEEE

7. Wang X, Tu Z, Zhang M (2018) Incorporating Statistical

Machine Translation Word Knowledge Into Neural Machine

Translation. IEEE/ACM Transact on Audio, Speech, Lang Pro-

cess 26(12):2255–2266

8. Yang Z, Chen W, Wang F, Xu B (2018) Generative adversarial

training for neural machine translation. Neurocomputing

321:146–155

9. Forcada M L, Ñeco R P. (1997, June). Recursive hetero-asso-

ciative memories for translation. In International Work-Confer-

ence on Artificial Neural Networks. 453–462. Springer, Berlin

10. Castano, M. A., Casacuberta, F., Vidal, E. (1997). Machine

translation using neural networks and finite-state models. Theo-

retical and Methodological Issues in Machine Translation (TMI),

160–167

11. Schwenk H (2007) Continuous space language models. Comput

Speech Lang 21(3):492–518

12. Schwenk H. (2012). Continuous space translation models for

phrase-based statistical machine translation. Proceedings of

COLING 2012: Posters, 1071–1080.

13. Kalchbrenner N, Blunsom P. (2013). Recurrent continuous

translation models. In Proceedings of the 2013 Conference on

Empirical Methods in Natural Language Processing. 1700–1709

14. Sutskever I, Vinyals, O, Le, Q. V. (2014). Sequence to sequence

learning with neural networks. In Advances in neural information

processing systems. 3104–3112

15. Cho K, Van Merriënboer B, Bahdanau D, Bengio Y. (2014). On

the properties of neural machine translation: Encoder-decoder

approaches. arXiv preprint arXiv:1409.1259

16. Bahdanau D, Cho K, Bengio Y. (2014). Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473

17. Cheng Y. (2019). Agreement-based joint training for bidirec-

tional attention-based neural machine translation. In Joint

Training for Neural Machine Translation. 11–23. Springer,

Singapore

18. Choi H, Cho K, Bengio Y (2018) Fine-grained attention mech-

anism for neural machine translation. Neurocomputing

284:171–176

19. Hu D (2019) An introductory survey on attention mechanisms in

NLP problems. In Proceedings of SAI Intelligent Systems Con-

ference. 432–448. Springer, Cham.

20. Dhanani F, Rafi, M (2020) Attention Transformer Model for

Translation of Similar Languages. In Proceedings of the Fifth

Conference on Machine Translation. 387–392

21. Raffel C, Luong M. T, Liu P. J, Weiss R. J, Eck D (2017) Online

and linear-time attention by enforcing monotonic alignments.

In International Conference on Machine Learning. 2837–2846.

PMLR

22. Vaswani A., Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez

A. N, Polosukhin I (2017) Attention is all you need. In Advances

in Neural Information Processing Systems. 5998–6008

23. Sachan D. S, Neubig G (2018). Parameter sharing methods for

multilingual self-attentional translation models. arXiv preprint

arXiv:1809.00252

24. Zhao G, Lin J, Zhang Z, Ren X, Su Q, Sun X (2019) Explicit

sparse transformer: Concentrated attention through explicit

selection. arXiv preprint arXiv:1912.11637

25. Tsunoo E, Kashiwagi Y, Watanabe S (2020) Streaming Trans-

former ASR with Blockwise Synchronous Beam Search. arXiv

preprint arXiv:2006.14941

26. Gehring J, Auli M, Grangier D, Yarats D, Dauphin Y. N (2017)

Convolutional sequence to sequence learning. In Proceedings of

the 34th International Conference on Machine Learning-Volume

70. 1243–1252. JMLR. org

27. Wu Y. C, Yin F, Zhang X. Y, Liu L, Liu C. L (2018) Scan:

Sliding convolutional attention network for scene text recogni-

tion. arXiv preprint arXiv:1806.00578

28. Wang L, Yao J, Tao Y, Zhong L, Liu W, Du Q (2018) A rein-

forced topic-aware convolutional sequence-to-sequence model

for abstractive text summarization. arXiv preprint

arXiv:1805.03616

15930 Neural Computing and Applications (2021) 33:15919–15931

123

29. Yin W, Schütze H (2018) Attentive convolution: Equipping cnns

with rnn-style attention mechanisms. Trans Assoc Computat Ling

6:687–702

30. http://statmt.org.http://statmt.orgLast access 4 February 2021

31. http://www.stamt.org/wrnt14/translation-task.html Last access 4

February 2021

32. http://www.stamt.org/wrnt14/translation-task.htmlLast access 4

February 2021

33. Zakraoui J, Saleh M, Al-Maadeed S, AlJa’am JM (2020) Eval-

uation of Arabic to English Machine Translation Systems. In

2020 11th International Conference on Information and Com-

munication Systems (ICICS). 185–190. IEEE

34. http://github.com/jonsafari/nmt-list Last access 4 February 2021

35. http://opennmt.netLast access 4 February 2021

36. Neubig G, Sperber M, Wang X, Felix M, Matthews A, Pad-

manabhan S, Hewitt J (2018) XNMT: The extensible neural

machine translation toolkit. arXiv preprint arXiv:1803.00188

37. Sennrich R, Firat O, Cho K, Birch A, Haddow B, Hitschler J,

Nădejde M (2017) Nematus: a toolkit for neural machine trans-

lation. arXiv preprint arXiv:1730.04357

38. http://github.com/nyu-di/di4mt-tutorial Last access 4 February

2021

39. Hieber F, Domhan T, Denkowski M, Vilar D, Sokolov A., Clifton

A., Post M (2017) Sockeye: A toolkit for neural machine trans-

lation. arXiv preprint arXiv:1712.05690

40. Junczys-Dowmunt M, Grundkiewicz R, Dwojak T, Hoang H,

Heafield K, Neckermann T, Birch A (2018) Marian: Fast neural

machine translation in C??. arXiv preprint arXiv:1804.00344

41. Vaswani A, Bengio S, Brevdo E, Chollet F, Gomez A. N, Gouws

S, Uszkoreit J (2018) Tensor2tensor for neural machine transla-

tion. arXiv preprint arXiv:1803.07416

42. Ott M, Edunov S, Baevski A, Fan A, Gross S, Ng N, Auli M

(2019) fairseq: A fast, extensible toolkit for sequence model-

ing. arXiv preprint arXiv:1904.01038

43. Helcl J, Libovický J (2017) Neural monkey: An open-source tool

for sequence learning. The Prague Bullet Mathemat Ling

107(1):5

44. Koehn P, Knowles R. (2017). Six challenges for neural machine

translation. arXiv preprint arXiv:1760.03872

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:15919–15931 15931

123

http://statmt.org
http://www.stamt.org/wrnt14/translation-task.html
http://www.stamt.org/wrnt14/translation-task.html
http://github.com/jonsafari/nmt-list
http://opennmt.net
http://github.com/nyu-di/di4mt-tutorial

	Neural machine translation: past, present, and future
	Abstract
	Introduction
	Background
	Evolution of NMT
	Introducing the attention mechanism
	Stacked RNN with attention
	Self-attentional transformer
	The encoder layer
	The decoder layer
	Convolutional sequence to sequence
	The multi-step attention

	Discussion
	Datasets & benchmarks
	Results comparison

	Toolkits
	OpenNMT
	XNMT [36]: The extensible neural machine translation toolkit
	Nematus [37]
	Sockeye [39]
	Marian [40]
	Tensor2tensot [41]
	Fairseq [42]
	Neural monkey
	Challenges facing neural machine translation

	Conclusion
	References

